Chapter 8
Minimizing Movements Along a Sequence
of Functionals

Gradient flows, and hence minimizing movements, and the convergence of
functionals trivially do not commute even when the convergence is uniform. As a
simple example, take X = R and

F.(x)=x*—p sin(f),
e
with p = p, — 0 as & — 0, uniformly converging to F(x) = x2. If also
e kL p,
then for fixed x( the solutions u, to the equation
u, = —2u, + p cos(&)
£ £
MS(O) = X0

converge to the constant function uo(f) = xo as ¢ — 0. This is easily seen by
studying the stationary solutions of

—2x + p cos(f) =0.
£ £

Conversely, the gradient flow of the limit is

u = —2u
u(0) = xo,

for which the constant functions are not solutions if xy # 0.
With the remark above in mind, in order to give a meaningful limit for the energy-
driven motion along a sequence of functionals it may be useful to vary the definition
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104 8 Minimizing Movements Along a Sequence of Functionals

of minimizing movement. This will be done in the following section. As in the
previous chapter, we will limit our analysis to a Hilbert setting for simplicity.

8.1 Minimizing Movements Along a Sequence

In this section we will give a notion of minimizing movement along a sequence F,
which will depend in general on the interaction between the time scale t and the
parameter ¢ in the energies.

Definition 8.1 (minimizing movements along a sequence). Let X be a separable
Hilbert space, let F, : X — [0, +0o0] be equicoercive and lower semicontinuous,
X5 — Xo with

Fe(x5) < C < +o0, 8.1

and let 7, > 0 converge to 0 as ¢ — 0. With fixed ¢ > 0 we define x}, recursively as
a minimizer for the problem

: 1
mln{Fg(x) + 72 lx — x5, IIZ}, (8.2)
and the piecewise-constant trajectory u° : [0, +00) — X given by

u®(t) = X\t /] (8.3)

A minimizing movement for F, from x§ is any limit of a subsequence u®/ uniform
on compact sets of [0, +00).

After remarking that the Holder continuity estimates in Proposition 7.1 only
depend on the bound on F;(x;), with the same proof we can show the following
result.

Proposition 8.1. For every F; and x{j as above there exist minimizing movements
for F; from x§ in C'/2([0, +00); X).

Remark 8.1 (Growth conditions). As for the case of a single functional, the
positiveness of F, can be substituted by the requirement that for all X the functionals

1
x> Fo(x) + —|x —YHZ
2T
be bounded from below; i.e., that there exists C > 0 such that

x> F(x) + Cllx =X|?

be bounded from below.
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Example 8.1. We give a simple example that shows how the limit minimizing
movement may depend on the choice of the mutual behavior of ¢ and . We consider
the functions

—X ifx <0
F.(x)=10 if0<x<e

e—x ifx >e¢g,

which converge uniformly to F(x) = —x. Note that the energies are not bounded
from below, but their analysis falls within the framework in the previous remark.
For this example a direct computation is immediately carried on. We consider a
fixed initial datum x,.

If xo > 0, then for & < xo we have x; = x;_, + t forallk > 0.

If xo < O then we have x;} = x;_, +tifx;_, < —7.1If0 > x;_;, > —7 then
X; — X{_, is obtained by minimizing the function

1 ) .
—y+Ey2 if0 <y < —x;_,

1 .
fy) = xli—l"‘ﬂyz if —xp_ ,=y=<=-x;_,+¢

1 2 : &
s—y—i—zy ify > —x;_, +¢,

whose minimizer is always y = v + x;_, if ¢ — x;_, > 7. In this case x; = 0.
If otherwise & — x;_, < t the other possible minimizer is y = 7. We then have to
compare the values

S = X + %(xli—l)zs f@)=¢e— %‘C.

We have three cases:

(a) ¢ — %‘L’ > 0. In this case we have x; = 0 (and this holds for all subsequent
steps).

(b) e — %‘L’ < 0. In this case we either have f(r) < f(—x{_,), in which case
x; = x;_, + = (and this then holds for all subsequent steps); otherwise x; = 0
and x| = x; + 7 (and this holds for all subsequent steps).

(©) e— %r = 0.If x;_, < Othen x; = 0 (otherwise we already have x;_, = 0).
Then, since we have the two solutions y = 0 and y = 7, we have x? = 0 for

k<j §k0f0rsomekoeNU+ooandxj =xj_1+tf0rj > ko.

We can summarize the possible minimizing movements with initial datum xo < 0
as follows:
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(1) If t < 2¢ then the unique minimizing movement is x () = min{xo + ¢, 0}.
(ii) If T > 2¢ then the unique minimizing movementis x(t) = xo + ¢.
(iii) If © = 2¢ then we have the family of minimizing movements (parameterized
by x| < xo) x(t) = max{min{xo + 7,0}, x; + ¢}.
For xo > 0 we always have the only minimizing movement x () = xo + ¢.

8.2 Commutability Along ‘Fast-Converging’ Sequences

We now show that, by suitably choosing the e-t regimes, the minimizing movement
along the sequence F, from x, converges to a minimizing movement for the limit
F from x( (‘fast-converging &”), while for other choices (‘fast-converging t’) the
minimizing movement converges to a limit of minimizing movements for F, as
& — 0. Heuristically, minimizing movements for all other regimes are ‘trapped’
between these two extrema.

Theorem 8.1. Let F, be a equi-coercive sequence of (non-negative)
lower-semicontinuous functionals on a Hilbert space X I -converging to F, let
Xe —> Xo. Then:

(1) There exists a choice of ¢ = e(t) such that every minimizing movement along
F, (and with time-step t) with initial data x, is a minimizing movement for F
Sfrom xo on [0, T] forall T.

(ii) There exists a choice of Tt = t(g) such that every minimizing movement along
F, (and with time-step t) with initial data x, is a limit of a sequence of
minimizing movements for F; (for ¢ fixed) from x. on [0, T] for all T

Proof. (i) Note that if y. — y, then the solutions of

1
min{F, (x) + 3-[lx = ». ) (84

converge to solutions of

1
min{F(x) + ;le — yollz} (8.5)

since we have a continuously converging perturbation of a I'-converging
sequence.

Let now x, — xo. Let 7 be fixed. We consider the sequence {x,“} defined
by iterated minimization of F, with initial point x,. Since x, — Xxg, up to
subsequences we have x;* — xlt’o, which minimizes

!
min{ F(x) + - xolP}. (8.6)
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The point x}* converge to x;°. Since they minimize
. 1
mm{Fg(x) + —|x - xlmllz} (8.7)
2t
and x;° — xlt’o, their limit is a minimizer of

1
min{F(x) + 5ol - xf’0||2}. (8.8)

This operation can be repeated iteratively, obtaining (upon subsequences)
x> x;’o, and {x,:’o} iteratively minimizes F with initial point xo. Since
up to subsequences the trajectories {x,:’o} converge to a minimizing movement
for F' with initial datum Xy, the thesis follows by a diagonal argument.

(ii) For fixed e, the piecewise-constant functions u®*(t) = x‘ff/d converge
uniformly to a minimizing movement u® for F, with initial datum x,. By
compactness, these u® converge uniformly to some function u as ¢ — 0. Again,

a diagonal argument gives the thesis. O

Remark 8.2. Note that, given x, and F;, if F has more than one minimizing
movement from x, then the approximation gives a choice criterion. As an example,
take F(x) = —|x|, Fe(x) = —|x + ¢land xo = x, = 0.

Remark 8.3 (The convex case). If all F, are convex then it can be shown that,
actually, the minimizing movement along the sequence F, always coincides with
the minimizing movement for their I"-limit. This (exceptional) case will be dealt
with in detail separately in Chap. 11.

Example 8.2. In dimension one, we can take
1, b
F.(x)==x"+¢ W(—),
2 e

where W is a one-periodic odd Lipschitz function with ||W’/| s = 1. Up to addition
of a constant is not restrictive to suppose that the average of W is 0. We check
that the critical regime for the minimizing movements along F; is ¢ ~ 7. Indeed,
if ¢ < 7 then from the estimate

1 e
F.(x) = 32| < 2
we deduce that
Xk — Xjk— £
M0y +o(2).
T T
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and hence that the limit minimizing movement satisfies ' = —u, so that it
corresponds to the minimizing movement of the limit Fy(x) = %xz.

Conversely, if T <« ¢ then it may be seen that for |xo] < 1 the motion is
pinned; i.e., the resulting minimizing movement is the trivial solution u(t) = x
forallt. f W e C2? this is easily checked, since in this case the stationary solutions,

corresponding to x satisfying
x+ W (f) =0
€

tend to be dense in the interval [—1,1] as ¢ — 0. Moreover, in this regime
the minimizing movement corresponds to the limit as ¢ — 0 of the minimizing
movements of F; for ¢ fixed; i.e., solutions u, of the gradient flow

Ug
U, = —u, — W’(—).
€

Integrating between #; and 7, we have

/us(tz) 1
- ds=t —t,.
win S+ Wis/e)

By the uniform convergence u, — u we can pass to the limit, recalling that the
integrand weakly converges to the function 1/g defined by

1 /1 1
= do,
g(s) Jo s+ Wio)
and obtain the equation
W = —g(u).

This equation corresponds to the minimizing movement for the even energy Fo
given for x > 0

0 ifx <1
Fo(x) =
gwydw ifx > 1.

The plot of the derivatives of F,, Fy and Fy is reproduced in Fig. 8.1
We can explicitly compute the minimizing movement for 7 < ¢; e.g., in the case

1
W(x) = I sin(2mrx),
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Fig. 8.1 The derivatives of ] A
Fg, F() and F()

which gives the equation

for |xo| > 1, and

Fo(x) = %(|x|\/x2 —1- 10g(|x| + VxZ— 1))

for |x| > 1, and in the case
1 1
W(x)z‘x—z‘—z for0 < x < 1. (8.9)

In the latter, the solutions with initial datum xy > 1 satisfy the equation

1
I/l/ = — —Uu.
u
Integrating this limit equation we conclude that the minimizing movement along F,

corresponds to that of the effective energy

- 1 1\ +
Fo(x) = (32* —loglx| = 3) -

Example 8.3 (Pinning threshold). In the previous example we have computed the
critical regime ¢ ~ t, but we have not computed the minimizing movement for a
fixed ratio ¢/ 7. In this case, a simpler interesting problem is the computation of the
pinning threshold; i.e., the maximal value 7" such that |xo| < T gives in the limit
a stationary minimizing movement. We have seen that for ¢ < t we have T = 0,
while for t <« € we have T = 1. After considering the linearization of the problem
above, the pinning threshold can be characterized as the greatest value 7" such that
we have only stationary minimizing movements for the energies

FT(x) =Tx+e W(g)
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In order to have an explicit description of T = T'(y) in terms of y = ¢/,
we only treat the case of

W(x) = |x| for |x| < (8.10)

1
>
which gives the same limit as the one in (8.9). By comparison with the case 7 < &,
we have T'(y) < 1 for all y.

By a comparison argument, it is not restrictive to suppose that xo € &Z, and
then by translation that xo = 0. The problem is then translated in the existence of
negative minimizers for the problem

. X L,
m1n{Tx + ¢ W(g) + Ex }
Since T < 1 and W’ = —1 in [—¢/2, 0], this holds only if we have a negative value
in [—¢, —&/2], or equivalently if
1
0> min{Tx—i— eW(f) +—x?:i—e<x< —8/2}
e 2T

1
= min{(T + Dx +e+ 2—x2 —e<x < —5/2}.
T

Taking again into account that 7 < 1, it is easily seen that this minimum must be
taken for x = —e¢, so that the condition is equivalent to

1
0> -Te+ —e*:ie., T > £
2T 2T

This proves that we have pinning for 7 < y/2. In conclusion, the pinning
threshold is

T(y) = min{g, 1}

(see Fig.8.2). As y — 0 and y — +o00 we recover the thresholds in the limit cases.

8.2.1 Relaxed Evolution

In Theorem 8.1 we have considered, as usual for simplicity, the I"-convergence
with respect to the topology in X. In this way we characterize the convergence of
solutions to problems (8.4) to solutions of problems (8.5) in terms of the I"-limit.
This is the only argument where we have used the definition of F in the proof of
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Fig. 8.2 Pinning threshold in A
dependence of the ratio ¢/t 15
1
0,5
0 1 2 3 4 5 6

Theorem 8.1(i). We may consider the I"-limits with respect to weaker topologies, for
which we have coerciveness but the distance term is not a continuous perturbation.
In analogy with what already observed for quasistatic motions in Chap. 3 (see, e.g.,
Sect. 3.1.5), the proof of Theorem 8.1(i) can be repeated, upon defining a relaxed
limit motion, where the minimizing movement for F is replaced by the limit of u®
defined by successive minimizing

0 k=1
min FH1(x),
where
T : 1 2
FV(x) =T- hm(Fg(x) T =yl ) 8.11)
e—>0 2T

The study of this more general minimizing movements is beyond the scope of these
notes. We only give a simple example.

Example 8.4. Consider X = L?(0, 1) and

F.(u) = /la(g)uzdx,
0

where a is 1-periodic and 0 < o < a(y) < B < +oo for some constants
a and B. Then F, is equicoercive with respect to the weak-L? topology, and its
limit is a fol u? dx (a the harmonic mean of ). However, the perturbations with the
L>-distance are not continuous, and the limits in (8.11) with respect to the weak
topology are easily computed as

1
arv _ 1 o _ 2
Flw)y=T !%(Fs(u) + 7 |l — v|| )

= I-lim 01<(a(§) + %)uz n (vzg—fuv)) dx
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:/1 auz_'_M dx
0 = 2T

! 1 2 1 2
= [ (a5 v+ oo tu—vlP
0 2t 2t

— : 1 B
a, = (/(; mdy) .

A series expansion argument easily yields that

1 ! 1 -
a, = ;(/0 2ra(y) + 1 dy)
. —1
- %(/0 (1 —2ta(y) + O(CZ)) d)’)

- %(1 + Zt/()la(y)dy—i- 0(r2)) =

where

1
— +a+ O(v),
2t

where @ is the arithmetic mean of a. We then obtain that the limit of u* coincides
with the minimizing motion for F' given by

1
F(u) =E/ u® dx.
0

The same argument leading to an effective motion can be applied to varying
distances as in the following example.

Example 8.5. We consider X, = X = L*(0,1) equipped with the distance d,

given by
box
dgz(u,v):/ a(—)|u—v|2dx,
0 &

and F,(u) = F(u) = fol |'|? dx. For fixed v the square distances can be seen
as functionals depending on v, weakly equicoercive in L?> and I'-converging to
allu — v||* (|Ju|| the L>-norm). Nevertheless, in this case the functionals F,(u) +
%dsz(u, v) are coercive with respect to the strong L2-norm and I"-converge to
F(u) + 21—_[5”14 — v||%. As a conclusion, the minimizing movement coincide with
the minimizing movement for F with respect to the norm /a||u|| or, equivalently,
with the minimizing movement for %F with respect to the L?-norm.
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8.3 An Example: ‘Overdamped Dynamics’ of Lennard-Jones
Interactions

We now give an example of a sequence of non-convex energies which commute
with the minimizing movement procedure.
Let J be as in Sect. 4.4 and % = N e N. We consider the energies

N
U —Uui—1
F.(u) = J|————
=3 %)
with the periodic boundary condition uy = ug. As proved in Sect.4.4, after

identification of u with a piecewise-constant function on [0, 1], these energies
I'-converge to the energy

F(u) = /01 i |2 dr + #(S(u) N[0, 1)), ut >u,

defined on piecewise-H' functions, in this case extended 1-periodically on the
whole real line.

In this section we apply the minimizing movements scheme to F; as a sequence
of functionals in L2(0, 1). In order to have initial data u§ with equibounded energy,
we may suppose that these are the discretization of a single piecewise-H ' function
uy (with a slight abuse of notation we will continue to denote all those discrete
functions by u).

With fixed € and 7, the time-discretization scheme consists in defining recursively

u* as a minimizer of

N N

=3 J(“_—JZH) n % > elur — P (8.12)

i=1

By Proposition 8.1, upon extraction of a subsequence, the functions u* (t) = u|; /¢
converge uniformly in L2 to a function u € C'/%([0, 400); L*(0, 1)). Moreover,
since we have F(u(t)) < F(up) < +00, u(t) is a piecewise- H ! function for all z.

We now describe the motion of the limit u. For the sake of simplicity we suppose
that u is a piecewise-Lipschitz function and that S(up) N{ei :i € {1,...,N}} =0
(so that we do not have any ambiguity in the definition of the interpolations of uy).

We first write down the Euler-Lagrange equations for X, which simply amount
to a N-dimensional system of equations obtained by deriving (8.12) with respect
to u;

%(J/(”k_—\/gk—l) - J’(LJ;M{)) + %(uf —u Ny = 0. (8.13)
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e Withfixedi € {I,..., N} let v; be defined by

”f‘( _“?—1
v = ———,
e

For simplicity of notation, we set

1
Je(w) = —J(Vew).
€
By (8.13) and the corresponding equation for i — 1, which can be rewritten as

k k k k
u; —U; u. —Uu: &
rf “i—1 i—2 i i—1 k k—1
J(—g >_J£<—£ )—i——r(ui L\ —u; ) =0,

&

we have
Vk — Vk—1 _ 1<uf.‘ —uf_l u{.‘_l — u{.‘__ll)
T Tt £ £
_ l(“i —u ' ul, _”f‘(—_ll)
£ T T
1 ’ “—1_“]'(—2 (W T Uiy
- () ()
_(J/(ut _“1—1) _ J/(uf‘(-l—l — U ))
¢ e € e ’
so that
— Vk— 2 1 k — k u/.‘ —u/.‘
Uk . k—1 —EJS/(Uk) _ _;<J€/<”1—1 - ”1—2) + J!( z+18 1))
> 2]’(W0) (8.14)
=2\ %) .

We recall that we denote by wy the maximum point of J'.
We can read (8.14) as an inequality for the difference system
Vg — U

k—1 , { Wo
-2/J >=2J.—).
. {0z =20/ 7)

where 7 = 7/ is interpreted as a discretization step. Note that vy = wy/ /€ for
all k is a stationary solution of the equation
Vi — Vk—1 wo
— —2J(n) = —ZJ;(—)
n

NG
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and that J/ are equi-Lipschitz functions on [0, +00). If n < 1 this implies that
if v, < wo/ /€ for some k( then

wo
v < — for k > ko,
e

or, equivalently, that if T < &? the set

. us —uy_ wo
Sk=Vlie{l,... N}: ——=L> "~
i et b o _ﬁ}

is decreasing with k. By our assumption on u, for & small enough we then have
SO = {i el ... N}:[eli —1),ei] N S(uo) # @},
so that, passing to the limit
S(u(r)) S S(uo) forallt > 0. (8.15)

Taking into account that we may define

T _ /7l
u'(t,x) = ULy 6]

we may choose functions ¢ € C5°(0,7T) and ¢ € C5°(x1, x2), with (x, x2) N
S(up) = @, and obtain from (8.13)

/T /xz u%t,ﬂ(M)w(m dxdt
0 X1

:_/T/"z(%f(\/gu’(t,x)—Z’(t,x—e)))
0o Jx
(W(x)—gllf(X-i-E))

x ¢ (t) dxdt.
Taking into account that
lim LJ/(«/Ew) = 2w
e—>0 \/E ’

we can pass to the limit and obtain that

T X2 , _ T X gy / .
[ X0 0y () dedi = | 2 OY 0 v
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i.e., that

du 0%u
5 = 28x2 (8.16)
in the sense of distributions (and hence also classically) in (0, 7) x (x1, x2).
By the arbitrariness of the interval (xj,x;) we have that equation (8.16) is
satisfied for x in (0, 1) \ S(up).
* We now derive boundary conditions on S(u(t)). Let i + 1 belong to S?, and
suppose that u™ (¢, x) — u~(¢,x) > ¢ > 0. Then we have

1 L/t uLt/rlJ
lim —J'| &——%— | =0.
zl—lﬂ) Je ( Je )

Ifi < iy, from (8.13) it follows, after summing up the indices from i to iy, that

io k k
€k gy Lo w —
§ Gl i) = —ﬁJ (—ﬁ ) (8.17)
j=i

We may choose i = i, such that ¢i, — X and we may deduce from (8.17) that

*0 Ju

ou _
_ de— —25()€),

where xo € S(u(t)) is the limit of eiy. Letting X — x;, we obtain
u
—(x5) =0.
o (x9)

Similarly we obtain the homogeneous Neumann condition at x(;r .

Summarizing, the minimizing movement along the scaled Lennard-Jones
energies F, from a piecewise-H ! function consists in a piecewise-H' motion,
following the heat equation on (0, 1)\ S'(u), with homogeneous Neumann boundary
conditions on S(ug) (as long as u(¢) has a discontinuity at the corresponding point
of § (uo))

Note that for ¢ — 0 sufficiently fast Theorem 8.1 directly ensures that the
minimizing movement along F, coincides with the minimizing movement for the
functional F. The computation above shows that this holds also for 7 « &2
(i.e., ¢ — 0 ‘sufficiently slow’), which then must be regarded as a technical
condition.
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Fig. 8.3 The function F; A

\/

8.4 Homogenization of Minimizing Movements

We now examine minimizing movements along oscillating sequences (with many
local minima), treating two model cases in the real line.

8.4.1 Minimizing Movements for Piecewise-Constant Energies

We apply the minimizing-movement scheme to the functions
X
F.(x)=— L—J e
€

converging to F(x) = —x (see Fig. 8.3). This is a prototype of a function with many
local minimizers (actually, in this case all points are local minimizers) converging
to a function with few local minimizers (actually, none).

Note that, with fixed ¢, for any initial datum x( the minimizing movement for
F, is trivial: u(t) = xo, since all points are local minimizers. Conversely, the
corresponding minimizing movement for the limit is u(t) = xo + ¢.

We now fix an initial datum Xy, the space scale ¢ and the time scale t, and
examine the successive-minimization scheme from x. Note that it is not restrictive
to suppose that 0 < xo < 1 up to a translation in ¢Z.

The first minimization, giving xi, is

min{Fs(x) + %(x — xo)z}. (8.18)

The function to minimize is pictured in Fig. 8.4 in normalized coordinates (¢ = 1);
note that it equals —x + 5-(x — x0)* if x € &Z.
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Fig. 8.4 The function in the y
minimization problem (8.18)

N\

-1 0 1 / 3 4 5 6

Apart from some exceptional cases that we deal separately below, we have two
possibilities:

(i If £ < % then the motion is trivial. The value 1/2 is the pinning threshold.
Indeed, after setting set xo = se with 0 < s < 1, we have two sub-cases:

(a) The minimizer x; belongs to [0, €). This occurs exactly if F.(e) + %(8 —
X0)% > 0;ie.,

—1)?
c =D

5 (8.19)

In this case the only minimizer is the initial datum x¢. This implies that we
have x; = x forall k.

(b) We have that x; = &. This implies that, up to a translation we are in the
case xo = 0 with s = 0, and (8.19) holds since 7 < % Hence, x; = x; for
allk > 1.

@) If £ > % then for ¢ small the minimum is taken on €Z. So that again we may
suppose that xo = 0.

Note that we are leaving out for the time being the case when xo = 0 and © = %
In that case we have a double choice for the minimizer; such situations will be
examined separately.

If xo = 0 then x; is computed by solving

1
min{Fg(x) +ooalixe sZ}, (8.20)
T
and is characterized by

X1—=e<71=<Xx1+ =¢.
2 2
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We then have

T 1 T 1

=|-+= if—+ -7

X1 L8+2J8 18+2§Z
1

(note again that we have two solutions for £ + 5 € Z, which also includes the

case ¢ = % already set aside, and we examine those cases separately). The same
computation is repeated at each k giving

e 2

T

xk—xk_l_\f 1J£
T

We can now choose t and ¢ tending to 0 simultaneously and pass to the limit.
The behaviour of the limit minimizing movements is governed by the quantity

w = lim <, (8.21)
e—>0 &
which we may suppose exists up to subsequences. If w+ % ¢ Z then the minimizing
movement along F, from x is uniquely defined by

11
u(t) = xo + vt, withv = Lw + EJV_\/’ (8.22)

so that the whole sequence converges if the limit in (8.21) exists. Note that

* (pinning) we have v = 0 exactly when | < % for & small. In particular this holds
for t <K ¢ (i.e., forw = 0).

¢ (limit motion for slow times) if ¢ <« t then the motion coincides with the
gradient flow of the limit, with velocity 1.

* (discontinuous dependence of the velocity) the velocity is a discontinuous
function of w at points of % + Z. Note moreover that it may be actually greater
than the limit velocity 1. The graph of v is pictured in Fig. 8.5.

* (non-uniqueness at w € % + Z) in these exceptional cases we may have either
of the two velocities 1 4 ﬁ or 1 — = in the cases L+ % >wor £ + % < w for

2w
all & small respectively, but we may also have any u(¢) with

1 1
l— — <u/(t) <1+ —
ZW_M()_ +2w

if we have precisely £ + % = w for all ¢ small, since in this case at every time
step we may choose any of the two minimizers giving the extremal velocities,
and then obtain any such u’ as a weak limit of piecewise constant functions taking
only those two values. Note therefore that in this case the limit is not determined
only by w, and in particular it may depend on the subsequence even if the limit
(8.21) exists.
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Fig. 8.5 The velocity v in A
terms of w 25

1,5

N

0,5
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We remark that the functions F, above can be substituted by functions with
isolated local minimizers; e.g. by taking (o > 0)

R =-| e +alx—| 2 ]e)

with isolated local minimizers at ¢Z (for which the computations run exactly as
above), or

F.x)=—x+ {1+ o) sin(%).

Note that the presence of an energy barrier between local minimizers does not
influence the velocity of the final minimizing movement, that can always be larger
than 1 (the velocity as ¢ K 7).

We also remark that the same result can be obtained by a ‘discretization’ of F’;
i.e., taking

—X ifx € eZ

F.(x) = (8.23)

+o00 otherwise.

8.4.2 A Heterogeneous Case

We briefly examine a variation of the previous example obtained by introducing a
heterogeneity parameter 1 < A < 2 and defining

) 2| T <x<2|Z]+2
. 5] 3] =x<2[3] -
—ZEJ—/\ if2L%J+/\§x<2L§J+I.
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Fig. 8.6 The function F* A

If A = 1 we are in the previous situation; for general A the function F* is pictured
in Fig. 8.6.
We apply the minimizing-movement scheme to the functions

x
F.(x) = F*x) = ¢ F*(—).
€

Arguing as above, we can reduce to the two cases

(a) x; € 2¢7Z, or (b) x € 267 + €A.

Taking into account that x; 1 is determined as the point in 26Z U (2¢Z + 1) closer
to t (as above, we only consider the cases when we have a unique solution to the
minimum problems in the iterated procedure), we can characterize it as follows.

In case (a) we have the two sub cases:

(a;) If we have
T A
2n< ———=—<2n+1
e 2
for some n € N then
X1 = X + 2n + A)e.

In particular x4+ € 2eZ + €.
(ap) If we have

T A
2n—1<———=<2n
e 2
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for some n € N then

Xk+1 = Xr + 2ne.

>

In particular x; 4 € 2¢Z. Note that xx4; = xj (pinning) if : < Ch
I3

In case (b) we have the two sub cases:

(by) If we have
T A
2n< -4+ -<2n+1
e 2

for some n € N then

Xk+1 = Xi + 2ne.

In particular x 4| € 2¢Z + eA. Note that x;+; = x; (pinning) if z <1- >
I3

which is implied by the pinning condition in (ay).
(by) If we have

T A
2n—1<—-—+—=<2n
e 2

for some n € N then
Xp4+1 = X + 2ne — el

In particular x; 4 € 2¢Z.
Eventually, we have the two cases:

(1) When

A
‘E—Zn)<—
e 2

for some n € N then, after possibly one iteration, we are either in the case (ap)
or (by). Hence, either x; € 2¢Z or x; € 2¢Z + €A for all k. The velocity in this
case is then
Xk+1 — Xk &
i N P
T T

(2) When

)
T en+nl<1-2
e 2
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Fig. 8.7 The function f A
describing the effective
velocity

for some n € N then we are alternately in case (a;) or (b;). In this case we
have an

+ averaged velocity: the speed of the orbit {x; } oscillates between two values
with an average speed given by

Xp42 — Xg __ 2ne+ Ae n 2(n 4+ 1)e — Ae

2T 2T 2T

=(Q2n+ l)i.
T

This is an additional feature with respect to the previous example.

Summarizing, if we define w as in (8.21) then (taking into account only the cases
with a unique limit) the minimizing movement along the sequence F; with initial
datum x is given by x(¢) = x¢ + vt withv = %f(w), and f is given by

A
2n if|w—2n|§§,nEN
fw) =
A
2n + 1 if|w—(2n+1)|<1—5,neN

(see Fig.8.7). Note that the pinning threshold is now A/2. We can compare this
minimizing movement with the one given in (8.22) by examining the graph of w —
|w+1/2] — f(w) inFig.8.8. For2n + 1/2 <w < 2n + A /2 the new minimizing
movement is slower, while for 2n +2 —1/2 <w < 2n + 2 — 1/2 it is faster.
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Fig. 8.8 Comparison with 3
the homogeneous case —_ —_

8.4.3 A Proposal for Some Random Models

From the heterogeneous example above we may derive two possible random
models, of which we may then study the corresponding minimizing movement.
We only give a heuristic proposal, which can then be correctly formalized by
introducing suitable random variables.

1. Random environment. Let A € (1/2,1) and p € [0, 1]. We consider a random
array of points {x{”} in R such that, e.g.,

A with probability p
xXP—=x2, = (8.25)
2 — A with probability 1 — p.

With fixed @ we may consider the minimizing movement related to

— ifx € ©.i el
Fo(x) = x ifx {.sxl i }
+o00 otherwise,

or equivalently (as in the definition (8.23)
FP(x) = —exy if x € [ex{’, ex}’, ), 1 € Z.

In the case p = 0 or p = 1 we almost surely have a homogeneous environment
as in Sect. 8.4.1. For p = 1/2 we have a random version of the heterogeneous
model of Sect. 8.4.2. Note that in this case for all p € (0, 1) the pinning threshold
for the ratio t/¢ is almost surely A/2, since below that value, the motion will
be pinned at the first index i with x” — x>, = A; i.e., almost surely after a
finite number of steps. For 7/¢ = A/2 and A < 2/3 (with this condition we
always move of one index) then the (maximal) velocity after pinning is v =
Ap+(1—p) (for A > 2/3 the computation of the velocity involves the probability
of m-consecutive points x{” at distance 2 — A).



8.5 Time-Dependent Minimizing Movements 125

2. Random movements. Let A € (1/2,1) and p € [0,1]. Contrary to the
model above, we suppose that at every time step k we may make a random
choice of points {x;*} satisfying (8.25) such that x{ € {x;*}; i.e., this choice
now represents the random possibility of motion of the point itself (and not a
characteristic of the medium). Note that in this case for p € (0, 1) the pinning
threshold for the ratio t/e is almost surely the lower value 1 — %, and the
(maximal) velocity after pinningis v = (2 — 1)(1 — p).

8.5 Time-Dependent Minimizing Movements

Following the arguments of Sect. 7.2 we can define a minimizing movement along
a time-dependent sequence of energies F(x,?), upon some technical assumptions
as in (7.10). In this case we fix a sequence of initial data xj and T = 7, — 0, and
define recursively x; as minimizing

1
min{Fs(x, ko) + - llx =iy ||2}. (8.26)
T
A minimizing movement is then any limit u of u® defined by u®(¢) = xf el
We only give a simple one-dimensional example with a time-dependent forcing

term.

Example 8.6. We consider
Fo(x,t) =¢ W(i) —tx
€

with W as in Example 8.2. Similarly to that example we can check that ¢ ~ 7 is
the critical case, and we can explicitly describe the minimizing movement in the
extreme cases:

* (¢ < 1) the minimizing movement is that corresponding to Fy(x,?) = —tu; i.e.,
to the equation v’ = ¢.
* (7 K ¢) the minimizing movement is that corresponding to the function

0 ift <1

Fott, %) = {g(t)u ifr > 1,

where g is now defined by

1 ! 1
g0 /0 Wio)—i'"
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8.6 Varying Dissipations: BV-Solutions of Evolution
Equations

In the previous sections of this chapter, we have limited ourselves to a Hilbert
setting. This often rules out interesting applications, in particular a viscosity
approach to quasistatic motion as a limit of gradient flows, which is obtained by
perturbing a positively one-homogeneous dissipation Z by a sequence & + %@g for
which a gradient flow-type motion can be defined using the minimizing-movement
approach. In general, the limit of these gradient flows gives a motion, called
BV-solution, which is different from the energetic solution as defined in Sect. 3.2,
and can be characterized in a variational way different from the energy balance.
A treatment of this subject is beyond the scope of these notes, since it would need
a too refined introduction to the theory of gradient flows in metric spaces, even
though it would fit the spirit of the book since it may be stated in terms of I"-limits.
Many of the arguments followed above for varying energies also hold for varying
dissipations.

We only deal with a simple example, in order to highlight the differences with
energetic solutions.

Example 8.7 (Nonconvex mechanical play). We can consider the double-well
potential in Example 3.3 and the perturbed dissipations

1 &
Z(t,x) = gminf(x = 1%+ D —tx Zeo(x) = x| + 5%,
T
with xo € [-2, —1]. Then the sequence x} is increasing and minimizes

min{% min{(x — D2 (x + D} — (k7 — Dx —x[_,

€
+—(x—x_):x > X }
2r( —1) 2 Xp_

We fix the ratio

e
y =-—. (8.27)

T
With a computation similar to the one in Example 3.3, we obtain as limit the solution

X0 ift <xo+2

— : 1
X(I)— t—2 le()Slfz—m

: 1
t lft>2—m

or the one equal to this except for t = 2 — —L- where x = ¢.
y+1
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Fig. 8.9 Interpolation x A
between energetic and BV
solutions

interpolation

Energetic solution

/

-
]
™ N

X0
BV solution

Remark 8.4 (Interpolations of energetic and BV solutions). In the previous
example, the case ¢ < 7 (formally, y = 0) gives the energetic solution obtained in
Example 3.3. The case © < ¢ (formally, y = +o00) corresponds to the BV-solution
hinted at above. The case in which (8.27) holds can be interpreted as an interpolation
between these two extreme case, and is pictured in Fig. 8.9.

Appendix

The definition of minimizing movement along a sequence of functionals formalizes
a natural extension to the notion of minimizing movement, and follows the definition
given in the paper by Braides et al. [2].

The energies in Examples 8.2 and 8.6 have been taken as a prototype to model
plastic phenomena by Puglisi and Truskinovsky [7]. More recently, that example
has been recast in the framework of quasistatic motion in the papers by Mielke and
Truskinovsky [4, 6].

The example of the minimizing movement for Lennard-Jones interactions is part
of results of Braides et al. [1]. It is close in spirit to a semi-discrete approach (i.e., the
study of the limit of the gradient flows for the discrete energies) by Gobbino [3].

For the notion of BV-solution we refer to Mielke et al. [5].
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