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Abstract Ever since the first attempts to model capital investment decisions as op-
tions, financial economists have sought more accurate, more realistic real options
models. Strategic interactions and market incompleteness are significant challenges
that may render existing classical models inadequate to the task of managing the
firm’s capital investments. The purpose of this paper is to address these challenges.
The issue of incompleteness comes in for the valuation of payoffs due to absence
of a unique martingale measure. One approach is to valuate assets by consider-
ing a rational utility-maximizing consumer/investor’s joint decisions with respect
to portfolio investment strategy and consumption rule. In our situation, we add the
stopping time as an additional decision. We employ variational inequalities (V.L.s)
to solve the optimal stopping problems corresponding to times to invest. The regu-
larity of the obstacle (payoffs received at the decision time) is a major element for
defining the optimal strategy. Due to the lack of smoothness of the obstacle raised
by the game problem, the optimal strategy is a two-interval solution, characterized
by three thresholds.
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1 Investment Game Problems and General Model Assumptions

We consider a Stackelberg leader-follower game for exploiting an irreversible in-
vestment opportunity with payoffs of a continuous stochastic income stream Y (¢)
for a fixed cost K. We limit the flexibility in the investment decisions to the times
when to invest. The roles of leader and follower are predetermined by regulations.
Each firm chooses its individual stopping time to invest over an infinite horizon with
the constraint that the follower be forbidden to undertake the investment until the
leader has already done so. By investing K, the leader receives §; Y (¢) per unit time
till the follower’s entry. Once both have entered, each gets a continuous cashflow
stream 8, Y () per unit time, with 6, < §;.

Consider a probability space (£2, .7, Q) with W*(t) = (W(r), WO(r))T a stan-
dard Wiener process. The asset S representing the market and the cashflow process
Y evolve as follows:

dS(t)y=rS@t)dt +oS(t) (Adt +dW(1)), (1)

dY (1) =Y (1) (ocdt + g(,odW(t) +./1— pZdWO(z))> , )

where W(r) and WO(¢) are independent Wiener processes, ,02 < 1 is the correla-
tion coefficient between market uncertainty and the cashflow process uncertainty,
and r (risk-free rate), o, A, «, ¢ are all constants. The market is incomplete since
the market asset S can span only the portion of the stochastic cashflow risk driven
by the Wiener process W (¢), leaving the remaining risk driven by W°(r) unhedge-
able. There is no unique martingale measure, so the risk-neutral pricing is no longer
appropriate, and an alternative must be developed in this framework.

We adopt utility-based pricing in which a risk averse investor/firm maximizes the
expected utility of consumption. We assume that the investor’s risk preferences are
characterized by a constant absolute risk aversion utility function

U(C) = —le—VC (3)
14

where the argument C is the investor’s consumption, and y is his/her risk aversion
parameter, y > 0.

Remark 1 We allow for negative consumption. For C € R, U increases from —oo
to 0. As C — —oo, it leads to huge negative values. We interpret this effect as a
penalty to the utility maximization investor. We could of course impose the con-
straint of non-negative consumption. However, imposing non-negativity on the con-
sumption would rule out the analytical solutions for further developments, a prop-
erty we would like to retain for the full analysis. Therefore, we choose to accept for
negative consumption which could lead huge negative utility values (big penalties
for our utility maximization investor) instead of imposing the non-negativity con-
straint on the consumption. We also note that the negative consumption occurs when
x becomes very negative and we cannot avoid this situation since x € R.

Each firm maximizes its expected discounted utility from consumption over an
infinite horizon, subject to choice over investment timing, consumption, hedge po-
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sition in the market asset, and allocation in the riskless bond. Thus, each firm con-
siders undertaking the investment as an additional decision besides portfolio invest-
ment and consumption decisions. The decision remains a stopping time, for which
the right approach is that of variational inequality (V.I.) [1, 5]. Our duopoly game re-
quires us to solve two V.Ls corresponding to the leader’s and the follower’s optimal
stopping respectively. As such, we will need two obstacles corresponding to each
V.I. We obtain the obstacles from solving continuous control problems, i.e., portfolio
investment and consumption decisions, and we call this as solutions to postinvest-
ment utility maximization. Employing the obstacles obtained, we then form V.Ls to
solve the optimal stopping problems, and we call this as solutions to preinvestment
utility maximization.

One point to note is that we need to consider an auxiliary problem of which
the cashflow process (2) hits zero; the problem will then be reduced to classical
investment-consumption portfolio decisions. We next summarize the general nota-
tions used in the paper to facilitate reading:

o 7 for the follower’s stopping time and 6 for the leader’s stopping time;

o F 1()c, y) for the follower’s obstacle, i.e., solution to follower’s postinvestment
utility maximization, and F'(x, y) for the follower’s solution to the V.I, i.e., solu-
tion to the follower’s preinvestment utility maximization;

o L! (x, y) for the leader’s obstacle, i.e., solution to leader’s postinvestment utility
maximization, and L(x, y) for the leader’s solution to the V.I., i.e., solution to the
leader’s preinvestment utility maximization;

e F(x) for the solution to the classical investment-consumption utility maximiza-
tion, i.e., no augmented stochastic income stream Y (7).

We detail follower’s problem and solution in Sect. 2 and the leader’s in Sect. 3.
We conclude in Sect. 4. We omit most of the proofs except the main result.

2 Follower’s Problem and Solution

We start with the follower’s investment problem. Given the initial wealth, x, the
follower optimizes his portfolio by dynamically choosing allocations in the market
asset S, the riskless bond, and the consumption rate, C. The follower’s wealth, X,
evolves as follows:

dX(@)=n®)X@t)oAdt +dW()) +rX(t)dt — C(t)dt, t<T,
X(t)=X(t-0)—K,
dXt)=n(t)X@t)o(Adt +dW (t)) +rX(t)dt — C(t)dt + 6, Y (t)dt, t >,

dY (1) =Y () (adt +c(pdW () + /1 — p2dW0(z))) ,
XO0)=x, Y0 =y,

“)
where 7 (¢) is the proportion of wealth invested in asset S, C(¢) is the consumption
rate, and 7 is the stopping time to undertake the investment, chosen optimally by the
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follower. The wealth process is discontinuous at 7. From (4), we observe that the
wealth process has two possible evolution regimes. To facilitate further exposition,
we introduce the processes X° and X! (regime 0 and regime 1, respectively):

dX°t) = ()X (t)o (Adt +dW (1)) + rX°(1)dt — C(t)dt, (5)

dX't) =7 X (D)o (Adt +dW @) +r X ()dt — C(t)dt + 8:Y (1)dt.  (6)

The follower’s problem is to maximize his expected discounted utility from con-
sumption by choosing stopping time 7, consumption rate C, and investment strategy
7. We have to solve the problem in two steps, beginning with the utility maximiza-
tion after T (postinvestment utility maximization) and then solving the complete
utility maximization prior to t (preinvestment utility maximization). The rationale
behind this two-step procedure is because we need a clearly defined obstacle func-
tion when solving the stopping time problem.

2.1 Postinvestment Utility Maximization

After t, the follower solves his utility maximization as a control problem of port-
folio selections and consumption rules augmented by a stochastic cashflow stream
62Y () per unit time.

To facilitate representation, for .%;-adapted processes 7 (t), C(¢), we introduce
the local integrability conditions

iR roxi@) di <oo, VT,
I'= b 5 )
E [, (C(t)*dt <oo, YT,
and define
oy =inf{t: X'(t) < =N}, i=0,1. (8)

The follower reveals his preference through his expected discounted utility of con-
sumption, and so, to the pair (C(-), 7 (-)), we introduce the objective function

J(C) =E/me*f”U(C(t))dt, 9)
0

where (., a constant, is the discount rate. This function is well-defined, but it may
take the value —oo. Since the follower can manage his investment-consumption
portfolio, we consider the following control problem:

Fl(x,y)= sup J(CO), (10
{().CON),
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where
%x{y = {(n, C): 1 tl 4 coas N 1 oo; e HT By (X1 M+FXT)) _,
asT 1 oo},
and f(y) is a positive function of linear growth with f(0) = 0 which will be made

precise later (cf. (17), (16)).
We associate the value function F!(x, y) with the Bellman equation:

F,aF‘( s )+8F1 N 19%F! , 2, U CaF‘
— —(@rx —-— = su —C—
K VT Ty Y e TP ox
dF! PFY\ 13%F' , ,
—l—sgp X0 )»W—i—ygp oy +§Wn x“0°}; =0. an

The domainis x € R, y > 0.
We note thatif y = 0, then Y (¢) = 0 for all z. The problem reduces to the classical
investment-consumption problem with the solution given by:

2
1 +5
F(x):—;exp{—ryx—l—l—urz}. (12)
We thus have:
Fl(x,00= F(x). (13)
We look for a solution of (10) in the form
1 n+ o
Flx,y)= —y P T SO = 2 (14)
in which, by (13),
f(©0)=0. (15)
By (14), defining the optimal feedback,
_ 1 aF!
Cx,y)=——1In—
y ox
and
aF! 32F!
~ )\W +ysp dxady
T(x,y)= S =T R
dx2

we reduce the Bellman equation (11) to:

1 |
Eyzng” + (@ —rgp)yf — Eryyzgz(l PP =rf+8&y=0. (16
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Proposition 1 The value function,

s *© —rt l 2 >
for= int, B /0 e (52Yy(t)+2v ) ) dr (17)

with

dYy(t) =Yy — Agp + gy/ry (1 — pP)u(0)]dt + Yy (1) gdW (1), Yy(0) =y,

Uy ={v(): E [;°e v (1)dt <00, e "TEY,(T) > 0as T — oo},
(18)
is the unique function in C?(0, 00) solving (16), (15) on the interval [0, ey + M1,
and such that f(y) f oo asy 1 oo.

Proposition 2 The function f'(y) is bounded.

We now state the result that the value function given by (10) is indeed of the
form (14).

Theorem 1 The function F'(x,y) given by (14) coincides with the value function
given by (10).

2.2 Preinvestment Utility Maximization

We now turn to the problem of optimal stopping with the obstacle defined by
Fl(x, y), the solution to the postinvestment utility maximization. Before the stop-
ping time t, the wealth process is governed by (5) and the cashflow process evolves
as (2). Set 0 = inf{t : Y (r) =0}. At time 7 A 6° the follower stops. If 0° < 7, the
investment never takes place and the follower receives F(X°(8°)), where F(x) is
given by (12). If T < 69, the follower receives F1(X%(t) — K, Y (1)) at the stopping
time t, where F!(x, y) is given by (14). Therefore, the objective function is:

Ty (COL 7 (), 7)

A0°
= E|:/ e MU (C@)dt + F1(X1) — K, Y(1))e ™" 1, g
0

- F(XO(QO))e_“QOIQQST}, (19)

(2 —r+a—Agp)2

&
262r2y (1 - p?)
Note that € can be arbitrarily small.

M, is defined as: M, = Ifr 4+ Agp — o > 0, we can take M, =0, hence

_ 5]
T r—a+icp”
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and we define the associated value function:

F(x,y) = sup ey (CO), (), 7), (20)
{T().CO\TIeX,

where
ﬁZ/%:{(C,r{, T): IO; t/\90<ooa.s.; r*:limTrBir/\GOa.s.}.

X,

As a consequence of Dynamic Programming, assuming sufficient smoothness of
the function F(x, y), we may write the strong formulation of V.I. that F(x, y) must
satisfy as follows:

—uF +%Erx + oy + %%gzyz +sup¢ (U(C) — €3E)

+ sup, [nxa(AaF —|—y§paxay)+ ﬂzngza F] <0,
F(xvy)ZFl(x_K»y)v

(F,y) = F e = K, )~ + 3 rx + Fay + 1 55622

+supe (U(C) — C3E) + sup, [nxg(A8F+y§p8x(’y)+;n2 2520 2r)

21

dx?
=0.
We have the boundary condition:
F(x,0)=F(x). (22)
We look for a solution of the form:
2
1 n+ A
F(x,y)=—;exp|:—ry(x+g(y))+l— . 2 ] (23)
Using (23) and (14) and defining the optimal feedback
1. OoF
C(x y)=——Iln—
y  0x
and
dF
~ )” +ysp 8x8y
T(x,y)= _Ts
WC‘X

we transform V.I. (21) to the form:

Iv26%8" + g'y(a — rsp) — 5y* Pty (1 — pHg? —rg <0,

gy = fy)—

(g — fOM+K) [éyzgzg” +g'y(a—Arsp) — 2y2try(1— pHg? — rg]
—0,

g(0) =

(24)
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This V.I. cannot be interpreted as a control problem because the non-linear operator
is connected to a minimization problem, while the inequalities are connected to
a maximization problem. So, g(y) is more appropriately the value function of a
differential game rather than of a control problem. Define

u(y)=gu) — f(»+K.

Then (24) becomes (using the equation of f(y) (cf.(16)):

—5326%u" —yu' (@ —rsp — yf'Pry (1= 1) + 52 ry (1 — pP)u* + ru
> —-8hy+rk,
u>0,

u[—5y**u" — yu' (@ = rsp — yf'*ry (1 = p») + 5% ry (1 — p)u?

+ru+82y—rK]=O,
u(0) =K.

(25
We study (25) by the threshold approach. Let y be fixed, to be determined below.
We consider the Dirichlet problem
—332 %" = yu' (e = hsp = yf'*ry (1L = p») + 3y°¢*ry (1 = pP)u* + ru
=—-8&y+rK, 0<y<y,

u@ =K, u@) =0.
(26)
For y fixed, this problem is a classical Bellman equation. Similar to Proposition 1,
equation (26) is a Bellman equation of the following control problem with the con-
trolled diffusion:

dYy(t) =Yy (O)a —rsp = Yy (1) f'(Yy (1) s?ry (1 = p?)

+ gyry (1= pHv()]dt + Yy (t)cd W (1), (27)
ry0) =y, 0<y<3,

and the value function

6y (v(-) 1
u(y) =inf E / et |:—82Yy(t) +rK + —vz(t) dt
v(*) 0 2

n efr('?y(v('))Kle (Oy(v(~)))=0:|’ (28)

where 0, (v(-)) = inf{r : Y, () is outside (0, ¥)} and it is finite (a.s.). Obviously,
u(y) > 0if y < Ig—;, and we also have u(y) < K .2

2For v(t), we can take the same class as in problem (17)—(18).
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Theorem 2 There exists a unique value y such that
W' @) =0, y>—. (29)

The value function u(y) (cf. (28)) extended by zero beyond y is the unique solution
of VI. (25). It is C" and piecewise C>.

Referring back to (24), from Theorem 2, we have obtained that there exists a unique
solution of (24) such that g(y) € C'! and piecewise C2. There exists a unique y such
that

—1y26%g" — g'y(a — Asp) + 52 Pry (1 — pPg? +rg =0, y <3,
s=f»M-K, y=y,

) ) 30
¢ =) 60
g(0)=0.

Note that g(y) > 0 since u(y) > — f(y) + K. We generate the main result that the
value function given by (20) is indeed of the form (23).

Theorem 3 The function F (x, y) defined by (23) coincides with the value function
given by (20).

2.3 Follower’s Optimal Stopping Rule

We next define the optimal stopping rule as:
T(y) =inf{r: Yy(1) > 3}, (€2

where Y, (1) is the process defined in (2) and y is the unique value defined by the
V.I. (29) (the smooth matching point). We must note that the follower’s stopping
time 7 (y) is the follower’s optimal entry if he can enter in the market at time zero.
Since the follower can enter only after the leader (who starts at time 6), for finite 6,
the follower will enter at time:*

t9 =0+ £(Y,(9)). (33)

3For any test function ¥ (x, s), we have the formula:

E[W (Y, (39), T0)|Fo] = ¥ (Yy(0), D)1y, 0)=5 + Ly, 0)<s E[¥ O, 1 + 2] [y=v,0).0=6 - (32)



38 A. Bensoussan and S.(C.) Hoe

3 Leader’s Problem and Solution

After solving the follower’s optimal policy, we are now ready to solve the leader’s
problem, which is complicated by the fact that he must share the market (project
value) upon the follower’s optimal entry at 7yp. Thus, by investing K, the leader
expects to receive a continuous cash flow §; Y (¢) per unit time prior to the follower’s
entry, and 6, Y (¢) per unit time afterwards. The leader’s wealth evolves according to
the following system of stochastic equations:

dX(@) = n(t)X(t)a(Adt + dW(t)) +rX@t)dt —C@t)dt, t<9,
XO)=X®O-0) —K,
dX () =m)Xt)o (Adt +dW (1)) +rX(1)dt + 81 Y (1)dt — C(t)dt,

0 <t <T1p,
dX(t) = n(z)X(t)a(Adt + dW(z)) +rX@)dt +8Y)dt — C(t)dt, t> 1y,
dY (1) = Y (1) (adt + ¢ (pdW (1) + /1 — p2dWO(0))),
X0)=x, YO =y, withxeR, y>0,

(34)
where 6 and Ty are stopping times chosen optimally by the leader and the follower,
respectively. The leader’s problem is to maximize his expected discounted utility
from consumption by choosing stopping time 6, consumption rate C, and invest-
ment strategy . As in the follower’s case, we have to solve leader’s complete utility
maximization problem in two steps.

3.1 Postinvestment Utility Maximization

Suppose that 6 = 0, the leader’s wealth is x, and the cash flow y > 0; then the
leader’s wealth becomes immediately x — K since he must pay the fixed cost of
entry, K. The leader must share the market upon follower’s entry at 7 (y). Thus, for
a generic initial wealth x, the leader’s wealth evolves as follows:

dXH () =n ()X (o (Adt +dW (1)) + (r XL (6 + 81 Y (1) — C (1)) dt,
t<7(y),

XL10) = x,

dX?(t) =) X2 ()o (Adt +dW (1)) +rX>(t)dt + 8,Y (t)dt — C(t)dt,
t>17(y),

X (t() = X" (2 ().

(35)
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If 6 =0 and y > y, the follower enters immediately, and the leader’s problem is
identical to the follower’s, i.e., (10). So, we consider the function

52
A
Ht 5

1
L2(x’y):_r_efr}/(x+f(y))+1* = , (36)

where f is the solution of (16), (15) on the interval [0, ey + M,].*

If 6 =0 and y < y, the leader’s problem is described as follows. The wealth
process is described by X! in (35) and the cash flow process follows (2). Re-
call that 60 = inf{r : Yy (t) = 0} and £(y) = inf{r : Y,(t) > $}.° If 6° < 2(y),
the follower never invests, and the leader’s value function at time #° corresponds
to F(XL1(0%) (cf. (12)). If £(y) < 09, the leader’s value function corresponds
to L2(XL1(£(y)), Y(£(y))), at the follower’s entry time, (y). Thus, to a pair of
(C(-), m(-)), we associate the objective function

2(y)A°
J(CO),m()) = E[/ ’ MUt + F(XH0%)e ™ 190z
A <

+L*(x (2 (), Y(f(y)))e“f(y)lf(y)<goi|, (37)
and we consider the value function:

L'(x,y)= sup  J(C(), (), (38)
(().COYe},

where
%X{y ={(@,C): I'; t*=1lim ¢ rzs, >7(y) A 0% as.)

with 7! and 7) defined in (7) and (8) by replacing X' with X L1 respectively. We
associate the value function with the Bellman equation:

1 1 271 1
—uL! + %(rx +81y) + %(xy + %%gzyz + sup¢ (U(C) — C%)

1 271 271
+sup, [wxo (Mo + spyiiss) + aiate ] =0, (39)
L'x, 9) =L*(x, §) .
We study the Bellman equation (39) for y € 10, y[ and we define:
L', y)=L2(x,y). if y>3,

where L?(x, y) is defined in (36). The extension is continuous but not C'. Also,
we note that for y = 0, then Y (¢) = 0 for all ¢, the problem then reduces to the

4See footnote 1 for the definition of M, .

SHere Yy (t) is the process defined in (2).
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classical investment-consumption portfolio optimization problem; thus we have the
boundary condition:

L'(x,0) = F(x). (40)
‘We look for a solution of the form
1 1 —ry(x+q(v))+l—u+%
Lly) == : g @1
with g solving the problem
3¥26%q" + (@ — asp)yq — 3r2y?y* 2 (1 — pH)g? — rq + 81y =0,
0<y<3J, (42)

q(0)=0, g =r0).

where f(y) is the solution of (16), (15) on the interval [0, ey + M]. We extend g (y)
by f(y) fory > 3.

The function L! (x, y) is continuous but not C 1 The study of (42) is similar to
(16), but it is simpler because it is defined on a bounded interval. Similar to the
study of (16), we can show that ¢(y) may be interpreted as a function of a control
problem, and there exists a unique solution which is C 2(0, y). For §; > 8, we have:

gy = fy). (43)

Theorem 4 The function L' (x, y) defined by (41) coincides with the value function
given in (38).

3.1.1 The Leader’s Pre-investment Utility Maximization

We now turn to the leader’s optimal stopping problem (i.e., choice of 6) with ob-
stacle defined by L!(x, y), the solution to the postinvestment utility maximization.
Before the stopping time 6, the leader’s wealth and the cashflow process evolve as
(5) and (2) respectively.

At time 6 A 69, the leader stops. If 00 < 0, the leader never takes the investment
and receives F(X9(89)) (cf. (12)). If 6 < 6°, the leader receives

L'x°®) - K,Y©9))

(cf. (41)) at 6. Therefore, the objective function is
ong°
Jey(CO),m(),0) = E[/ U(C®)e ™dt+ L' (X°©) — K, Y(6))e " 1y_go
0

4—17(x0(9°))e‘“9°19059}. (44)
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We define the value function

L(x,y) = sup Jey(C(), (), 0), (45)
(w().COONU,

where
%x(?y ={(C,7m,0): 1% 0A0° <oc0as.; t*=1im1 10> 0 A0°as.)

with 79 and 1'1(3 defined in (7) and (8) respectively. As a consequence of Dynamic
Programming, assuming sufficient smoothness of L, we can associate the strong
formulation of V.I. to the value function L(x, y) as:

2
—uL +rx3: +ay% + %g2y2% + sup, (U(C) — C3E)
2 2
+ sup; [ox (5% + spy i) + gm0 5] <0,

L(x,y)>L'(x - K,y),

2
(La.y) = L' = K.p)[=nL +rafe +ayfe + 56725k

+ sup¢ (U(C) — C‘g—f) + sup,, [nox(kg—i +spy aajgfy) + %nzxzcrzaz—L]] =0.

9x2
(46)
We have the boundary condition:
L(x,0)= F(x). 47)
We look for a solution of the form
1 —r (x+h( ‘))+l— Wr%
L(x,y):—;e ¥ Y o, (48)

with h(y) satisfying the following V.I.:

327 1y —hsp) — 3y7Pry (L= pP)h —rh <0,

h(y) =z q(y) - K,

(h) = q) + K)[5576°h" +h'y(@ = hsp) — 537 6°ry (1 = pP)h™ —rh]
—0,

h(0) =0.

(49)
We encounter a new difficulty that does not occur in the follower’s problem. We
observe that the leader’s obstacle ¢ (y) — K is C” but not C!. We cannot as in (25)
consider u(y) = h(y) — q(y) + K since g(y) is not sufficiently smooth. We will
consider nonetheless the function

u()=h(y)—f»+K
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which satisfies the following problem:

—59?%u" =yl —hgp — yPry (L= p*) f)u' + 567ryy* (1 — pPyu”> + ru
> =&y +rk,

u>m,

(u—m)[—3y*%u" — y(a —rp — ysiry (1 — p*) f')u’
+32ryy2(1 = pPu? + ru+ 8y —rK| =0,

u(0) =

(50)
In (50), the function m = g(y) — f(y) is the solution of the problem
—5y2tm” — y(a = Agp — yPiry (L — p?) f')m' + 3% ryy> (1 — p2ym* + ry
=(61 —8)y, O0<y<y,

m(0) =m(y) =0,

(5D
and m(y) is extended by O for y > y. The function m is continuous but its derivative
is discontinuous at y. The difficulty is that one cannot interpret u(y) as the value
function of a control problem. Instead, it is, more appropriately, the value function
of a stochastic differential game.

r—a+igp
ys2(1-p?)
piecewise C?, solving (50). This function vanishes for y sufficiently large. Moreover,
it is the value function given by

Theorem 5 We assume > 819. There exists a unique u(y) € C'(0, 00),

u(y) = infsup Jy (v(-), ) (52)
v() ¢
with the controlled diffusion and objective function given by

dYy (1) = Yy(t)(a — Asp — s*ry (1 — pH) Yy (1) f' (Y (1))
+o@)eyry (I = pD)dt + g Yy (AW (),
Y, (0)=y, (53)
Ty (v0),0) = E[ [0 (=8,7,(t) + rK + 3202())e " dr + Ke " 150_
+m(Yy(6’))e_’910<90],

where 90 inf{t : Yy (t) =0}, and m is the solution of (51) extended by zero for
y>3.°

We next state that the solution of (50) is characterized by two intervals.

6For v(t), we can take the same class as in problem (17)—(18).
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Theorem 6 The solution u(y) of (50) is of the form

1 1
=it = yla—dep = y&Try (1= p) f)u' + SPryy (1 = pPu + ru

=—by+rK, O<y<yr and yy<y<ys, (54)
with the value matching and smooth pasting conditions:

u(y)) =my), u'(yr)=m'(y),
u(y2) =m(y2), u'(y2) =m'(y2), (55)
u(y3) =0, u'(y3) =0,

where m(y) = g(y) — f(y), the solution of (51) and extended by 0 for y > y. There
exists a unique triple yi, y2, y3 with 0 < y; < yp <y < y3 such that (54), (55)
hold.

Proof We know that u, the solution to (50), vanishes for y > y, y sufficiently large.
Since u(0) > m(0) and u(y) = m(y) = 0, there exists a first point y; < y such that
u(y1) = m(y;). We must have y; < y. Otherwise, y; = y and u coincides with
the solution of (25), i.e., the same system (50) with m = 0. But then ¥ = J, hence
y1 = ¥. In this case, & = u — m satisfies the equation

/

1 -
—5¥7 %" = y(a—rsp = y(f’ +m)*ry(1—p?))i
1 - -
—+ Eyzgzry(l — @) +ri=—81y+rkK (56)
with the boundary conditions
u0) =K, u(y) =0,

and since u' () =0, &' (y — 0) = —m'(y — 0) which implies &#’'(y — 0) > 0. It fol-
lows that ii(y) < 0 for y close to y, which is impossible since it must be positive.
Therefore, y; < y. We claim also that §;y; > r K. Indeed, set i(y) = u(y) — m(y),
then it satisfies (56) with the boundary conditions

u(0) =K, u(y) =0, i'(y1) =0. (57)

The matching of the derivatives comes from the fact that i (y) is C ! and ii( y) >0,
ii(y1) =0. So y; is a local minimum, hence #’(y;) = 0.

Suppose 811 < rK, then using (56), we see that 2" (y; —0) < 0; hence, i(y) <0
for y < yj, close to yj. This is impossible.

Since u(y) > m(y) = 0, there exists an interval in which J is contained and such
that the equation holds on this interval. One of the extremities of this interval is
y3 = . Call y, the other extremity, such that u(y;) = m(y;). Therefore, y; < y; <
3. Necessarily, y» > y1. Otherwise, u will be the solution of the equation on (0, y3),
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which is the case studied at the beginning of the proof, which is impossible. But
then we have u(y2) = m(y2), u'(y2) =m’(y2).
On the other hand, on the interval (y1, y2), m satisfies (51) and the right-hand
side (81 — 82)y > —8y +rK, since 81y > rK, by virtue of y > y; and §;1y; > rK.
Thus, m satisfies all conditions on (y;, y»). Therefore, u = m on (y;, y2). By
the uniqueness of u (Theorem 5), the triple y1, y2, y3 is necessarily unique. O

We note the property that u(y) > — f(y) + K, which implies 2(y) > 0. It remains
to show that L(x, y) defined by (48) is the value function (45).

Theorem 7 The function L(x, y) defined by (48) coincides with the value function
(44).

3.2 Leader’s Optimal Stopping Rule

The optimal stopping rule for the leader is defined as:

inf{z: Yy(t) >y}, if0O<y<yi,

0, ify1<y=<y,

inf{t: Yy(t) <ysorYy(t) 2 y3}, ifya<y<ys,
0, ify=>ys,

0(y) = (58)

where Yy, () is the process defined in (2).

4 Conclusion

We study a problem similar to the one presented in Bensoussan et al. [2]. Although
we consider the investment payoffs governed by a geometric Brownian motion dy-
namics like the lump-sum payoff case in Bensoussan et al. [2], we do not encounter
additional regularity issues encountered in the lump-sum payoff case, which re-
sults from indifference consideration for overcoming the comparison of gains and
losses at different times in the incomplete markets. On the contrary, we are able to
characterize a two-interval solution for the leader’s optimal investment rule as the
arithmetic Brownian motion cashflow payoff case presented in Bensoussan et al.
[2]. The choice of a geometric Brownian motion cashflow process is motivated by
the specification of an uncertain payoff arising from a stochastic demand process
for the project’s output, common in the financial economics literature (see, for ex-
ample, Dixit and Pindyck [3] and Grenadier [4]). We note that to study cashflow
process in terms of a geometric Brownian motion process rather than an arithmetic
Brownian motion process invokes additional nontrivial mathematical consideration.
Comparing with the arithmetic Brownian motion cashflow payoff case, the current
study requires additional absorbing barrier consideration as well as an additional
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intermediate study of non-linear 2nd order differential equation, which turns out to
be a solution to a minimization problem.

The economic interpretation of the leader’s two-interval solution for the Stack-
elberg game is interesting. Below the lower threshold, neither player will invest
because the output value is too low. Above the upper threshold, both players invest
as soon as possible because output value is very high. Around the middle threshold,
output value is attractive to the follower, who invests as soon as possible. As a result
the leader will have little or no time to exploit their monopoly position in the output
market. Since output value is below the upper threshold, the leader prefers to invest
at a lower threshold value, thus decreasing the follower’s interest. This allows the
leader to maintain a monopoly position in the output market for a longer time. This
result, understandable but not necessarily intuitive, can be revealed only through the
mathematics of the V.I.
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