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Student Solutions to

Chapter 1: What Are Partial Differential Equations?

1.1. (a) Ordinary differential equation, equilibrium, order = 1;
(c) partial differential equation, dynamic, order = 2;
(e) partial differential equation, equilibrium, order = 2;
L 0%u 0% .
1.2.(a) (1) 55+ o2 0, (i) ugy +uy, =0.

1.4. (a) independent variables: x,y; dependent variables: u,v; order = 1.

1.5. (a) @ + @ — ¢” cosy — e’ cosy = 0; defined and C> on all of R?
.5. o2 T a2 Y y =0; .
1.7. u=log [c (x—a)’+c(y— b)Q], for a, b, ¢ arbitrary constants.
%u %u
1.10. — 47— =8-8=0.
@) 5 4 o2
1.11. (a) cg+ it + cox + ¢4 (t* + 2°) + ¢ tx, where Cp,---,Cy are arbitrary constants.

1.15. Example: (b) u? + uz +u? =0 — the only real solution is u = 0.

1.17. (a) homogeneous linear; (d) nonlinear.

L 8%u 0%u
1.21. (a) D, [cf +dg] = 2= [cf(2) + dg(@)] = ¢ 2L +a29 — co [£]+ dd,[g]. The same proof
21. e g9l =5, lcf(z g(@)]=co- 9~ O gl me pr

works for 8y. (b) Linearity requires d = 0, while a, b, ¢ can be arbitrary functions of x, y.
1.24. (a) (L— M)[u+v]=Llu+v]— M[u+v]= Llu] + M[u] — L[v] — M[v]
= (L= M)[u] + (L — M)[v],
(L —M)[cu] = L[cu] — M[cu] = cLju] —cM[u] = c¢(L — M)[u].

1.27. (b) u(z) = %em sinz + ¢, e2/5 Cos%:c—i—chQI/E’ sin%x.
1.28. (b) u(z) = —%x - 1—10 sinz 4 ¢, 3% + ¢y e 37,

@ 2020 Peter J. Olver



Student Solutions to

Chapter 2: Linear and Nonlinear Waves

2.1.3. (a) u(t,z) = f(t); (e) u(t,z) =e ' f(t).

2.1.5. u(t,z,y) = f(x,y) where f is an arbitrary C! function of two variables. This is valid pro-
vided each slice D, , = D N {(t,a,b) |t € R}, for fixed (a,b) € R?, is either empty or a
connected interval.

¢ 2.1.9. It suffices to show that, given two points (¢;,x), (t5,x) € D, then u(t;,x) = u(ty,x). By
the assumption, (¢t,z) € D fort; < t < t,, and so u(t, ) is defined and continuously
differentiable at such points. Thus, by the Fundamental Theorem of Calculus,

t2 O
u(ty,x) —u(t),x) = /t12 8_:: (s,x)ds = 0. Q.E.D.

2.2.2. (a) u(t,z) = e~ (@t31)?

2.2.3. (b) Characteristic lines: = = 5t + ¢; general solution: u(t,z) = f(x — 5t);
x

i
i

< 2.2.6. By the chain rule

ov ou Ov ou
E(taaj)_a(t_t()am)a %(t’m)_%(t_to’m))
and hence
ov ov ou ou
Fr (t,x) —f—c% (t,z) = N (t—to,x)—l—c% (t —ty,z) =0.
Moreover, v(ty, ) = u(0,x) = f(z). Q.E.D.

flx —ect), x>ct,

defines a classical C! solution provided the
g(t—=x/c), x<ect,

2.2.14. (a) u(t,x) = {

(©) 2020 Peter J. Olver



Chapter 2: Student Solutions 3

compatibility conditions g(0) = f(0), ¢'(0) = —c f(0), hold.

(b) The initial condition affects the solution for > ct, whereas the boundary condition
affects the solution for x < ct. Apart from the compatibility condition along the
characteristic line x = ct, they do not affect each other.

t=0: t=1
e
1, z =0,
(¢) The limit is discontinuous: lim wu(t,z) = { .
t— oo 0, otherwise.

2.2.20. (a) The characteristic curves are given by = = tan(t + k) for k € R.
x
// // +

(b) The general solution is u(t,z) = g(tan™' z — t), where g(¢) is an arbitrary C! function of
the characteristic variable.

(¢) The solution is u(t,z) = j"(tan(tan_1 x — t)) Observe that the solution is not defined

for z < tan(t — %ﬂ') for 0 < t < m, nor at any value of x after ¢t > m. As t increases
up to m, the wave moves rapidly off to +00 at an ever accelerating rate, and the solution
effectively disappears.

(©) 2020 Peter J. Olver



4 Chapter 2: Student Solutions

© 2.2.26. (a) Suppose = = z(t) solves dz _ ¢(t,x). Then, by the chain rule,

dt
d ou ou dr  Ou ou

o u(t,z(t)) = o (t,z(t) + P (t,z(t)) o = o0 (t,x(t)) + c(t,=(t)) o (t,z(t)) =0,
since we are assuming that (¢, x) is a solution to the transport equation for all (¢, x).
We conclude that u(t, a:(t)) is constant.

2.2.27. (a) The characteristic curves are the cubics x = %t?’ + k, where k is an arbitrary constant.

3 2
(b) The solution u(t,z) = e~ **'/3)" is a Gaussian hump of a fixed shape that comes in from
the left for ¢ < 0, slowing down in speed as t — 07, stops momentarily at the origin at
t = 0, but then continues to move to the right, accelerating as t — co.

2, w<St—1,
2.3.1. (a) wu(t,x) = g
1, x > §t - 1,

is a shock wave moving to the right with speed % and jump magnitude 1.

2.3.3. Yes, a shock wave is produced. According to (2.41), when f(z) = (z? + 1)1, the shock
starts at time

2 2
1 _
t*:min{%:%m?’jLaz—i-%x !

8
x>0 = —— = 1.5396.
} 3v3
The minimum value occurs at z, =1/ V/3, which is found by setting the derivative
d _ _
2 (et vt g ) =3t 41— fam 0
The solution is graphed at the indicated times:

2.3.6. (a) If and only if a = ~.
z/(t+1), —Vitl<az<Vitl,

0, otherwise,

2.3.9. (b) u(t,z) = {

(©) 2020 Peter J. Olver



Chapter 2: Student Solutions

t=.5 t=1 t=2

The mass is conserved because the area under the graph of the solution at each time is
constant, namely 0.

& 2.3.14. (a) According to the Implicit Function Theorem, the equation
F(t,z,u)=u— f(r —tu) =0

can be locally uniquely solved for u(t,z) provided

07&2—5:1+tf/(x—tu), and so f’(m—tu)#—%.

2.3.15. It is a solution if and only if either
(i) k=1/2and a=~,0r (i) k=0,or (ii) a=vy=0,or (iv) a=p=0.
2.3.17. (a) The mass conservation law is
ou 0 1 3
E + % (gu ) = 0,

and so, following the previous argument, the shock speed is given by

do  3lu” (O =] um (02 £ um (@) ut (@) +ut()? |

dt — u () —ut(t) 3
(b) () If |a| > |b|, then we have a shock wave solution:
a, r < ct, 2 2
u(t,z) = { where c= w.
b, x > ct, 3

Note that, in this case, ¢ > 0 and so shocks always move to the right.

(#i) On the other hand, if |a| < |b]|, then we have a rarefaction wave:

a, Tz < azt,
u(t,z) = z/t, a’t <z < bt
b, x> bt

2.4.2. (a) The initial displacement splits into two half sized replicas, moving off to the right and
to the left with unit speed.

1, 1+t<z<2-t,
For t < &, we have wu(t,z) = 1ol t<a<lit or 2—t<a<2+t,
0, otherwise,
1
3 1t 2t 1+t 24+t
FOFtZ%,Wehave u(t,x): 2 <zr< or +it<x <2+,
0, otherwise,

(©) 2020 Peter J. Olver



6 Chapter 2: Student Solutions

(b) Plotted at times t = 0,.25,.5,.75,1., 1.25:

-0.5 -0

5
-1 -1 -1

+t - e B
2.4.4. (b) %/m . 2c0s(22)dz = sin2(xz +t) . sin 2 (z — t) ‘

2.4.8.(a) {(t,z)| 2—2t<z<2+2¢t t>0}.
© 24.11. (a) u(t,z) = %sin(m —2t) + % sin(x 4+ 2t);  (b) True.

& 2.4.13. First of all, the decay assumption implies that E(t) < oo for all t. To show E(t) is con-
stant, we prove that its derivative is 0. Using the smoothness of the solution to justify
bringing the derivative under the integral sign, we compute

dE  d oo 2 2 2 o 2
= /—oo (%ut + %C um) dx = /—oo (ututt tc uxuxt) dx

dt o dt
2 [° 9 [© d
=¢ /—oo (utumm—i_umumt)dmzc /—oo %(Utum)dmzo’
since u,,u, — 0 as x — oo. Q.E.D.

2.4.17. (a) Because (9, +c(x)d,) (0, —c(z)d,) = 0] — c(x)? 07 — c(x) ¢ ()0, # 0f — c(x)? D3.
& 2.4.20. (a) Setting x = rcosf, y = rsinf, we have dx dy = r dr df, and hence

//R2 ez_‘l(x2_’_@/2)czlx613y=/_7r7T /Ooore_ar2 dr d

o _ 2 m
:271'/ re " dr=——¢e "
0 a

2 |00

r=0 a
(b) By part (a),

([t ([ an) = ([ )

Taking square roots of both sides establishes the identity. Q.E.D.

@ 2020 Peter J. Olver



Student Solutions to

Chapter 3: Fourier Series

B0 0 (1) [u(o) +0(@)] = 54+ 52+ (o) + v(a)

(% + 1) [cu(z)] = c% + cu(z) = ¢ (% + 1) u(z) ;
(i) (a% + 1> [e(t)u(z)] = et % Fe(t)ulz) = c(t) <a% + 1> w(z)
ou Ou

(i) o =7 +u.

3.1.2. (a) exp(—n?t)sinnz forn=1,2,....
3.1.4. (a) u(t,z) = N2,

T 4 i cos(2j+ 1)z
= 21 2 7= 2j+12

3.2.6. (b) 60 differentiable,

continuous.

(©) 2020 Peter J. Olver



8 Chapter 3: Student Solutions

3.2.7. (b) - o:

-5 -0.

[
o= o
b

(S0 )

-1.

3.2.12. (a) f(z) = (z —n)?, whenn <z <n+1;

3.2.14. (a) Discontinuities: * = —1, magnitude 1; x = 0, magnitude 2; x = 1, magnitude = 3;

(d) no discontinuities.

3.2.15. (a) Discontinuities: 2 = —2, magnitude e~ 2;
1

xr = —1, magnitude —e™ ;
z = 1, magnitude e; z = 2, magnitude — e?;

3.2.16.

3.2.14 (a) Yes: no corners; (d) yes: corners at x = 0, 2.

3.2.19. (a

(a)

3.2.15 (a) Yes: no corners.
) Piecewise continuous, but not piecewise C! or piecewise 2.
)

3.2.21. (a) If f and g are continuous at x, so is f + g. More generally, since the limit of a sum is
the sum of the limits, (f + g)(z~) = f(z7) + g(z7), (f+9g)(@") = f(z") +g(z"), and
so f + g is piecewise continuous at every .

(b) Every jump discontinuity of f or of g is a jump discontinuity of f + g, except when f
and g have opposite jump magnitudes at the same point, so
f(z™) = f(z7) =g(z~) — g(z™), in which case z is a removable discontinuity of
f+g. The jump magnitude of f + g at x is the sum of the jump magnitudes of f and g,
namely, f(z") = f(z7) + g(z™) — g(z7).

(¢) The sum 20(z) 4 o(x + 1) — 30(x — 1) +sign(z? — 2z) = o(z + 1) — o(x — 1) has jump
discontinuities at x = —1 of magnitude 1 and at x = 1 of magnitude —1. The jumps at
x = 0 have canceled out, leaving a removable discontinuity.

(©) 2020 Peter J. Olver



Chapter 3: Student Solutions 9

05 1 1 2 X cos2jw
3.2.25. (a b r) ~ —+4 —sinx — — —_— .
( ) -3 -2 -1 1 2 3 ( ) f( ) s 2 ngl 4]2—1
-0.5
-1
1 1 1
0.5/—\ 0.5/\ 0,5/\
(c)
3NZ__F 1 2 3 32 T 1 2 3 -3 -2 -1 1 2 3
0.5 0.5 0.5
1 -1 1

<)
(& =
o
ol =

The maximal errors on [— 7, 7] are, respectively .3183,.1061,.06366, .04547,.03537, .02894.
(d) The Fourier series converges (uniformly) to sinx when 2k7 < 2 < (2k+ 1)7 and to 0
when (2k — 1) < a <2kw for k=0,+1,4+2,....

3.2.31. (a) Even, (c) odd.

& 3.2.33. (a) If both f,g are even, then f(—xz)g(—x) = f(z) g(x);
if both f,g are odd, then f(—z) g(—2) = (— f(x)) (— 9(x)) = /(z) g(x);
if f is even and g is odd, then f(—z)g(—z) = f(x)) (— g(x)) = — f(x) g(x). Q.E.D.
3.2.37. (a) True.

s 27+1
3.2.39. Even extension: 1 — g + - jgo % :

converges uniformly to 27—periodic extension of the function f(x) =1—|z|.

NN N\

4
e

X sin(2j+ 1)z
D TFu I : : 5
j=0 J '

-0.5

3.2.41. (a) Sine series:

(©) 2020 Peter J. Olver



10 Chapter 3: Student Solutions

0.5

cosine series: 1;

3.2.42. coshmzx ~

sinhm n 2msinhmm Z (=) coskz
mT s = k2 +m?

3.2.51. (a) %ie_ix—%iei‘r, (o) i >
k=— o0
k0
3.2.54. We substitute z = 7 into the Fourier series (3.68) for e”:
. k . iy — T
1, 7, —x sinhm X (=1)"(1+ ik) jxr €" —e
= = — - = 1
2(¢” +e ) =0 k:z_:oo 1+r2 ° 2 +kz—:11+k‘2

which gives the result.

¢ 3.2.58. Replace z in the Fourier series for f(x) by  — a. Thus, the complex Fourier coefficients of
f(x —a) are ¢, = e~ 1F% ¢, where ¢; are the complex Fourier coefficients of f(z).

2 X cos(2j+ 1)z S _1sinkzx
3.3.1. (a) p(z) ~ — > —) —_—

+ 3 (D

=0 i+ 1)2 k=1
3.3.4. (a) Integrating (3.74), we have

N

2 ) k—1
o S

sinkx,
and hence, in view of (3.73),
o) 2
3 Ef 1 s .
z° ~ 12 I}:l(—l) (ﬁ__6k> sinkzx.

¢ 3.3.9. If f is piecewise continuous and has mean zero, so ¢, = 0, then the complex Fourier series
for its integral is

_ [T S~k ike _ L
g(x) _/O f(y)dy m —O;ékg_oo 1?6 , where  m = 5 /_7r g(x) du.
2 2 (=DF lsinkrz 8 X sin(2j + 1) 7z 1 4 2 (=1)Fcosknz
34.1. (a) = oSBT )T gy 2y 2o ) coshm
@ 5 k§1 k m jgo (2j +1)° R k§1 k?

(©) 2020 Peter J. Olver



Chapter 3: Student Solutions 11

4 X sin(2j+ 1)z
; Z 2 N + 1 ; -3 -2 -1 1 2 3 4
j=0 J .

3.4.2. (a) Sine series:

cosine series: 1;

w1 oo
+
L&
2

3.4.3. (b) —

3
e
I
—
o>
[\
o

3.4.4. The differentiated Fourier series only converges when the periodic extension of the function
. . 8 2 (-1 kax - :

is continuous: (b) — > [ sin——: converges to the 4-periodic extension of 2z.

Tk=1

3 00 k 0o 2.2
© 8 32 2 (—-DF  krx 32 K243\ | ke
345.(h) L —dx ~ —oaz + o2 TP .
() g —de 3Tt X T 37 2 ( w2k )Sm 2

3.5.2. (a) converges to (O, % ); (c) converges to (0,0); (e) converges to (0,0).
3.5.3. (a) Converges pointwise to the constant function 1;
1, z==0,
(c) converges pointwise to the function f(z) = {
0, z=#0.
3.5.5. (a) Pointwise, but not uniformly; (c¢) both.

3.5.6. It converges pointwise since, for each x # 0, as n — 00, the exponential term goes to
zero faster than the linear term in n; on the other hand, f, (0) = 0 for all n. It does not

converge uniformly since maxv, = \/n/(2e) —~ 0.
3.5.7. (b) pointwise.

3.5.11. (a) Uniformly convergent; (c) doesn’t pass test.

¢ 3.5.15. According to (3.66), ¢, | = %\/a% + b2, and hence the condition (3.97) holds. Thus, the
result follows immediately from Theorem 3.29.

3.5.21. (a) The periodic extension is not continuous, and so the best one could hope for is
ag, by, — 0 like 1/k. Indeed, ay = —2m, a, =0, b, = (—1)""12/k, for k > 0.

(©) 2020 Peter J. Olver



12 Chapter 3: Student Solutions

3.5.22. (b) C3;
& 3.5.23. (a) This sums to a smooth, C*° function.

(d) not even continuous.

-3 1 2 3

_k_

oo —n
The error in the nth partial sum is bounded by > e € 1 which is ~ .0039
kE=n+1
when n = 5, and so summing from £ = 0 to 5 will produce accuracy in the second

decimal place on the entire interval.

3.5.26

3.5.27.

3.5.31

& 3.5.34

3.5.37

& 3.5.41

. (a) Converges in norm.

o0 o0

1

(b) Converges pointwise to x; does not converge in L? norm.
e KA1+ R3)2

(@ J
k40

@ I f+alP=(f+a.f+a)=IfIP+{f.9)+ (g, f)+ gl

=1 fIP+(f.9)+(F.g)+ gl =1 FIP+2Re(f.g)+]gl>
(-1Fi/k, k#0,
0, k=0.

1

. In 3.5.22: (b) IEO T

. (a) The complex Fourier coefficients of f(z) = z are ¢}, = {

Thus, Plancherel’s formula is

3 00 00
T 1 T 9 2
_— = d p— p—y
T = 5- /_ﬂx T k:Z_OO\ck\ >
which coincides with (3.57).
. Note first that, for 1 < k < n,
0 < o™ —of | < (o —0p)’ 4 -
and hence if || v(™ — v* || = 0, then |U§n)

On the other hand, if v\™ — v* for all i = 1,...,m, then

v v = o o)+ (2

(n)

m

_ v;@)z
(n)

i

+(v

—v|—0andsov

*

) — o Q.E.D.

(©) 2020

Peter J. Olver



Student Solutions to
Chapter 4: Separation of Variables

2
4.1.1. (a) u(t,z) — u,(x) = 10x; (b) for most initial conditions, at the exponential rate e~ ™ *;
others have faster decay rate; (c) for the same initial conditions as in part (b), when

t > 0, the temperature u(t,z) ~ 10x + ce™ et
4.1.4. The solution is

sin tx for some ¢ # 0 .

> 2
= > d, exp [— (n—i— %) 7r2t] sin(n—i— %)7‘(‘33‘
n=0
where
1 ) 1
d, = 2/0 f(x) sm(n + 5) Tx dx
are the “mixed” Fourier coefficients of the initial temperature u(0,z) = f(x). All

solutions decay exponentially fast to zero: u(t,z) — 0 as ¢ — oco. For most initial condi-

2
tions, i.e., those for which d; # 0, the decay rate is e™ " t/4 n 24674t The golution

profile eventually looks like a rapidly decaying version of the first eigenmode sin % TX.
4.1.10. (a) u(t,z) = e 'cosz; equilibrium temperature: wu(t,z) — 0.

1
& 4.1.13. Since u(t,z) — 0 uniformly in x, the thermal energy E(t) = /0 u(t,x)dx — 0 also.

So if E(ty) # 0, then E(t) cannot be constant. On physical grounds, the energy is not
constant due to the nonzero heat flux through the ends of the bar, as measured by the
boundary terms in

dE ou ou
= dt/ u(ta:dx_/o gu / 82(:& = 52 (t.0) = 5= (£,0).
Thus, in general, E'(t) # 0, Wthh 1mphes that E(t) is not constant.

$ 4.1.17. By the chain rule, v, = u, + cu,, = yu,, = Yv,,. The change of variables represents a
Galilean boost to a coordinate system that is moving with the fluid at speed c.

_ 4 i sinv2 (25 + 1)t sin (25 + 1)z
m V2 (25 +1)2 ’

4.2.4.(b) 1, t, cosntcosnzx, sinntcosnz, forn=20,1,2,....

4.2.3.(b) u (f) u(t,z) =1t—1.

© 4.2.9. (a) The solution formulae depend on the size of a. For k =1,2,3,..., the separable
solutions are

+
—oa,t .
e “kisinkmz, +  azx+/a? —4k%n2c2 ¢ a

where a; = , for k< —,
—a- 2 27c’
e~ % tgin ke,
and, possibly,
e 2sinknx, te *?sinkrx, provided 0< k= QL is an integer,
TC

(©) 2020 Peter J. Olver



14 Chapter 4: Student Solutions

and
—at/2

e coswt sinkmz, ) 553 5 a
where wp = 5 V4kmect —a=, for k> _—.

e_at/zsinwkt sinkmzx, 2me
In particular, if a < 27¢, then only the latter modes appear.

(b) For the given initial data, the series solution is

Oz+e_al:t—a_e_o‘z_t )
S b,k - k sinkmz+ > bke_at/ (1 +3 at) sinkmx
k<a/(2mc) Qp — Qg k=a/(27c)
+ > bke_o“t/2 <coswkt+isinwkt> sinkmx,
k>a/(27c) 2wy,
where k£ = 1,2,3,... must be a positive integer, with the convention that the sum is

zero if no positive integer satisfies the indicated inequality or equality, while
1
b, = 2/0 f(z)sinkmx dx are the usual Fourier sine coefficients of f(x) on [0,1].

(¢) For underdamped or critically damped motion, where 0 < a < 27¢, the modes all
decay exponentially, as a rate e~ %%/2 Tn the overdamped case, a > 2mc, the slowest
a— Va2 —4n?c?
5 .
(d) If a < 2me, the system is underdamped, while if a > 27 ¢ it is overdamped.

decaying mode has decay rate e~ %1t where a; =

4.2.14. (a) The initial displacement splits into two half sized replicas, moving off to the right and
to the left with unit speed.
Plotted at times t = 0,.25,.5,.75,1.,1.25:

4.2.15. (a) The solution initially forms a trapezoidal displacement, with linearly growing height
and sides of slope 1 expanding in both directions at unit speed, starting from x =
1 and 2. When the height reaches .5, it momentarily forms a triangle. Afterwards, it
takes the form of an expanding trapezoidal form of fixed height .5, with the diagonal
sides propagating to the right and to the left with unit speed.
Plotted at times t = 0, .25,.5,.75,1., 1.5:

(©) 2020 Peter J. Olver



Chapter 4: Student Solutions 15

& 4.2.22.

4.2.24.

0.6 0.6 6
0.4 0.4 0.4
0.2 0.2 o

1 2 3 2 5 6 -1 1 2 3 4 5 6 -1 1 2 3 4 5 6
-0.2 0.2 0.2
0.4} -0 4} -0 4t
-0.6 -0.6 -0.6

L
The solution is periodic if and only if the initial velocity has mean zero: /0 g(x)dz = 0.

For generic solutions, the period is 2¢/¢, although some special solutions oscillate more
rapidly.

(a) The initial position f(x) and velocity g(z) should be extended to be even functions
with period 2. Then the d’Alembert formula
flea—t) + flett) 1 ro+t

u(t,x) = 5 t5/ ., 9(z)dz

will give the solution on 0 < z < 1.

Graphing the solution at ¢t = 0,.05,.1,.15,...,.5:

0.25 0.25 0.25 0.25
0.2 0.2 0.2 0.2
0.15 0.15 0.15 0.15
0.1 0.1 0.1 0.1
0.05 0.05 0.05 0.05
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
0.25 0.25 0.25 0.25
0.2 0.2 0.2 0.2
0.15 0.15 0.15 0.15
0.1 0.1 0.1 0.1
0. 05 0.05 0.05 0. 05
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
0.25 0.25 0.25
0.2 0.2 0.2
0.15 0.15 0.15
0.1 0.1 0.1
0.05 0.05 0.05
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

At t =.5,...,1, the solution has the same graphs, run in reverse order, since u(1—t,x) =
u(t,z). At t =1 the solution repeats: u(t+1,x) = u(t,z), since it is periodic of period 1.

(¢) Graphing the solution at t = .25,.5,.75,...,2:

1 1 1 1
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
0.4 0.4 04/ 0.4
0.2/ 0.2/ 0.2 0.2

02 04 06 08 1 02 04 06 08 1 02 0.4 06 08 1 02 0.4 06 08 1
1 1 1 1
0.8 o,s_\ o‘a\ 0.8
o‘e\ 0.6 0.6 0.6
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2

02 04 06 08 1 02 04 06 08 1 02 04 06 08 1 02 04 06 08 1

After this, the solution repeats, but with an overall increase in height of 1 after each
time period of 2. Indeed, u(t + 1,z) = % + u(t, —x), while u(t + 2,x) = u(t,z) + 1.
The solution is not periodic.
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16 Chapter 4: Student Solutions

& 4.2.28. The d’Alembert formula (4.77) implies that the solution is

u(t,z) = LE=<c) : fltet) [ gy,

where f(z) and g(z) denote the f—periodic extensions of the initial data functions.
Thus, by periodicity of the initial data and Lemma 3.19,

u<t+§,x> ultz) = flx—ct—0)— f(x—ct)+ f(x+ct+ L) — f(x+ct)

2
1 x+ct+4 x+ct
+ e (Lo o= [ atrae)
x+ct+l rx—ct 1 r¢
/ 9(z) dz—i—/ g(z) dz) = _/0 g(z) dz.

x+ct C

_1
- 2¢

If / g(z)dz = 0, then u(t,z) is a periodic function of ¢ with period ﬁ On the other

hand, if / g(x) dx # 0, then u(t, z) increases (or decreases) by a ﬁxed nonzero amount
after each time interval of duration ¢/c, and so cannot be a periodic function of ¢.
& 4.2.31. (a) Oddness requires f(0) = — f(—0) = — f(0), so f(0) = 0. Also, f(—¢) = — f(¢), while
f(=€) = f(2¢—¢) = f(¥) by periodicity; thus f(¢) = 0.
4.2.34. (a) If u(t,x) is even in ¢, then wu,(t,x) is odd, and so u,(0,x) = 0. Vice versa, if
u, (0, ) = g(x) = 0, then, by the d’Alembert formula (4.77),

u(—t,x) = f(x—l—ct)—;—f(x— ct) = u(t, x).

4.3.2. If the force has magnitude f < 0,
ou

on
4.3.6. Au=0, u(0,y) =u(z,0)=1, u(l,y) =14y, u(z,l)=1+2, 0<z,y<l1.

—Au = f, x2+y2<1, u =0, x2+y2:1, y >0, =0, 9:2+y2:1, y < 0.

£.3.10. (b) u(z,y) = ST =) siny

sinh 7

4312 (a) u(z,y) = SnTe sinh(1—y) +sinhw(l —z) sinry

sinh 7

4.3.13. (b) u(z,y) =

2 4 X cosnz coshn(m—y)
T T Z

(4n? — 1) coshn w

4317, u(w,y) = 3 bye! Y sinnmr sinhvVn?x? 1 1y

«Jd. L ul\r,Y) =
n=1 sinh vVn27m2 + 1

are the Fourier sine coefficients of the boundary data.

n=1

1
, where b, :2/0 f(x)sinnmzdr

4.3.22. (a) u(z) = ¢,z + % L) ul@) = ey | 2|1V 42| A-VD/2,

(©) 2020 Peter J. Olver



Chapter 4: Student Solutions 17

4.3.25. (a) u(z,y) = %r3cos30—|— %rcos& = ix?’ - %x@f + %x.
2

g2
© 4.3.27.(b) u(z,y) =1— % tan ! <1x79

), 4+ <1, y>0.
2y

4.3.31. Since the boundary conditions are radially symmetric, v must also be radially symmetric,

and hence a linear combination of logr and 1. A short computation shows that
bh—

a a 2 2
= 1 b= 1 b.
U log2 ogr+ 3log 2 og(z” +y°) +

4.3.34. (b) u(r,0) = g <7“ - %) cosf, (f) no solution.

& 4.3.40. First,

1—1r? _ 1 14+ ¢—0
/1+r2—2rcos(9—¢)d¢_tan <1—rtan 2 >

To evaluate the definite integral, from ¢ = 0 to w, we need to be careful about the
branches of the inverse tangent:
1. g 1-72
1— —tan ! ,T , 0<O<m,
s 27sin6
I 1—r?
u(r,6) 27 Jo 1472 —2rcos(d — ¢) ¢ 27 T
1. g 1-72
_ ¢ — 0 < 0.
T an <2rsin9>’ T<Us
where we use the usual branch — % T <tan 't < %71' of the inverse tangent.
4.3.44. For example, u(z,y) = 1 — 22 — y? satisfies — Au = 4, and achieves its maximum at
x = y = 0. It represents the displacement of a circular membrane due to a uniform

upwards force of magnitude 4.

4.4.1. (b) hyperbola: R N

4.4.2. (a) Elliptic; (f) hyperbolic.
4.4.3. Elliptic when z (¢t + ) > 0; parabolic when t = —z or = = 0, but not both;

hyperbolic when z (¢t + x) < 0; degenerate at the origin t = z = 0.
4.4.6. Written out, it becomes

L[U] = _p(ma y) umm - q(ﬂf, y) uyy - pm(fE, y) U’m - qy(fE, y) uy + T(ﬂf, y)u = f(fE, y)7
with discriminant A = —4p(x,y) q(z, y); hence elliptic if and only if p(x, y) q(x,y) > 0.
4.4.13. According to (4.139) (with y replacing t¢), the discriminant is
2 2 2 2 2
A=(2uuu,)” —4(14uy) (1+uy) =—4(1+uy +uy) <0,
and hence the equation is elliptic everywhere.

(©) 2020 Peter J. Olver



18 Chapter 4: Student Solutions

4.4.14. (a) No real characteristics;

(f) vertical lines t = a or lines x = ¢t+b of slope 1:

4.4.18. (a) Parabolic when y = 0; hyperbolic everywhere else.

2
(b) The characteristics satisfy the ordinary differential equation <;f_y> —y % =0.
i x
Thus, either dy _ 0 and so y = k, or dy _ y and so y = +ce”.
dx dx

(c) The characteristic coordinates are £ = ye~ “, n = y. By the chain rule, the equation
for u=v(&,n) =v(ye ¥, y) becomes —&nvg, = n?, with general solution

v=F(€)+Gn) +in*logé, whence u=F(y)+Gye )+ iy*(x—logy),

where F, G are arbitrary scalar functions.

4.4.19. (b) u,, + 2yug, + yzuyy = 0; one can also include arbitrary lower-order terms.

@ 2020 Peter J. Olver



Student Solutions to

Chapter 5: Finite Differences

& 5.1.1. (b) /(1) = —.5; finite difference approximations: —.475113, —.497500, —.499750;
errors: .024887,.002500,.000250; first-order approximation.

& 5.1.2. (b) /(1) = —.5; finite difference approximations: —.4999875, —.49999999875,
—.49999999999986; errors: 1.25 x 1072, 1.25 x 1072,1.38 x 107 13;
looks like a fourth-order approximation.

& 5.1.3. (b) /(1) = .5; finite difference approximations: .49748756,.49997500,.49999975;
errors: —2.51 X 10_3, —2.50 x 10_5, —2.50 % 10_7; second-order approximation.

~ —3u(z) +4u(z+h) —u(z+2h)
B 2h

(c) The errors in computing u’(1) = 5.43656 are, respectively, —2.45 x 1071, —1.86 x 1073,
—1.82 x 107, which is compatible with a second-order appproximation because each

A 515 (a) u(x) + O(h?).

2
decrease in step size by % = 107! decreases the error by approximately ( 1—10) =102,

5.2.1. (a) 0 < At < .001.
(b) For At = .001:, we plot the numerical solution at times ¢t = 0.,.01,.03,.05,.1,.3,.5, 1.:

1 1 1, 1,

0.5 B 0.5 15 2 25 051 15 2 25 i 15 2 25
-0.5 -0.5 -0. 5] -0. 5]
-1 -1 -1 -1

i 15 2 3 0. T 53 0.5 1 L5 2 25 3

|

(©) 2020 Peter J. Olver



20 Chapter 5: Student Solutions
For At = .0011:, we plot the numerical solution at times t = .011,.0308, .0506, .0704:

1 1 1 1
0.5 0.5 0. 5] 0. 5] k \
N\ AN

05 3 05Xd 15 2 25 V‘qv i 15 2 25 iTTIE ZHIN!
-0.5 -0.5 -0.5) -0.5)
-1 -1 -1 -1

The former is a good approximation, whereas the latter is clearly unstable.

5.2.4. Before approximation, the initial data is

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1

In each case, we graph the numerical solution using piecewise affine interpolation between
data points.
(a) For Az =.1:
(i) With At =.005, so that u = .5:

-10 05 05 0 -10 05 05 10 -1 05 t 05 1.0 -1 05 05 .0

Note the undesirable oscillations, even though the time step is within the ostensibly stable range.
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21

A smaller time step produces much smoother results: With At = .001, so that u = .1:

(4t) With At = .01:
(i) With At = .01:

(b) For Az = .01:

(©) 2020 Peter J. Olver



22 Chapter 5: Student Solutions

(i) We would need At < .00001, which requires too much computation!
(44) With At = .01:

-1 -0.75-0.5-0.25 \ 0.25 0.5 0.75 1 -1 -0.75-0.5-0.25 0.25 0.5 0.75 1 -1 -0.75-0.5-0.25 0.25 0.5 0.75 1 -1 -0.75-0.5-0.25 0.25 0.5 0.75 1
0.5 0.5 0.5 0.5
0.4 0.4 0.4 0.4
0.3 0.3 0.3 0.3
0.2 0.2 0.2 0.2
0.1 0.1 0.1 0.1
-1 -0.75-0.5-0.25 0.25 0.5 0.75 1 -1 -0.75-0.5-0.25 0.25 0.5 0.75 1 -1 -0.75-0.5-0.25 0.25 0.5 0.75 1 -1 -0.75-0.5-0.25 0.25 0.5 0.75 1
(ii1) With At = .01:

0.5

0.25 0.5 0.75 1 -1 -0.75-0.5-0.25 0.25 0.5 0.75 1 -1 -0.75-0.5-0.25 0.25 0.5 0.75 1 -1 -0.75-0.5-0.25 0.25 0.5 0.75 1
0.5 0. 0.5 0.5
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
-1 -0.75-0.5-0.25 0.25 0.5 0.75 1 -1 -0.75-0.5-0.25 \ 0.25 0.5 0.75 1 -1 -0.75-0.5-0.25 t 0.25 0.5 0.75 1 -1 -0.75-0.5-0.25 0.25 0.5 0.75 1

Note the undesirable oscillations in the Crank-Nicolson scheme due to the singularity in the
initial data at = = 0.

5.2.8. (a) Set Az = 1/n. The approximations u; ., ~ u(t;,z,,) = u(j At,mAz) are iteratively
computed using the explicit scheme
j=0,1,2,...,
Ujgtm = BUmar + (1= 20 = @B gy + pt s, m=1,...,n—1
where i = At/(Az)?, along with boundary conditions u;o = u;, = 0and initial
conditions v ,,, = f,,, = f(z,)-
(b) Applying the von Neumann stability analysis, the magnification factor is
A=1-— 4usin2(% kAa:) — aAt.
Stability requires 0 < 4p + a At < 2, and hence, since we are assuming a > 0,
2
At < —AT)

1 2
— =2~ 1l(Ax)?
T2+ Ja(Ax)? 2 (A7)

for sufficiently small Ax < 1.
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Chapter 5: Student Solutions 23

5.3.1. We set At = .03 to satisfy the CFL condition (5.41):

10

10

The solution is reasonably accurate, showing the wave moving to the left with speed ¢ = —3.
Comparing the numerical solution with the explicit solution u(t,z) = f(x + 3t) at the
same times, we see that the numerical solution loses amplitude as it evolves:

12F 1.2
10F

10 10

10 10
t=1 t=1.5

At the three times, the maximum discrepancies (L°° norm of the difference between the

exact and numerical solutions) are, respectively, .0340, 0.0625, 0.0872.
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24 Chapter 5: Student Solutions

5.3.3. (a) The forward scheme is unstable in the region with positive wave speed:

L
a5~\\\\\\

t=1.5

(b) The backward scheme is unstable in the region with negative wave speed:

1 :
a5~\\\\\\ /////——T;j__h\\\\\\\
) - 2 1 "Ti~\\\\_,/lz N__—T
-05} -05f
t=20 t=.5
05[ D]
Vit = N 5N L A 5

(¢) The upwind scheme is stable in both regions, and produces a reasonably accurate approxi-
mation to the solution. However, a small effect due to the boundary conditions
u(t,—5) = u(t,5) = 0 can be seen in the final plot.

1
0.5\ /::\
-2 - 2 7 T N__—7T
-05 -05
t=20 t=.5
—~__ 2 N+ T 2 N
05 -05
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Chapter 5: Student Solutions 25
5.3.8. (a) Since ¢ > 0, we adapt the backwards scheme (5.44), leading to the iterative step
Ujy1m =1 —0—Abu,,, tou;,, 4,
subject to the boundary condition u(t,a) = 0.
(b) We choose Az = At = .01 and work on the interval —4 < z < 4. The resulting n

umerical solution gives a reasonably good approximation to the actual solution:
a damped wave moving with wave speed ¢ = .75.

10F
0.8
0.6
04/
/{:
-2 4 -4 =2 0 2 4
t=.5
10f 1.0
0.8F 0.8
0.6F 0.6
04F 0.4
0.2F 0.2
_— ‘
-4 -2 0 2 4 -4 -2 0 2 4
t=1 t=15

5.4.1. (a) For Az = .1, we must have 0 < At < .0125.

(b) Setting At = .01, we plot the solution at times ¢ = 0,.05,.1,.15,.2,...,.75, which is
the time at which the analytical solution repeats periodically:

1 1 1 1
0.5 0.5 0.5 0.5
0.5 1 15 2 2.5 3 0.5 1 15 2 2.5 3 0.5 1 15 2 2.5 3 0 T 1.5 2 2.5 3
-0. 5] -0. 5] -0. 5] -0. 5]
1] 1] 1 1]
1 1 1 1
0.5 0.5 0.5 0.5
0.5 15 2 25 3 w 05 15 25 0.5 1 5 2 2 3
-0. 5 -0. 5 -0. 5 -0. 5
1 1 1 1
1 1 1 1
0.5 0.5 0.5 0.5
A
0.5 1T 52 2 3 05\17’2 25 W v T3 2 25 3
-0. 5 -0. 5 -0. 5 -0. 5
1 1 1 1
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26 Chapter 5: Student Solutions

1

0 1 15 2 2.5 3 0.5 1 15 2 2.5 3
-0. 5] -0. 5
-1 -1

The solution has the basic features correct, but clearly is not particularly accurate.
Setting At = .015, we plot the solution at ¢ = .015,.03, .06, .075:

1 1
0. 5] 0. 5] /\/_A/\/\_\/\
05 1 15 2 25 3 05 i1 15 2 25 3
0.5 0.5
1 1

which is clearly unstable.

(¢) For Az = .01, we choose At = .001, leading to a considerably more accurate solution,
again plotted at ¢t = 0,.05,.1,...,.75:

1 1 1 1

0.5 0.5 0.5 0.5
0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3 0. 1 1.5 2 2.5 3

-0.5] -0.5] -0.5] -0.5]

1 1 1 1

1 1 1 1

\0\5/ 1.5 2 2.5 3 0\1/5 2 2.5 3 0.5 \\J.YZW 0.5 1 .5 2 2. 3
-0.5] -0.5] -0.5] -0.5]

1 1 1 1
1 1 1 1
0. 5] 0. 5] 0. 5] 0. 5]

0.5 1 5 2 2 3 0.5 WZW ox\l/s 2 25 3 W T5 2 25 3
-0. 5] -0. 5] -0. 5] -0. 5]

1] 1] 1 1]

1 1 1 1

0.5 0.5 0.5 0.5
0. 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3

0. 5] 0. 5] 0. 5] 0. 5]

1 1 1 1

(©) 2020 Peter J. Olver



Chapter 5: Student Solutions 27

& 5.5.1. According to Exercise 4.3.10(a), the exact solution is
3sinz sinh(m —y)  sin3z sinh3(m —y)
4sinh 4sinh 37 ’

u(z,y) =
with graph

Plotting the finite difference approximations based on n = 4,8 and 16 mesh points:

The maximal absolute errors between the approximations and the exact solution on the
mesh points are, respectively, .03659,.01202,.003174. Each reduction in mesh size by a
factor of % leads to an reduction in the error by approximately %, indicative of a second
order scheme.

& 5.5.6. (a) At the 5 interior nodes on each side of the central square C', the computed
temperatures are 20.8333,41.6667,45.8333,41.6667,20.8333:

(b) (4) The minimum temperature on C' is 20.8333, achieved at the four corners;
(i1) the maximum temperature is 45.8333, achieved at the four midpoints;
(7¢) the temperature is not equal to 50° anywhere on C.
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Student Solutions to

Chapter 6: Generalized Functions and Green’s Functions

6.1.1. (a) 1, (c) e.

6.12.(a) o(2) = 0(x); [ () u()

i {U(O), a<0<b,
(c) cp(:c)—35(9:—1)+35(9:+ )),
)

0, 0<a<b or a<b<O.

3u(l) +3u(-1), a<-1<1<Y,

b 3u(l), —-l1<a<1l<hb,
p(@)ulz)de = 9§ 34(-1), a<-1<b<l,
0 l1<a<b or —1<a<b<l1
’ or a<b<—1.
22, 0<z <3, ‘
6.14.(a) fl(x)=—6(x+1)—98(x—3)+{ 1, —1<z<0, _— 4
0, otherwise. [ 2 ‘
-1 =<0,
6.1.6.(b) fl(x)=1{ 3, 0<z<l, =—-1+40(x)—-20x—-1), f'(z)=46x)—-25x—1).
1, z > 1,
6.1.11. (a) zd0(x) = lim — T —0for all x, including = = 0. Moreover, the functions are

n — 0o 71'(1 +TL2932)
all bounded in absolute value by 1/(27), and so the limit, although nonuniform, is to an
ordinary function.

b
(b) (u(z),xzd(x)) = / u(x) z §(x) dr = u(0) 0 = 0 for all continuous functions u(x), and
so z §(z) has the same dual effect as the zero function: (u(z),0) = 0 for all u.

6.1.13. (a) When A > 0, the product Az has the same sign as z, and so

1, >0,
o(Az) = { 0. z<o, =o(x).
1, =<0,
(b) If A <0, then o(Az) = { 0. z>0, =1-o(x).
(c) Differentiate using the chain rule: If A\ > 0, then é(z) = o’(z) = Ao’(Az) = Ad(\z),
while if A < 0, then 6(z) = o/(z) = — Ao’ (Az) = —A5(\x). Q.E.D.
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6.1.17. (a) Differentiating (6.32):
6n°z% — 2n3
8" (z) = i ———.
(2) n o o m(n2z2 4+ 1)3
Graphs for n = 5,10, 15, 20 are as follows, where the vertical range is —5,093 to 1,273:

b
(b) / 6" (z)(z) u(z) dz = " (0), for any u € C?[a,b] and any interval with a < 0 < b.
a
(Ifa<b<0or0<a<b, the result is 0.)
& 6.1.21. (a) For a < 0 < b and any test function u(z) on [a,b],

(F8" )= [ u(@) f(2)6' (@) do = — [u(@) f(@))],_, = ~(0) £(0) ~ u(0) £'(0)
= [ [u(@) £(0)8"(2) — u(a) £'(0)5(a) | dz = (F(0)5" ~ f'(0)3,u)

6.1.22. (a) p(x) = —26"(x) — 6(x), /_O:O o(x) u(z) de = 24 (0) — u(0).

6.1.27. 1 as ik(z—¢&) 1 e —ik¢ ikax
(5(27—5)’\“%]{::2_006 ﬂkzz_ €

i + l i [coskg coskx +sink& sinkaz]

2m (L .

They both represent the 2m—periodic extension of §(z — &), namely

oo

> d(z—&—2nm).

n=-—oo
6.1.34. (a) One way is to define it as the limit 6(z) = lim G, (z), where G, (z) denotes
n — o0

the 2m—periodic extension of the function g,, () appearing in (6.10).

-~ n
(1 + n2z?)
Alternatively, we can set 6(x) = lim G, (), where

n — o0

oo

@n(x): i gn(x —2km)= > n ,

i koo T[1+n2(z — 2km)?]

which can be proven to converge through application of the integral test.
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(b) If h(z) is a C*° function with compact support: supph C [a,b], so that h(z) = 0 for
x <aorx>b, then

/_o; 3(x) h(z) de = gk; h(2k ),
where the (finite) sum is over all multiples of 27 such that a < 2k7 <b.
< 6.1.38. It suffices to note that if u(z) is any smooth function on [a, b], then
lim u(x) cosnxdr =0 by the general Riemann—Lebesgue Lemma 3.46. Q.E.D.

n—,oo Ja

6.1.40. (a) True.

6.2.1. To determine the Green’s function, we must solve the boundary value problem

—cu” = §(x - €), u(0) =0, W/ (1) = 0.
The general solution to the differential equation is
u(x):_MHHb’ u/(x):_wﬂ_
c c
The integration constants a, b are fixed by the boundary conditions
u(0) = b =0, u’(l):—1+a:0.
c
Therefore, the Green’s function for this problem is
m/c’ X S é.’
Ga:6) = {
&/c, x> €.

The superposition principle implies that the solution to the boundary value problem is
1 1 xX x 1
u(e) = [ GO f(©ds = < [Tef©ds + = [ fe)de.
To verify the formula, we use formula (6.55) to compute
@) =af@) -af@)+ 2 [ f©d=2 [ f©de @) =1 ).
c Ja c Ja ’ c

Moreover,
1 /0 0 1 ’ 1,1
S e = == =0. .E.D.
w0) =< [Cef©ds+= [ef©de=0, W)= [ fOd=0. Q
6.2.3. .5 mm — by linearity and symmetry of the Green’s function.

6.2.9. True — the solution is u(x) = 1.

sinhwz coshw (1 — &)

) xSé?
6.2.11. (a) G(z;€) = w cosh w. (b) Iz < L then
coshw (1l — z) sinhwé
;=&
w cosh w
(% coshw(l —z) sinhwé 1/2 sinhwz coshw (1 — &)
u(@) _/0 w cosh w de + /x w cosh w de
(! sinhwz coshw (1l =) dé
1/2 w coshw
B i - (ew/Z N e—w/2 +e—w) e 4 (ew N ew/2 +e—w/2) e~ wT
w2 w2(ew+e—w) )
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while if z > 1, then

_ r1/2 coshw (1 — x) sinhwé z coshw (1l — z) sinhw§
u(z) _/0 e — /1/2 d

w cosh w w cosh w

I sinhwz coshw (1 — &)
— d
/m w cosh w ¢
1 (e—w/Q eV +e—3w/2) e 4 (630.:/2 — ¥ +ew/2) e~ WE
=zt w2(ew +e~v)

¢ 6.3.1. At a point x € Cp, the corresponding unit normal is n = x/R. Thus,

of x x Of y Of of . ,of of

on "V E R Y T Ras TRy 0 T, T o
by the chain rule. See also (4.104).

& 6.3.5. According to Exercise 6.1.13(c),

5(Bx,8y) = 6(Bx)6(By) = —s 6(x) 6(y) = =5 8z, ).

B B
6.3.9. We rewrite f(x,y) = 0(3z—2y—1) in terms of the step function. Thus, by the chain rule,
0 0
f 203z —2y—-1)=-6(y—3z+3).

_ _ 2 1

6.3.12. There is no equilibrium since (6.90) is not satisfied. Physically, you cannot remain in
equilibrium while energy is continually flowing into the plate through its boundary.

6.3.15. (a)

1 27 p1/2 14+ 72p% —2rpcos(0 — )
U(T’H)_E /0 /0 log< T2+ p2 — 2rpcos(f — ) pdpdyp

1 2m r1/2 1+ 72p% —2rpcose
= 1 dpd
An /0 /0 0og ( papap,

r2 + p2 — 2rpcos p
where the second expression follows upon replacing the integration variable ¢ by ¢ — 6.
The latter formula does not depend on 8, and hence the solution is radially symmetric,
which is a consequence of the radial symmetry of the forcing function.

(b) Since the solution u(r) is radially symmetric, it satisfies the ordinary differential

equation
1
1 —1, r< 2
Upy + r Uy = U(l) =0.
0, $<r<l,
Setting v = u,. reduces this to a first-order ordinary differential equation, with solution
Yy oy —%r—i—a/r, 7“<%, _ —%r, r<%,
" b/r, %<7‘<1, —1/(87), %<r<1,

where the integration constant a = 0 because u,. cannot have a singularity at the origin,
while b = —% because u,. is continuous at r = % Integrating a second time produces
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the solution:
—%rz—i-c, T<%, —%r2+1—16+§10g2, T<%7
u =
—%logr—i—d, %<r<1, —%logr, %<T<1,
where d = 0 due to the boundary condition u(1) = 0, while ¢ = 1—16 + % log% because u is
continuous at r = %

a2 2
© 6.3.18. (a) Using the image point (£, —n), we find G(z,y; £, n) = ﬁ log Ez — 22 i E‘z i_ 232

o roo — £)2 2
0t = [y e S

& 6.3.25. (a) According to (6.116), the potential is

uwy) = -1 [ [ og [~ &%+ (y—m)?] dnde.
The gravitational force is its gradlent Vu, with components
r—¢&
— dn d§,
( 'Y) / / PR LR TR 3

8u _ 1 y—n
%(%y)_ 27 /—1/—1 (x —&)2+ (y—n)? dn dg.

(b) Using numerical integration we find:
u(2,0) ~ —.4438, Vu(2,0) ~ (—.3134,0)7, | Vu(2,0) | ~ .3134,
u(V2,V2) ~ —4385, Vu(V2,V2) ~ (-.2292,-.2202)", | Vu(V2,V2) || ~ 3241.

So the gravitational force at (\/5 V2 ) is slightly stronger, in part because it is closer
to the edge of the square.

6.3.27. The solution
u(t,az):%5(m—ct—a)+%5(:c+ct—a) ()
consists of two half-strength delta spikes traveling away from the starting position
concentrated on the two characteristic lines. It is the limit of a sequence of classical
solutions u(™ (¢, z) — wu(t,z) as n — oo which have initial conditions that converge to
the delta function:

u(n)(O,:ﬂ) — d(z — a), ugn) (0,2) = 0.
For example, using (6.10), the initial conditions
(n) 0 — n
O = T R
lead to the classical solutions

27(1+n2(x — ct — a)?) 27(1 4+ n2(z + ct — a)?)
that converge to the delta function solution (x) as n — oo.
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Chapter 7: Fourier Transforms

7.1.1. (b) \/gi (d) i - i _ >
T k241’ Ver(k+3i1) V27 (k—2i) V2rx(k—2i)(k+3i)’
7.1.2. (b) \Eﬁ

& 7.1.5. (a) V27 6(k — w);

(b) Flcoswz] = @ [6(k+w)+6(k—w)]; Flsinwz] =i @ [6(k+w) —6(k —w) ].

7.1.7.
e 47, x >0,
1 o gcoskx + ksinkzx
- dk = 1 =
el 5 w=0
0, x <0,

i /OO asinkx — kcoskx
21 —00 a2—|—k2

dk = 0.

The second identity follows from the fact that the integrand is odd.
O 7.1.12. (a) If f(x) = f(—x), then, using Exercise 7.1.10(a), f(k) = f(—k).

(b) If f(x) = f(z), then by Exercise 7.1.10(b), f(k) = f(—k); if, in addition, f(z) is even,
so is f(k) and so f(k) = f(k) is real and even.

7.1.16. (a) f(k —a).

O AT () [&) ~ 5= [T T e T dk, (b) T, (k) = VER T(h).
© 7.1.19. (i) Using Euler’s formula (3.59)

7 1 oo . .
f(k) = \/ﬁ /_Oo f(z) (coskx — isinkz)dx
= /_O:o f(x)coskxdr — i /_O:o f(x)sinkxdx =¢(k) — i5(k).

() ) 2k =2 2K sy =2 Sk

& 7.1.20. (a) (i) W(kQHQ)(lQH). (©) fla,y) = % ST Ry e B gy,

7.2.1. (a) e K72 (d) iv2r &' (k).
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7.2.3. (b) —=*/4,

xre

e
& 728 —i </_koo F(1)dl — %/_o:o (k) dk) =i </_koo F()dl — @fm)) .
7.2.9. (a) —i\/g sign k.
7.2.13. (a) \/gé(k: +1) — V27 8(k) + \/gé(k —1).

7.3.1. (a) i\/?(66136—e_m)signaz.

7.3.3. ( \/7 (e_|k‘ ) sign k.

O 7.36.(a) u(z)=4e 1"I(14]2]).
(b) Using I’'Hépital’s Rule:

-z _, -1 _—wl|a| | | —w|z| -2 —wl|z|
. e w e o x|e +w “e _1 — |z
whinl w? —1 _whinl 2w =z (+]z])e '
—~ . \/5 —k2/4
4
(b) h(ae) = YTV (1 eant(§ - a) | e [1—ent(L ) ]).
- 14e 17k _ k(14 e 17F)
7.3.14. k)= ——, k)= —/———5—=;
@) 10 = a9 ="

; —imk\2
(b) h($):(%ﬂ—% |$—7r|)sina:; (c) h(k) = V27 f(k)G(k) = ik(l+e )

V27 (1 — k2)2
O 7.3.22.(b) fxlag+bhl(z) = / fl@ =& [ag(§) +bh(§)]dE
—a [~ j@-9) ds+b/ fa =& g(€)de = alf » g(a)] +b[f * h(a)].

The second blhnearlty 1dent1ty is proved by a similar computation, or by using the
symmetry property:

(af +bg)*h=hx(af+bg)=alhx*f)+b(hxg)=a(fxh)+b(gxh).

(d) f*Oz/_ozof(x—g)Odgzo.
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7.4.1. ( 2_/ dx_—/oosngzk ,

s 2 s 2
. . . o sin“ x 1 poo sin“x T
(b) Since the integrand is even, /0 —7 dx = 3 /_Oo —7 de = 5
$ 7.4.6.
n—l—n72

d:c—2z 2 ZZW < 00,

1P = [ e Paz= S

n=—o0 NN

n#0
and so f € L?. However f(x) #4> 0as z — +oo since f(n) = 1 for arbitrarily large
(positive and negative) integers n.

749.() a=1; (b) [ze@)] |¢@)] =L 1= >

S
[\)
D=
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Student Solutions to

Chapter 8: Linear and Nonlinear Evolution Equations

1 2
8.1.1. (a) wu(t,z) = ——— e @ /(4t+1),
1 1
0.8 0.8
0.6 0.6
/f/( 0.4
.2
-10 -5 5 10 -10 -5 5 10 -JT/ 5 10
1
8.1.6. (a) The maximum occurs at x = £, where F(t,£;§) = ——.
(a) ¢ (.68 = 5=

(b) One justification is to look at where the solution has half its maximal value, which

occurs at x = & + 2/t log2, and so, under this measure, the width is 4/t log 2.
Alternatively, the width can be measured by the standard deviation. In general, the

e~ (z=€)*/(20%) has mean £ and standard deviation o.

Gaussian distribution
2o

Comparing with the fundamental solution (8.14), we find o = v/2¢.
8.1.10. (a) For the = derivative:

?3_5 (t,z;€) = % e~ @=O%/(40) pag initial condition u(0,2) = &' (x — &).
(b) Plots of oF (t,z;0) at times t = .05,.1,.2,.5,1.,2.:

ox

H
-
s

~
N
~

OF . T _(@-g)?/4t) _ 1 [P ik(e—E)— k>t
(C) 827 (t’mjg)_4ﬁt3/2e —27_( /_Ooke dk}
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81T F(t,236) = 5 ;fyt o (@=6)?/(4y)—at

~ oo 2 o oo ~ ~
8.1.22. (a) e~ F(k) |2 = [~ e 2N Fk) Pak < [T 1F(k) Pk = || F(k) |* < oo.
— 00 — 00
(b) This follows immediately from part (a) and the Plancherel formula (7.64).

8.1.23. In this case, the initial condition is

2(0,) = e 2 max{p — ¥, 0},

and so
1 logp (=12 /(AT (o
2(1,y) = W / (y—m)~/(471)+( 1)77/2(p_ e") dn
_ L (=127 /44 (s—1)y/2 <(ﬁ—1)r+y——bgp>
5 [ erfc N
_ (D)7 /At (rt1)y/2 (ﬁ+ﬂ)r+y——bgp>]
e erfc( N .
Thus,
1 2
1 —r(ty—t) (T — 320 )(t* - t) +10g($/p)
tx)= = . f
u(t, z) 5 {pe erc( o7 1)

e ( (r+%02)(t*—t)+log(m/p) )} '

202(t, —1t)

8.2.1. 92 minutes.

8.2.5. U(t,x) = 8[u(t,m) —32] 4+ 273.15 = %u(t,a:) + 255.372. Changing the temperature scale
does not alter the diffusion coefficient.

8.2.8. Using time translation symmetry, u(t,z) = u*(t + 1, ) also solves the heat equation and
satisfies u(0,x) = u*(1,z) = f(z).

1 1
8.2.9. (a) The fundamental solution F(t,x) = —— e~ 2% /(4) gatisfios F(1, ) = . "
Therefore, by Exercise 8.2.8, 2Vmt Jr
u(t,z) =2vm F(t+1,2) = _ L 2?/laey]

Vvi+1

8.2.11. (b) Scaling symmetries: U(t,z) = B¢~1/2y (871 ¢, 87 °x) for any constant ¢; similarity
ansatz: u(t,z) = t(c_l)/Qv(ﬁ) where £ = xt~ ¢; reduced ordinary differential equation:
(v? — c&)v + %(c —1)v = 0. If ¢ = 1, then v = /€ or constant, and u(t,z) = \/z/t
or constant. For ¢ # 1, the implicit solution is £ = v2 + kv?t2/(¢=1) where k is the
integration constant, and so x = t u? + ku2¢/(¢=1),

8.2.12. (a) Set U(t,x) = u(t — a,x). Then, by the chain rule,
PU _ 20°U _0%u 5 0% _
o2 dz?  Ot2 Ox?
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8.2.15. (a) Scaling symmetries: (z,y,u) — (Bz,By, ) for any constant ¢, producing the
rescaled solution U (t,z) = B¢ u(ﬁ_l z, 3" ).

(b) The similarity ansatz is u(t,z) = °v(§) where £ = y/x. Substituting into the Laplace
equation produces the reduced ordinary differential equation

€+ 10" —2(c—1)¢v +c(c— 1)v=0.

(¢) The general solution to the reduced ordinary differential equation can be written as
v(§) = Re[k (1+ 1§)°], where k = k; + ik, is an arbitrary complex constant. The cor-
responding similarity solutions to the Laplace equation are u(x,y) = Re[k (z + iy)].
In particular, if ¢ = n is an integer, one recovers the harmonic polynomials of degree n.

8.3.1. True. This follows immediately from Corollary 8.7, with m > 0 being the minimum of the
initial and boundary temperatures.

8.3.3. First note that M(t) > 0 for t > 0, since u(t,a) = u(t,b) = 0. Given 0 < t; < t,, the
Maximum Principle applied to the rectangle R = {t; <t <t,, a <z < b} implies that
the maximum of u(t,z) on R equals M(t;) > 0. Therefore,

M(ty) = max{u(ty,z) | a<x<b} < M(t)).

8.4.1. (b)

1+erf<i>
u(t,z) =1— . 2Vt pr—
14erf | —— t/4=x/2 | ] —erf [ Z—
vert (gy ) rere e (53]
r—1
1 —erf
_ N <2ﬂ>
x—t x ’
1—erf | 222 2/2=t/4 | | 4 orf [ —F_
ot () v e (7))
8.4.8. (a) Setting U(t,z) = Au(a™tt, 871 z), we find

QU _Nou U _Xou  OU_ )
ot «a Ot’ or B Oox’ 0x?2 B2 0x2°
Thus U (¢, x) solves the rescaled Burgers’ equation
2
v+ Lvu, =Py
aA «@

(b) In light of part (a), setting a =1, 8= \/g, A= %\/g, we find that

Ult,z) = Au(t, B~ ) = %\/gu <t, \E@«> ,

where u(t, z) solves the initial value problem

1 o o
u, +uu, =yu,,_, u(0,z) = f(x) = = —F< —a:).
t T T ) ( ) o\~ y
Thus, u(t,z) is given by (8.84), from which one can can reconstruct the solution U (t, )
by the preceding formula.
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8.4.10. (b) ¢, =7 [@s — 2/ (2¢)].

8.5.1. Since u(—t,—x) solves the dispersive equation, the solution is a mirror image of its values
in positive time. Thus, the solution profiles are

: _/ _/

V
8.5.4. (b) Dispersion relation: w = —k®; phase velocity: cp = — k4
group velocity: ¢, = —5 k*; dispersive.
¢ 8.5.7. (a) Conservation of mass:
9 u+ 9 Uy, =0
ot ox ** 7

and hence the mass flux is X = u,,. We conclude that the total mass
o
/ u(t, z) de = constant,
— 00

provided the flux goes to zero at large distances: u,, =0 as |z | — oo.

8.5.12. (a) Using the chain rule, U, = u, —cu, = —u ., — (u+c)u, =—-U,,.. —UU,.

(b) It can be interpreted as the effect of a Galilean boost to a moving coordinate frame
with velocity ¢; the only change in the solution is to shift its height above the x axis.

8.5.16. (a) u(t,z) = v6csech[v/c(x —ct)+0d]; (b) the amplitude is proportional to the square
root of the speed, while the width is proportional to 1/4/c.

¢ 8.5.18. (a) The corresponding flux is X; = u,, + %uQ, and the conservation law is

or, 90X,
ot ox

=u; +uy,, +uu, =0.
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Chapter 9: A General Framework for
Linear Partial Differential Equations

13 _10
9.1.1. (a) @ _é> (¢) (7% 1_})

3 _5
9.1.2. Domain (a), target (b): <Z _g>; domain (b), target (c): (i 1_%)
3 3
1 -2 0
9.13.(b) | 3 0 -3
0o 2 2

1 -2 0
9.1.4. Domain (a), target (b): [ 1 0 =3 ].
0 2 6

i (L0 =), omain arget (c): (L 0 ).
9.1.5. Domain (a), target (a): <3 9 1), d (b), target (c) <% % %>
9.1.9. (a) L*[v] = — d% [w0(@) ] +v(z) = — 20/ (2).

¢ 9.1.13. (a) Given L:U — V, for any u € U, v,vy € V, ¢,¢y € R, we use (9.2) to compute
(u, L™ [eyvy + couy]) = (Llu], eyvy + couy ) = ¢y (( L{u], vy ) + ep( Lu], vy )
= ¢y (u, LM [vy ]) + eo(u, L¥[vy]) = (u, e L vy ] + e L¥[wy]).-
Since this holds for all u € U, we conclude that
L¥[eyvy + eavp] = ¢ L [vg] + ¢o L™ [vp].

& 9.1.15. Given u € U and v € V, we have
(L) u],v) = (u, L7 [v]

)
Since this holds for all  and v, we conclude that (L*)*

= (L[u],v).
= L. Q.E.D.

_1
9.1.18. (b) The cokernel of A = <g :? g) has basis v = ( i) Since v - <g> = 0, the
3

system is compatible. The general solution is x = %y -5
9.1.19. (a) 2a—b+c=0.
9.1.21. Under the L? inner product, the adjoint system zv” + v = 0, v'(1) = v'(2 ) = 0, has

z + 1, where y, z are arbitrary.

2
constant solutions, so the Fredholm constraint is (1,1 — %:c> /1 ( da: = 0.

Writing the equation as D(zu') = 1— %:c, we have u/ = 1— %x+c/ Wlth the boundary
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conditions requiring ¢ = — % Thus, the solution is u(z) = = — %mQ — % log x + a, where

a is an arbitrary constant.

9.1.25. Since (V- )* = —V, the homogeneous adjoint problem is — Vu = 0 in Q with no boundary
conditions. Since 2 is connected, every solutions is constant, and therefore, the

Fredholm Alternative requires 0 = ( f,1) = / /Q flz,y) dz dy.

9.2.1. (a) Self-adjoint; (c) not self-adjoint.
9.2.2. (i) (a) Self-adjoint; (c) not self-adjoint.

& 9.2.5. (a) Since CT' = C, we have JT = KTC = J = CK if and only if K satisfies the require-
ment of Example 9.15.

(b) By definition, K > 0 if and only if
0<(u,Ku)=u'CKu=u’Ju for all 0#AueR”,
which holds if and only if J > 0 with respect to the dot product. Q.E.D.

9.2.10. We need to impose two boundary conditions at each endpoint. Some common possibilities
are to require either

u(a) =v(a) =0 or wu(a)=1(a)=0 or wv(a)=1v(a)=0 or u'(a)=1"(a)=0
at the left hand endpoint, along with a second pair

uwb) =v(b) =0 or wub)=v'(b)=0 or vb)=2"(0)=0 or u'(b)=1v"(b)=0
at the other end. One can mix or match the options in any combination. Once we
identify v(x) = u”(x), this produces 4 boundary conditions on the functions v in the

domain of S, which is always positive semi-definite, and is positive definite if and only if
at least one of the boundary conditions requires that u vanish at one of the endpoints.

© 9.2.13. (a) We define V:V — W, where V is the vector space consisting of scalar functions u(z,y)
defined for 0 < z < a, 0 < y < b, and satisfying

w(z,0) =u(z,b),  u,(z,0) =u,(z,b), u0,y)=ulay), u,0y)=u,lay),
while W is the set of vector fields
v(z,y) = (vy(z,y),vy(x,y) )T satisfying vy(x,0) = vy(x,b0),  v1(0,y) = vy(a,y).
The boundary integral in the basic integration by parts identity (9.33) reduces to

?{99 (—uvzdx—l—uvl dy) =— /Oau(x,O)UQ(x,O)dx—l—/Obu(a,y)UQ(a,y) dy

+ /Oa u(z,b) vy(z,b) dr — /Ob u(0,y) v5(0,y) dy = 0,

by the boundary conditions. This is the key point to proving (9.27), and hence writing
the boundary value problem in self-adjoint form (9.60).

(b) The problem is not positive definite, because any constant function satisfies the
boundary conditions, and hence belongs to ker V # {0}.

(¢) By the Fredholm Alternative, f must be orthogonal to the kernel, and hence must
satisfy the condition

<fa1>=/0a/0bf(a7,y)dydx:0.
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9.3.1. (3) u,(z) = %x — %x?’; (i) Qlu] = 0 [%(u/ 2 xu] dr, u(0)=wu(l) =0;
i) Qlu,] = —a& = —.01111; (iw) Q cx—ca’] =22 — 2 c¢> — & for constant ¢ # L,
* 90 5 15 90 6
while, for example, Q[cx — ca:z] = %02 — %c > — % = —.01042 > — 9—10, for all ¢, and
2 2
Q[esinmz] = 740 - % > —i4 = —.01027 > —9—10, also for all c.
T

9.3.4. (b) Boundary value problem: —((z 4+ 1)u') =5, w(0) = u(1) = 0;
log(z +1) — 5.

solution/minimizer: wu, (x) = Tog 2

1 1
9.3.5. (a) Unique minimizer: u (z) = 3 2? — 2z + g + 2(1)Ogg932 :

(d) No minimizer since 1 — z2 is not positive for all —2 < z < 2.

e3316/2 + 63—336/2

— ; the solution is unique.

1
9.3.7. u(x) = g 9 1)

9.3.9. (b) (4) —d%< ZZ>+2 ~1.

(4) Minimize Q[u] = /12 [%azu’(m)Q +u(z)? — u(az)] dxr with u(l) =wu(2) =0.

1 1
9.3.15. u(z) = 22 satisfies /0 o (x)u(z) de = % Positivity of/O [—u”(x) u(:c)] dx requires that

the function u(x) satisfy the appropriate homogeneous boundary conditions.

© 9.3.18. (a) First, by direct calculation,

u  H%u 2 9
Moreover, u(z,0) = u(z,1) = u(0,y) = u(1,y) = 0.
1 r1
:/O /O [31Vul® = (2® + > — 2 —y) u] dvdy = — 555 ~ —.002778.
32 256
(c) For example, Q[—zy(1 —z)(1-y)] =0, Q | — —¢ sin mxsin 7y —0.002734,
76
Ql-2"y(1 —z)(1 —y)] = — gy ~ —-001746.

9.3.23. Solving the corresponding boundary value problem

d du '\ 2 _ _ . _a:3—1 2 logx
—%<x%>— %, uw(l)=0, u(2) =1, yields u(x) = 9 +910g2'

. . 1 -1 1 1
9.4.1. (b) Eigenvalues: 7,3; eigenvectors: — , — .
(b) Bis ; (1) = 0)
9.4.2. (a) Eigenvalues 3 5 £ 1\/ ; positive definite.
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9.4.5. (a) The minimum value is the smallest eigenvalue corresponding to the boundary value
problem —v” = Aw subject to the indicated boundary conditions: minimum = 72,
eigenfunction v(z) = sinmx.

2_2

© 9.4.9. (a) Eigenfunctions: u,,(x) = sin(n7logx); eigenvalues: A\, = n“n~.
(b) First note that the differential equation is in weighted Sturm-Liouville form (9.78) with
p(x) =z, p(z) = 1/x, g(x) = 0. Therefore, the relevant inner product is

Indeed, the change of variables y = logx shows that
e si 1 i 1
(u u >:/1 sin(mmlog z) sin(nwlogx) de — 0

m’m
x

for m #n.

(c) f(x) ~ n§1 ¢, sin(nmlogz), where ¢, <H“’7UH2 2/1 f(z) Sin(gﬂlog z) dzx.

(d) Closed form:

5_1 1—log&logz, 1<x<E¢,
G(z;€) = { _1( )
& (1—-logz)logg, ¢<z<e.
Eigenfuncti ies:
lgentunction series >, 2sin(nwlogx)sin(nmlogé)
G(z;6) = > 22 '
n=1 7T §

(e) The Green’s function is not symmetric, but the modified Green’s function is:

~ ~ 1-1 1 , 1<z<Eg,
R s

(f) The double norm of the modiﬁed Green’s function is

~ log£ 2(log z)? 1
G2 // dd@ﬂ// dvdg = 5 < oo.
Theorem 9.47 implies completeness of the elgenfunctlons.
9.4.16. (a)
2 X sinnwy sinnman 4 & X cosmTx smn7ry cosmmé smnﬂ'n
Glz,y:6,m) = = > 5 + =5 > >
™ n= n ™ m=1n=1 —|—’I’L

9.5.1. The eigenfunctions are vy (z) = sin kwx with eigenvalues A\, = v 72k? and norms
1
v |17 = /0 sin kra do = i, for k=1,2,.... Therefore, by (9.128),
> — v k%t . .
F(t,z;€) = > 2e 7 sinkmx sinkwé.
k=1
9.5.4. The eigenfunction boundary value problem is
" = v, v(0) = v"(0) = v(1) =2"(1) = 0.
The eigenfunctions are vy () = sink7a with eigenvalues \;, = Krrd for k = 1,2,....
The solution to the initial value problem is

- — kit .
z)= > bye sinkmx,
k=1
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1
where b, = 2/0 f(x)sin kwa dx are the Fourier sine coefficients of f(x) on [0, 1].

The equilibrium state is u(t,z) — 0, and the decay is exponentially fast, at a rate 7,

as determined by the smallest eigenvalue.

. . L 2
9.5.9. (b) resonant, since (1,sin37x) = /0 sin3mx dr = Ey # 0;
(d) resonant, since (sin7z,sinmz) = % # 0.

$ 9.5.14. For nonresonant w # w, = ke,
coswt sinkmx —coskmet sinkwx
27202 _ o2

u(t,z) =

o
+ Zl [bjCOSjﬂ'Ct smjﬂ'a:—l—djsmjﬂ'ct smjﬂ'a:],
J:

whereas for resonant w = w;, = ke,

t sinkmct sink S . . o .
wlt, @) = sin g;ﬁzln T +j§1 [bj cosjmcet s1nj7r:£+dj sinjmcet smjmr] ,
where, in both cases,
1 9 1
b; = 2/0 f(x) sinjrzxde, d; = e Jo g(z) sinjrzde,

are the (rescaled) Fourier sine coefficients of the initial displacement and velocity.
< 9.5.16. The function
u(t,x) = u(t,z) — <a(t) + —
satisfies the initial-boundary value problem
,, = *u,, + F(t,z),  a(t,0)=0,  a(tf) =0,

. ooy ot
0(0,2) = () — a(0) - 2070 5 0.0) = g(a) —a'(0) - T,
with forcing function
1 M
Flt,2) = —a" (1) - 220 =) o ®) .
9.5.20. (a) (t :c)—é i ! ex —th sin( 2k+1)7mx
T = k1Y h '
(b) Using the Plancherel formula (7.64) and then (3.56), the squared norm is
8 & 1
)P =5 S =1
=2z ,EO 2k + 1)2

{ 9.5.25. Dispersion relation: w = k:2/h; phase velocity: ¢, = k/h; group velocity: cg = 2k/h.
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Student Solutions to

Chapter 10: Finite Elements and Weak Solutions

10.1.1. (a) Q[u] = /0” [34/(2)* + (1 —2)u(z)] de;  (b) —u" =2 —1, u(0)=u(r) =0
(c) u,(z)= %m(w —z)(z+7—-3), Qlu,]= —9—107r5 + 2—1471'4 - 9—107r3 ~ —.6334;
(d) When w(z) = ¢; sinx + ¢y sin 2z, we have
Qlw] = %T(C% +rca+ (2 —m)e, + Fmey = Pley, cy);
(e) w,(z)= <2—%> sinm—isian, Qw,]=4— = — — =~ —.6112 > Q[u,|.

™
The maximum deviation between the two is || u, — w, ||, = .0680. In the accompanying
plot, u, is in blue, and has a smaller maximum than w,, which is in purple:

08}
06}
041

02

L L L L L L
05 10 15 20 25 30

© 10.1.5. (a) The solution to the corresponding boundary value problem

D) =1 w0 =u() =0, s )= EEED

(b) w,(z) = 137(20z — 55)x (z — 1), with ||u, — w, ||y ~.000641, ||u, —w, ||, ~ .0011.

(c) w,(2) = g5(=72% + 212 — 39)z (z — 1), with ||u, —w, ||, = .0000843 and
lu, —w, | ~ 1.38 x 10~%. The second approximation has to be at least as good as
the first, because every cubic polynomial is an element of the larger quartic subspace:
W3 C Wy. In fact, it is significantly better.

& 10.2.2. (a) Solution:

%az, 0<z <1, 00'22
W= —l@-1? 1<z< 0.2
7T — 5 (x—1)7, <z <2 :

0.15

maximal error at sample points: .05; 0.1
maximal overall error: .05.
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& 10.2.4. The solution minimizes the quadratic functional

Qlu] = /01 [ % u/(ss)2 + % (z + 1)u(9:)2 —e"u(x) ] dz,

over all functions u(z) that satisfy the boundary conditions. We employ a uniform mesh
of step size h = 1/n. The finite element matrix entries are given by
2  2h

by = [ [el@) o)) + @+ @) gy de ~ {1 b
) 0 ¢ J v J _E+E($l+1)’ |7;—j|:1,
0, otherwise,

while .
bl:<$em,(’01>:/0 J:em@l(@")d@" ~ xzemzh

Here are the resulting approximations, based on 5, 10, 20 nodes:

10.3.1. Examples:

1034.(a) 1—-y, 11—z, z+y—1

10.3.8. (a) kyy =35, koo =1, kag =5, kig=kyy = =3, kg3 =kg = =1, k3 =kgp = 3;
(c) kyy = 5o5 = 288675, kyy = %2 = 866025, kyy = 2= = 1.154700,
bio = kgy = 0, kyy =gy = — 5= = —.288675, kyy = kyy = — %2 = —.866025.
10.3.10. True — they have the same angles, and so, by (10.46), their stiffnesses will be the same.

sinz sinh(m —y) sinh %7‘(

& 10.3.14. (a) u(z,y) = , with u(3m, 37) = ~ .199268;

sinh 7 sinh 7
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() K=(4), K=(-1 -1 -1 -1), b=0, h=(1,0,00)".
The solution to (10.59) gives the value u(% T, %7‘(’) ~ .25, with error .0507316.

(¢) Ordering the interior nodes from left to right, and then bottom to top, and the
boundary nodes (omitting the corners) counterclockwise, starting at the bottom left:

4 -1 0 -1 0 0 0 0 0
-1 4 -1 0 -1 0 0 0 0
0 -1 4 0 0 -1 0 0 0
-1 0 0 4 -1 0 -1 0 0
K = 0 -1 0 -1 4 -1 0 -1 01,
0 0 -1 0 -1 4 0 0 -1
0 0 0 -1 0 0 4 -1 0
0 0 0 0 -1 0 -1 4 -1
0 0 0 0 0 -1 0 -1 4
-1 0 0 0 0 0 0 0 0 0 0 -1
0 -1 0 0 0 0 0 0 0 0 0 0
0 0 -1 -1 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 -1 0
K = 0 0 0 0 0 0 0 0 0 0 0 01,
0 0 0 0 -1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 -1 0 0
0 0 0 0 0 0 0 -1 0 0 0 0
0 0 0 0 0 -1 -1 0 0 0 0 0
b =0, h = (.707107,1.,.707107,0,0,0,0,0,0,0,0, O)T.

Now, u(5m, §7) ~ .213388, with error .014120.

(d) u(% m, %7‘(’) = .202915, with error .003647, so the finite element approximations

appear to be converging.

& 10.3.18. (a) At the 5 interior nodes on each side of the central square C, the computed
temperatures are 20.8333, 41.6667, 45.8333, 41.6667, 20.8333:

(b) (4) The minimum temperature on C is 20.8333, achieved at the four corners;
(ii) the maximum temperature is 45.8333, achieved at the four midpoints;

(ii1) the temperature is not equal to 50° anywhere on C.
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10.4.1. (b) Semi-weak formulation:
2
/O [—emu’(a:) v (x) + (u(az) — "' (x) — cos m) v(a:)] dx =0

for all smooth test functions v(z) € C'[0,1] along with boundary conditions
u'(0) =u'(2) ='(0) ='(2) = 0.

Fully weak formulation:

2
/0 [u(m)(e v"(z) + 270 (z) + (1 +e )v(a:)) — (cos ) v(a:)} dr =0

for all v(x) € C2[0,2] along with boundary conditions

u'(0) =u'(2) ='(0) =/ (2) = 0.
< 10.4.7. Suppose f(ty,xq) > 0, say. Then, by continuity, f(¢,z) > 0 for all  in some open ball
B.={(to)| (t—t0)’ + (@ —2))* <}

centered at (t,, ;). Choose v(t,x) to be a C! function that is > 0 in B, and = 0 out-
side; for example,

2 2 212
0, otherwise.

Thus f(t,z)v(t,z) > 0 inside B, and is = 0 everywhere else, which produces the contra-
diction

/_O; /_O:O F(t,z)v(t, ) da dt = //Bgf(t,a:) v(t, ) dtdz > 0. Q.E.D.
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Student Solutions to
Chapter 11: Dynamics of Planar Media

11.1.1.
ou Pu  0%u 2 2 _q
o =7 @jta—yz , " +y <1, t>0,
g—zzo, 2+ =1, t>o0,

u(0,z,y) = a2 +y?, o +y° < 1.

For the Neumann boundary value problem, the equilibrium temperature is the average
value of the initial temperature, namely

1 1 271, 2
— 2 2 — [
7r//Q\/az + y= dx dy 7r/0 /Ordrde 3"
11.1.3. (a) 0.
© 11.1.6. (a) Using (6. 85) with u =1 and v = u,
//Q (t,z,y)dxdy =~ /Auda:dy—’y}{ —ds—O

in view of the homogeneous Neumann boundary conditions. Since 1ts derlvatlve is
identically zero, we conclude that H(t) = H(0) is constant.

(b) By part (a),
H(t) = // u(0, z,y) dv dy = T} area (2,

where

Ty = ! //Q u(0, z,y) dr dy

area ()
is the average initial temperature. On the other hand, as ¢t — oo, the solution
approaches a constant equilibrium temperature, u(t,z,y) — T,. Thus,
Tyarea Q= lim H(t) = //Q lim wu(t,z,y)drdy = / T, dedy =T, area €,
t— o0 Q

t — oo

and hence T, = Tj,.

11.1.11. (a) Define the linear operator L{u] = (ux,uy,u)T, so L:U — V maps the space of scalar
fields u(z,y) satisfying the Neumann boundary conditions to the space of vector-valued
functions v(z,y) = (v, (z,v), v9(x,y), vg(x,y))T satisfying (v{,v,)7 -n =0 on Q. Using

the L2 inner product on U and the L2 inner product
<V ) W> = //Q Ul(ma y) wl(ma y) + 02('17’ y) UJQ(IE, y) + US(m) y) w3($a y) d(E dy

0 0
on V, the adjoint map L*:V — U is given by L*[v] = — % — % + avs. Thus,
x y
S[u] = L*oL[u] = — Au + awu, which proves that the evolution equation is in self-

adjoint form: u, = — S[u].
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(b) The operator L has trivial kernel, ker L = {0}, and so S = L*o L is positive definite.
This implies that the boundary value problem S[u] = 0 for the equilibrium solution,

— Au + au = 0 subject to homogeneous Neumann boundary conditions, has a unique
solution, namely u = 0.

2
11.2.1. u(t,z,y) = e 2" tsintz sinmy. The decay is exponential at a rate 272.

4 Cad —2(2k+1)27r2t sin(2k+1)7r(a:+1)
11.2. t —
3. ultbey) =-2 Z_: 2k + 1
57r2'y
11.2.8. (b
Y% 8. (b) 1a2

© 11.2.12. (a) The equilibrium solution u, (x,y) solves the Laplace equation, u,, + u y = 0, subject

to the given boundary conditions: u(0,y) = u(m,y) =0 = u(z,0), u(z,7) = f(z). Thus,

sinhmy 2 T )
u, (z,y) Z b,,sinmx sohma where b, = - /0 f(x)sinmaz dz.

(b) u(t,z,y) = u*(a:,y) + v(t,x,y), so that the “transient” v(¢,x,y) solves the initial-
boundary value problem

Uy = Uy t 0y, v(0,2,y) =—u,(z,y), v(0y) =v(ry)=0=0v(z0) =uv(zm).
Thus, using Exercise 3.2.42, the transient is

2 ) 1" (2.2
v(t,z,y) = = m,nZ: 7227_‘)_:2 b,,e (m "+t i ma sinny,
which decays to zero exponentially fast at a rate of —2 provided b; # 0, or, more
generally, — (m2 +1) when b, =---=b,,_; =0, b, #0. Thus, the solution is
inh 2 = " —(m2in?

11.3.1. (a) 2 /7.

11.3.5. Use the substitution z = t1/3 with dz = l t=2/3 4t to obtain the value
/ Vre ® du= 3/ et P =1r () =17

11.3.8. u(z )—1+2(a:—1)—|—(x—1)

)

ﬁ(:ﬂ)=1—($—1)+(az—1)2—(az—1)3— SR (—1)’“(93—1)’“—%.
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51
11.3.10. (a) . _—
- 2 ,1.4 1.6 (—D)"z
A= 1= hat - dat e = 50
ﬁ(x):x—%x3+%m5—%x7+
S (—1)F2ka2h | e
=0 @R+ DERE-D2E-3)---5-3 =, (2k+1)!

(b) Since the equation has no singular points, both series have an infinite radius of

2
convergence. (c) U(x) =e " ;

(d)

B _a? [T
u(x)=e /Oe dy.

11.3.15. (a) u(xz) = cju(c — ) + cyu(c — x), where @, U are given in (11.81, 82), and ¢, ¢y are

arbitrary constants.

2 I

11.3.22. (a) Multiplying by z, the equation 2z“u

+ zu’ 4 z%u = 0 has the form (11.88) at x5 = 0

with a(z) =2, b(z) =1, c(z) = 2>, all analytic at z = 0 with a(0) # 0.

(b) The indicial equation is 2r% — r = 0 with roots 7 = 0, % The recurrence formula is
Up—2

u

n —

The resulting two solutions are

- (n+7)2n+7r)—1]’

n > 2.

. x> at 2
W=l 3+* e 679 @16 671D
u(z) = 2'/? - il + I o

2-5 ' (2-4)-(5-9)

11.3.27. (a) Jj5(x) =

(3:5_5/2 sinx — 393_3/2

2-4-6)-(5-9-13)
(_1)kx(4k—|—1)/2

(24 2k) - (5-9--- (4k+1)) *

cos T —:c_l/2 sin:c).

¢ 11.3.30. (a) The point z, = 0 is regular because it is of the form (11.88) with

a(z) =b(x) =1,

= —(z* +m?).

c(z)

(b) Replacing x — iz converts (11.114) to the ordinary Bessel equation (11.98) of order
m. Therefore, its Frobenius solution(s) are

a(x)=J,,(iz)=1i"

and, if m is not an integer,

c—m
=1

w(z) =J_,,(iz)

00 J:m—l—Qk

(m+k+1)’

,;::0 22k+tm I T

oo

>

k=0

(_1)kx—m—|—2k
22k=m I\ T(—m+k+1)

If m is an integer, then the second solution is uy(z) =Y, (ix), where Y, is the Bessel

function of the second kind (11.107).
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1141, ult,r6) Z 0(27%’”2)6_ Gt Jo(Com ) +
n=1 J1(Con) '

o 1
+ g Z jm(2 C7n,n)

_<2 t
e cmmt J (1) cosmb.
T mmn=1 m—l—l(cm,n)2 e

$ 11.4.7. Suppose u(t, z,y) solves the heat equation u, = v Au on a disk of radius 1, subject to
initial conditions u(0,x,y) = f(z,y) and, say, homogeneous boundary conditions. Then
Ut,z,y) = u(t/R? x/R,y/R) solves the heat equation U, = v AU on a disk of radius
R, subject to initial conditions U(0,z,y) = F(z,y) where f(z,y) = F(xz/R,y/R), along
with the same type of homogeneous boundary conditions.

11.4.9. 12 minutes.
© 11.4.15. (a) The eigensolutions are

(t.7.0) 2y ( ) 0 n=12,3...,
U t,r,0) =e ™" J_(C 1) sinmb,
m,n masm,n m=1,2,....
The general solution is a series in the eigensolutions:
o0
m,n=1
whose coeflicients bmm are prescribed by the initial data.
(b) The eigensolutions are
2
—¢2t
uO,n(t7T) =e Som Jo(Co,n r), n=1273,...,
2 —
umm(t, r,0) =e" Cm,nt Jm((m’n r) cosmb, m=12....
The general solution is a series in the eigensolutions
u(trG =3 Z aOnuOn(tr)+ Z amn mn(t’re)

m,n=1
whose coefficients a,, ,, are prescrlbed by the initial data.

(¢) The Dirichlet problem decays to equilibrium over 2.5 times faster than the mixed
boundary value problem. For the Dirichlet problem, the decay rate is C12’1 ~ 14.682,
whereas for the mixed problem, the rate is 53,1 ~ 5.783. Intuitively, the greater the
portion of the boundary that is held fixed at 0°, the faster the return to equilibrium.

11.4.19. In view of the formula (11.105) for J; 5(x), the roots are ¢; /5 , = nm for k = 1,2,3,....
In this case they exactly satisfy (11.119).

1 2, 2
11.5.1. u(t e~ (#7+y7)/(20t41)
bl ultz,y) = 557
7,61 o~ L@=8)%+(y—m)?]/[4y (t—7)]
O 11.5.6. u(t,x,y) = /<//47r'yt—7 d€dn | dr.
11.5.11. (a) Since v(t, z) solves v, = — v, while w(t, y) solves w, = —w,, . we have
Uy = VW F VW = =V W — VWyyy = ~ Uggp — Uyyy-
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(3t)2/3 "\

(b) Flt,x,y:6,1m) = — A'<m_§>Ai<y_n>.
(©) ultr9) = g [f ren i (St ) A (Ll ) dcan

11.6.3. wy; = V21 ~ 4.4429; two independent normal modes;
Wy g =Wy = V5~ 7.0248; four independent normal modes;
Wy g = 2127 ~ 8.8858; two independent normal modes;
Wy g =w3q = V10w ~ 9.9346; four independent normal modes;
Wy g3 =Wz o9 = V137w ~ 11.3272; four independent normal modes;
Wiy =wyq = V1771 ~ 12.9531; four independent normal modes.

11.6.5. (a)
9 ™ cosy/1+(k+%)2 it sin(k—i—%)wm sin Ty
=P T

—0 k+ 35

2 i 4sin\/1+(k %)2 i sin(k—i—%)waz sinﬂ'y.

2 1 112 ’
s)V1+(k+3)

_l’_

N

1
(b) u(t,z,y) = coswt sinmy + — sin7wt sinmy.
™

11.6.9. For example, u(t,z,y) = ¢;cosv2mct sinmz sinmy + cycos2v2met sin2mx sin27y,

for any c;,cy # 0 is periodic of period v/2/c, but a linear combination of two fundamen-
tal modes. Its vibrational frequency, v/2 ¢, is (necessarily) a fundamental frequency.
2
11.6.14. u(t,z,y) = - sin(ct) JO(\/x2 + 32 ) The vibrations are radially symmetric and periodic

with period 27 /c. For fixed ¢, the solution is either identically 0 or of one sign through-
out the interior of the disk. Thus, at any given time, the drum is either entirely above
the (x,y)—plane, entirely below it, or, momentarily, completely flat.

11.6.18. (a) The displacement u(t,r,6) must satisfy u,, = ¢?Au, along with the boundary and
initial conditions

u(t,r,0)=0,  u(t,1,0)=0,  uy(t,r,57)=0, r<l,
u(0,7,0) =0, ut(O,r,9)225(r—%)5(9—%71’), 0<9<%7T-
Note that the factor of 2 in the initial condition for u, comes from the formula

d(r—mry)0(0 —6,) _ d(r —1ry)0(0 —0,)

T TO

0z —xg,y —yg) = for ro # 0,

relating the rectangular and polar coordinate forms of the delta function.

(b) The odd-order Bessel roots (o yq , for k=0,1,2,..., n=1,2,3,....
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kio i 8Jy11 (5 Conrrm )sin(3h+ )7

ne1 T Cokt1.n J2k+2(Cokp1,n)

SIN(Co gy 1n t) Jokr1(Coppr,n ) sin(2k +1)6.

(d) The motion of the quarter disk is stable and quasiperiodic.

11.6.25. If the side lengths are a < b, then the two lowest vibrational frequencies are

11 1 4

Thus, we can recover the side lengths through the formulae

3 3
a =T 27, b:ﬂ' ﬁ

11.6.29. Since the half disk’s vibrational frequencies are a subset of the full disk frequencies,
corresponding to the eigenfunctions v(z,y) that are odd in y — i.e., those, as in
(11.156), that involve sinm@ — the ratios of two half disk frequencies is a ratio of the
corresponding full disk frequencies. However, the lowest frequency of the half disk is
not the lowest frequency of the full disk, and so the relative frequencies are different.

11.6.34. Set { = az+by. Then, by the chain rule, uy, = vy, and u,, +u,, = (a2—|—b2)v§§, and hence

v(t, &) satisfies the wave equation v, = 021155 with wave speed ¢ = 1/va? + b2 . The
solutions are plane waves that have the same value along each line ax + by =constant,
and move with speed c in the transverse direction.

11.6.40. The nodal circle in the fourth mode, with frequency wp o = 2.29542, has radius

Co,l/C0,2 ~ .43565; in the sixth mode, with frequency wy o = 2.9173, the radius is
Cl,l/<l,2 ~ .54617; in the eighth mode, with frequency wy o = 3.50015, the radius is
Cy.1/Cg.9 ~ .61013; in the ninth mode, with frequency wj 5 = 3.59848, the two radii are
Co1/Cos A 27789 and (y4/¢y 3 ~ 63788, Thus, ’

C0.1/€0.3 < €0.1/C0,2 <C1.1/C12 <C21/Co2 < Co2/Co.3-

@G
2

radii: .3471, .5689, .7853;

11.6.41. (b) wy 4:
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Student Solutions to
Chapter 12: Partial Differential Equations in Space

12.1.1. For example: (a) 1, z, y, z, z? — y2, y2 — 22, TY, TZ, YZ.

<& 12.1.4. By the chain rule, U,, = u,,, Uyy =Uyys U, =u,, and hence AU = Au = 0.
& 12.1.10. (a) : _9 9 9
V- (uv) 5 (uvy) + 3y (uvy) + gy (uvg)

= (ug vy +uyvg +u vy ) Fulvy g+ vy, +v3.) = Ve v+uV v

& 12.1.11. First, setting v = Vv in (12.10) and rearranging terms produces

/// uAvdﬂUdde—//aQ 8n as — /// Vu-Vuodrdydz.

Taking u = 1 in the latter identity yields (a) with v replacing w, while setting v =
gives (b).

12.2.2. The equilibrium temperature is constant: u = 10°.

12.2.4. (b) u(z,y,2) =5+ 32° + 3> — §2°.

, | L L g 2, 2 3
12.2.5. (7) %wzﬂ /_W/O psing dpdf; (i) sm—Smz+ men(x® +y?)z— g,

& 12.2.10. (a) At t =1 we write (12.28) as
d*P dP
(t—l) (t+1)d2+(t )(2t)d—— uw(t—1)P =0,
which is of the form (11.88) with
p(t) =(t+1), q(t)=2t, r(t)=—-p-1),
all analytic at ¢ = 1 with p(1) =2 # 0. A similar argument applies at ¢t = —1.
(b) Set
Klu(t)] = (1 — ) u"(t) = 2t/ (t) + pu(t) = d/dt [ (1 — )0/ (t) | + pu(t).
Then, integrating by parts twice,

(K[u],v) :/_11 [% (-2 (1] —I—,uu(t)] o(t) dt

— (1= (1) o ‘ B +/ — (1 =) ()0 (1) + pult) vo(t) ] dt
= (1= [/ () v(t) —u(t) v (1) ] | - +/ { — %)/ (1) —I—,uv(t)] dt
= (u, K[v]),

where the boundary terms vanish at +1 provided u(41),u(£1),v(&1),v’(£1) are all

finite.
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(c) The Legendre polynomials P, () are the eigenfunctions of the self-adjoint operator

Kolu(t)] = (1 — ) u"(t) — 2t (¢)
corresponding to the eigenvalues A\; = k(k + 1). This implies that they are orthogonal
with respect to the L? inner product on [—1,1], ie.,

(Pk,Pl):/_llPk(t)Pl(t)dtzo for  k#L

¢ 12.2.15. Using (12.31)

dp!" mt dmtl
_ 42 n mgy (m+1)/2
Lo St A P = (1 1) T Palt)
Cmt(1— 202 p gy =)D L p gy pr gy,

dgm "

12.2.19. Since YOO(cp, 0) = 1, the first surface is the unit sphere » = 1. The surface r = Ylo(gp, 0) =

. ) 2
cos (p can be rewritten as r = rcosp = z, or, equivalently, z? + y2 + (z — %) = %,

which is the sphere of radius % centered at the point (0, 0, %)

& 12.2.23. According to (12.46),
(V) = (G + 1Y Y 4 Y
= (V" V) + 1 ) = 1 ) (Y = (R (o ),

by the orthogonality of the real spherical harmonics — which continues to apply when

m and/or k is negative in view of our conventions that Y," =Y, ", V" = -Y "

)77? = 0. Thus, if (m,n) # (k,l) both of the final summands are zero, proving orthogo-

nality. On the other hand, we find

m 2 4m(n+m)!
=Y, Yo"
IV 1P = IV P+ 1T 1P = g s

since, when m # 0 the two norms are equal by the second formula in (12.42), whereas
when m = 0, the second norm is zero by our convention, and the first formula in (12.42)
applies.

12.2.26. (a) (i) %r4+%r4cos2@+£r4cos4cp; (1) 8:8 +3932y2+8y —32222 =392 4+ 24,
1

Va2 +y? + 22 '

12.2.33.(a) (f,g) Z/l/7r /ﬂf(r,9,¢)g(r,9,<p)r2sin<p de dO dr,

||fH—\/// /fr@(p r281n<pd<pd0dr.

(b) Since f(r,p,0) =rcose, g(r,¢,0) = r? sin’ ©,

1fll=/15m ~.9153,  llgll=1/{5nm ~.9785,  (f,g)=

() 1(f.9)|=0<.8956=Flllgl, |If+gll=17m~13398<18938=]f[+]gll
12.2.35. u(z,y,z) = 100 z.

12.2.29. (a) K{(x,y,2) =
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1 1

12.3.1. (a) u(x,y,2) = -
4m\/22 +y? + 22

12.3.6. In terms of r = || x ||, the potential is wu(r) =

_ 1
/.’13‘2 +y2 +22

12.3.9. KQ(z,y,2) = %

o7

2 3 2
p° p°
p_pr T <
2 3 6> =P
3
p—<1—1>, p<r<1
3 r

is the Newtonian potential, while Kg (z,y,2) = 0.

¢ 124.1. (a) u, = vAu, u(0,z,y,2) = f(z,y,2), u(t,0,y,2) = u(t,a,y,2) = u(t,z,0,z2)

u(t,z,b,z) = u(t,z,y,0) = u(t,x,y,c) =0, for (z,y,z) € B and t > 0.

(b) For j,k,1=1,2,....
-2 2
uj,k;’l(t,ﬂf,y, Z) = exXp [_ <] K

oo

>

Jik,l=1

(c) u(t,z,y,z) =

8 ¢ rbora . Jjmx . kmy
5t = bz Jo Jo Jy @) sin T sin =g

——1———1—5 7r2'yt sinjﬂ sin ——= sin
a? = b2 2 a b

Cjohet Ukt (625 Y, 2),

lmz

kmy

where

sin ZWTZ drdydz.

(d) The equilibrium temperature is u, = 0. The exponential decay rate for most initial

. . . 1
data is given by the smallest positive eigenvalue, namely A; ; ; = 'y7r2 < pol +

1 1
et

):

du 9%u 1 0u 1 8%u  8%u
O 12.4.5. (a) 5 =7 (m plw + 2 502 + @> ,u(t,a,0,z) =u(t,r,0,0) = u(t,r,0,h) =0,
U(t,’f’, -, Z) = u(ta r,m, Z)’ % (t)r) -, Z) = % (ta r,m, Z)a U(O,T,@,Z) = f(r,@,z),

for0<r<a, —m<0<m0<z<h.

(b) The separable solutions are

—Am.on ikt
Upy (8,7, 0,2) =€ R
am,n,k(rﬂ 0, Z) =e Am,m, kb Jm

where the eigenvalues are

Cmm?“ 0 s kmz
q ) ST SR m=0,1,2,...,
C7nnr> . . k7wz n,k:1,2,3,...,
: sinm@ sin —
a h
CQ k272
Ak 7( P h2

The solution can be written as a Fourier—Bessel series

1 o.@]
u(t,r,0,z) = 3 kz ag.n.k uOm’k(t,r, 2)
n,k=1

>

m,n,k=1

+

[am,n,k um,n,k(t’ r,0,z)+ I ﬁm’mk(t, r,0,2) ] ,
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where

m,n,k:ﬂ_a hJ +1(C // /fTH,z <
bm,mk:ﬁa T —|—1(Cmn // /fTH,z <

(¢) The equilibrium temperature is u,(r,0, z) = 0.

a > rcosmb sin%drd@dz,

> rsinm@ sin % drdfdz.

(d) The (exponential) decay rate is governed by the smallest eigenvalue, namely

G w2
)\O’l’lz’y<a—2+ﬁ .

12.4.14. 15 x (300/200)%/3 = 19.66 minutes.

{ 12.4.16. The decay rate is the smallest positive eigenvalue of the Helmholtz boundary value prob-
lem vAv + Av = 0 on the ball of radius R with v = 0 on its boundary. The rescaled
function V(x) = v(x/R) solves the rescaled boundary value problem AV + AV = 0 on
the unit ball, V' = 0 on its boundary, with A = RQ)\/'y = 72 the smallest eigenvalue.
Thus, the decay rate is A\ = 7> 'y/RQ.

12.4.20. We can assume, by rescaling, that the common volume is 1, and that the thermal diffu-
sivity is v = 1. Note that we are dealing with homogeneous Dirichlet boundary condi-
tions. For the cube, the smallest eigenvalue is 3m? ~ 29.6088. For the sphere of radius

NIE . . w2 24/348/3
R = e of unit volume, the smallest eigenvalue is B = —325 ~~ 25.6463,
cf. Exercise 12.4.16. Thus, the cube cools down faster.
sinx — xcosx rsinx
12.4.25. By ’Hopital’s rule: S,(0)= lim S = lim —— = 1i =0
v PHopital's ules (@) 5,(0) = iy, Sy(e) = iy, == = i, =7

12.4.31. (a)
_ 1 —[(@=8)2+(y—n)?+(—0)?1/(41)
u(t,z,y,z) = 8 (n1)2 ///2+n2+C2S1 100e d& dnd¢

_ 12.5 / / / —[(z—7rsin ¢ cos 0)2+(y—rsin e sin0)24(z—r cos )2 ]/(4t)
7Tt 3/2
(b) Since the temperature only depends on the radial coordinate r, we set
z =0,y =0, z=p, to simplify the integral:

13 35/2 / / / (r2—27"pcos <P+p2)/(4t) 742 Sin(P do d(p dr
7T

r? sin o drdp df.

= =0/@0) _ = 40140 g
\/w_p /0 rle

_ EOert ( ptl > _ S0erf < p—1 ) L 100 \/f [em (PFD?/ (40 _ = (=140,
2/t 2/t p Vm
which gives the solution value u(t,z,y, z) when p = /22 + y2 + 22.
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12.4.36. As in (9.128),

S 212 92y, 2
F(t,z,y,z,6,m,() =8 > e R tsinij sinkny sinlwz sinjn€ sinknn sinl(.
jki=1

12.5.1. (a) u(t,z,y,2) =
64 2 cosT \/(22 +1)2+ (25 + 1) + (2k + 1)2 ¢ sin(2i + 1) 7w sin(2) + 1) 7y sin(2k + 1) 7z
™, o (20 +1)(25+1)(2k + 1) ’

sin 27t sin 2wy
2 )
12.5.3. (a) Assuming the cube is given by {0 < z,y, z < 1}, the separable eigenmodes are

cosc\/I12+m2+n2nt sinlnz sinmmy sinnnz,
sincy\/l12+m?2 +n? 7t sinlmx sinmmy sinnnz,

for I, m,n positive integers.

(d) u(t,z,y,z) =cos3mt sin3rx +

(b) Whenever 12 +m? +n? =12 + m% + 72, one can take a linear combination of the
separable modes that is periodic with frequency w = c V1% + m?2 + n? 7. For example,

u(t,z,y,z) = cosVbert (sinma sinwy sin27z +sinwz sin27y sinmwz).

12.5.6. (b) The eigenfunctions for the Laplacian operator on the cylinder are
um’nk(t,r, 0,2) = Jm(Cmm r) cosmb cos % kmz, m,k=0,1,2,...,

Uy 1 (1:0,2) = I, (G 7) SIDTO cos s kmz, n=123...,

with associated eigenvalues and vibrational frequencies
1,2 2 _ _ 2 142 2
A ko, “m,n,k =V >\m7n,k = Cm,n +gkome.

12.5.10. For the sphere, the slowest vibrational frequency is ¢m/R ~ 3.1416 ¢/ R, whereas for the
disk it is CCO’I/R ~ 2.4048 ¢/ R. Thus, the sphere vibrates faster.

2
m,n,k — Cm,n

12.6.1. (a) u(t,z,y,2) =z + z.
12.6.3. (a) The solution, for ¢t > 0, is

u(t,x) = 47rt //\g =t (,% 0, )dS—ﬂarea[S ﬁC]

which is 1/(47t) times the surface area of the intersection of the sphere of radius ¢
centered at x with the unit cube C = {0 < z,y,2 <1}.

(b) V2 <t < 3 since the closest point to (2,2,1) in C, namely (1,1,1), is at a distance of

V2, while the furthest, namely (0,0,0), is at a distance of 3. The light signal starts out
quiescent. Beginning at time ¢ = /2, it gradually increases to a maximum value, which

is closer to v/2 than to 3, and then decreases, eventually dying out at t = 3.
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(¢) This is true for ¢ > 0, but false for ¢ < 0, since u(—t,z,y,2) = —u(t,z,y,z) when
u(0,z,y,2) =0.

Lo &
2w Ot | e—x||<t \/tz —(E—z)2=(n—y)?2

1/(2¢), |z|<ct,

0, |z| > ct.’

(¢) Huygens’ Principle is not valid in general for the one-dimensional wave equation, since,
according to part (b), a concentrated initial velocity does not remain concentrated along
the characteristics, but spreads out over all of space. Only concentrated initial displace-
ments remain concentrated on characteristics.

12.6.10. (a) wu(t,x,y) dé dn.

& 12.6.13. (a) u(t,z) = %5(9: —ct)+ % d(z+ct); (b) u(t,z) = {

12.7.1. The atomic energy levels are multiplied by Z2, so that formula (12.189) for the

Z%*M 1 Z%% 1
eigenvalues becomes A, :—;T — :_2_a —, n=123,....
n a n

& 12.7.3.

) —j.s gk , —j k k—i i
j s e d_ ji+k —s1 _ S ‘e k\ d ﬁ.kd_ _s
k) = = gar L7 == Py (1) dsk—1 7 dsl €

—Jes k ! ; TP Eo(=1)t (5 :
:S e k! (jik‘:)'s]—’_z(—l)le_sz Z ( 1) <]+k> 81-

k! EO Ak —0)! (5
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