
Chapter 2
Preliminaries

2.1 Sparse Linear Regression and Compressed Sensing

Least squares problems occur in various signal processing and statistical inference
applications. In these problems the relation between the vector of noisy observations
y 2 R

m and the unknown parameter or signal x? 2 R
n is governed by a linear

equation of the form

y D Ax? C e; (2.1)

where A 2 R
m�n is a matrix that may model a linear system or simply contain a

set of collected data. The vector e 2 R
m represents the additive observation noise.

Estimating x? from the observation vector y is achieved by finding the vector x that
minimizes the squared error kAx � yk22. This least squares approach, however, is
well-posed only if the nullspace of matrix A merely contains the zero vector. The
cases in which the nullspace is greater than the singleton f0g, as in underdetermined
scenarios (m < n), are more relevant in a variety of applications. To enforce unique
least squares solutions in these cases, it becomes necessary to have some prior
information about the structure of x?.

One of the structural characteristics that describe parameters and signals of
interest in a wide range of applications from medical imaging to astronomy is
sparsity. Study of high-dimensional linear inference problems with sparse parame-
ters has gained significant attention since the introduction of Compressed Sensing,
also known as Compressive Sampling, (CS) Donoho (2006); Candès and Tao (2006).
In standard CS problems the aim is to estimate a sparse vector x? from linear
measurements. In the absence of noise (i.e., when e D 0), x? can be determined
uniquely from the observation vector y D Ax? provided that spark .A/ > 2kx?k0
(i.e., every 2kx?k0 columns of A are linearly independent) Donoho and Elad (2003).
Then the ideal estimation procedure would be to find the sparsest vector x that
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incurs no residual error (i.e., kAx � yk2 D 0). This ideal estimation method can
be extended to the case of noisy observations as well. Formally, the vector x? can
be estimated by solving the `0-minimization

Ox D arg min
x

kxk0 s.t. ky � Axk2 � "; (2.2)

where " is a given upper bound for kek2 Candès et al. (2006). Unfortunately, the
ideal solver (2.2) is computationally NP-hard in general Natarajan (1995) and one
must seek approximate solvers instead.

It is shown in Candès et al. (2006) that under certain conditions, minimizing
the `1-norm as a convex proxy for the `0-norm yields accurate estimates of x?.
The resulting approximate solver basically returns the solution to the convex
optimization problem

Ox D arg min
x

kxk1 s.t. ky � Axk2 � "; (2.3)

The required conditions for approximate equivalence of (2.2) and (2.3), however,
generally hold only if measurements are collected at a higher rate. Ideally, one
merely needs m D O .s/ measurements to estimate x?, but m D O.s log n=s/
measurements are necessary for the accuracy of (2.3) to be guaranteed.

The convex program (2.3) can be solved in polynomial time using interior point
methods. However, these methods do not scale well as the size of the problem
grows. Therefore, several first-order convex optimization methods are developed
and analyzed as more efficient alternatives (see, e.g., Figueiredo et al. 2007; Hale
et al. 2008; Beck and Teboulle 2009; Wen et al. 2010; Agarwal et al. 2010).
Another category of low-complexity algorithms in CS are the non-convex greedy
pursuits including Orthogonal Matching Pursuit (OMP) Pati et al. (1993); Tropp and
Gilbert (2007), Compressive Sampling Matching Pursuit (CoSaMP) Needell and
Tropp (2009), Iterative Hard Thresholding (IHT) Blumensath and Davies (2009),
and Subspace Pursuit Dai and Milenkovic (2009) to name a few. These greedy
algorithms implicitly approximate the solution to the `0-constrained least squares
problem

Ox D arg min
x

1

2
ky � Axk22 s.t. kxk0 � s: (2.4)

The main theme of these iterative algorithms is to use the residual error from the
previous iteration to successively approximate the position of non-zero entries and
estimate their values. These algorithms have shown to exhibit accuracy guarantees
similar to those of convex optimization methods, though with more stringent
requirements.

As mentioned above, to guarantee accuracy of the CS algorithms the measure-
ment matrix should meet certain conditions such as incoherence Donoho and Huo
(2001), Restricted Isometry Property (RIP) Candès et al. (2006), Nullspace Property
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Cohen et al. (2009), etc. Among these conditions RIP is the most commonly used
and the best understood condition. Matrix A is said to satisfy the RIP of order k—in
its symmetric form—with constant ık, if ık < 1 is the smallest number that

.1 � ık/ kxk22 � kAxk22 � .1C ık/ kxk22
holds for all k-sparse vectors x. Several CS algorithms are shown to produce
accurate solutions provided that the measurement matrix has a sufficiently small
RIP constant of order ck with c being a small integer. For example, solving (2.3)
is guaranteed to yield an accurate estimate of s-sparse x? if ı2s <

p
2 � 1 Candès

(2008). Interested readers can find the best known RIP-based accuracy guarantees
for some of the CS algorithms in Foucart (2012).

The formulation of sparse linear regression problems as well as algorithms
used to solve them are virtually identical to CS. However, these problems that are
usually studied in statistics and machine learning, have a set-up that distinguishes
them from the CS problems. The sensing or sampling problems addressed by
CS often do not impose strong restrictions on the choice of the measurement
matrix. Matrices drawn from certain ensembles of random matrices (e.g., Gaussian,
Rademacher, partial Fourier, etc.) can be chosen as the measurement matrix Candès
and Tao (2006). These types of random matrices allow us to guarantee the required
conditions such as RIP, at least in the probabilistic sense. However, the analog of the
measurement matrix in sparse linear regression, the design matrix, is often dictated
by the data under study. In general the entries of the design matrix have unknown
distributions and are possibly dependent. In certain scenarios the independence
of observations/measurements may not hold either. While it is inevitable to make
assumptions about the design matrix for the purpose of theoretical analysis,
the considered assumptions are usually weaker compared to the CS assumptions.
Consequently, the analysis of sparse linear inference problems is more challenging
than in CS problems.

2.2 Nonlinear Inference Problems

To motivate the need for generalization of CS, in this section we describe a few
problems and models which involve non-linear observations.

2.2.1 Generalized Linear Models

Generalized Linear Models (GLMs) are among the most commonly used models
for parametric estimation in statistics Dobson and Barnett (2008). Linear, logistic,
Poisson, and gamma models used in corresponding regression problems all belong
to the family of GLMs. Because the parameter and the data samples in GLMs
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are mixed in a linear form, these models are considered among linear models in
statistics and machine learning literature. However, as will be seen below, in GLMs
the relation between the response variable and the parameters is in general nonlinear.

Given a vector of covariates (i.e., data sample) a 2 X � R
n and a true

parameter x? 2 R
n, the response variable y 2 Y � R in canonical GLMs is

assumed to follow an exponential family conditional distribution: y j aI x? �
Z .y/ exp .y ha; x?i �  .ha; x?i// ; where Z .y/ is a positive function, and  W
R 7! R is the log-partition function that satisfies  .t/ D log

´
Y Z .y/ exp .ty/ dy

for all t 2 R. Examples of the log-partition function, which is always convex,
include but are not limited to  lin .t/ D t2=2�2,  log .t/ D log .1C exp .t//,
and  Pois .t/ D exp .t/ corresponding to linear, logistic, and Poisson models,
respectively.

Suppose that m iid covariate-response pairs f.ai ; yi /gmiD1 are observed in a
GLM. As usual, it is assumed that ai ’s do not depend on the true parameter.
The joint likelihood function of the observation at parameter x can be written asQm
iD1 p .ai / p .yi j ai I x/ where p .yi j ai I x/ is the exponential family distribution

mentioned above. In the Maximum Likelihood Estimation (MLE) framework the
negative log likelihood is used as a measure of the discrepancy between the true
parameter x? and an estimate x based on the observations. Because p .ai /’s do not
depend on x the corresponding terms can be simply ignored. Formally, the average
of negative log conditional likelihoods is considered as the empirical loss

f .x/ D 1

m

mX
iD1

 .hai ; xi/� yi hai ; xi ;

and the MLE is performed by minimizing f .x/ over the set of feasible x. The
constant c and Z .y/ that appear in the distribution are disregarded as they have no
effect in the outcome. We will use the logistic model, a special case of GLMs, in
Chaps. 3 and 5 as examples where our algorithms apply.

2.2.2 1-Bit Compressed Sensing

As mentioned above, the ideal CS formulation allows accurate estimation of sparse
signals from a relatively small number of linear measurements. However, sometimes
certain practical limitations impose non-ideal conditions that must be addressed
in order to apply the CS framework. One of these limitations is the fact that in
digital signal processing systems the signals and measurements have quantized
values. Motivated by this problem, researchers have studied the performance of
CS with quantized measurements. Of particular interest has been the problem of
1-bit Compressed Sensing Boufounos and Baraniuk (2008), in which the CS linear
measurements are quantized down to one bit that represents their sign. Namely, for
a signal x? and measurement vector a the observed measurement in 1-bit CS is
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given by y D sgn .ha; x?i C e/ where e is an additive noise. As can be seen, the
observations and the signal are related by a nonlinear transform. In Chap. 4 we will
explain how the problem of estimating x? from a collection of 1-bit measurements
can be cast as a sparsity-constrained optimization.

2.2.3 Phase Retrieval

One of the common non-linear inverse problems that arise in applications such
as optics and imaging is the problem of phase retrieval. In these applications
the observations of the object of interest are in the form of phaseless linear
measurements. In general, reconstruction of the signal is not possible in these
scenarios. However, if the signal is known to be sparse a priori then accurate
reconstruction can be achieved up to a unit-modulus factor. In particular, Quadratic
Compressed Sensing is studied in Shechtman et al. (2011b,a) for phase retrieval
problems in sub-wavelength imaging. Using convex relaxation it is shown that the
estimator can be formulated as a solution to a Semi-Definite Program (SDP) dubbed
PhaseLift Candès et al. (2012); Candès and Li (2012); Li and Voroninski (2012).
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