
Chapter 2
Theoretical Model

In this chapter, the theoretical models used in the thesis are briefly introduced. The
system composed of a two-level quantum resonator, e.g., nucleus or atom interacting
with a single mode of the electromagnetic wave is a basic but nontrivial problem.
Many important properties of matter-field interaction can be extracted from it. For this
reason we start with an example involving the coupling of a closed two-level nucleus
interacting with a single-mode radiation field. We first present the used equations of
motion for density matrices in Sect. 2.1. The main purpose of Sect. 2.1 is to derive the
form of the Hamiltonian matrix elements adopted in nuclear physics. Furthermore,
by coupling the equations for the density matrix to the Maxwell equations (i.e,
Maxwell-Bloch equation) as shown in Sect. 2.2, one can study the fruitful physics of
the propagation of a light pulse through a resonant medium. This issue focuses on
solving the dynamics of the incident electromagnetic wave which is associated with
probing a material sample from the the photons scattered off a target, e.g., as in the
nuclear forward scattering setup [1]. We present the used theory in Sect. 2.2 with a
very useful example about the interaction of a short light pulse with two-level nuclei.
In Sect. 2.2.1, an analytic solution of the dynamics of the incident pulse is derived
via Maxwell-Bloch equations confirming an expression frequently appearing in the
corresponding literature as a result of a different theoretical approach. Finally, in
Sect. 2.3 we demonstrate an extension of the used theory towards a three-level �-
type system [2] which is well known for some topics in atomic quantum optics, e.g.,
stimulated Raman adiabatic passage (STIRAP) [3] and electromagnetically induced
transparency (EIT) [4–6].

2.1 Master Equation

In this thesis, the master equation1 is used to describe the dynamics of the considered
nuclei-radiation system:

1 Also called optical Bloch equation or Liouville-von Neumann equation in literature [2].
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∂t ρ̂ = 1

i�

[

̂H , ρ̂
]+ ρ̂s . (2.1)

Equation (2.1) describes the quantum time evolution of the density operator ρ̂(t)
of matter in a system, e.g., nuclei in this thesis. ̂H(t) is the interaction Hamiltonian
between the matter and the external fields, e.g., incident electromagnetic fields, and ρ̂s

describes the decoherence processes such as spontaneous decay. Moreover, Eq. (2.1)
is very general for any quantum system, and the way to calculate the matrix elements
of ̂H(t) depends on the considered physical problems. In the following, we present
an example for a two-level system, and the form of ̂H(t) matrix elements used in
nuclear physics.

A typical two-level system is illustrated in Fig. 2.1. The interaction between a
nucleus and a pump laser is illustrated in Fig. 2.1c Here, pump laser (blue arrow)
drives the transition |2〉 ↔ |1〉, with detuning �p. The explicit form of ρ̂ is:

ρ̂ =
(

ρ11 ρ12
ρ21 ρ22

)

, (2.2)

for a two-level nuclear wavefunction |ψ〉 = C1(t)|1〉 + C2(t)|2〉

ρeg = CeC∗
g . (2.3)

Here indices e, g ∈ {1, 2}. Considering the spontaneous decay for the nuclear system,
the decoherence matrix is

ρ̂s = �

2

(

2ρ22 −ρ12
−ρ21 −2ρ22

)

. (2.4)

In Eq. (2.4), the relation ρ11 +ρ22 = 1 is satisfied due to the conservation of popula-
tion in a closed two-level system. The decay rate �/2 for each off diagonal coherence
is derived from Eq. (2.3). Without any external laser, ρ22(t) ∼ e−�t which means
C2(t) ∼ e−(�/2)t , whence the other coherence ρ21 and ρ12 are also proportional to
e−(�/2)t . Furthermore, in the interaction picture, the interaction Hamiltonian matrix
̂H(t) is [3]:

̂H = −�

2

(

0 �∗
p

�p 2�p

)

, (2.5)

where � is the reduced Planck constant, and �p is the laser detuning. The explicit
form of Eq. (2.1) can be obtained by substituting Eqs. (2.3), (2.4) and (2.5) into
Eq. (2.1):

∂tρ11 = �ρ22 + i

2

(

�∗
pρ21 − �pρ

∗
21

)

(2.6)

∂tρ21 = −
(

�

2
+ i�p

)

ρ21 − i

2
�p (ρ22 − ρ11) (2.7)
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Fig. 2.1 a Illustration of coherent pulse propagation through a resonant medium. b Interaction
between a nucleus and pump laser (blue wide arrow). c Sketch of a two-level nuclear system. The
blue (�p) arrow depicts the pump laser, and �p denotes the pump laser detuning. The green wiggled
arrow illustrates the spontaneous decay of state |2〉 with a rate of �
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∂tρ22 = −�ρ22 + i

2

(

�pρ
∗
21 − �∗

pρ21

)

. (2.8)

In the equations above, �p denotes Rabi frequency defined as:

�p(t) = 1

�
〈2|̂HI (t) |1〉, (2.9)

and by using the Coulomb gauge for the vector potential of pump laser A =
∑

k Akei(kr−ωk t) + H.c., the matrix element can be written as

〈e|̂HI (t) |g〉 = −〈e|̂j · A (t) |g〉 (2.10)

= −
∑

k

〈e|
[

̂je−iωeg t +̂j∗eiωeg t
]

·
[

Akei(kr−ωk t) + A∗
ke−i(kr−ωk t)

]

|g〉 (2.11)

wherêj is nuclear current operator. By using the rotating wave approximation [2]
and considering the interaction between nuclei and a single k mode plane wave,
Eq. (2.11) becomes

〈e|̂HI (t) |g〉 = −〈e|
{

̂j · A∗
ke−i[k·r+(�eg−�k )t] +̂j∗ · Akei[k·r+(ωeg−ωk )t]

}

|g〉
(2.12)

= −〈e|
{

̂j · A∗
ke−i(k·r−�kt) +̂j∗ · Akei(k·r−�kt)

}

|g〉 (2.13)

= −e−i�k t A∗
k ·
∫

V
j(r)e−ik·rd3r + H.c. (2.14)

= i

ωk
e−i�k t E∗

k ·
∫

V
j(r)e−ik·rd3r + H.c. (2.15)

= i

ωk
e−i�k t E∗

k ·
∫

V
j(r)e−ikr cosβd3r + H.c.. (2.16)

Here, the laser electric field Ekei(k·r−ωk t) = −∂t
[

Akei(k·r−ωk t)
] ∼= iωkAkei(k·r−ωk t)

with the assumption of |∂t Ak| � |ωkAk|, j (r) is the current,2 �k = �p the laser
detuning and β the angle between Ak and the particle position vector r. Typically,
the major task is to derive the Rabi frequency in Eq. (2.9) with some particular ̂HI

when using Eq. (2.1) to describe different physical problems.
In nuclear physics, due to the spherical symmetry of nuclei (just like atoms), the

nuclear Hamiltonian of Eq. (2.16) is typically expressed in terms of the so called
vector spherical harmonics Y M

L�(θ,φ) [7]. To derive a useful form for Eq. (2.16), we

2 The current j (r) = −i ℘�

2m

[

ψ∗
e (r)∇ψg (r) − ψg (r)∇ψ∗

e (r)
]

, and the density ρ(r) = ℘ψ∗
eψg,

where ℘ is the charge and m is mass of the charged particle [7].
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follow the steps in Ref. [7, 8] to expand the plane wave Ekeik cosβ into multipole
fields. The vector spherical harmonics YM

L�(θ,φ) is introduced as following [7]:

YM
L�(θ,φ) ≡

�
∑

m=−�

1
∑

n=−1

C�1(L , M; m, n)Y�m(θ,φ)χ̂n (2.17)

χ̂1 = − 1√
2
(̂ex + i êy) (2.18)

χ̂0 = êz (2.19)

χ̂−1 = 1√
2
(̂ex − i êy), (2.20)

where M = m + n, and Y�m and C�1(L , M; m, n) are the scalar spherical harmonics
and the Clebsch-Gordan coefficient (as defined in [7] or see Table A.1 in Appendix A),
respectively, and êμ (χ̂μ) is the unit vector in Cartesian (spherical) coordinates. For
an arbitrary vector function R(r)V(θ,φ), it can be expanded into a series:

V(θ,φ) =
∞
∑

L=0

L
∑

M=−L

L+1
∑

�=L−1

q(L , M, �)YM
L�(θ,φ) (2.21)

=
∞
∑

L=0

L
∑

M=−L

[

f (L , M)YM
LL + g(L, M)YM

LL+1 + h(L, M)YM
LL−1

]

(2.22)

f (L , M) =
2π
∫

0

π
∫

0

YM∗
LL (θ,φ) · V (θ,φ) sin θdθdφ (2.23)

g(L , M) =
2π
∫

0

π
∫

0

YM∗
LL+1 (θ,φ) · V (θ,φ) sin θdθdφ (2.24)

h(L , M) =
2π
∫

0

π
∫

0

YM∗
LL−1 (θ,φ) · V (θ,φ) sin θdθdφ, (2.25)

First, we present the expansion of a plane wave into spherical waves:

eik·r = eikr cosβ (2.26)

=
∞
∑

L=0

YL0(β)

2π
∫

0

π
∫

0

Y ∗
L0 (θ) e−ikr cos θ sin θdθdφ (2.27)

=
∞
∑

L=0

(i)L jL (kr)
√

4π (2L + 1)YL0(β) (2.28)



16 2 Theoretical Model

=
∞
∑

L=0

R(L; r)YL0(β) (2.29)

where j1(z) is the spherical Bessel function of first kind. Second, Eq. (2.29) shows
that the field to be transformed is proportional to eikr cosβδ±1nχ̂n , and in the following
we use Eqs. (2.17–2.25) to express it in terms of vector spherical harmonics.

eikr cosβχ̂n =
∞
∑

L ′=0

L ′
∑

M=−L ′

[

fn(L ′, M; r)YM
L′L′ + gn(L

′, M; r)YM
L′L′+1

+ hn(L′, M; r)YM
L′L′−1

]

. (2.30)

The coefficients fn , gn and hn are derived in Appendix A, so that we merely quote
the results here

fn(L ′, M; r) =
∞
∑

L=0

R(L; r)

2π
∫

0

π
∫

0

YM∗
L′L′ (β,φ) · YL0(β)χ̂n sin βdβdφ (2.31)

= 1√
2

R(L ′; r)
(

δ−1M χ̂
∗−1 · χ̂n − δ1M χ̂

∗
1 · χ̂n

)

, (2.32)

gn(L ′, M; r) =
∞
∑

L=0

R(L; r)

2π
∫

0

π
∫

0

YM∗
L′L′+1 (β,φ) · YL0(β)χ̂n sin βdβdφ (2.33)

= R(L ′ + 1; r)

[

δ−1M χ̂
∗−1 · χ̂n

√

L ′
2(2L ′ + 3)

+δ1M χ̂
∗
1 · χ̂n

√

L ′
2(2L ′ + 3)

]

, (2.34)

hn(L ′, M; r) =
∞
∑

L=0

R(L; r)

2π
∫

0

π
∫

0

YM∗
L′L′−1 (β,φ) · YL0(β)χ̂n sin βdβdφ (2.35)

= R(L ′ − 1; r)

[

δ−1M χ̂
∗−1 · χ̂n

√

L ′ + 1

2(2L ′ − 1)

+δ1M χ̂
∗
1 · χ̂n

√

L ′ + 1

2(2L ′ − 1)

]

. (2.36)
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In the following, we write down the explicit form of a plane wave in terms of vector
spherical harmonics:

Ekeikr cosβ = √
2π

∑

n=−1,1

(

Ek · χ̂∗
n

)
∑

L′
(i)L′√

(2L′ + 1)
(

χ̂∗−1 · χ̂n , χ̂∗
1 · χ̂n

)

·
⎛

⎝

jL ′ (kr) Y−1
L′L′ + i

√

L′
2L′+1 jL′+1 (kr) Y−1

L′L′+1 − i
√

L′+1
2L′+1 jL′−1 (kr) Y−1

L′L′−1

−jL′ (kr) Y1
L′L′ + i

√

L′
2L′+1 jL′+1 (kr) Y1

L′L′+1 − i
√

L′+1
2L′+1 jL′−1 (kr) Y1

L′L′−1

⎞

⎠ .

(2.37)

This can be further simplified by replacing the Y±1
L′L′+1 and Y±1

L′L′−1 with taking into
account the following relation [9]

i

k
∇×[ jL ′ (kr) YM

L′L′
] =

√

L′
2L′ + 1

jL′+1 (kr) YM
L′L′+1−

√

L′ + 1

2L′ + 1
jL′−1 (kr) YM

L′L′−1.

(2.38)
Then Eq. (2.37) becomes

Ekeikr cosβ = √
2π

∑

n=−1,1

(

Ek · χ̂∗
n

) (

χ̂∗−1 · χ̂n , χ̂∗
1 · χ̂n

)

·
( (

1 − 1
k ∇×)∑L ′(i)L ′√

(2L ′ + 1) jL ′ (kr) Y−1
L′L′

(−1 − 1
k ∇×)∑L ′(i)L ′√

(2L ′ + 1) jL ′ (kr) Y1
L′L′

)

(2.39)

Finally, we substitute Eq. (2.39) into Eq. (2.16) and use the following relation [7]

YM
LL (β,φ) = −i(r × ∇)YLM (β,φ)√

L(L + 1)
, (2.40)

together with the definition of the nuclear electric multipole moment [7]:

QL M =
∫

V
r LY ∗

L M ρ(r)d3r (2.41)

and the magnetic multipole moment [8, 9]:

ML M = 1

c(L + 1)

∫

V
[r × j(r)] · ∇

(

r LY ∗
L M

)

d3r (2.42)

and the definition of the reduced transition probability B

B(ε L) = 1

2Ig + 1
|〈Ie‖̂QL‖Ig〉|2 (2.43)

B(μ L) = 1

2Ig + 1
|〈Ie‖̂ML‖Ig〉|2. (2.44)
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We obtain the general formulas for nuclear Rabi frequency and present the main steps
in Appendix A, merely quoting here the results for electric/magnetic transitions [8]

〈Ie, Me|̂HI |Ig, Mg〉 ∼ Ek
√

2π

√

L + 1

L

kL−1

(2L + 1)!!CIg Ie (L , M; Mg, Mg)

×√2Ig + 1
√

B(ε/μ L), (2.45)

Here the excited state |e〉 and the ground state |g〉 are characterized by the angular
momenta Ie and Ig , respectively, including their magnetic sublevels Me and Mg .
Explicitly, Eq. (2.9) reads

�p(t) = 1

�
〈2|̂HI |1〉

= 4

�

√

π Ip(t)

cε0

√

(2Ig + 1)(L + 1)

L

kL−1
21

(2L + 1)!!
√

B(ε/μ L), (2.46)

where Ip(t) the intensity of the pump pulse, L the multipolarity of the corresponding
nuclear transition and k21 the wave number of the corresponding nuclear transition.

Equation (2.46) is used to calculate Rabi frequencies throughout this thesis. We
emphasize that the most important parameter B(ε/μ L) characterizing the strength
of the nucleus-radiation interaction is obtained from the experimental data, e.g., the
Nuclear Structure and Decay Databases [10], such that no first principle calculation
involving specific nuclear models is needed.

2.2 Maxwell-Bloch Equation

In some experiments, measuring the light signal scattered off a target is the main
method to study the interaction between light and matter. In Chaps. 4 and 5 of this
thesis, we will encounter such systems, for which the description of only Eq. (2.1) is
not complete. To describe the dynamics for both matter and radiation, the coupled
Maxwell-Bloch equations3 must be used [2]:

∂t ρ̂ = 1

i�

[

̂H , ρ̂
]+ ρ̂s, (2.47)

1

c
∂t� + ∂y� = iηρeg. (2.48)

Equation (2.48) describes the propagation of electromagnetic waves in the forward
direction and is derived from Maxwell equations (see Appendix A for the deriva-
tion). The backward wave is neglected, because it is not observed in the considered
problems. Furthermore, the right hand side of Eq. (2.48) is the source term associated

3 Also called Maxwell-Schrödinger equations in literature.

http://dx.doi.org/10.1007/978-3-319-02120-1_4
http://dx.doi.org/10.1007/978-3-319-02120-1_5
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with a current or a dipole moment of transition |e〉 ↔ |g〉. The source term iηρeg

will affect the transmission behavior of the incident radiation, where η gives the
number of nuclei that may scatter the incident photons through the optical path. In
Chap. 3, we will solve only Eq. (2.47) since the number of the resonant photons is
much greater than the number of nuclei. For the cases treated in Chaps. 4 and 5, the
situation is the other way around, the position of Eq. (2.48) becomes important.

2.2.1 Coherent Pulse Propagation Through a Resonant Medium

In this section, we will discuss the system depicted in Fig. 2.1 which is the underlying
physical system discussed in for Chaps. 4 and 5. In Fig. 2.1a, a pump pulse propagates
through a medium with a length L and interacts with each individual non-mutually
interacting nucleus inside the medium as showed in Fig. 2.1a, b. The goal of this
example is to calculate the temporal shape of the penetrating pump pulse measured
by the detector placed in the forward direction. We consider a two-level nucleus
described by a ground state |1〉 and an excited state |2〉, and the interaction strength
between pump laser and a nucleus is given by �p with a laser detuning �p as depicted
in Fig. 2.1c.

The theoretical model describing the considered system can be directly obtained
from Eqs. (2.6), (2.7), (2.8) and (2.48).

∂tρ11 = �ρ22 + i

2

(

�∗
pρ21 − �pρ

∗
21

)

, (2.49)

∂tρ21 = −
(

�

2
+ i�p

)

ρ21 − i

2
�p (ρ22 − ρ11) , (2.50)

∂tρ22 = −�ρ22 + i

2

(

�pρ
∗
21 − �∗

pρ21

)

, (2.51)

and
1

c
∂t�p + ∂y�p = iηρ21. (2.52)

The initial and the boundary conditions are:

ρeg (0) = δ1eδg1, (2.53)

�p (0, y) = 0, (2.54)

�p (t, 0) = δ (t − τ ) , (2.55)

where indices e, g ∈ {1, 2}. We make here two assumptions: (1) �p = 0 for a reso-
nant pump laser. (2) �p � � for no Rabi oscillation (i.e., �p is a perturbation). First,
we have to linearize Eqs. (2.49), (2.50) and (2.51). By considering the assumption
(2), and substituting

http://dx.doi.org/10.1007/978-3-319-02120-1_3
http://dx.doi.org/10.1007/978-3-319-02120-1_4
http://dx.doi.org/10.1007/978-3-319-02120-1_5
http://dx.doi.org/10.1007/978-3-319-02120-1_4
http://dx.doi.org/10.1007/978-3-319-02120-1_5
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ρeg(t) →δ1eδg1 + κρeg(t), (2.56)

�p(t) →κ�p(t) (2.57)

into Eqs. (2.49)–(2.52), we obtain

κ∂tρ11 = �κρ22 + i

2
κ2
(

�∗
pρ21 − �pρ

∗
21

)

, (2.58)

κ∂tρ21 = −�

2
κρ21 + i

2
κ�p − i

2
κ2�p (ρ22 − ρ11) , (2.59)

κ∂tρ22 = −�κρ22 + i

2
κ2
(

�pρ
∗
21 − �∗

pρ21

)

, (2.60)

and κ

c
∂t�p + κ∂y�p = iηκρ21. (2.61)

Neglecting the second order κ2 terms and subsequently using κ = 1, we obtain

∂tρ11 = �ρ22, (2.62)

∂tρ21 = −�

2
ρ21 + i

2
�p, (2.63)

∂tρ22 = −�ρ22, (2.64)

and
1

c
∂t�p + ∂y�p = iηρ21. (2.65)

Thus, the dominating equations are

∂tρ21 = −�

2
ρ21 + i

2
�p, (2.66)

1

c
∂t�p + ∂y�p = iηρ21. (2.67)

By substituting

ρ21 → �e− �
2 t , (2.68)

∂tρ21 → −�

2
�e− �

2 t + e− �
2 t∂t�, (2.69)

�p → Ae− �
2 t , (2.70)

∂t�p → −�

2
Ae− �

2 t + e− �
2 t∂t A, (2.71)

into Eqs. (2.66) and (2.67), we obtain
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∂t� = i

2
A, (2.72)

1

c

(

−�

2
A + ∂t A

)

+ ∂y A = iη�. (2.73)

By using the Fourier transform

�(t, y) = 1√
2π

∞
∫

−∞
φ(ω, k)ei[ky−ω(t−τ )] (2.74)

A(t, y) = 1√
2π

∞
∫

−∞
α(ω, k)ei[ky−ω(t−τ )], (2.75)

and substituting

� → φ, (2.76)

∂t� → −iωφ, (2.77)

A → α, (2.78)

∂t A → −iωα, (2.79)

∂y A → ikα, (2.80)

into Eqs. (2.72) and (2.73), the dispersion relation of the system is obtained

k(ω) = ω

c
− η

2ω
− i

�

2c
. (2.81)

By using the inverse Fourier transform, the solution of α is obtained

A (t, y) = 1√
2π

∞
∫

−∞
α0e−i[k(ω)y−ω(t−τ )]dω (2.82)

= 1√
2π

e− �
2c y

∞
∫

−∞
α0e−i

[

( ωc − η
2ω )y−ω(t−τ )]dω. (2.83)

Here, α0 = 1√
2π

∫∞
−∞ δ(t − τ )e−iω(t−τ )dt = 1√

2π
is the Fourier transform of the

boundary condition (2.55). Finally, the solution of �p is (complete derivation is
presented in Appendix A)

�p(t, y) = 1

2π
e− �

2

[ y
c +(t−τ )]

∞
∫

−∞
e−i

[

( ωc − η
2ω )y−ω(t−τ )]dω (2.84)
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= 1

2π
e− �

2

[ y
c +β]

∞
∑

n=0

(iq)n

n!
∞
∫

−∞

1

ωn
e−iωzdω (2.85)

= 1√
2π

e− �
2

[ y
c +β]

∞
∑

n=0

(iq)n

n!
[

−i

√

π

2

(−i z)n−1

(n − 1)! sgn(z)

]

(2.86)

= δ(z)e− �
2

[ y
c +β] − q

J1

(

2
√

qz′
)

2
√

qz′ e− �
2

[ y
c +β]. (2.87)

Here, J1(z) is the Bessel function of first kind [11, 12], β = t − τ , z = y
c − (t − τ ),

z′ = −z and sgn(z) is the sign function [13] which equals -1 in our case since
z < 0. Additionally, in most cases L

c is much smaller than t − τ , i.e., the prorogation
time of the incident light pulse through a target with length L is much shorter than
the detection time window t − τ . Therefore, the terms y

c are typically negligible.
Moreover, we derive Eq. (2.86) from Eq. (2.85) by using the Fourier transform of
1/ωn . The explicit form of Eq. (2.87) is then
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In experiments, the measured field [1, 11, 12, 14] is proportional to
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and the measured signal is proportional to
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(2.90)
This equation can be derived also using an iterative method with the response function
as it was shown in Ref. [15]. We will use Eq. (2.90) in Chaps. 4 and 5 to explain a
phenomenon called dynamical beat [16] of nuclear forward scattering [1].

http://dx.doi.org/10.1007/978-3-319-02120-1_4
http://dx.doi.org/10.1007/978-3-319-02120-1_5
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Fig. 2.2 a Interaction between a nucleus, pump laser (blue wide arrow) and Stokes laser (red wide
arrow). Typical sketches of a three-level �-type system appear in the literature of b nuclear and
c atomic physics. The blue (�p) and red (�S) vertical arrows depict pump and Stokes lasers,
respectively. �p and �S denote the detunings of the corresponding lasers. The green wiggled
arrows illustrate the spontaneous decay of state |3〉, B31 (B32) is the branching ratio of |3〉 ↔ |1〉
(|3〉 ↔ |2〉) transition and � is the spontaneous decay rate of state |3〉

2.3 Three-Level �-Type System

In this section, we extend the used theory for a three-level �-type system [2] that
is well known for describing several effects in atomic quantum optics, for exam-
ple, stimulated Raman adiabatic passage (STIRAP) [3] and electromagnetically
induced transparency (EIT) [4–6]. A typical three-level �-type system is illustrated
in Fig. 2.2a. For convenience, we assume the wave function of the considered nucleus
is |ψ〉 = C1(t)|1〉 + C2(t)|2〉 + C3(t)|3〉. The interaction between the nucleus and
two lasers is typically illustrated by a sketch like Fig. 2.2b in nuclear physics or
Fig. 2.2c in atomic physics. Since the pattern of Fig. 2.2c looks like the Greek letter
�, it is called as a �-type system. Here, pump laser (blue arrow) drives the transi-
tion |3〉 ↔ |1〉, with detuning �p and Stokes laser (red arrow) drives the transition
|3〉 ↔ |2〉 with detuning �S . The explicit form of ρ̂ in this case is:

ρ̂ =
⎛

⎝

ρ11 ρ12 ρ13
ρ21 ρ22 ρ23
ρ31 ρ32 ρ33

⎞

⎠ . (2.91)
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By considering the spontaneous decay, the decoherence matrix is

ρ̂s = �

2

⎛

⎝

2B31ρ33 0 −ρ13
0 2B32ρ33 −ρ23

−ρ31 −ρ32 −2ρ33

⎞

⎠ . (2.92)

In Eq. (2.92), B31 + B32 = 1 due to ρ11 + ρ22 + ρ33 = 1, i.e., the conservation of
population in a closed three level system. The decay rate �/2 for each of diagonal
coherence is derived from Eq. (2.3). Without any external laser, ρ33(t) ∼ e−�t which
means C3(t) ∼ e−(�/2)t , whence the other coherence ρ3μ and ρμ3 are also propor-
tional to e−(�/2)t . On the other hand, ρ̂s,12 = ρ̂s,21 = 0 as the two lower states |1〉
and |2〉 do not experience any decoherence process in this example. This corresponds
to choosing an isomer state |2〉, whose decay is strongly hindered.

The interaction Hamiltonian matrix ̂H(t) is [2, 3]:

̂H = −�

2
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0 0 �∗
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0 −2
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)
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S

�p �S 2�p

⎞

⎠ , (2.93)

where � is the reduced Planck constant. The explicit form of Eq. (2.1) can be obtained
by substituting Eqs. (2.91), (2.92) and (2.93) into Eq. (2.1):
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In above equations, �p and �S are Rabi frequencies defined as:

�p(t) = 1

�
〈3|̂HI |1〉

= 4
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π Ip(t)

cε0

√
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B(ε/μ L13), (2.100)

�S(t) = 1

�
〈3|̂HI |2〉
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= 4

�

√

π IS(t)

cε0

√

(2I2 + 1)(L23 + 1)

L23

kL23−1
32

(2L23 + 1)!!
√

B(ε/μ L23), (2.101)

where Ip(S)(t) is the pump (Stokes) pulse, I1(2) is the angular momentum of ground
state |1(2)〉, and , L1(2)3 is the multipolarity of the corresponding nuclear transition
|1(2)〉 ↔ |3〉. Equations (2.94)–(2.101) are successfully used to explain plenty of
phenomena in atomic quantum optics. In this thesis, we adopt and use it to inves-
tigate the proposal called nuclear coherent population transfer (NCPT) in Chap. 3.
Furthermore, Eqs. (2.94)–(2.101) together with

1

c
∂t�p + ∂y�p = iηρ31, (2.102)

will be used to discuss another proposal labeled as electromagnetically modified
nuclear forward scattering in Chap. 5.
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