Chapter 2
Dynamical Systems

2.1 Introduction

Anything that is changing with time is called dynamic. A system whose states are
changing with respect to time is called a dynamic system. In general, a dynamic
system is described by differential equations. The precise control of high speed
motion demands a realistic dynamic model of the robot arm. The dynamic
equations of motion of a general robotic arm is rather complex. There are different
approaches used by researchers to derive the equations of motion for robotic
systems. The first is the Lagrange-Euler formulation (Schilling 1990) based on the
concept of generalised coordinates, energy, and generalised force. An alternative
approach is the recursive Newton-Euler formulation, which is computationally
more efficient (Asada and Stoline 1986; Fu et al. 1987).

Using the D’ Alembert’s principle of the fundamental classical laws of motion,
dynamics of arms can be derived by summing all of the forces acting on the
coupled rigid bodies that form the robot arm. But the Lagrangian derivation of the
dynamics has the advantage of requiring only the kinetic and potential energies of
the system. Therefore, Lagrangian analysis is employed to compute the equations
of motion.

The Lagrangian, L, is defined based on the notion of generalised coordinates,
energy and generalised forces, as the difference between the kinetic energy and
potential energy of the system:

L(g,4) = K(q,9) — V(q) (2.1)

where K is the kinetic energy and V is the potential energy of the system, g rep-
resents the joint variables, g = dg/dt represents the joint velocities. The general
equations of motion of a robotic arm can be defined in terms of Lagrangian
function as follows:
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where F;, i =1,2,---,n, is the generalized forces acting on the ith joint. The
Lagrangian equation of robot dynamics consists of n-second order nonlinear dif-
ferential equations in the vector of joint-space of g. To derive any dynamic
equation for any robotic system, we need to formulate expressions for kinetic
energy K, potential energy V, and generalised forces F. The computation of the
total kinetic energy of a robotic arm K(q,q) in Lagrangian function is the most
complicated term. The potential energy V(g) is the gravitational forces. The
generalized forces are the residual forces acting on the robot arm.

2.2 Dynamics of Robot Manipulator

The dynamic equation of an n-axis robot arm can be derived from Lagrangian
function in (2.2) when the detailed expressions for the kinetic energy, potential
energy and generalised forces are available. The general dynamic model of the
robot arm can be described by the following equation with the joint variables ¢ and
actuator torques T:

STDi@a+ > Clla)aud; + hilg) +bi(@) =1, i=1,-,n (23)
j=1 k=1 j=1

The first term D;;(g)g; is an acceleration term that represents the inertial forces
and torques generated by the motion of the links of the arm. The second term
C,ij(q)qkqj is a product velocity term associated with Coriolis and centrifugal
forces. The third term h;(g) is the position term representing loading due to
gravity. The fourth term b;(¢) is a velocity term representing the friction acting
opposite to the motion of the arm. The n separate scalar equations in (2.3) can be
written as a single vector equation as follows:

D(q)q +c(q,4) + h(q) +b(g) = @ (2.4)

The term c(q, ¢) is called the velocity coupling vector. There are two distinct
types of inter-axis velocity coupling arising from here, which can be expanded into
two terms as follows:

(0.d) =3 @i + 33 @i (25)
k=1

k=1 j7k

The first summation corresponds to squared velocity terms associated with
centrifugal forces acting on joint i due to motion of joint k. The second summation
corresponds to product velocity terms associated with Coriolis forces acting on
joint i due to the combined motions of joints k and j such that j # k.
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2.3 Dynamics of Flexible-Arm

To design a flexible arm efficiently, whether intended for a specific application or
for a range of applications, several factors need to be considered. These include the
strength and flexibility of the arm, fast speed and acceleration capability, good
payload requirements, choice of suitable actuator and sensing equipment for the
control mechanisms intended to be employed. The problem of oscillatory
behaviour due to arm flexibility has traditionally been solved by mechanically
stiffening the arm. However, this leads to an increase in the weight of the arm.
Thus, a conventional industrial robot arm does not achieve the objective of the
lighter weight requirement of the flexible arm.

The issue of flexible arm design and control thus primarily caters for the design
of controllers to either compensate for the structural flexibility or to be robust in
the presence of structural flexibility. It has been shown that using joint position and
velocity sensors in a feedback control scheme for a rigid robot is adequate to
ensure satisfactory performance (Khosla and Kanade 1988; Seraji and Moya
1987). However, these sensors may not be sufficient to provide the necessary
information for the control of the elastic behaviour of a flexible arm. In addition to
measuring joint position and velocity, it is desirable to obtain the state of the end-
point as well. Although the deflection information of the arm can be theoretically
determined if the dynamic model of the system is available, this will require high
computing power and speed for on-line computation in addition to the uncer-
tainties usually associated with formulating the dynamic model of the flexible arm.
This argument for control purposes leads to the requirement of a suitable mea-
suring system for the flexible arm’s end-point.

A description and dynamic characterisation of the flexible arm utilised to verify
different intelligent control strategies is presented in this chapter. Similar experi-
mental arms have been constructed in the past (Cannon and Schmitz 1984; Has-
tings and Ravishankar 1988). The principal originality of the arrangement
presented here is that the deflection of the flexible arm is measured and controlled
using an accelerometer at the end-point. The following sections are intended to
recall, in an abbreviated form, the design procedures of a laboratory facility for
experimental study of a single-link flexible arm using end-point acceleration
feedback (Azad 1994; Tokhi and Azad 1997). The main purpose of the design
procedure is to relate a set of criteria which are useful in the design procedure,
such as accuracy of end-point, allowable payload mass, maximum joint velocity,
maximum joint acceleration and operating bandwidth of the arm. This will lead to
preliminary results of the arm parameters. The actuating system is also studied and
incorporated into the design procedure. Moreover, the design procedure will also
indicate the significance of flexibility for a range of specifications.
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2.3.1 Strength and Stiffness

Arm strength is the ability to withstand loads, which create stress in the system.
These loadings arise from attempts to move and stop the arm and to maintain a
position in gravity or other force fields. These loadings limit the capability of the
arm to perform its specified functions by limiting the speed with which it can
move. This speed limitation can yield a basis for comparison against stiffness
limitations. The stiffness itself is the tendency of the arm to resist deflections,
which may take the form of vibrations. For a distributed system such as a flexible
arm, these may take place at an infinite number of frequencies. Strength is
seemingly a more compelling requirement since inadequate provisions for strength
can result in catastrophic failures if a component fractures.

Arm strength and stiffness are qualitatively affected in the same way by a
number of parameters including payload mass, arm’s material density and length
and dimensions of the cross section. Varying one of these parameters to make the
arm stronger will result in a stiffer arm. Other parameters directly affecting only
strength include the maximum allowable stress for the arm material, inertial
loading from accelerating the arm and its payload, and the gravity or other constant
body forces present in the environment. Stiffness is characterised by the natural
frequencies, and its magnitude is additionally affected by the value of the Young’s
modulus for the material used.

Two other factors influencing characterisation of an arm are rigidity and flex-
ibility. The rigidity of the system can be checked by using a rule of thumb (Book
1984) which can be summarized as: if the servo frequency wg of a controller is less
than a third of the first resonance frequency of the arm [®;], then the arm can be
considered as rigid. If the servo frequency is between ®;/3 and ®;/2 then
vibration will occur but will be well damped. If the servo frequency is greater than
®1 /2, oscillations with insufficient damping will result. This will help to indicate
the significance of flexibility and rigidity for a range of specifications.

For the single-link arm considered, there are only two parameters, namely
thickness and width that can be altered to increase the strength of the arm. The
minimum thickness, as discussed later, will limit the stability of the arm. The arm
can be considered as a pinned-free flexible beam, with a lumped inertia at the hub,
which can bend freely in the horizontal plane but is stiff in vertical bending and
torsion. To avoid the difficulties arising in the case of a beam with time-varying
length, the length [ of the arm is assumed to be fixed. Moreover, shear deforma-
tion, rotary inertia and effect of axial force are also neglected. A schematic rep-
resentation of the single-link flexible arm system under consideration is shown in
Fig. 2.1, where E,I,p,M, and I, are the Young’s modulus, the area moment of
inertia, the mass density per-unit length, payload mass and hub inertia
respectively.

For a given value of payload mass at the end point of the arm and a desired
linear acceleration at the centre of gravity of the payload mass, the desired moment
at the joint (hub) can be calculated as (Book 1984)
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where,
o = required moment at the hub of the flexible arm,
o = linear acceleration at the centre of gravity of the payload mass,
w = offset between the centre of gravity of the payload mass and the end-point of
the arm,
g = acceleration due to gravity.

For a given flexible arm, the maximum torque, which can be applied to the joint
is given by

Gmaxl

Tinax = — (2.7)
where,
Tmax = Maximum applied torque,
Omax = maximum tensile stress (without changing the shape). This depends upon

the material used for the flexible arm construction;

1 = second moment of inertia of the arm,
C = half of the thickness of the arm (thickness/2).

For the arm to be strong enough to handle the desired torque, the following
criterion must be satisfied

Omax > O (2.8)

where equality applies to the optimum structure of the arm. It follows from Eq.
(2.7) that the minimum thickness of the flexible arm depends upon the amount of
torque required to be applied at the joint, i.e. upon the linear acceleration at the
centre of gravity of the payload mass.
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2.3.2 Safety Factor

The safety factor for the arm design can be defined as

SF = G’;ax (2.9)

For optimum design, the safety factor is to be unity. Figure 2.2 shows the
relation between end-point acceleration o and thickness 7 of the arm with various
values of safety factor for a given material (e.g. Aluminium alloy) with a payload
mass of 10 g, length of 0.96 m, and hub inertia of 5.86 x 10~* kgm?. For a given
end-point acceleration and safety factor, the thickness of the flexible arm can be
found from this diagram for a specific configuration.

The design and development of a flexible arm includes three areas (Tokhi and
Azad 1997): (a) design and construction of the mechanical structure; (b) choice of
suitable transducers for the specific application; (c) development of required
amplifiers and processing circuits and their calibration.

For the flexible arm utilized in this research as an experimental rig, a printed
circuit armature type motor is used as the drive actuator due to its low inertia, low
inductance and physical structure, which allows to be connected to the flexible
arm. The system incorporates an LA5600 amplifier/controller for controlling the
required dc-current driving the motor. This is due to its several features such as
motor clamping, directional clamping and output current monitoring provision.
The details of LAS600 are presented in Sect. 2.3.5.

For measurement of angular movement, the developed processing circuit is able
to produce both digital and analogue outputs at the same time. This enables the use
of analogue output from a 16-bit D/A as a feedback signal to the amplifier/
controller and digital output to the computer. This circuit can be modified to
control a microprocessor where the 8-bit output of the THCT2000 could be
directly connected with the computer’s data bus. The system uses a new type of
velocity measurement transducer instead of the conventional tachometer. A special
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Fig. 2.2 Relation between end-point acceleration and required thickness of the flexible arm
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feature of this transducer is that the output is totally free from any noise induced
from commutator friction, which is very important for low-level feedback signals.
Moreover, the inertia for this system is very small. In selecting the type of
accelerometer and strain gauge, size, weight and frequency range constraints are
considered strictly. The accelerometer utilised includes a built-in FET source
follower, which allows for a lower output impedance level.

Due to the irregular shape of the flexible arm hub, the hub inertia is measured
experimentally. This is important for modelling and simulation of the system.
Motor friction is also measured experimentally to verify the supplier’s data-sheet,
which has been found to be 0.011 Nm. However, this parameter is not considered
in the model because the effect of friction is not significant as compared to the
applied torque.

Noise and interference have been a serious problem than others during testing
and experiments. To overcome this, a linear amplifier is used and all the signal
amplifiers are powered from a battery instead of from the mains power supply.

Pentium I microcomputer in conjunction with an ADC-44d I/O board is used
with the flexible arm system. The experimental setup requires one analogue output
to the motor drive amplifier, four analogue inputs from the hub-angle and velocity
transducer, accelerometer and motor current sensor. The interface board is used
with a conversion time of 3 ps for A/D conversion and settling time of 20 ps for
D/A conversion, which are satisfactory for the system under consideration. The
details of the ADC-44d I/O board are presented in Sect. 2.3.7.

A more detailed description of the flexible arm system is given in the next
section.

2.3.3 Experimental Flexible Arm

The experimental rig constituting the flexible arm system consists of two main
parts: a flexible arm and measuring devices. The flexible arm contains a flexible
link driven by a printed armature motor at the hub. The measuring devices are
shaft encoder, tachometer, accelerometer and strain gauges along the length of the
arm. The shaft encoder, tachometer and accelerometer are utilised in this work.
The experimental rig is shown in Fig. 2.3a and the schematic diagram of the rig is
shown in Fig. 2.3b.

The shaft encoder is used for measuring the hub angle of the arm. A tachometer
is used for measurement of the hub velocity. An accelerometer is located at the
end-point of the flexible arm measuring the end-point acceleration. The flexible
arm is constructed using a piece of thin aluminium alloy. The parameters of the
flexible arm are given in Table 2.1.
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Fig. 2.3 Experimental rig Flexible arm (a); Schematic diagram of the experimental rig (b)
2.3.4 Printed Armature Motor

The experimental rig is equipped with a UIM4AT type printed circuit motor
driving the flexible arm. The specifications of the motor are given in Table 2.2.
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Table 2.1 Parameters and

s . Parameter Value

characteristics of the flexible

arm system Length 960.0 mm
Width 19.008 mm
Thickness 3.2004 mm
Mass density per unit volume 2,710 kgm™3
Second moment of inertia, / 5.1924 x 10~ m*
Young modulus, E 71 x 10° Nm™
Moment of inertia, 0.04862 kgm?
Hub inertia, 5.86 x 10~* kgm?

Table 2.2 Specifications of ~ p, -0 Unit Value

the UIM4AT motor
Peak torque Nm 3.075
Peak current A 72.0
Peak acceleration Krad.s2 52.3
Continuous torque Nm 0.325
Continuous current A 8.68
Maximum terminal voltage \" 229
No load speed RPM 4593
Power output w 101.7
Torque constant Nm/A 0.043
Back e.m.f. constant V/Krpm 4.5
Armature resistance Q 0.66
Moments of inertia Nm.s? 5.88 x 1073
Armature inductance nH <100
Mechanical time constant us 20.52
Electrical time constant ps <0.15
Voltage constant V/Krpm 2.25

This type of motor gives significant performance advantages for motion control
applications, which can be listed as follows (Azad 1994):

e [t gives high acceleration since it is able to produce high torque combined with
low armature inertia. This means shorter cycle times, more displacement per
second and higher throughput.

e It has a very low inductance, which leads to a negligible electrical time constant
and a short mechanical time constant (less than one millisecond). This implies
almost instantaneous application of full torque. This is a key to fast motion and
accurate tracking.

e [t does not have armature associated torque loss due to its construction and as a
result delivers more torque over its entire speed range. Moreover, the torque is
almost constant throughout its speed range. These properties provide a non-
varying transfer function over the entire operating range of the motor.

e Due to the absence of any iron in the rotor and a large number of commutator
bars and slots, extremely smooth torque with no “cogging” is achieved.
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e With the non-magnetic printed circuit armature and axial magnetic field, the
problem of demagnetisation of the permanent magnet is virtually eliminated.
Most printed armature motors are rated for a peak current of 10 times the
continuous rating. This property enables them to produce rapid acceleration and
deceleration when higher than the rated torque is usually required.

e As the inductance is nearly zero, there is no stored energy in the armature to be
dissipated during commutation. This eliminates arcing, which is the major cause
of brush wear. This increases the reliability in operation and life expectancy.

2.3.5 Motor Drive Amplifier

Linear amplifiers may be classified as either unidirectional with dynamic breaking
capability or bi-directional. For a unidirectional motor, deceleration is only
dependent on system friction and viscous damping, which takes a longer time to
stop the motor. This can be modified by introducing a circuit which shorts the
motor terminals when the motor current becomes zero, allowing a negative current
to circulate in the armature, thus stopping the motor. However, the drive amplifier
used is a bi-directional one because the motor needs to be driven in both directions
to control the arm vibration. The motor driver used is the LA5600 manufactured
by Electro-Craft Corporation. This motor drive amplifier (current amplifier)
delivers a current proportional to the input voltage. It serves as a velocity/position
controller as well as a motor driver. The reasons for using this amplifier/controller
can be listed as follows:

1. The main objective is to control the flexible arm by applying a controlled
amount of torque at the arm hub. This amplifier/controller can be used in
torque-controlled mode. That is, for a given amount of input voltage it can
produce a proportional current output to the motor.

2. For off-line identification of the system, it is needed to operate the system in a
joint based position and velocity feedback system. With this amplifier/con-
troller, such a system can be implemented by feeding back the tachometer and
shaft encoder output to the amplifier.

3. This amplifier has a four clamp facility, which can be used to limit or restrict the
function of the amplifier and consequently of the entire system to accommodate
various application requirements. The inhibit (INH) clamp is used to disable the
amplifier by turning all transistors in the output stage OFF when the clamp is
activated. The motor hold (MHO) clamp is used to stop the motor by effectively
driving the amplifier input signal to zero. It decelerates the motor and load to zero
speed as fast as possible and then holds the motor when stopped. The system
resists external torque applied to the motor shaft. These two clamps could be used
to stop the motor at any extreme operational situation by disconnecting them
from the ground (COM). The forward direction (FAC) clamp and reverse
direction (RAC) clamp affect the specific direction of motor movement. When
one of these clamps modes is activated, it prevents movements of the motor in
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that direction. These forward and reverse direction clamps can be used by wiring
through normally closed travel limit micro switches. This will stop the flexible
arm when moved beyond its range of movement.

4. There are three other output signals from this amplifier/controller, which could
be used as input to the controller or for monitoring purposes. The first one is the
motor velocity output (MVO) signal, which is an analogue voltage signal and is
proportional to the actual instantaneous motor speed. The second one is the
motor current output (MCO), which is a voltage proportional to the actual
motor current. Knowing the amount of current output from the amplifier, the
applied torque can be calculated by multiplying the current (/,) with motor
torque constant (K;). The third output is the system status output (SSO), which
is a logic level signal.

2.3.6 Accelerometer

There are two types of accelerometer commonly in use: (a) strain gauge type
accelerometers; and (b) piezoelectric accelerometers. Due to weight and size
constraints, the flexible arm system used in this work incorporates a piezoelectric
type transducer. Table 2.3 shows the specifications of the accelerometer used.

In this type of accelerometer, the crystal-sensing element is isolated from the
case and compressed or sheared between the accelerometer base and a seismic
mass. A dynamic force applied to the accelerometer in either direction along its
sensitive axis causes the crystal to generate a charge proportional to the acceler-
ation. The generated voltage can be represented as

DM
v=——A (2.10)
C
where D, M, C, A are the piezoelectric constants of the material, the mass of the

seismic mass, the capacitance and the acceleration respectively.

Table 2.3 Specifications of

Parameters Unit Value
the 303A03 accelerometer
Range g +500
Resolution g 0.01
Sensitivity mV/g 10
Frequency range Hz 1-10,000
Output impedance Q 100
Linearity % 1
Transverse sensitivity (max) % 5
Excitation voltage v 18-24
Excitation current mA 2-20

Weight g 2
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2.3.7 Computer Interfacing

The computer used for this experimental rig was an IBM-PC compatible Pentium
I 100 MHz CPU. Data acquisition and control was accomplished through the
utilization of an ADC-44d I/0O board. This board provides a direct interface
between the microcomputer and the actuators and transducers..

The ADC-44d board contains an NEC pPD71055 device, which is equivalent to
an Intel 18255 PIO. This device produces 24 programmable digital I/O channels. It
is suitable for sensing the presence of TTL driving connections. It contains a 12-bit
A/D converter with a conversion time of 3ps. Various configurations of its CMOS
multiplexer enable it to receive different numbers of input channels with different
voltage ranges. A/D conversion can be initiated by one of three possible means:
using a software convert command, applying an external TTL logic level signal or
by programming the NEC pPD71055 chip. The ADC44d is able to generate an
interrupt when one of three independent conditions has occurred: when an A/D
conversion is completed, when an overrun condition has occurred or when a given
number of counts have finished. The board contains two independent voltage
output channels, each with its own 12-bit D/A converter, which can produce an
output from £10 V to £50 mV. For time related digital I/O applications, the NEC
pPD71055/NEC pPD71054 counter/timer chip provides the ADC-44d with three
independent 16-bit channels that can be used for such counter/timer functions as
event counting, frequency measurement, single pulse output and time proportional
output. The board is mapped into the microcomputer’s I/O channel structure as a
block of 16 consecutive bytes, addressable on any unoccupied 16-byte boundary
from address 200H to 3FFH.

2.3.8 Operating Characteristics

Many systems and signal sources have non-linear characteristics associated with
actuation and sensing. Possible sources and types of input (actuation) non-linearity
and output (sensor) non-linearity are illustrated in Fig. 2.4.

A typical input non-linearity is the dead-zone +Uy. This represents a signal
level below which no actuation signal uyct(t) is sent to the system. The signal
u(f) must be designed to ensure that it has a minimum amplitude in this region.

The characteristics of frictional forces between two contacting surfaces often
depend on several factors including the composition of the surfaces, the pressure
between two surfaces and their relative velocity. An exact mathematical
description of the frictional forces is thus difficult to obtain (Kuo and Tal 1978).
The amount of friction associated with the motor has previously been determined
experimentally (Azad 1994). The measured friction (viscous coefficient B) was
found to be 0.029 mNm/rad/second.
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Fig. 2.4 Non-linear characteristics associated with actuation and sensing. Actuation and sensing (a);
Input non-linearity with saturation limits (b)

The torque required to eliminate the dead-zone has been found to be at least
£10.0 mNm. The presence of the flexible beam, including the clamp, would
obviously affect the dead-zone. This implies that a dead-zone compensator would
be required. Thus, if the torque has low amplitude components, which are within
the dead-zone, a minimum amount of torque should be maintained outside the
dead-zone. 1t is noted in Fig. 2.4b that the characteristic of the dead-zone of the
flexible arm lies between +18 and —21 mNm. By considering the error between
both, the angle of demand and position and the hub-velocity, the compensation
torque could be started.

The flexible arm hub-movements is defined to be in the range of £80° of angle
only, as illustrated in Fig. 2.5. The uncovered angle here is the undesired angles,
which are beyond the defined range.

2.4 Previous Research and Developments

Research in the area of flexible arm systems has been carried out for over 20 years.
These range from a single-link arm rotating about a fixed axis to three-dimensional
multi-link arms. However, most of the experimental work is limited to single-link
arm systems. This is due to the complexity of multi-link arm systems.
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Fig. 2.5 Operational range Operational area
of the flexible arm

Tokhi and Azad (1996a) have given a brief description of previously developed
methods of modelling of flexible arms. These can be classified as

Lagrange’s equation and modal expansion (Ritz-Kantrovitch),
Lagrange’s equation and finite element method,
Euler-Newton’s equation and modal expansion method,
Euler-Newton’s equation and finite element method,

Singular perturbation and frequency domain techniques.

In Lagrange’s equation and modal expansion method, the model is in the form
of a summation of modes. Each mode is a product of two functions: one is a
function of distance along the length of the arm, the other is a function of gen-
eralised co-ordinates dependent upon time. The model contains an infinite number
of modes. In practice, a finite number of modes is used. The Lagrange’s equation
and finite element method is similar to the Lagrange’s equation and modal
expansion method. In Lagrange’s equation and finite element method, the gener-
alised co-ordinates are the displacement and/or slope at specific points along the
arm.

The Euler-Newton’s method is a more direct method of calculating system
dynamics. The derivatives of linear and angular momentum are derived explicitly.
Newton’s second law is applied to equate these terms to the applied forces and
torques. The linear and angular momentum of arm is the unknown. These are
expressed in terms of assumed modes of finite elements. This leads to a dynamic
model containing time dependent elements, which relate to the applied forces and
torques. The basic approach in the Euler-Newton’s equation and assumed mode
method is to divide the system into a number of finite elements and balance each
element dynamically. This method can be tedious if the total number of elements
is large. The advantage of this method is that it is easier to include non-linear
effects without complicating the basic linear model.

In the singular perturbation technique, the characteristic modes of the system
are separated into two groups. These include a set of low-frequency, or slow
modes, and a set of high frequency, or fast modes. In a flexible arm system, the
rigid body modes are the low frequency modes and the vibration modes are the
high frequency modes. The dynamics of the system can then be divided into two
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sub-systems. The low frequency sub-system has the same order as that of the rigid
body sub-system. The low frequency variables are considered as constant
parameters for the high frequency sub-system.

An alternative method for modeling the arm system is the frequency domain
approach. This method can be used to develop a transfer matrix model using the
Euler-Bernoulli’s beam equation for a uniform beam. The disadvantage of this
method is that it is not possible to include the interaction between the gross motion
and vibration of the arm in the model. Hence, the model can only be considered as
an approximate method (Azad 1994; Tokhi and Azad 1996a).

An analytical model based on the Lagrange’s equation and modal expansion
method has previously been proposed (Tokhi and Azad 1996a). This model con-
tains an infinite number of natural modes. It is used to develop a state space and
equivalent frequency domain model of the system. These models are used as
background knowledge for the identification and modeling process in this study.

The finite difference (FD) method has been used to obtain an efficient numerical
method of solving the governing dynamic equation, partial differential equation
(PDE), of the flexible arm system through discretisation, both, in time and space
(distance) coordinates of the system. The algorithm proposed in this study allows
the inclusion of distributed actuator and sensor terms in the PDE and modification
of boundary conditions. The development of such an algorithm for a system
without the inclusion of structural damping has previously been reported (Tokhi
and Azad 1995). However, to provide a more realistic characterization of a flexible
arm, the development of a simulation environment incorporating a mode fre-
quency dependent structural damping can be pursued.

Both open-loop and closed-loop control strategies have been considered for
control of flexible arms (Tokhi and Azad 1996b). Open-loop control methods have
included bang-bang torque input, low-pass filtered and Gaussian shaped torque
inputs. Closed-loop control, on the other hand, has included joint based collocated
control and end point feedback (non-collocated control).

An important aspect of the flexible arm control that has received little attention
is the interaction between the rigid and flexible dynamics of the links. As the arm
configuration changes, the spatial boundary conditions of the links change, thereby
modifying their characteristic frequencies and modes. Carrying a load leads to a
change in the natural modes. This has important implications for control design,
where the performance of a controller designed on the basis of a fixed linear model
of the dynamics may be seriously degraded. There are several possible options to
solve this problem: a controller based on a more general model of the system,
perhaps even a non-linear model, a robust control scheme which can maintain
satisfactory level of performance despite changes in the arm dynamics, an adaptive
control scheme which modifies the controller in line with changes in the system.
Model based control can work best for a particular model of the system. The robust
fixed-parameter control scheme is limited to a very narrow range of system
changes. There is always a trade-off between the range of system changes and the
quality of the final control. Adaptive control schemes, combining plant model and
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controller adaptation, require necessary computing capability at the speed neces-
sitated by the dynamics of the flexible arm.

It is still not clear which of the various control schemes available represents the
best all-round solution for flexible arm control or even whether there is a single
best solution. Unfortunately, trends towards intelligent control of flexible arm to
date are not satisfactory and researches reported are very few. This area of research
demands further attention from the research community.

2.5 Dynamic Equations of Flexible Robotic Arm

A schematic representation of the flexible arm system considered in this work is
shown in Fig. 2.6, where X,0Y, and XOY represent the stationary and moving co-
ordinates respectively, 1(¢) represents the applied torque at the hub. E, I, p, V, I,
and mp represent the Young modulus, area moment of inertia, mass density per
unit volume, cross sectional area, hub inertia and payload of the arm respectively.
In this work, the motion of the arm is confined to the X,OY, plane.

The flexible arm system can be modelled as a pinned-free flexible beam,
incorporating an inertia at the hub and payload mass at the end-point. The model is
developed through the utilisation of Lagrange equation and modal expansion
method (Hasting and Book 1987). For an angular displacement 6 and an elastic
deflection u, the total displacement y(x, 7) of a point along the arm at a distance x
from the hub can be described as a function of both the rigid body motion 6(¢) and
elastic deflection u(x, ) measured from the line OX. The dynamic equations of
motion of the arm can be obtained using the Hamilton’s extended principle
(Meirovitch 1967) with the associated kinetic, potential and dissipated energies of
the system. Ignoring the effects of the rotary inertia and shear deformation, a fourth
order PDE representing the arm motion can be obtained as (Azad 1994)

0*u(x, 1) +p 0%u(x, 1)

ET ox* or?

= — pxb (2.11)

Fig. 2.6 Schematic
representation of the single-
link flexible arm

Flexible Link (p, E, I, L)

Rigid Hub (1)
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where u(x, 1) is the deflection of the link, p is density of the material, EI is the
flexural stiffness. This equation is very difficult to solve because of the third term
on the left-hand side.

To obtain the corresponding boundary conditions, the following must hold

The displacement at the hub {u(0,7)} must be zero,
The total forces at the hub must be the same with the applied torque,

The shear force at the end-point must be equal to Mp azgg’” (Tse et al. 1980).

The stress at the end-point must be zero, that is, no force should be present at the
free end;

u(0,7) =0
0*u(0,1) 0*u(0,1)
1, — EI =
" o a0 (
> 3 2.12)
Mp@ u(l,t) Ela u(l,t) _o
or? 0x3
Q*u(l, 1)
EI =0
0x2

where [ is the length of the arm.

Equation (2.11) with the corresponding boundary conditions in Eq. (2.12)
represents the dynamic equation of motion of the flexible arm system assuming no
damping in the system. In practice, however, such an effect is always present in the
system. There are several possible forms of damping within the system. To
incorporate damping into the governing dynamic equation of the system, a mode

3
frequency dependent damping term proportional to aai%’;) can be introduced (Davis

and Hirschorn 1988). Equation (2.11) can thus be modified to yield

£l o*u(x, 1) . pazu(x, H Dy O%u(x, 1) _
ox4 or? 0x20t
where Dy is the resistance to strain velocity, that is, rate of change of strain and

3
Dg aalx’géf ) represents the resulting damping moment dissipated in the arm structure

during its dynamic operation. The corresponding boundary conditions are:

—pxb (2.13)

u(0,1)=0
o*u(0,1) 0*u(0,1)
' —EI =

" oo a2 ) -
2 3 2.14

M,,a u(lt) _E16 u(lt) —0

0r? 0x3
2
I o u(l, 1) _0o

ox?
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Substituting for u(x,r) using total displacement y(x,7) = x8(z) + u(x, ), Eq.
(2.13), the boundary conditions, manipulating and simplifying yields the govern-
ing equation of motion of the arm in terms of y(x,¢) as

o*y(x, 1) 0%y (x, 1) ¥y (x, 1)
B 1P o2 P55
Equation (2.15) gives the fourth-order PDE which represents the dynamic
equation describing the motion of the flexible arm. To solve this equation and
develop a suitable simulation environment characterising the behaviour of the
system, the Finite difference (FD) method can be used. Thus, a set of equivalent
difference equations defined by the central finite difference quotients of the FD
method are obtained by discretising the PDE in Eq. (2.15) with its associated
boundary and initial conditions. The process involves dividing the arm into N
sections each of length Ax and considering the deflection of each section at sample
times At. In this manner, a solution of the PDE is obtained by generating the
central difference formulae for the partial derivative terms of the response y(x, ) of
the arm at points x = i.Ax, t = j.At (Azad 1994; Burden and Faires 1989; Lapidus
1982):

=0 (2.15)

y(et) _ yige1 = 201 +ij-1

o Ar?
y(et) _ Yirry— i Hvieny
[z Ax?
63}’(:&,’) Vit — Wi+ %YI—I./ —Yi2j
o 2Ax3
Ayt _ yirzj = 4yiery 6y — 4o +yioa, (2.16)
ot T Ax*
Y1) _ Yiget — i+ Vijo1 = Yictgat + 201y — Yiotjo1
orox AxA7?
y(et) _ yirry = vij FYisty = Vit jo1 +2Vijo1 = Vic1j-1
ox?or ArtAx?

where, y;; represents the response y(x, f) at x = iAx and t = jAr or y(x;, ;). A time-
space discretisation is adopted in the evaluation of the response of the arm.

2.5.1 Development of the Simulation Algorithm

A solution of the PDE in Eq. (2.15) can be obtained by substituting for %, g%{ and

aiz%t from Eq. (2.16) and simplifying to yield
EI p
A [ivzy = 4Yiery + 63ij — 4yimij + yieag] + AR [ij1 = 29ij + ¥ij-1]

Dy
T ACAL [yi+l,j = 2yij + Yic1j = Yirtj-1 + 2yij-1 —yi—l,,‘—l} =0
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or
Vigrt = =€[isaj +yie2g] +blyisry +yioj] +ayij = vij (2.17)
+ d[yH_]J —2yij + Yic1j = Yirtj-1 + 2yij-1 _yi_laj_l}
Wherea:27%; b:‘ff—éfzs :fffj; d:ffifz’-

Equation (2.17) gives the displacement of section i of the arm at time step j + 1.
It follows from this equation that, to obtain the displacements y,_; ;. and y, .1,
the displacements of the fictitious points y,2;,yn+1,; and y,y1;-1 are required.
These can be obtained using the boundary conditions related to the dynamic
equation of the flexible arm. The discrete form of the corresponding boundary
conditions are:

Yoj =0 (2.18)
AxI, Ax*
y-1;=n,;+ FIAL Vi1 — 21, + y1jo1] + ET(I) (2.19)
2A8°M

Ynt2j = 2Vns1j — 2n-1j + Yn—2j + TEIP [Vnjs1 = 2Yng + Ynj-1] (2.20)

Ynt+1j = zyn,/' — Yn—1j (221>

2.5.2 Hub Displacement

Note that the torque is applied at the hub of the flexible arm. Thus, t(i,j) =0 for
i > 1. Using Eqgs. (2.17) and (2.18), the displacement y; ;4 can be obtained as

Yijr1 = —c¢[ysj +y-1g] + byay + ayiy — yijo1 +d[ya; — 2y15 — yajo1 + 2y1-1]
(2.22)

Substituting for y_;; from Eq. (2.19) into Eq. (2.22) and simplifying yields

Viji1 = Kiyij+ Ko yaoj+ Ksysj+ Kayij1 + Ksyaj1 + Ket(j) (2.23)

where
K, = cAPEI+ j;glﬁ (a—2d)ArEl K, = — ch[thr (1-2d)Ar*EI
=+ czAth At EIJr0 cAxI),
Ky = A(SZIQAE-A?/,, Ks = — AzzglAfflezh
K3 = pen Ko = Atz%AljerAthxlh

— 7 AZEI+ cAx,
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2.5.3 End-Point Displacement

Using Eq. (2.17) for i = n — 1, yields the displacement y,_; 1 as

Yiotgi1 = —C[yn-3j + Yar1j] + b [Ynj + Yn-2j] + a@Vn-1j — Yu1j-1

(2.24)
+ d[Ynj = 29n-1j + Yn-2j = Ynj-1 + 2Vn-1j1 = Yn-2-1)
Similarly, using Eq. (2.17) for i = n, yields the displacement y, ;| as
Yujr1 = — €[Yn-2j + Yns2g] + b[Yus1y + Yao14] + @¥nj — Ynj1 (2.25)

+ d[)’n+1.j = 2Vnj + Y-ty — Ynr1j-1 + 2nj1 — ynfl,/'fl]

The fictitious displacements y,.; and y,,»;, appearing in Egs. (2.24) and
(2.25), can be obtained using the boundary conditions in Egs. (2.20) and (2.21).
Yut1,—1 can easily be obtained by shifting y,1; from time step j to time step j — 1.
Substituting for y,4;; from Eq. (2.21) into Eq. (2.24) yields the displacement

Yn—-1j+1 as

Yn-1j+1 = K7yn—3; + Kgyu—2; + Koyn—1j + KioYnj + K11¥n—2j-1 + K12Yn-1,-1

+ Ki13Ynj-1
(2.26)
where
K7 = —C K“ =—d
Kg = (b+ d) K =—(1-2d)

ng(a+c72d) K13:7d
K10:—(26—b—d)

Similarly, substituting for y,;»; and y,;; from Eqs. (2.20) and (2.21) into Eq.
(2.25), and simplifying yields the displacement y, ;i as

Ynjr1 = Kiayn—oj + Kisyn—1; + KieYnj + K17ynj-1 (2.27)
where
—2cAf? EI
Kiy=—-— 3
A2 EI + 2cAx3 Mp
4cAt* EI
Kis=-— 3
A2 EI + 2cACMp
AP EI 4cAX>Mp
Kig= b — 4+ X P
1= AZEI + 2cACMy {“ T TACED }

—APEI 2cAXMp
Ki7= -7 3 > +
A2 EI + 2cAx’Mp AP EI
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Equations (2.17), (2.23), (2.26) and (2.27) represent the dynamic equation of
the arm for all the grid points (stations) at specified instants of time ¢ in the
presence of hub inertia and payload.

Yij1 = — ¢ [Yiraj + Yicag] + b[yir1y + vicry] + avij — vijoi (2.28)
+d[yit1j — 2vij + Vie1j — Yir1j-1 + 2Vij-1 — Yie1j-1
Yij1 = Kiyij+ Kayaj + Kaysj + Kayij-1 + Ksyaj-1 + Ket(j) (2.29)
Yn-1j+1 = K7yn-3; + Ksyn—2j + Koyn—1; + KioYnj + K11Yn—2-1 + KioYu—1,-1
+ K13ynj-1
(2.30)
Yujr1 = Kiayn—2j + Kisyn—1; + Kigynj + K17ynj-1 (2.31)

2.5.4 Matrix Formulation

Using matrix notation, Eqgs. (2.28)—(2.31) can be written in a compact form as
Y1 =AY;; +BY,;;_ | + CF (2.32)

where Y,y is the displacement of grid points i = 1,2,---,n of the arm at time
stepj + 1, Y;; and Y;;_; are the corresponding displacements at time steps j and
Jj — 1 respectively. A and B are constant n X n matrices whose entries depend on
the flexible arm specification and the number of sections the arm is divided into,
C is a constant matrix related to the given input torque and F is an n x 1 matrix
related to the time step At and mass per unit length of the flexible arm;

Y1j+1 Yij Y1,j—1
Y2,j+1 Y2, V2,1
Yiji1 = 1 Yy=1 Y= , (2.33)
Ynj+1 Yn,j Yn,j—1
[ K K> K3 0 0 0 0 T
(b+d) (a—2d) (b+4d) —c 0 0 0
—c (b+d) (a—2d) (b+d) —c oy 0 0
A= : S - - :
0 0 —c b+d a-2d b+d —c
0 0 . 0 K5 Ks Ko Ko
L 0 0 0 0 Ki4 Kis K |

(2.34)
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rKy K 0 0 0 0 07
—d 2d-1 —d 0 0 0 0
0 —d 2d -1 —d 0 0 0
B=| : (2.35)
0 0 0 —d 2d—-1 —d 0
0 0 0 0 K11 K12 K13
L 0 0 0 0 0 0 Kyl
C=1(), F=[Ks 0 --- 0] (2.36)

2.5.5 State-Space Formulation

A state-space formulation of the dynamic equation of the arm can be constructed
by referring to the matrix formulation. Using the notation for simulation of dis-
crete-time linear systems, the dynamic equations of the flexible arm can be written
as

x(n+1) =Px(n) +Qu
(n+1) =Px(n) +Q -
y(n) Rx(n) + Su
where p— | A Vine o= C |, R=[I Ox], S=[0n]
INxN ONXN Onx1
u:[T o .- 0] ,y(n) 1n)~~~x(N,n),x(1,n—l)~~x(N,n—1)]
N represents the number of sections.
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Fig. 2.7 The bang-bang torque input. Time-domain (a); Spectral-density (b)
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Fig. 2.8 The hub-angle. Time-domain (a); Spectral-density (b)
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Fig. 2.9 The hub-velocity. Time-domain (a); Spectral-density (b)

2.6 Some Simulation Results

To identify an unknown process some knowledge of the process and signals is
required. The simplest way is to apply a signal and record the system’s response.
This data set can best describe the characteristic behaviour of the flexible arm.
There are various types of signals, which can be used as inputs to the system. Two
types of signals, namely a bang-bang and composite PRBS are widely used for this
purpose. In this experiment a bang-bang signal is used. It has been reported that
the vibration of the flexible arm is dominated by the first few (commonly two)
resonance modes. Anti-aliasing filters with cut-off frequency of 100 Hz are used
for the four outputs namely, the hub-angle output, the hub-velocity output, the end-
point acceleration output and the motor-current output.
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Fig. 2.10 The end-point (a)
acceleration. Time-domain
(a); Spectral-density (b)
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2.6.1 Bang-Bang Signal

The first attempt is to excite the flexible arm using a bang-bang torque input signal.
This is shown in Fig. 2.7. This has a positive (acceleration) and negative (decel-
eration) period allowing the arm to, initially, accelerate and then decelerate and
eventually stop at a target location. An amplitude of 0.3 Nm and duration of
0.6 s is chosen for the bang-bang signal in this experiment. The system response as
hub angle, hub velocity, end-point acceleration and motor current with the cor-
responding spectral densities, are observed for 4 s.

Figure 2.8 shows the trajectory of the hub displacement due to the bang-bang
torque input. Theoretically, the energy of the corresponding bang-bang torque
would equally distribute for acceleration and deceleration phases of the system.
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Fig. 2.11 The motor current. (a)
Time-domain (a); Spectral-
density (b)
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This means that there would be no further rigid body movement after the braking
phase of the bang-bang torque has ended, although vibrations or oscillations might
take place during this period. Due to problems, which commonly occur under real
conditions, for example, due to shaft motor frictions, which lead to the dead zone
problem, the response of the hub to the bang-bang torque gives a different
behaviour. The displacement has reached 30-35° but then moved back to 18°.

Figures 2.9, 2.10 and 2.11 show the hub velocity, the end-point acceleration
and the motor current output with corresponding spectral densities.
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2.7 Summary

A general description and characterization of the flexible arm system have been
presented. The system consists of two main parts: a flexible arm and measuring
devices. The flexible arm is clamped at the hub to a drive motor. The end-point is
assumed to carry a payload, and the vibrations in this position, are measured using
an accelerometer. A printed armature motor has been carefully chosen as the drive
motor since this type of motor has significant advantages compared to other types
of motor. It delivers high torque instantly, is capable of producing rapid acceler-
ation and deceleration, and provides extremely smooth torque with no ‘cogging’.
The motor drive amplifier has cautiously been selected to deliver a current pro-
portional to the input voltage: that is, for a given amount of input voltage it can
produce a proportional current output to the motor. The hub position and velocity
are measured using a shaft encoder and a tachometer respectively. A numerical
method of solution of the governing PDE describing the characteristic behaviour
of a flexible arm system incorporating the hub inertia, payload and damping has
been presented. Finally a state space model has been presented.
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