Chapter 4
Systems with Nondegenerate Characteristics

Abstract In this chapter we introduce the notion of nondegenerate multiple
characteristics. Simple characteristics are nondegenerate characteristics of order 1.
A double characteristic p of L is nondegenerate if and only if the rank of the
Hessian at p of the determinant of L(x, &) is maximal. We prove that every hyper-
bolic system which is close to a hyperbolic system with nondegenerate multiple
characteristic has a nondegenerate characteristic of the same order nearby. This
implies that hyperbolic systems with a nondegenerate multiple characteristic can
not be approximated by strictly hyperbolic systems which contrasts with the case
of scalar hyperbolic operators. We also prove that if every multiple characteristic of
the system L is nondegenerate then there exists a smooth symmetrizer and hence
the Cauchy problem for L is C*° well posed for any lower order term. Finally we
discuss about the stability of symmetric systems in the space of hyperbolic systems.

4.1 Nondegenerate Characteristics

Let P(x) be an m x m matrix valued smooth function defined near x € R”".
We assume that P (x) is a polynomial in x; so that

q
P(x) =) A;(x)x{’ (4.1
j=0
where x’ = (x, ..., x,). We adapt the definitions of hyperbolicity and characteris-

tics in Chap. 1 to P(x).
Definition 4.1. We say P(x) is hyperbolic near X with respect to 6 =
(1,0,...,0) € R" if det Ap(x’) # O near x’ = x’ and

det P(x + A0) = 0 = A isreal 4.2)
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162 4 Systems with Nondegenerate Characteristics

for any x near x. We say that X is a characteristic of order r of P(x) if
0%(det P)(x) =0, V]a| <r, 0d%(detP)(x) #0, Fa|=r. (4.3)
We now define nondegenerate characteristics. To do so we first define the

localization of P(x) at a characteristic.

Definition 4.2. Let X be a characteristic of P(x) verifying
KerP(x) NIm P(x) = {0}. 4.4)

Set dimKerP(x) = r. Let {vy,...,v,} be a basis for KerP(x) and let {{{,...,¢,}
be the dual basis vanishing on Im P (X), that is

Lidm P(x)) =0, Li(v)) =3;

where §;; is the Kronecker’s delta. Then we define the localization of P at X, a
linear transformation on Ker P (x), defined by a » x r matrix Px(x) with respect to
the basis {vy,...,v,}

(6P +10)v)), 2, = WP () + O] (4.5)

Remark. Let {0;} be another basis for KerP (x) where ¥; = > #;vr with a non
singular 7 X r matrix 7" = (¢;) and let {57,} be the dual basis vanishing on Im P (X).
Define Ps(x) by (4.5) with {#/;} and {£;} then it is clear that P;(x) = T~ P;(x)T
and hence Px(x) is a well defined linear map on Ker P (x).

Let us denote

Pz ={P;(x) | x e R"} C M, (C) (4.6)

which is a linear subspace of M, (C).

Definition 4.3. We call dimg P, the dimension of the linear subspace {Pz(x) |
x € R"} over R, the real reduced dimension of Pz (x).

We first show

Lemma 4.1. Let T(x) be a smooth non singular m X m matrix near X and let
P(x) = T~ (x)P(x)T (x). Then if X is a characteristic of order r of P(x) verifying
(4.4) then X is also a characteristic of order r ofﬁ (x) verifying (4.4) and there is a
non singular r X r matrix such that

Pg = T_IP;CT.

Proof. Since Ker P(X) = T '(Ker P(¥)) and Im P(X) = T~ '(Im P(%)) with
T = T(x) itis easy to see
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G(P(E +px)b;) = 6(PGE 4+ px)v)) + 0

where £; () =4;(T-)and o; = T~ 'v;. This proves the assertion. O

Lemma 4.2. Assume that P(x) is hyperbolic near X. Let X be a characteristic
verifying (4.4) with dim Ker P (x) = r. Then we have

det P(x + px) = p' (¢ det Pz(x) + O(p)) 4.7)
with ¢ # 0. Assume further that det Pz (x) # 0 then

det Pz(0) # 0, (4.8)
det Pz(x + A0) = det(Pz(x) + AP;(0)) =0 = L€ R, Vx e R". (4.9

Proof. In view of (4.4) we can choose a non singular constant matrix 7" so that

e 00
T P(x)T_[OG}

where G is a non singular (m — r) x (m — r) matrix. With P(x) =T 'P(x)T we
write

P(X +px) = P(X) + nP(x) + O(pn?).

Denoting

pll(x) ﬁlz(x):|

P@) = |:1321 (x) Py(x)

itis clear Py (x) = 131 1(x) which follows from the definition. Since det P; = det P;
by Lemma 4.1 we have
det Pi(x) = det Py (x). (4.10)
Note that
det P(¥ + pux) = det P(X + px) = p'(det G det Py (x) + O(n))  (4.11)
which shows the first assertion. To prove the second assertion suppose det P;(8) =0
so that det P(x + 0) = o(n") by (4.7). This implies that (9/dx;)’ det P(¥) = 0
for j = 0,...,r. Since detP(x) is hyperbolic in the sense (4.2) it follows from

Lemma 1.9 that

(0%det P)(X) =0, Vla|<r.
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This implies det Pz (x) = 0 which is a contradiction. We turn to the third assertion.
Since

det P(x + n(x + A0)) = p” (c det Px(x + \0) + O(M))

if det Pz(x 4+ AB) = O has a non real root A, then taking . # 0 sufficiently small
the equation

cdetPr(x +A0) + O(n) =0

admits a non real root. This contradicts (4.2). O

Definition 4.4. Denote by M/(C) the set of all r x r Hermitian matrices and by
M (R) the set of all real r x r symmetric matrices. Then r* and r(r + 1)/2 is the
dimension of M/ (C) and M (R) over R respectively.

Definition 4.5. We say that x is a nondegenerate characteristic of order r of P(x)
if the following conditions are verified;

KerP(x) N Im P(x) = {0}, (4.12)
dimp Pz = r* = dimRMrh((C), (r = dimKer P(x)), (4.13)
det P;(0) # 0, P;(0)~!P;(x) is diagonalizable Vx € R". (4.14)

When P(x) is real valued then we say that x is a nondegenerate characteristic of
order r if

Ker P(¥) N Im P(%) = {0}, (4.15)
dimp Pz = r(r + 1)/2 =dimgM(R), (r =dimKer P(X)), (4.16)
det Pz (0) # 0, P:z(0)~!P;(x) is diagonalizable Vx € R”". 4.17)

Example 4.1. Simple characteristics verify (4.12)—(4.14) with r = 1 and hence a
simple characteristic is a nondegenerate characteristic of order 1.

Example 4.2. Letq = 1 and m = 2 so that P(x) = x; + A;(x") where A;(x’) is
areal valued 2 x 2 matrix with A;(0) = O. As we will see in the next section that
if the rank of the Hessian of det P(x) at x = 0 is 3 then x = 0 is a nondegenerate
characteristic of order 2.

Example 4.3. Let us consider

d
P(x)=8&1+) FjE;
j=2
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where {1, F», ..., Fq} span M, (R) and d = m(m+1)/2. Then every characteristic
of P is nondegenerate. We check this. Let § be a characteristic of order 7 of P(§) so
that 0 is an eigenvalue of P (§) of multiplicity r. Take an orthogonal matrix 7' such
that

_ = OO0
T~ PET = [OG}

where G is a (m — r) x (m — r) non singular matrix. Denoting
P§)=T"'"PE)T = (¢5(8))1=ij=m

we note that ¢;;(§) = ¢;;(§) and ¢;(§), i < j are linearly independent. Writing

5 Py 1312i|

P = ~ ~
®) [le P

it is clear that ISE(E) = Py;(§) and dim 135 = r(r + 1)/2 because ¢;, i < j

are linearly independent. Since Py (£) is symmetric for every & then (4.14) is also

obvious. Thus by Lemma 4.1 we conclude that € is a nondegenerate characteristic
of P.

To study P(x) we consider the following mg x mq matrix valued function

0o -,
0 0o -1,
P(x) =x11 + =xi ] + ()
—1I,
Ay(x) - s A (X))

where [ and 7, are the mqg x mq and m x m identity matrix respectively. It is clear
that

detZ(x) = det P(x). (4.18)
Then the condition (4.2) implies that all eigenvalues of o7 (x’) are real, equivalently
all eigenvalues of &?(x) are real. 4.19)

In the rest of this section we prove

Proposition 4.1.1 Let X be a nondegenerate characteristic of order r of P(x). Then
X is also a nondegenerate characteristic of order r of & (x) and vice versa.
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Proof. Assume that X is a nondegenerate characteristic of order r of P(x) and show
that X is also a nondegenerate characteristic of order r of &?(x). We first check

[B—P()'C)KerP()'c)] @ Im P(X) = C". (4.20)
8x1

Let {v1,...,v,} be a basis for Ker P(¥) and take {¢;} so that £; (Im P(x)) = 0 and
L;(v;) = §;. Then by definition we have

n

", oP _ P _
Pz (x) = (51‘ ((; E(x)xk)vj)) = Z (ei ((E(X))Uj)) X

k=1

and hence
P:(0) = (ei ((g—i(i))vj)) :
Then det P;(0) # 0 implies that
[g—;(fc)KerP()'c)] NIm P(%) = {0}

and hence (4.20).
We note that

Ker2(x) = {' (u, xqu, ..., x""'u) | u € Ker P(x)}

and dim Ker #(x) = r. We next describe Im & (x). Write
q—k )
P(x) = D A (x)x{ 7
j=0

then it is easy to see that

q—1
Im 2(x) = {' W, WD Pv=Y " de()w®) [w, . wlTD yeCm.
k=1
We now show that
KerZ (%) N Im £ (x) = {0}. (4.21)
Let £ be a linear form on C"¢. Writing v = ' (vV, ..., v@) € C"? with v/) € C™"

one can write
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q . .
((v) = ng(vm)
j=1
where £\/) are linear forms on C”. Assume £(Im £ (X)) = 0. This implies that

(D) =D¢;(%)), 1<j<q—1, L90mP(F) =0 (4.22)

and then we have
q q—1
D DE Ty =Y D& T o () + LD E ) (4.23)
j=1 j=l
q—1
=90 % o, @u+ " wy = 0.
j=1

From this, noting the identity

q—1

- - P
Zx{ l‘bj(x) + xf L= g(x)
j=1 1
one gets
P )
N)(a—(x)u) =0, VueKerP(X). (4.24)
X1

From (4.20) and (4.22) it follows that £? = 0 and hence £ = 0. This proves that
KerZ(x) + Im &Z(x) = C™ (4.25)
and hence (4.21).
We next examine (4.13), (4.14) for Z(x). Let U = '(u,Xu, ... ,)"c{f_lu) €
KerZ(x) where u € Ker P (x). Consider & (x)U

POU = "((x1 — X, (x1 — X)X, ..., (x1 — X)X u,v)

='WD, w® oWl )
where the last component v is

v=PGE.Xu+ 03—

= P(xX)u+ [P(X1,x") = P(xp, x)u + %77 (1 — %))
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Now it is easy to see that this is equal to

q—1
P(u =Y o (®WH + 0((x1 — ). (4.26)

k=1
Let £ be a linear form on C"4 with £(Im £(x)) = 0. From (4.26) it follows that

q—1
UP(x)U) =D LDWD) + £D(P(x)u
j=1
q—1
= o (@®WP) + 0((x1 — x1)?) (4.27)
k=1

=LD(P(x)u) + O((x; — %1)?)

by (4.22). Let us take Uj = ’(uj,)_cluj, ... ,)_Ci]
basis for Ker P(x). Then one can write

1uj) € KerZ?(x) where {u;} is a

P _ g _
W(x)uj — Zajkuk € Im P(x),
! k=1

thanks to (4.20) with a non singular A = (aj ). Take {; so that
GAm P(X) =0, £i(uj) =8

Let us take El@
r ~
69 = "baly. B =(by)="4"
k=1
so that

P r r _
GG @up) = 3 bu Y ajpliuy) = 8.
! k=1 p=1
We now define linear forms £; on C"4 by

q—1
Ei(W(l), o ,w(’”) — Zgl(q)(d)t()—c)w(r)) + el(q)(w(q))

t=1



4.2 Nondegenerate Double Characteristics 169

then we have
Li(ImP(x) =0, £;(U;) =3 (4.28)
as observed above. From (4.27) it follows that
(P + u0)Uj) = 67 (P(E + pxoug) + 0(n?)
= ibikék(P(fc + uy) + 0 (1)

k=1
= w(BP:(x) + O(n)).

Since B = (‘A)~! = P;(8)~! we conclude that
Pi(x) = Pz (0)' Pr(x). (4.29)

Since Z;(0) = I then (4.13) and (4.14) for Z;(x) follow immediately.

Conversely assume (4.25). Let £ be a linear form on C” with £ (Im P (X)) =
0, £ (KerP(¥)) = 0 and define £U), 1 < j < g — 1 by (4.22). Then we have
£(Im £ (x)) = 0 and moreover (4.22) shows £(Ker#?(x)) = 0 and hence £ = 0 by
(4.25). Thus we have £ = 0 which proves KerP(X) @ Im P(X) = C™ and hence
(4.12). To check (4.13), (4.14) for P(x) we note that KerZ(x) N Im £ (x) = {0}
implies that

P
u € KerP(x), g—()'c)u €elmP(x) = u=0.
X1

Hence we have (4.20) again and thus (4.29). Then the rest of the proof is clear. O

Remark. Assume that ¢ = 1 and A;(x’) is symmetric in (4.1). Then (4.12) and
(4.14) are always verified.

Remark. By definition, the order of nondegenerate characteristics never exceed m,
the size of the matrix whatever ¢ is.

4.2 Nondegenerate Double Characteristics

Nondegenerate double characteristics have a special feature.

Lemma 4.3. Let X be a double characteristic. Then X is nondegenerate if and only
if dimKerP (x) = 2 and the rank of the Hessian of det P(x) at X is 4. When P(x)
is real valued then X is nondegenerate if and only if dimKer P (x) = 2 and the rank
of the Hessian of det P(x) at X is 3.
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To prove the lemma we first note

Lemma 4.4. Let A; be 2 x 2 constant matrices with TrA; = 0,1 < j < m.
Assume that the quadratic form

0(x) =det(Zijj)
j=1

is real nonpositive definite in R™. Then the rank of Q(x) is at most 3 and if
rank Q = 3 then there is a constant matrix N such that

N7T'A;N

is an Hermitian matrix forall j. Ifall A; are real thenrank Q < 2and ifrank Q =2
then there is a real constant matrix N such that all

N7'4;N
are real symmetric.
Proof. With a non singular real matrix 7 = (f;;) one can assume
m k
O(Tx) =det() Hjx;)=-Y x3. TrH;=0 (4.30)
j=1 j=1
where H; = ) /L, t;;A; and rank Q = k.If k < 2 then nothing to be proved. Thus

we assume k > 3. Since det H; = —1, Tr H; = 0, one can diagonalize H

_ 10
H{ = NJ'H|N, = [0_1]

Denoting H; = N; ' H, N = (h;) and taking x; = 0, j > 3 it follows from (4.30)
that iy = hyp = 0, hiohy = 1. Setting

10
Nyt =
2 [0h12:|

it follows that

N;'H{N, = H{, N;'H,N,= [(1) (1)} .
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Letusput N = NyNyand N"'H;N = Hj} = (h')), j > 3. Take x; = 0 unless
Jj = 1,3 then we geth(13l) = h(z? = O,h(é)hg) = 1 and taking x; = O unless j = 2,

3 we get h(132) + hg) = 0. Thus we conclude h(é) = +i. The same procedure gives

H;:Ej[—i0i|’ (¢j=1lor —1), 3<j <k.

Repeating similar arguments we obtain H; = O for j > k. We summarize

k
(3 1o 01
N ( Hj.Xj)N—|:O_11|X1+|:1Oi|X2

j=1
0] «
+[_i 0}(;ejxj), Hi =0, j>k (431
and from (4.30)
k k k
—det(ZHjxj):xlz+x§+(Zejxj)2:Zx§. (4.32)
j=1 j=3 j=1

The identity (4.32) holds only if k = 3 and all N "' H; N are Hermitian. Since T is
real then N ™' 4; N are also Hermitian. This proves the assertion. If all 4; are real,
we can take N real and the proof is similar. O

Proof of Lemma 4.3. Take T so that

T7'P(X)T = [/01 g} (4.33)

where G is a non singular matrix of order m — 2 and all eigenvalues of A are zero.
Assume that dimKer P (x) = 2. Then it follows that A = O and hence Ker P(x) N
Im P(x) = {0}.

Assume that rank Hess; det P = 4 and hence det Pz(x) # 0 by Lemma 4.2.
From Lemma 4.2 again we have det P;(0) # 0 and P;(0)~! Pz(x) has only zero
eigenvalues for every x. Then writing

P07 Pe(x) = xiLh+ Y Ajx,
j=2

= (xi - %Tr(z Apep) b+ Y Ay
j=2

=2
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it follows that det(Z'j’,=2 A jX;) is a real nonpositive quadratic form on R~ of

which rank is 3 since the rank of the real quadratic form det (Px (0)7' P;(x)) is 4.
Note Tr A; = 0. From Lemma 4.4 there exists a constant 2 X 2 matrix 7" such that
T~'A;T is Hermitian for every j so that one can write

TPz (0) ' Pz (x))T (4.34)

—aw ][]+ e[y el ] w4 ]

with real linear forms ¢;(x) and obviously P;(0)~' Pz(x) is diagonalizable for
every x. Since ¢;(x), i = 1,2,3,4 are linearly independent it is clear that
dimpg Pz = 4.

Conversely we assume that a double characteristic X is nondegenerate. Take T
so that (4.33) holds. From KerP(x) N ImP(x) = {0} it follows that A = O and
hence dimKer P(x) = 2. Assume dim P; = 4 and det Pz(8) # 0. Let us write

4
Pr(0)7' Pe(x) = (x —W())a + Y Ajx;

=2

where TrA; = 0 and {I», A2, A3, A4} are linearly independent by assumption.
Since P;(9)~' Pz (x) has only real eigenvalues for every x then det(Z‘; —Ajx;)
is nonpositive definite so that one can write

4 k
det() " Ajxj) = - £;(x)
j=2

i=1

with linearly independent £;(x) where k < 3 by Lemma 4.4. Assume that
li(x) = 0,i = 1,...,k then Zj:z Ajx; has only zero eigenvalues because
TrA; = 0. Since Zj _, Ajx; is diagonalizable by assumption then we conclude
that Zj:z Ajxj = O so that

4 k
ZA]'X]' = ZH]'EJ'(X)
j=2

i=1

which proves k = 3. Thus det(P5(0)~! Pz(x)) has rank 4 and from Lemma 4.2 it
follows that rank Hesszdet P = 4. This proves the assertion.

The case that P(x) is real valued, the proof is just a repetition with obvious
modifications. O

Proposition 4.1. Let m = 2 and q = 1. Assume that P(x) = O and the rank of
Hessdet P is 4 at x (3 if P(x) is real valued ). Then £ = {x | d%(det P)(x) = 0,
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la] < 1} is a C° manifold near X with codimX = rank Hess; det P on which
P(x) = 0.

In fact, in Sect. 4.5, we prove this proposition in much more generality (Proposi-
tion 4.3). The smoothness of the characteristic set is closely related to the existence
of smooth symmetrizers (see [48]). Indeed we have

Proposition 4.2 ([17,48]). Let m = 2 and q = 1. Assume that P(x) = O and the
rank of Hessdet P is 4 at X (3 if P(x) is real valued). Then P(x) has a smooth
symmetrizer near X, that is there is a smooth 2 x 2 matrix valued S (x') defined near
X' such that

S*(x") = S(x) and S(x') is positive definite,
S(xNP(x) = P*(x)S(x)

where P*(x) denotes the adjoint matrix of P(x).

Example 4.4. Let us consider second order differential operator P(D) = (py(D))
with 3 x 3 constant matrix coefficients

pi(t.§) = (T — 01 §H8i — (1 — 0))&ik
which is called the modified elasticity operator in [25] where € = (&, &,, €3) and
O<or<oy<oy<l.
Note that the excluded case where 06, = 0, = 03 yields the elasticity equations.

We follow the arguments in John [25]. Let Q(t,&) = det P(t, &) then Q(<,£) can
be written

0(1.8) = (v — qo(§)(t* — 2q1(§)T* + q0(§)q2(E))

where qo, ¢1, ¢» are the definite quadratic forms given by
1 1 1<
2 2 2 2
= s = 01020 —&7, = —(01 + 02+ 0 - = 0;€E.
q0 = [§I°, @2 102 3,2—10/ &5, 2( 1 2 3)[E] 2;:1 7§

Taking the homogeneity into account we consider multiple characteristics (t, &)
with || = 1. It is shown in [25] that (t,£), |€] = 1 is a multiple characteristic
if and only if

D(E) = 4(q} —qoqn) =0, [E| =1

which gives 4 points

+ (B3/PB2,0,B1/B2), £(—B3/B2,0,B1/B2) (4.35)
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where B; = (03 — 02)"/%, By = (03 — 01) /2, B3 = (02 — 07) /2. If we set

D*(§) = D(&) + BiP3(g0(®) — 1)’
then we have at a double characteristic (4.35) which we denote é

9> D*(E)

1 .
g 8B7B3 (S — 5 @i18es + 81183554

and hence Hessian of D* is positive definite. This shows that the Hessian of D(£)
has at least rank 2 and then the Hessian of (1> —¢;)?+ D() has rank 3 which proves
that the double characteristic (4.35) are nondegenerate.

We find similar second order differential operators P(D) = (pi(D)) with 3 x 3
constant matrix coefficients in [64] in the studies of relativistic elastodynamics.

Example 4.5. We have

Theorem 4.1 ([22]). In the set & of all positive definite real symmetric 3 X3 matrix
valued quadratic forms

3
AE®) = ) AuE s

jk=1

the subset for which the characteristics of det (1?1 — A(£)) are at most double and
the double characteristics are nondegenerate is an open and dense subset.

‘We have also

Theorem 4.2 ([22]). One can choose a positive definite real symmetric 3 X3 matrix
valued quadratic form A such that the characteristics of det (v* 1 — A(E)) are at most
double, the double characteristics are nondegenerate, and there are at least 12 of
them.

4.3 Symmetrizability (Special Case)

We first note that, considering —Ao(x")'P(x), we may assume that P(1,0,...,
0) = —1, so that

P(x)=—xiL+A'(x), A'(x)eC™(Q, M)

which is also written

P(x) = —(x; — %TrA/(x/))Iz + A(x), TrA(x") = 0.
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Note that
g(x) =detA(x) £0

and Tr A’(x") is real which follows from the hyperbolicity of det P (x). Let us denote

n o a(x’) b(x')
AlF) = [c(x/) —a(x’)} '

We denote by da(x’) the differential of a at X’ so that a(x’ +x") = da(x’)+ O(]x'—
x’|?) and by Re @ and Im a the real part and the imaginary part of a respectively.

We first assume that P(x) is real valued and rank Hesszdet P = 3. The
assumption is reduced to rank Hesszg = 2. From Proposition 4.1 it follows that
¥ = {x' | g(x’) = 0} is a smooth manifold of codimension 2. Then there are
£;(x"),i = 1,2suchthat ¥’ = {£;(x") = 0, £,(x’) = 0} and

A(X') = Hi(x' ) + Hy(x),  g(x') = =02 — 02
where d £; (x’) are linearly independent. Let K| be the restriction of H; to £, = 0

then it is clear that det K; = —1 and Tr K; = 0. Hence there is a real 2 x 2 matrix
N(x’) such that

_ 10
N7'K|N =

and then we have

NIAN = [(1) _01} (€1 + aby) + [3 (ﬂez.

From the Taylor expansion of det A(x’) around X’ it is easy to see that a(x’) = 0,
B(x)y(x’) = I and consequently the matrix

10
M= [0 1/y<x’)}

is well defined near Xx'. Putting T'(x") = N(x")M(x’) and writing B(x")y(x) =
1 + ¢ we have

) 1 !
TAT = [O_OJ(EI +aby) + [(1) Jgﬂez.
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We now define S by

1 0
SZ[Ol+ﬂJ‘

Since Y/(X') = 0 it is easy to see that S is a desired symmetrizer of T~'AT. Since
the symmetrizability is invariant under similar transformations we get the desired
assertion.

We next prove the proposition assuming that rank Hesszdet P = 4. Since the
hypothesis rank Hesszdet P = 4 reduces to rank Hessz; g = 3 we may assume that

0 = (dRea)? — (dIma)? + (dReb)(dRec) — (dImb)(dImc)

is nonnegative definite and has rank 3. Here we note that a real quadratic form
Q which is nonnegative definite can not vanish on a linear subspace V unless
codim V' = rank Q. We first remark that dRea # 0. If it were not true we would
have
0 < Q = —(dIma)* + (dReb)(dRec) — (dImb)(dImc)
& (dReb)(dRec) — (dImb)(dImc).
It is clear that there is a linear subspace V (C R"~!) with codim V' =< 2 on which Q

vanishes and hence rank Q = 2. This contradicts the assumption.
Set ¢ = Rea and denote by b|,—¢ the restriction of b to the surface {¢ = 0}.

Lemma4.5. Let b = Bo + b, ¢ = vyo + ¢ with b = ble=0 = by + iby, & =
clo=0 = C1 + i¢y where b;, ¢; are real. Then we have

db; #0, dé #0at ¥, i =1,2.
Proof. Denoting Ima = a¢ + & with @ = a|,=o one can write
A = [(1 J;la) e im)} * [51 Yie bl—t‘ébz} '
From the non-positivity of g on {¢ = 0} it follows that
bié —byér —&* 20, (4.36)
b1& + byéy =0 (4.37)

near X’. Suppose, for instance, that dby(¥') = 0 and hence db, = 0 or d¢; = 0
(at X") by (4.37). If db, = 0 then d@ = 0 by (4.36) and then Q vanishes on
{x" | do(x") = 0} because da = (1 +ia)dg at x’. This is a contradiction. The other
cases will be proved similarly. O
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Lemma 4.6. db, is not proportional to dbyat . There is a positive functionm(x")
defined near X' such that

E(X) =m(bi(x), &) = —m(x)ba(x).

Proof. Suppose that dl;2 = kdl;1 at X’ with some k € R and hence d¢é, = —kd ¢,
by (4.37) at X’. Since from (4.36) we see

dbdé, —dbydé, —dada = (1 + k*)dbydé —dada > 0,
and hence db, and d& must be proportional to da at & if dd@ # 0. Then it is
clear that Q vanishes on {x’' | da(x") = d@(x") = 0} which is a contradiction. If
da = 0 (at x’) then Q vanishes on {x’ | do(x’) = dé& (x") = 0} which also gives

a contradiction. This proves the first assertion. The second assertion easily follows
from the first one and (4.36), (4.37). O

We can put A in a special form.

Lemmad.7. Let p = By + iPo y = y1 + iva Pi, vi real. Set \r; = b; + Big
i =1,2), B=1vyy+mPy, C =y, —mpP,. Then we have

B 10 —iB/2 1 —iC/2 i
A_(p[C+iB—1}+¢l[ m iB/Z}—H‘IIZ[ —im iC/Z]

Moreover d, d\s; are linearly independent at X' and the set {x' | A(x') = O} is
given by

S =" o(x) = ¥1(x) = (x) = 0}

Proof. Recall that

1+ia B ia b +ib
A= RC ,
‘P[ y —(1+l'a)}+[m(b1—ibz) —id }

We observe the imaginary part of g
Img = 2a¢® + 26¢ + Im (By)¢* + Im (y + pm) @b, + Re (y — Bm)(pl;z.
Since Im g = 0 near X’ and d¢ # 0 at X’ it follows that
209 + 23 + Im (By) ¢ + Im (y + pm)b; + Re (y — pm)b, =0 (4.38)

near x’. Now we set
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D =Im(By), B =Im(y +Pm) = y> + Pom,
C =Re(y —pm) = y1 — Pim.

Noticing D = BB + B, C it follows from (4.38) that

(g +3) = 3 (41 B+ 1:C) (4.39)

which shows thata = (1 +ia)e+id = ¢ —i(Y1 B 4+ »C)/2. On the other hand
it is easy to see

m(by —iby) +y@ = (C +iB)o +m( —iVa), by +iby+po =i +iln

because y; = C + mf; and y, = B — mf,. These prove the first part. The rest of
the assertion is obvious. O

Lemma 4.8. We have
4m — (B> +CH >0 at ¥
Proof. Letusset B = Ble=o0, C = C|g=0. From (4.39) it follows that
& = —(Bb, + Chy)/2.
On the other hand (4.36) and Lemma 4.6 give that
m(b? + b?) — &> = 0 near x'.
Since the quadratic form m((d b)? + (d b,)?) — (Bd b, + C d b,)? /4 is the restriction

of O to {x" | do(x’) = 0} this must have rank 2 and then positive definite.
This shows that 4m — (B? + C?) > 0 at X’ and hence the result. O

To finish the proof of Proposition 4.2 we give a required smooth symmetrizer
S(x’) for P by

S() = [ 2m(x") —C(x") + iB(x’)i|

—C(x") —iB(x") 2

which satisfies S(x’) = S*(x’) clearly. Using Lemma 4.7 it is easy to check that
S(x")A(x") = A*(x")S(x’) and hence

S(x")P(x) = P*(x)S(x).

The positivity of S follows from Lemma 4.8.



4.4 Stability and Smoothness of Nondegenerate Characteristics 179

4.4 Stability and Smoothness of Nondegenerate
Characteristics

In this section we discuss the stability of nondegenerate characteristics and the
smoothness of nondegenerate characteristic set.

Theorem 4.3. Assume that P(x) is an m X m (resp. real) matrix valued smooth
function of the form (4.1) verifying (4.2) in a neighborhood U of X and let X be a
nondegenerate characteristic of order r of P. Let P (x) be another mxm (resp. real)
matrix valued smooth function of the form (4.1) verifying (4.2) which is sufficiently
close to P(x) in C472, then P(x) has a nondegenerate characteristic of the same
order close to X. Moreover, near X, the characteristics of order r are nondegenerate
and they form a smooth manifold of codimension r* (resp. r (r +1)/2). In particular,
near X the set of characteristics of order r of P(x) itself consists of nondegenerate
ones which form a smooth manifold of codimension r*(resp. r(r +1)/2).

To prove Theorem 4.3, taking Proposition 4.1.1 into account, we study P(x) of
the form

P(x) = x;I + P*(x)) (4.40)
where we assume that
det P(x) = 0 = x) isreal near x’ = X'. (4.41)

This is equivalent to say that all eigenvalues of P#(x’) are real. Now to prove
Theorem 4.3 it suffices to prove

Proposition 4.3. Assume that P(x) is an m x m (resp. real) matrix valued smooth
function of the form (4.40) verifying (4.41) and X is a nondegenerate characteristic
of order r of P(x). Let P(x) be another m x m (resp. real) matrix valued smooth
function of the form (4.40) verifying (4.41) which is sufficiently close to P(x) in C?
near x. Then IS(x) has a nondegenerate characteristic of the same order close to
X. Moreover, near X, the characteristics of order r of P (x) are nondegenerate and
form a smooth manifold of codimension r* (resp. r(r + 1)/2). In particular, the
characteristics of order r of P(x) itself consists of nondegenerate ones which form
a smooth manifold of codimension r* (resp. r(r + 1)/2).

The rest of this section is devoted to the proof of Proposition 4.3. We first show
that the proof is reduced to the case that P and P are r x r matrix valued function.
Without restrictions we may assume that x = 0. As in the previous section, we take
T so that one has

. _Joo
T P(O)T—[OG}
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where G is non singular. Denote 7~ P(x)T and T~ P (x)T by P(x) and P (x)
again. Writing

Pri(x) PIZ(X):|
P(x) =
) |:P21(x) P (x)

we have

n

Pr(x) =xiI+ ) Ajx; + O(|x[) = Po(x) + O(Ix[*). (4.42)
j=2

From the assumption Py(x) is diagonalizable for every x and {/, A, ..., A,} span

a r? (resp. r(r + 1)/2) dimensional subspace over R in M, (C) (resp. M,(R)).
By Lemma 4.2 all eigenvalues of Py(x) are real then one can apply

Lemma 4.9 ([52,66,68,69]). Let us consider
Lx)=) Ajx;. Ar=1
j=1
where A are r X r constant matrices. Assume that the real reduced dimension of
L(x), that is the dimension of the space spanned by {A;} over R, is at least r* — 2
((r(r+1)/2)—=1ifall A; are real) and L(x) is diagonalizable with real eigenvalues
for every x. Then there is a constant matrix T such that

T'L(x)T

is Hermitian (symmetric) for every x € R".

Thus we conclude that there is a constant matrix S such that
n n
ST+ ) Axp)S =xi+ Y Ajx;
j=2 j=2

where A ; are Hermitian (resp. symmetric) and {/, Ay,.... A} span M!(C)
(resp. M (R)). We still denote

s—10 S0 S107 s [SO
[0 I:|P(x)[01:|’ [o I:|P(x)[01}

by P(x) and P (x) again so that writing
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_ | Pu(x) Pra(x)
Px) = |:P21(x) Pzz(x):|

we may assume that

Pr(x) =xiI+ ) Ajx; + O(|x’) (4.43)
j=2
where
{I,A3,...,A,} span M"(C) (resp. M}(R)). (4.44)

Let {Fy, F», ..., F}, Fi = I be a basis for M/(C) (resp. M?(R)) where k = r>
(resp. k = r(r + 1)/2). Writing

n k
x11 +ZA]'X]' = ZFJ'EJ'(X)
j=2

j=1
we make a linear change of coordinates X; = £;(x), j = 1,...,n so that denoting
xX; =X;,1<j <kagainand (X¢4y1,...,%,) = (y1,..., 1) we have
k
Pu(x,y) =Y Fix; + O((x| + [y])). (4.45)
j=1

Note that the coefficient of x; in Py (x, y) is the identity matrix /. We now prepare
the next lemma.

Lemma 4.10. Let P(x) be an m x m matrix valued C* function defined near
x = 0. With a blocking

Ay A12i|
P(0) =
© |:A21 Ax

assume that Ay, and Az, has no common eigenvalue. Then there is € =
(A1, A2n) > 0 such that if |Az | + ||[A12]| < € then one can find a smooth
matrix T (x) defined in |x| < € such that

Pi(x) 0 :|

T(x)'P(x)T(x) = |: 0 Ppx)

where T(x) = I 4+ T1(x) and ||T1(0)|| — O as ||A21|| + ||A12]] — O.
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Proof. We first show that there are G, G»; such that

[An A12i||: 1 G12:|:|: 1 G12i| |:A11+X11 0 i| (4.46)
Ay Ap | |Gt 1 Gy 1 0 An + X»

provided || A12|| + || A21]| is small. Equation (4.46) is written as

[An + A12Gy A1Gra + A12:| _ [ A+ Xu GpAxn + G12X22:|
Azt + AnGr A21Gia + A Gy An + Ga X An + Xn

This gives A;2Ga1 = Xi1, A21G12 = X». Plugging these relations into the
remaining two equations we have

A+ A1Gi2 = GpAn + G124 G,

A + AnGr = Gy A + G2 A1Gar.

Let us set

Fi1(G12, Ga1, A12, A21) = GioAn — A11G12 + G2A21Gia — Al
F2(Grz, Ga1, A1, A21) = Ga1 Al — AnGra + G A1nGar — A

then the equations become

Fi1(G12, Ga1, A12, A21) = 0,

4.47
F (G2, Gay, Az, A) = 0. (4.47)

It is well known that (see [71] for example)

0(F1, F»)

—(0,0,0,0
3G, Go) 00

is non singular if A;; and A, have no common eigenvalue. Then by the implicit
function theorem there exist smooth Gi;(A12, A21) and Gy1(Ay2, Az1) defined
for small ||A12|| + ||A21]] with G12(0,0) = 0, G2;(0,0) = 0 verifying (4.47).
This proves the assertion.

We next look for T'(x) in the form

I Gp

T(x)=To+Ti(x), To(x)= [621 ]

] T,(0) = 0.

The equation which is verified by 7'(x) is

(Po + P1(x))(To + Ti(x)) = (To + T1(x))(Po + Py(x)) (4.48)
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where Py = P(0), PyTy = Ty P, and

5 1311()6) 0
P = - .
1) [ 0 Py(x)
Recall that
~ A+ AnGyy 0 :| |:P11(X) Plz(x):|
Py = s Pi(x) = .
0 [ 0 Ap + A21Gr2 1) Py1(x) Pp(x)
Look for T} (x) in the form
0 Ti(x)
T = .
1x) |:T21(x) 0

Equating the off diagonal entries of both sides of (4.48) we get

AnTiz + Pia(x) + Pui(x)Giz + Pri(x)Ti
= (G2 + T12) Poa(x) + T12(An + A21G12),

(4.49)
AxnToi + Poi(x) + Prn(x)Gar + Pro(x) T
= (G2 + T21) P11(x) + T21(A11 + A1aGar).
On the other hand, equating the diagonal entries of both sides we have
P = AT + P + P Gai + Ta),
11(x) 12751 11(x) 12(x)(Ga1 + Toy) 4.50)

Pr(x) = ApTiz + Py(x) + P (x)(Giz + Tho).
Plugging (4.50) into (4.49) we obtain

Ji(Ti2,x) = AuTio — Tia(Axn + A21G12)
+Pi1(x)Gi2 + Pia(x) + Pii(x)T12
(G2 + Ti)(An T2 + P (x)(Gr2 + Tiz) + Paa(x)) =0

and

So(Ta1, x) = Ao — To1 (A1 + A12Goar)
+ P2 (x)Ga1 + Poi(x) + Po(x)Ti2
—(Ga1 + o)) (A2 To1 + Pra(x)(G21 + T21) + Pri(x)) = 0.

Since

Ji(T12,0) = A Tip — TiAz,  fo(T21,0) = Ao — T Ay
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when A,; =0, A1, = 0, x = 0, it is clear that

afi af>
—(0,0), ——(0,0
ale( ) 3T21( )

are non singular if ||A12|| + ||A21] is small. Then by the implicit function theorem
there exist smooth 71,(x) and 75 (x) with T1,(0) = 0, T2;(0) = 0 such that

Si(Ti2(x),x) =0,  fo(Ta(x),x) =0.

This proves the assertion. O

We return to the proof of Proposition 4.3. Since P(x, y) is sufficiently close to
P(x,y) and

00

P(0,0) = [OG

i| , detG #0
one can apply Lemma 4.10 to P (x, y) and find a G(x, y) such that

cxmyrﬁ%mwGudoz[P“%”)Eil”}. @.51)

Denote G(x, y)"'P(x,y)G(x,y) and G(x, y)_IIS(x, y)G(x,y) by P(x,y) and
P (x,y) again. We summarize our arguments in

Proposition 4.4. Assume that P,,;, and ISOr,-g verify the assumption in Proposi-
tion 4.3. Then we may assume that P,,;, and P,,;s have the form

Pii(x,y) 0 :| Px.y) = |:P11(X7J’) PlZ(XsY):|

P(-x7 y) = |: 0 ﬁzz(st) Pz](x, y) P22(-xs y)

with
k 1
Pi(x,y) =) Ajx;+ Y By + R(x,y), R(x,y)=0((x, )
j=1 j=1

where the following properties are verified; for any neighborhood U of the origin
there is a neighborhood W C U of the origin such that for any € > 0 one can find
€ > 050 that if | Porig — Poriglc2wy < € then we have

|Pi(x.y) — Prix. )| c2amy <€ (4.52)

k 1 k
1> Ajx; 4+ > Bjyi— Y Fixjl < Ce(lx]| + |y)). (4.53)

J=1 J=1 J=1
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Moreover one has
det(h + Pi1(x,y)) = 0 = \is real.

Proof. Since P(x,y) and 13(x, y) are obtained from P,,;; and Po,.ig by a smooth
change of basis and a linear change of coordinates then (4.52) is clear. Let us recall

G(x.y) = |: 1 Glz(x’)’)i|

Ga(x,y) 1

which verifies (4.51) where ||G12(0,0)|| + ||G2:(0,0)| becomes as small as we
please if € is small. Hence G(x, y) is enough close to the identity and then (4.53)
follows from (4.45). Note that

det(A + parig) = det(A + 1311()5, y))det( + Pr(x, y)).

Then the last assertion follows immediately. O

We proceed to the next step. Write
Prii(x,y) = Pii(0,y) + (¢ (x, )i<ij<r (4.54)

so that ‘51, (0, y) = 0. Let us define tj» (x,y) by
¢ (x,y) = ¢4 (x) + 1 (x, )
where

k
F(x) =Y Fixj = (¢} ())i=ij=r-

J=1

Lemma 4.11. Assume that |Pji(x,y) — Pii(x,Y)|c2wy < € and {(x,y) |
|x|,|y| <€} C W. Then for|x|, |y| < € we have

1)l < Clxl. a6 (e )] <Ce. p=1....k

Proof. Write

k

Pyy(x.y) = Pr(0.y) + Y A;(»)x; + R(x.y). R(x.y) = 0(x]")
j=1

so that
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k k
T =(i(x.9) =Y A;(y)x;— Y Fjx; + R(x.y). (4.55)
j=1 j=1
Noting 9y, P11(0, y) = A; (), dx; P11(0,y) = Aj + 0x; R(0, y) and
10, R0, y)| = Cly| = Ce if|y| <e

with C independent of P, one gets

|4;(y) — A;| < Ce ify] <e (4.56)
Now it is clear that

|4;(y) — Fj| < Ce if|y| <e (4.57)

because of (4.53) and (4.56). On the other hand from
!
Piu(0,y) =) Bjy; + R(0,)
j=1
and (4.53) it follows that
|P11(0,y)| < Cely| + Cly* < Cely| if|y| <e.
Moreover | Py (0, y) — Py (0, Mlc2w) < € shows
[P11(0,y)| < e+ Cely] < C'e if|y| <e. (4.58)

We now estimate 7'(x, y) = (Z; (x,y)) and dy; T (x, y). Note that |8XjR(x, V)| <
C x| since aij(O,y) = 0 and |8§I§(x,y)| < C for |a] = 2 with C independent
of P. Then by (4.55) and (4.57) one sees

|T(x,y)| < Ce|x| + C|x|*> < C'e|x| if |x| <e,

(4.59)
|0y, T(x,y)| < Ce+Clx| = C'e if|x],|y] <e

which proves the assertion. O

Recall

k
F(x) =) Fix; = (¢} ())i<ij<r
j=1
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where Fi = I and {F},..., F;} be a basis for M"(C) over R (resp. M (R)) and
hence k = r? (resp. k = r(r +1)/2).

Proposition 4.5. Assume that P(x) is a r xr matrix valued smooth function defined
in a neighborhood of the origin of R". Assume that all eigenvalues of P(x) are real
and

"\ 0P
aa—(O)x ; (4.60)
j=1

is sufficiently close to F(x) in C'. Then there is a § > 0 such that P(x) is
diagonalizable for every x with |x| < 8.

Proof. Let us write
P(w+x) = P(w) + Q(x,w)
so that Q(0, w) = 0. For T' € U(r), a unitary matrix of order r we consider

T*P(w+x)T =T*P()T +T*0(x,w)T
=Pl (0) + Q" (x,0) = PT(®) + (¢ (x, 0; T))i<i j<m-

We show that there exist a § > 0 and a neighborhood W of the origin of R¥ such
that with x = (x4, Xp), X4 = (X1,...,Xk), Xp = (Xk+1, - - ., X,) the map

W 3 x, = ((Red (x, ; T))iz . (Im @ (x, 3 T))ix ;) € RY

is a diffeomorphism from W into {y € R¥ | |y| < 8} forevery T € U(r) and every
Xp, o with | x|, |o| < 8. To see this we write

) -
Q(x.) = P(x + w) — P(w) = Y 5 (@)x; + R(x, @)
j=1""

n

: £ op ap )
jzzlejx]‘Jrjz::l(gj(w)—Fj)ijr > g(w)ijrR(x,w)

j=k+1 77

k
ZF]'X]' + R(X,(,k))
j=1

then it is clear that for any € > 0 one can find 8 > 0 such that

[R(x, w)|| < €|x| (4.61)
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if |x|, |o| < 8 and if (4.60) is sufficiently close to F(x). Let us study

k k
0" (x.w) =Y F/x; + R"(x.0) =Y €;(xa:T)F; + R" (x. )

j=1 j=1

where £ (x,; T) are linear in x,. Since U(r) C R” is compact it is clear that we
have

(xa;T)

'3(&,-..,@1«) a0

a(xy,. .., xg)

with some ¢ > O for every T € U(r). In view of (4.61), taking € > 0 so small we
conclude that

d((Re ¢;‘)izjs (Im¢§~)i>,’))

30c) (0,0,0;7)

>c' >0

with some ¢’ > 0 for every T € U(r). By the implicit function theorem and the
compactness of U(r) there exists a smooth x,(y,, Xp, w; T') defined in |y,|, |xp|,
|o| < 8” and T € U(r) such that

Re ¢ (x4 (Va, Xp, 0; T), Xp, 03 T) =y for i > j,

Im ¢ (o (Vas Xp, 03 T), xp, 03 T) = Ji for i > j

where we have set y, = ((yj»),-zj, ()75),->j) € R, This proves the assertion.
We now show that P(w) is diagonalizable for every ® € R" with |o| < § =
min{8’, 8"}. Take T € U(r) so that

PT(0) = (@ MI) + (Aph<ij=s (4.62)

i=1

where {); } are different from each other and A;; are r; xr; matrices such that A; = 0
if i > j and A;; are upper triangular with zero diagonal entries. Let us set

s—1
J=JlG.j)Irp<i<mrpq<j<rp)}
p=1

where 7o = 0. As observed above one can take ((¥')i>;, (7})i>;, Xp) as a new
system of local coordinates around the origin of R". Denote

yin = ((y;')(i,j)ej,(f;)((i,j)e],i>j)), Ya = (y1, ymr)
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and, putting y; = 0, x; = 0, consider

det(h + P(w + x)) = det(A + P" (@ + x)) = [ [ det(h + K; (y1. 0: T))

i=1

where
Ki(yr,o;T) = Nlyy + Ai + (9F (i, 03 T))s,—y <pag=si

withs; = r; + --- + r;, 5o = 0. Note that we have

og(yr.0:T) = yj +i5] if p>q.
Op(vr i T) = yp +Imoy(yr, ;7).
We will conclude 4;; = 0 repeating the same arguments proving the next lemma.

Lemma 4.12. Let A be a constant matrix of order r such that A = o, + A where
is a real constant and A is upper triangular with zero diagonal entries. Let P(x) =
A+ (c{)} (x)) where c{)} (x) are linear in x and Re c{)} (x),i > j,Im c{)} (x),i > j are
linearly independent over R. Suppose that all eigenvalues of P(x) are real. Then A
is necessarily diagonal matrix.

Proof. Letus set y, = (y;) = (Red’)i>;, yp = (Im¢});>; and let (ya, yb, ye)
is a new system of local coordinates of R"” which is related to x by a non singular
linear transformation. Let A = (a,,) and we first show that a, ,+1 = 0 for p =
I,...,r —1.Take y; = Ofori > j unless (i, j) = (p+1, p)and y, = 0, y. = 0.
Then it is clear that

det(r + A + ()

= ]_[ (M + o + Im¢?)

Jj#p.p+1

(Ot o+ DO+ @+ Im oI = vi+ @y + 004).

Since Im ¢!(x) and d)i 41(x) are constant times vh 1 then we see

M+ a+Im¢D)M+a+Imdh ) — 2 @y, + 904 )

=+’ +0(yp DO+ o) = i a1 + O(yp ) =0

would have a non-real root for small yg ! unless a pp+1 = 0.
We now proceed by induction on ¢ — p. Suppose that

apg =0 for p+1=<g=<p+r—1
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Let g = p + r and take y; = 0 fori > j unless (i,j) = (g, p) and y, = O,
ye = 0. We note that

deth+ A4+ @)= [] G+at+dhom

J#Fp.p+l..g

where Q(\) has the form

r—1

A+ =+ a) Yy, + Y 0y )+ a).
j=0

If we have set A + a = /| 3|z then Q()) = 0 is reduced to

7 =y + O(yI)R( y9) =0 (4.63)

where R is a polynomial in z of degree r — 1. Thus if a ., # 0 then (4.63) has a non
real root for small y} and hence Q(\) = 0 would have a non real root. This proves
that a,, = 0. By induction we get the desired assertion.

For the real matrix case the proof is similar. O

Since w, |w| < 8§ is arbitrary to prove Proposition 4.5 it suffices to show that
PT(w) is diagonalizable which follows from the next lemma.

Lemma 4.13. Let A = (Aj)1<i,j<s be a constant matrix of order m where Aj; are
ri X r;j matrices. Suppose that A = NI, where \; # \; if i # j and A = O if
i > j. Then A is diagonalizable.

Proof. It suffices to construct S so that S™'AS = D = M1, & --- ® A, Letus
set S = (S;)) where the blocking corresponds to that of A and S;; = O ifi > j and
Sii = I,;. From AS = SD it follows that

M =X)Sy=— Y AuSi; (i < j).
k>i+1
In particular S,—;, = —(A,—; — A\,) "' A4,_1, is determined by the above equation.

Inductively S;, are determined for 1 <i < r — 1. Then we proceed to

i = M)Sir1=— > AuSk,1.
k>i+1

Repeating this argument we obtain S; ,—; and hence the desired assertion. O

We now prove that near (0, 0) the set of characteristics of order r of P (x, y) is
a smooth manifold. We first show that near y = 0 there is a unique smooth g(y)
such that

Pi(g(»).y) = 0.
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To see this let us study the map
¢ : Ba 9 X = ((Re&)lj(xs y))izjv (Im(’f)lj(xs y))l>j) E Rk
where B, = {x € R* | |x| < a}. Let
AR s x> (Red) (x)ix). Im ¢ (x))is ;) € R
which is a linear transformation on R¥. Since (Re ¢; (x))i>;, (Im ¢; (x))i>; are
linearly independent then A is non singular. From Lemma 4.11 one can choose
€ > 0 so that
AT 0L (v, y) = 11 < 1/2 if x|, |y] <e
Let us write P;(0,y) = (b';(y)) and note that |5} (y)| < C'e for |y| < € by (4.58).
Then choosing € > 0 sufficiently small we can apply the implicit function theorem

to conclude that there exists a unique smooth g(y, 0, k) defined in |(0,k)| < e,
|y| < € such that

Re ¢ (g(y.8,1), y) = 0, —Rebi(y), i = J,

- . ‘ (4.64)
Im ¢’ (g(y.0.1), y) = & —Imbj(y), i > j
and in the real case
¥ (g(r.0).y) =6, —bi(y). iz (4.65)
such that
lg(y.0.1)] < Ce. (4.66)
Set
(W (3,0,10) = Pr(g(y,9,%), ) (4.67)
then from (4.54) and (4.64) it follows that
Re W (7.0.6) = 0/, i = J. wes)

Im ' (y,0,6) =, i > J.
Let us write
U (3,6, = ¢ (y) + x5 (7.6, %)

where ¢’ (y) = V' (»,0,0) and x;(y,6,) = O(|(8,1)]). Let us put h(h) =
det(A 4+ Py1(g(y.9.),y)). From Proposition 4.4 it follows that #(X) = 0 implies
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\ is real. Repeating the same arguments as in the proof of Lemma 4.12 we conclude
that ¢/ (y) = 0 for p < g and Im ¢} (y) = 0. This, together with (4.68), implies

Pi1(g(»,0,0),y) = 0. (4.69)

The proof for the real case is similar.

We now prove that near (0, 0) the set of characteristics of order r of P (x, y) is a
smooth manifold given by x = g(»,0,0). Let (X, y) be a characteristic of order r
of P(x, ) close to (0,0). Then it is clear that (X, y) is a characteristic of the same
order for Py;(x, y) because det Py (x, y) # 0 near (0,0). Recalling that Py, (x, y)
has the form

Pi(x,y) = xi + PH(X,y), X' = (x2,..., %)
we see that det P;;(x;, X', 7) = (x; — X1)" and hence
det(A + Py i (%, 7)) = \.

Thus the zero is an eigenvalue of multiplicity r of 1311(32, ¥). On the other hand
Proposition 4.4 gives

aPll P11

(4.70)

Then one can apply Proposition 4.5 to conclude that 13()_(, y) is diagonalizable.
This shows that

1311()_@)7) =0
and hence one gets x = g(y,0,0).

Finally we show that the characteristics (g(y,0,0),y) are nondegenerate.
From (4.69) we have

. 0 0
P(g(y.0,0),y) = |:() ﬁzz(g(y,0,0)7J’):|

and hence
KerP (g(y.0,0). y) NIm P(g(y.0.0), y) = {0}. @.71)

It is also clear that IS(g(y,o,O),y) (x, y) is given by

P
Z “(g(y 0.0). y)x; + Z

Jj=1
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On the other hand since |1311 — Pii]c2gwy < e it follows from Proposition 4.5 and
(4.66) that

P P
T ((0.0.0.y) ~ Fj|. |55(g(3.0.01.y)[ < Ce (472
X ayj
if |y| < e. This clearly shows that
dim Pg(y.0.0.,) = 1. (4.73)

To finish the proof, taking ﬁ(g(y,o,o),y)(e) = [ into account, it is enough to show
that ﬁ(g(y,o,o), yy(x, y) is diagonalizable for every (x, y). Note that from Lemma 4.2
all eigenvalues of P(g(y,o,O),y) (x, y) are real. Then from Proposition 4.5 and (4.72)
it follows that Is(g(yﬁo,o),y) (x, y) is diagonalizable for every (x, y) near (0,0) and
hence for all (x, y).

The proof for the real case is similar. Thus the proof of Proposition 4.3 is
completed. O

Example 4.6. Consider a second order differential operator P (x, D) = (pi(x, D))
with 3 x 3 matrix coefficients

pin(x.1.§) = (P — i (x)|E1)8k — (1 — 0 (x))&:Ek

where o;(x) are real smooth and close to o; in Example 4.4. We assume that
Q(x,t,8) = det P(x,t,&) = 0 has only real roots for any x and £. Then from
Theorem 4.3 it follows that every characteristic of P(x,£) are at most double and
the double characteristics are nondegenerate.

Example 4.7. Let AE) = Zj’,k:l Aj& & be one of them discussed in Exam-

ple 4.5, that is the characteristics of det (t>/ — A(£)) are at most double and the
double characteristics are nondegenerate. Let Aj (x) be real smooth 3 x 3 matrices
which are close to Aj and set

3
A(x, &) = Z Aji(x)§ €k

jk=1

and assume that det (t>/ — A(x.£)) = 0 has only real roots for any x and £.
Then from Theorem 4.3 we see that every characteristic of t21 — A(x,§) are at
most double and the double characteristics are nondegenerate.

Example 4.8. As in Example 4.3 take P(§) = &I + 21]1:2 Fj&; where
{1, F,, ..., F;}is abasis for M, (R). Consider

d
P(x.&) =811+ ) A;(0)E;

i=2
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where A (x) are real smooth m X m matrices which are enough close to F; in
C? and we assume that P(x,£) has only real eigenvalues for any x and any &.
Then from Theorem 4.3 it follows that every multiple characteristic of P(x,§) is
nondegenerate.

4.5 Symmetrizability (General Case)

In this section to simplify notations let us write &?(x), x = (x¢, X1, ..., X,;) which
is a real analytic m x m matrix valued function defined near the origin of R"*!,
We assume that all eigenvalues of &7(x) are real near x = 0. We also denote by d,,
the dimension of M (C) (resp. M2 (R)) over R, that is

dw =m?> (resp. dy =m(@m+1)/2).

Our main concern in this section is to prove

Theorem 4.4. Assume that all eigenvalues of &?(x) are real near a nondegenerate
characteristic x = 0 of order m and Py(®) = I, with some © € R"T!. Then there
is a real analytic symmetrizer near x = 0, that is there is a real analytic positive
definite H(x), H*(x) = H(x), defined near x = 0 such that

P(x)H(x) = H(x) 2" (x).

Corollary 4.1. Assume that 2 (x) has the form xoI + P (x") with x' = (x1,...,x,)
and all eigenvalues of P(x') are real near x’ = 0. Suppose that x = 0 is a
nondegenerate characteristic of order m of & (x). Then there is a real analytic
positive definite H(x'), H*(x’) = H(x'), defined near x' = 0 such that

P(x"YH(x') = H(x')P*(x").

We first give another proof, based on Theorem 4.4, for that the set of nondegen-
erate characteristics is a smooth manifold of codimension d,,,.

Proposition 4.6. Assume the same assumptions as in Theorem 4.4. Then we can
choose a new system of local coordinates X and a real analytic T (X)) defined near
X = 0 so that

k—1
T(X)"' PxX)NT(X) =Y F;X,
j=0

with k = d,, where Fy = I and {F;} span M/'(C) over R (resp. M3 (R)).
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Proof. From Theorem 4.4 there is a positive definite H(x) such that &(x)H(x) =
H(x)27*(x). This shows that

S(x) = H(x)"V?2(x)H(x)'/?

is Hermitian. Let us write S(x) = (¢; (x)) and hence ¢; (0) = 0. With ¢; (x) =
d';(x) + O(|x]*) we note that {(Red ¢’ (x))i>;, (Imd ¢’ (x));~;} are linearly
independent over R. Then taking a new system of local coordinates X so that
Xo = Redj(x), X; = Redi(x) —Redp{(x),2 < i < m, Xpt1,...,Xp-1) =
(Re ¢ (x))ixjs (Xp, ..., Xx—1) = (Im ¢ (x));»; we get the assertion with T'(X) =
H(x(X))"2. O

From Proposition 4.6 it is clear that, near x = 0, the set #(x) = O is given by
X={X;=0]|j=0,...,d,—1} whichis a smooth manifold of codimension d,,,.
It is also clear that for x € X the properties (4.13) and (4.14) hold, that is X consists
of nondegenerate characteristics. On the other hand let X be a characteristic of order
m for &(x) so that O is the eigenvalue of &(x) of multiplicity m. Then O is the
eigenvalue of Z’j.”’:?)l F; X; of multiplicity m where ¥ = x(X). Since Z;l’":_ol FiX;
is Hermitian we see Z’;”’:Bl F;X; = Oandhence X; =0forj =0,...,dy — 1.
Thus we conclude X € X.

We start to prove Theorem 4.4. Choosing a system of local coordinates so that
® = (1,0,...,0) we can assume that & (x) verifies the assumption of Lemma 4.9.
Then one can assume that 7' 2, (x)T is Hermitian (resp. symmetric) for every x
with some constant matrix 7. By a linear change of coordinates x one may assume
that

k
T Py(0)T = xol + ) Flx;
j=1

with k = d,, —1 where {I, F/} span the space M/ (C) (resp. M (R)) over R. Since
P(x) = Py(x) + R(x), R(x) = O(|x|*) as x — 0, to prove Theorem 4.4, writing
P(x) = xol + P(x), itis enough to show the following theorem.

Theorem 4.5. Let P(x) = ZI;ZI F/x;+ R(x) where x = (xo, ..., X,), and R(x)
is real analytic near the origin so that R(x) = O(|x|?) as x — 0. Assume that {F7}
are Hermitian (resp. symmetric) | x I constant matrices such that {I, F1} span the
space M lh (C) (resp. M (R)) over R and k = d; — 1. Suppose that all eigenvalues
of P(x) are real near the origin. Then there is a positive definite real analytic G(x)
with G(0) = I defined near the origin verifying

P(x)G(x) = G(x)P*(x), G*(x) =G(x). (4.74)
Remark. Assume, for instance, that a positive definite G(x) verifying (4.74) exists.

Expanding both sides of (4.74) in the Taylor expansions around the origin and
equating the first order terms we see that
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k k
Y FIGO)x; =Y GO)F/x;

J=1 J=1

so that G(0) commutes with all Hermitian (resp. symmetric) matrices of order m
and hence G(0) = af with a # 0. Since G(0) is positive definite and hence o > 0
we may suppose that G(0) = I considering a~' G(x) which also verifies (4.74).

To prove Theorem 4.5, we proceed by induction on the size of matrices. When
[ = 2,since #Z(0) = O and x = 0 is a nondegenerate double characteristic thanks
to Proposition 4.2 there is a real analytic symmetrizer G(x) verifying (4.74). Let
the assumption of Theorem 4.5 be verified for [ < m. Since {I, F/} span M l” (©
(resp. M} (R)), choosing a new system of local coordinates x we may suppose that
the Hermitian (resp. symmetric) part of R(x) can be removed so that

k
P(x)=xol + ) F/x;+ R(x)
j=1

with k = d; — 1 where R(x) is anti-Hermitian (resp. anti-symmetric). Since the all
eigenvalues of ?(x) are real it follows that

R()C(),O,...,O,Xk_H,...,Xn) = 0.

Changing notations slightly we write x = (x1,X2,...,Xk), ¥ = (X0, Xk+1,
..., Xy) withk = d; — 1 and

k

P(x,y) = Zij]' + R(x,y)
j=1

so that P(0, y) = O. We divide the proof of the assertion for / = m into two steps.
In the first step, introducing the polar coordinates x = rw, we blow up P(x, y) at
x = 0 so that

Q(r,w,y) =r~"P(ro,y)

will be studied. We prove

Proposition 4.7. Suppose that the assertion of Theorem 4.5 holds for | < m.
Let P(x,y) = Zl;zl F/x; + R(x,y), k = dy — 1 be a real analytic m x m
matrix valued function with real eigenvalues near the origin such that R(x,y) =
O(|(x,y)|?) as (x,y) — 0and R(0,y) = O. Assume that {I, F/} span M (C)
(resp. M} (R)). Then for every  # O there is a positive definite H(r, d, y) with
diagonal entries 1 which is real analytic near (0, w, 0) such that

P(ro.y)H(r,¢.y) = H(r, ¢, y)P*(ré, y), H*(r.d,y) = H(r,¢.y). (4.75)
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Thus we can construct a symmetrizer with diagonal entries 1 of the blown up
P(rd, y) in a neighborhood of every (0, w, 0) with @ # 0. In the second step we
first observe that such symmetrizers can be continued analytically to a neighborhood
of {0} x SK=1 x {0}.

Lemma 4.14. Suppose that at every (0, », 0) with  # 0 there is a positive definite
real analytic symmetrizer H(r, ¢, y) with diagonal entries 1 verifying (4.75). Then
there is H(r, §, y) with diagonal entries 1 which is real analytic in I x S¥=' x J
such that

P(ré.y)H(r.¢.y) = H(r.¢,y)P*(rd.y). H*(r.¢.y) = H(r.¢.y) (4.76)

holds for (r,$,y) € I x SK=' x J where I, J are open intervals containing the
origin.

We next show that the symmetrizer obtained in Lemma 4.14 is the blown up of a
real analytic G(x, y) defined near the origin (x, y) = (0, 0).

Proposition 4.8. Assume that H(r, d, y) verifies (4.76) where H(r,,y) is real
analytic in I x S¥=' x J with diagonal entries 1. Then H(r,$, y) is a blown up of
a real analytic G(x, y), that is

H(r, ¢.y) = G(ré, y).
In particular we have
P(x,y)G(x,y) = G(x,y)P*(x,y), G"(x,y) = G(x,y).

Combining Propositions 4.7 and 4.8, Theorem 4.5 follows immediately by
induction on /.

First step: We prove Proposition 4.7. Assume that the assertion of Theorem 4.5
holds for [ < m. We study the case [ = m. Let us recall

k
P(x.y) = L(x) + R(x.y). L(x)=) Flx,
j=1
where k = d,, — 1 and {I, F/} span the space M/ (C) (resp. M} (R)) over R.
Let S(a) = el + diag(ay, - ..,an), |a;| < e wherea = (ay, ...,a,) € R™ and set
Pi(x,y,a) = S(a)”' P(x,)S(a).
Introducing the polar coordinates x = r® we study

f’(r, w,y,a) = r_lPl(rw, y,a)

near (r,», y,a) = (0, »,0,0).
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Lemma 4.15. All eigenvalues of}i(r, w, Y, a) are real near (0, , 0, 0) with w # 0.
The multiplicity of eigenvalues of P (0, w, 0, 0) are less than m if ® # 0.

Proof. The first assertion is clear. Recall that
P(r,0,y,a) = S(@)7" (L(®) + P*(w;r,y) + O(|(r,»)1))) S(a)
with some m x m matrix P2(w;r, y) which is linear in (r, y) so that

P(0,0,0,0) = L(w). (4.77)

If L(w), ® # 0 has an eigenvalue A € R of multiplicity m then it follows that
L(w) — A = O because L(w) is Hermitian (resp. symmetric). This contradicts the
fact that {/, F/} are linearly independent. Hence the assertion. O

We fix @ # 0 and choose a unitary (resp. an orthogonal) 7} so that
Ty ' L(0)To = @\, I

where A; are different from each other and p > 2 as was seen above. Taking into
account

S(a) = el + O(lal). S7'(a) =<' + O(lal).
Pl (w+0;r,y) = PX(w;0,y) + O(|(r. 6, y)|*).
L(o+0) = L(w) + L(9)

we set

0(r,0,y,a) = r ' Ty ' Pi(r(0 + 0), y, )Ty = Ty P(r, o + 0, y,a) Ty
L(w) + L(0) + PX(w:r.y.a) + O(|(r.0.y.a)]*)

where L(w) = ®N; I, L) = Ty 'L(0) Ty and P%(w:r,y,a)islinearin (r, y, a).
It is also clear that with L(0) = ZI;=1 F79;, the matrices {/, F/} span M/ (C)
(resp. M3 (R)).

Note that the coefficients of a; in 132((»; r,y,a) are anti-Hermitian (resp. anti-
symmetric) although the fact is not used in the sequel.

Set Q(r,0,y,a) = (Q;(r,9,y,a)) then it is well known that there is a real
analytic T'(r, 9, y, a) defined near the origin with 7(0) = I such that

OT =T(®"_,0)) (4.78)
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(see for example [72]). We need a little bit more information on Q j-Let T = (Tj)
with 7;; = I; then (4.78) yields

Y QuTui=0i, Y QuTyy=TiQ; i # ). (4.79)

Plugging the first term of (4.79) into the second, we get

Qiisz TUQ]] Z Tl]Q]kaj Z Qikaj
k#j ki

and hence fori # j

i = M)Ty = =04 + 0((r 8.y, )| Y |Tua)). (4.80)
k#l

By the implicit function theorem one can sglve (4.80) so that Tj; = T;(r,90,y,a),
T;;(0) = 0. Plugging Tj; into (4.79) we get Q; to be

Qi(rvesysa) = Qii(rvesysa) + O(|(r,9,y,a)|2).

We summarize what we have proved; there is a real analytic 7(r, 9, y,a) defined
near the origin with 7'(0) = I such that

Q(r,G,y,a)T(r,e,y,a) = T(rvesysa)(eaf:léj(rsevyva))
where Qj(r, 0, v, a) verifies
0, (r.0.y.a) = XI5, + L;(®) + P} (w:r.y.a) + O(|(r.0. y.a)|)*.

Here we have written L(0) = (iij(e)), PX(w:r,y,a) = (13;.(03; r,y,a)) and the
blocking corresponds to that of @A I ;-

Lemma 4.16. All eigenvalues of Qj(r,e,y,a) are real near (r,0,y,a) =
(0,0,0,0). In a new system of local coordinates (r, Vs, y,a), where \s is linear
in(r,0,y,a), Q; takes the form

0, (r, b, y,a) = (\; +b;(r, 0, y, )1, + Z Ui+ O 0, y, a)?)

with r; = dy; — 1 where bj(r,\p, y, a) is linear in (r,\, y,a) and {1, F; } span
M{ (C) (resp. M; (R)).
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Proof. Tt is clear that all eigenvalues of Q j(r,0,y,a) are real near the origin
because so are those of Q(r,6,y,a) by Lemma 4.15. We next show that
P;(w r,y,a) is Hermitian (resp. symmetric). Recall that

Lij®) = > Fj6;

where {F,,l} are Hermitian (resp. symmetric) matrices and, together with [, span
the space Mf; (C) (resp. M, (R)) over R since F' = T;'F'Ty and I span the
M'(C) (resp. M? (R)). Take 6, € R so that

ij(é) + }5/‘/2((’\); ry,a) = E;(ah)(w; r,y,a) +

where Pj?(ah)(w; r,y,a) denotes the anti-Hermitian (resp. anti-symmetric) part of
Isjjz.(u); r, y,a). Then we have

S a 5 2(ah
0 (ur.nb ny.pa) = (h; + poly, + p B " (wir.y.a) + O(u?).

If 13//?(“}!) (w;7,y,a) # O then Qj(ur, 110, Ly, wa) has non-real eigenvalues, taking
| small enough, and hence a contradiction. Thus we can write

PHwir.y.a) =Y ci(r.y.a)F} + co(r.y.a)1,

where ¢; (r, y, a) are linear functions of (r, y, a) so that

Qj(r7evyva) = (>\'j +C0(rvyva))lsj +ZE§(GZ‘+Ci(r7y7a))+0(|(rvevyva)|2)‘

Renumbering { £/}, if necessary, we may suppose that {1, 14:]]1, e 14:];’ } are linearly
independent so that

S FO +ay.a) =Y Fiir.0.a).

i=1
This proves the assertion. O

By Lemma 4.16, each Qj(r, 0,y,a) — (\j + b;)I; verifies the hypothesis of
Theorem 4.5 with / = r; < m and hence there are positive definite K;(r,0, y,a)
which are real analytic near the origin such that

0;(r.0.y.a)K;(r.0.y.a) = K;(r.0.y.a) 0% (.9, y.a),
K7 (r,0,y.a) = K;(r,0,,a)
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with K;(0) = I;;. Let us define K(r, 9, y,a) as
K(r,0,y,a) = Gajp»lej(r,G,y,a)l/z
so that
K(r,0,y, a)_l(@leéj(r, 0,y,a))K(r,0,y,a) = Hermitian (resp. symmetric).
With V = T(r,0,y,a)K(r,0, y,a), this shows that
V='Q(r,0,y,a)V = Hermitian (resp. symmetric).

Setting U = STyTK we conclude that U~ P(r(w + 0), y)U becomes Hermitian
(resp. symmetric) and hence

P(r(ow+0),)YWU* =UU*P*(r(w+6),y).
Since UU* = SToT(KK*)T*T;S, noting that
KK*=@K; =1+ 0((r.0,y,a))), To,TT*Ty =1+ O((r.0,y.a)|)
we see that
UU* = S(a)(I + K')S(a)
where K’ = O(|(r, 9, y,a)|). Hence every diagonal entry of UU* takes the form
€ +2ea; +a; + O(E((r,0, y,a)) + O((,8, y, @) ).

Now taking € > 0 small enough, by the implicit function theorem one can solve
a(r,0,y) = (a1(r,9,y),....ax(r,0,y)) so that a; (0) = 0 and

every diagonal entry of UU* = €?
where a(r, 0, y) is real analytic near the origin. With
H(r,0,y) = €U ¢ — 0, y,a(r, ¢ — 0, ))U*(r, — 0, a(r, ¢ — ,))
which is real analytic near (0, ®, 0) we conclude that
P(ro, y)H(r.¢.y) = H(r.¢. ) P*(rd. y)

where all diagonal entries of H(r, ¢, y) are 1. Since » # 0 is arbitrary the proof of
Proposition 4.7 is completed.
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Second step: We prove Proposition 4.8. We begin with proving Lemma 4.14.
Recall that

r P y) = L)+ )y Ru(w), Ru(w)= Y Rjgpol
Jtlal=1 IBl=/j+1

with constant 7 x m matrices R jqp so that R j, (o) is a homogeneous polynomial in
o of degree j + 1.

Lemma 4.17. Let H;(r,w,y), i = 1,2 be real analytic Hermitian (resp. sym-
metric) m X m matrix with diagonal entries 1 defined in open neighborhoods

U =1 xU; xJ of (0,w;,0) such that
P(ro, y)H;(r,0,y) = Hi(r,w, y)P*(rm,y) in %. (4.81)
Then we have Hy(r, w, y) = Hy(r,w, y) in % N %.

Proof. We expand H; (r, », y) around (r, y) = (0,0)

Hi(r,o,y) =) r/y'Hp(w), Hy(w) € (U)).
Jj.o

Then (4.81) yields

Y. Ru@Hg@) = ) Hig@)R], ()

Jtk=patp=y Jtk=pat+p=y

where Roo(w) = L(w) = Rj,(w). Hence we get

[L(w), Hipy (w)]
= > Higg (@) R, (@) = Rjo(0) Hyg(w).  (4.82)
jF+k=p.atp=y.j+lal>1
Note that the right-hand side of (4.82) is anti-Hermitian (resp. anti-symmetric).

For the time being we stop to continue the proof and we make more detailed look
on (4.82) than needed here, which will give a key of the proof of Proposition 4.8.

Let L € M,,(C). We consider the mapping from H € M/ (C) with the zero
diagonal entries to the space consisting of off diagonal entries of m x m matrices
defined by

H > off diagonal entries of [L, H].

This is a linear mapping from the real m(m — 1) dimensional linear space V'
consisting of H to the linear space W of real dimension m(m — 1) consisting
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of off diagonal entries of m x m matrices. These vector spaces admit complex
structures and we are naturally identifying C""=D/2 to R”("=1) We denote by
S the representation matrix with respect to fixed bases of V' and W.

Lemma 4.18. Let L = (). Then there is a real polynomial f € R[Rel;;, Im /]
such that det S = f2.

Proof. ! In the proof we are regarding components /;; and [; = E are independent
variables. We write H = (h;;) where h; = 0 and hj; = h_L/ We identify (h;) € V
with the complex vector (13, h13, . .. ,hm_l,m,h_lz, his,. .., hm—1m) and (c;) € W
with (c12,¢13, - Cm—1.m>» —C12, —C13s - - - , —Cm—1m). Sometimes we write 7 =
(12, ... hpei) € C""=D/2 and V = {(z,2) | z € C"™=D/2} and also write
Z=(C12,....¢ne1m)and W = {(Z,—Z) | Z € C""=D/2} 'We represent S with
respect to these bases and write

[Z:| [ ) 12:||:Z:| |:—_:|
where S;j € Myygn—1)/2(C). Since we have

—(S1iz+ S122) = Soiz+ Sz

for any z € C""=D/2 we have Sy, = —S;; and Sy; = —S|5. We now show that S
is a Hermitian matrix. This is checked by direct calculation. Let L = (a;)1<ij<m-
(Here we use the letter a since the letter / seems confusing.) We may write S =
Sy Swn) (1 <i #j <m,1 <k # 1 < m) since components of V' and W
are indexed by (i, j) (1 < i # j < m). We compare s ;) k) and S, ;) and
show that

St i) = SG.j).kd)-

We determine s(; j),,/)- Since

m m
cg =D aiphp =Y hipay,
=1 =1

then s ;) (.1 is the coefficient of A; of ¢;;.

@) If (i, j) = (k,[), then we have

SG.j)..j) = dii — djj

which is a real number.

'We owe the proof of this lemma to T. Ibukiyama.
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(ii)) Ifi =k and j # [, then
SG.j). ey = —dij

so that s 1).i,j) = —aji = —a1j = S, j).(k.J)-
(iii) If j =/ andi # k, then

S@i.j).(k]) = Qik

S0 that S.i.j) = aki = dik = SG.j).(k.)-
(iv) Ifi # k and j # [, then we have

Sty = Stk i.j) = 0-

These proves S* = S. We summarize what we have checked.

(1) S is Hermitian and moreover

s=| 2 el
=812 —Su

(2) If we write S;; = A; +iB; and S;, = A, +iB; with Aj, Bj € Mm(m—l)/Z(R)
then A; is symmetric and A,, By, B, are anti-symmetric, that is ‘A; = Ay,
IAZ = —Az, IBJ = —B] forj = 1,2

Indeed the relation ‘'S, = ‘A; —i 'B; = Si; = A, + i B, shows that ‘’A; = A; and
‘B, = —B,. Since S is Hermitian and hence —S, = S}, it follows that ‘A, = —A,
and th = —Bz.

We now prove that a representation matrix of S can be taken to be an anti-
symmetric matrix by a suitable change of basis. We write down matrices with
respect to the real coordinates. Recall

)=l

So writing z = x + iy and Z = X + iY for real vectors x, y, X, Y we have

En iEn|[X_ g[En iEn |[x
—EniEn ||Y | " | En—iEn]||ly]

We put

o[ En iEn _IS E, iE,
—E, iE, E, —iE, |
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Then we have

2

1 S+ Su+Sn+Se i(Su—3Su+Sn—Sn)
—i(Sti—Su+ S-S5 Su+Si—-S2-Sn»

_ |:A1+A2 —Bl+Bz:|
Bi+ B, Aj—4, |

Then the matrix

. _[0 —Em}T_[—Bl—Bz—Al—i-Az}
! E, O A+ Ay =B+ B,

is an anti-symmetric matrix, in fact since B; are anti-symmetric and ' (— A, + Ay) =
—'A) 4+ 'Ay = —A; — Ay = —(A| + A3). So det T is a square of the Pfaffian,
that is det7; = f2 where f is a real polynomial in components of 77, that is
a real polynomial in components of A4; and B; and hence a real polynomial in
(Re/;;, Im/;;). Thus det S is also a square of a real polynomial in (Re/;;,Im/;). O

We now check

Lemma 4.19. Let f be in Lemma4.18. Then f is irreducible in R[Re [;;, Im [;;] and
{f = 0} contains a regular point.

We postpone the proof until stating the next lemma. We now consider the real
symmetric case, thatis L € M, (R) and study the mapping from H € M, (R) with
the zero diagonal entries to the space consisting of off diagonal entries of m x m
real matrices defined by

H + off diagonal entries of [L, H].

This is a linear mapping from the real m(m — 1)/2 dimensional linear space
V' consisting of such H to the linear space W of real dimension m(m — 1)/2
consisting of off diagonal entries of m x m real matrices. We denote by S again
the representation matrix with respect to fixed bases of 1 and W'.

Lemma 4.20. Let us write L = (l;). Then detS is irreducible in R[l;] and
{det S = 0} contains a regular point.

Proof. > We write H = (h;;) where h; = 0 and h; = h;. We identify (h;) € V
with (h12, b1z, ..., hy—1,m) and (c;) € W with (c12, €13, - . ., Cm—1,m). We represent
S with respect to these bases. In the proof of Lemma 4.18, putting B; = O and
Imhj; = 0, we easily see that

S = A + A,.

2 Another proof is found in [53].
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Let us write A; + A> = (Xj) then it is clear that X;; = [; — [;; and for (i, j),
i # j we have either X; = 0 or X; = [,, with some (p,q) with p # q.
Suppose that det S is reducible so that det S = fg where f, g are homogeneous
polynomials in /; of degree greater than or equal to one. Assume that f contains
X;; and assume that the i-th row of § consists of {/,,}(p4)es and 0. Note that
the i-th column consists of the same {/,;}(p.q)es and O because ‘A; = A; and
‘A, = —A,. Replace these I,,, (p.q) € J, by M, with A > 0. Then, in the
det S, the coefficient of X;; is multiplied by A. This proves that g is independent of
these /4, (p,q) € J. Renumbering if necessary we may assume that f contains
Xit,.... Xy, and g contains X,41,+41,...,Xyy With N = m(m — 1)/2. From
the above arguments it follows that f is a polynomial in (X;)i<; j<- and g is a
polynomial in (Xjj),+1<i j<n so that detS is independent of X;; with 1 <i < r,
r +1 < j < N.This is a contradiction. Indeed it is easy to check that there is
@*,j*)withl <i* <r,r +1 < j* < N such that X;«j» = [,, and this shows
that det S’ contains the term

lﬁq l_[ Xi

up to the sign. Thus we have proved that det S is irreducible in R[/;;]. Let us set

S'(ly) = S(ly)| =0t
then it is obvious that det S = [],_ ;i — 1) which clearly shows {det § "= 0}
contains a regular point. This proves that {detS = 0} contains a regular point
clearly. O

Proof of Lemma 4.19. Let us put Im/;; = 0. Then it follows that
det S = (det(4; + A4,))?

up to the sign. This shows that f(Im/; = 0) = det(4; + A) up to the sign.
Thus the assertion follows from Lemma 4.20. ]

Completion of the Proof of Lemma 4.17. Assume that
[L(w), H(w)] = C(w).

Introduce a new system of coordinates 6 = ((Re lij(w))i<j, (Im Zij(u))),-<j). From
Lemmas 4.18 and 4.19 it follows that the above equation can be written with

g(e) - (hIZs hl3s R | hm—l,Msh_uvh_Bv ceey hm—l,m)s
é(e) - (c127 Cl3y .-, Cm—l,mv _c_125 _ms D) _cm—l,m)

so that
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SL(0)H(®) = C(8)

where det S (9) = £(0)? with an irreducible f. We turn to (4.82). Let H(r, w, y) =
H (r,w,y) — Hy(r, , y). Then with

H(r,0,y) = Z ) y“H ;o (9), (4.83)
j+la|=>0

Cpy(6) = > Hig(O)R,(0) — R o (6) Hip ()
j+k=p.oat+p=y,j+la/>0

(4.82) can be written as
SLO)Hoo(8) = 0,  SL(0)H,y(0) = Cpy(0). p+1y| = L. (4.84)

Note that H;,(0) are Hermitian and the diagonal entries of H;,(0) are 0 by the
assumption. Since det S7 (9) # 0 on a dense subset we conclude that Hy (6, ¢) = O
and hence Hy(0) = O. Then C,,(8) = O for p + |y| = 1 from (4.83). By
induction on p + |y| it follows that H,,(0) = O forall p + |y| > 0. O

Completion of the Proof of Lemma 4.14. Suppose that at every (0, ®,0), ® # 0
there is an positive definite real analytic symmetrizers H(r, w, y) with all diagonal
entries 1 defined near (0, ®,0). By Lemma 4.17 these symmetrizers are continued
analytically and yields H (r, w, y) which is positive definite with all diagonal entries
1 and real analytic in a neighborhood of {0} x S¥~! x {0}. O

Remark. Note that H j,(9) are Hermitian (resp. symmetric) and the diagonal entries
of Hy(0) and H;(0), j + |a] > 1 are 1 and O respectively and ﬁju(e) verifies
(4.84). Since Sy (0) is linear in § and R, (0) are homogeneous of degree j + 1 in
0, then by the homogeneity, H ja () extends uniquely to a homogeneous function in
R¥\ {0} of degree j with respect to 0. Then H j,(9) extends there as a homogeneous
function of degree j in 6.

Proof of Proposition 4.8. We prove the case that L(w) is Hermitian since the real
case is similar. Let H(r,w, y) be positive definite and satisfy (4.76). With the
coordinates (7, 0, y), we again expand H (r, 9, y) around (r, y) = (0,0)

H(r.0.y) = _r/y*H;y(0). Hju(0) € /(S5
Jj.o

where H ,(9) are Hermitian and all diagonal entries of Hoo(0) and H;,(9), j +
|| > 1 are 1 and O respectively. As before H ,, (0) verifies

[L(®), Hpy (0)] = Cpy (0)
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where C,, (0) is given by (4.83). The same argument as in the proof of Lemma 4.17
gives that

Hoo () = 1.

Then it follows that Cpy(6) = R}, (0) — Rpy(0) for p + |y| = 1 which is a
homogeneous polynomial of 6 of degree 2. Recall that there is an m(m — 1) x
m(m — 1) matrix S;(0) whose entries are linear functions of § such that H,, (6)
satisfies

SL(0)H,, () = C,,(0).

Moreover det S; (8) = f(9)? where f(0) is irreducible in R[8] and { f(§) = 0}
contains a regular point. Let us denote by “*S1.(6) the cofactor matrix of S..(6). It is
clear that H,,(0), p + |y| = 1 verifies

F©O)Hpy (0) = SL(0)Cpy(0)/£(0) = (f5(6)/£(9)).

Recalling that Cpy(0) = R7 (0) — R,,(0) for p + [y| = 1 we see that f;(0)
are homogeneous polynomials of degree m(m — 1) + 1 in 6. Since H py (0) is real
analytic in R¥ \ {0} as remarked after the proof of Lemma 4.17 it follows that Jii(0)
vanishes on { f(0) = 0}. Since f(0) is irreducible and { f(6) = 0} contains a
regular point from Lemma 4.19 we can apply Lemma 2.5 in [41] (for example) to
conclude that f;;(6)/f(6) are homogeneous polynomials of degree m(m —1)/2 + 1
in 6. Thus f(@)ﬁpy (6) is a homogeneous polynomial in 6 of degree m(m — 1) + 1.
Repeating the same arguments we conclude that H (6) is a homogeneous polynomial
in 0 of degree 1 for p + |y| = 1 and so is H,(0) because H,,(0) is Hermitian
and whose diagonal entries are 0. By (4.83), C,(0), p + |y| = 2 becomes a
homogeneous polynomial in 6 of degree 3. By induction on j + |a| we prove that
H,(0) is a homogeneous polynomial of degree j in 6. In the coordinates w, H jq is
a homogeneous polynomial in w of degree j. Then one can write

1 Hiy(w) = Go(ro).

where G j,(x) is a homogeneous polynomial of degree j in x. Let us define

G(x,y) =) y*Gja(x).
Jj.o

Since the convergence follows from that of ) o r/y*Hjq(®) then G(x,y)
becomes real analytic near (0, 0) and the proof is complete. O

Remark. The arguments proving that H,,(0) is a homogeneous polynomial in 0
can be applied under less restrictive hypotheses. Let f(0), g(6) be homogeneous
polynomials in 6 of degree n, m respectively where n > m. Let
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g®) =]]g )"
j=1

be the irreducible factorization of g(6) in R[0]. We assume that f(6)/g(0) is C*°
apart from the origin and V; = {6|g;(6) = 0}, I < j < s contains a regular point.
Then applying Lemma 2.5 in [41] again, we conclude that f(0) is a homogeneous
polynomial in 6 of degree n — m.

4.6 Well Posed Cauchy Problem

Let us study a differential operator of order ¢

1 4

- 4.85
i E)xj ( )

P(x.D)= Y Au(x)D*. D, =

lal<q

where Ay (x) are m x m matrix valued smooth functions defined in a neighborhood
Q of the origin of R”. We assume that x; = const. are non characteristic and
without restrictions we may assume that

Ago..0x) = 1. (4.86)

We are concerned with the following Cauchy problem

P(x,D)u= f, suppf C {x; > 0},

(4.87)
suppu C {x; > 0}.

Let P, (x,§) be the principal symbol of P(x, D)

Pix&) = Y A0

la|=¢

and we assume that
det Py(x,&) = 0= & isrteal Vx € Q,VE = (§p,....E,) e R (4.88)

We first study the case that P, is of constant coefficients.

Theorem 4.6 ([22,26]). Let P(E) be a homogeneous polynomial of degree q in
€ € R" with real m x m matrix values such that det P (€) satisfies (4.88) and every
multiple characteristic of det P(§) is at most double and nondegenerate. Then the
Cauchy problem for P(D) + R(x, D) is C* well posed for every R of order g — 1
with C* m x m matrix coefficients.
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In [22,26] their proof is based on the estimate of P(§ + i tN)~! such that
<l(&] + )" HPE+itN) T <€, if 0# (nE) e R (4.89)

which is derived from the assumption of the non degeneracy of double
characteristics. For f € C§*° with supp f C {x; > 0} we look for a solution

(P(D) + R(x. D))u = f

such that suppu C {x; > 0}. We set u = u.e™* and f = f,e*™*! and obtain the
equivalent equation

(P(D —itN) + R(x,D —itN))u. = f.. (4.90)

Let E. be the inverse Fourier transform of P(§ — itN )_1 and set u, = E; * v.
Then (4.90) becomes

v+ R(x,D —itN)E. % v = f.. 4.91)

On the other hand assuming (4.89) we have

Y Ex % Wllimotc < Cllwlse,  IWIE, =@ )" / |a(®) P (&> + t°) dE.
Thus from this estimate it follows that

||R()C, D — itN)E'E * U”S,t =< Clt_l ”ft”sr

Choosing T > 2C’ we conclude that (4.91) has a unique solution v € H?.

We prove the following result which extends Theorem 4.6. Our proof is
completely different from that in [22,26] and based on the smooth symmetrizability
of corresponding first order system (Proposition 4.1) and hence can be applicable to
differential operators with variable coefficients.

Theorem 4.7. Assume that every characteristic (0,€,,€'), |€'] = 1 of Py(x,§) is
at most double and nondegenerate. Then the Cauchy problem for P(x, D) is C*°
well posed near the origin for arbitrary lower order term. Moreover if P (x, D)
is another system of the form (4.85) verifying (4.88) with the principal symbol
13(1 (x,8) = Z‘a‘=q Ay (x)E® of which Ay are sufficiently close to Ay(x) in C2()
then the Cauchy problem for P(x, D) is C® well posed near the origin for any
lower order term.

Assuming the analyticity of the coefficients we have

Theorem 4.8. Assume that Ay(x), |a| = q are real analytic in Q and every
characteristic (0,&0,&"), |€'| = 1 of P,;(x,£) is nondegenerate. Then the Cauchy
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problem for P(x,D) is C* well posed near the origin for arbitrary lower
order term.

The proof is very simple. We reduce the Cauchy problem for P(x, D) to that
for a first order system Z?(x, D). Taking the invariance of non degeneracy of
characteristics proved in Proposition 4.1.1, to prove Theorems 4.7 and 4.8, it suffices
to apply Proposition 4.2 and Theorem 4.4 respectively which asserts the existence
of a smooth symmetrizer .#(x, D’) for 22(x, D) defined near the origin.

Let us write

q
P(x,Dyu=D{u+Y A;(x, DD u= f. (4.92)

j=1
Put
u® = (DD, k=1,....q

where (D’)> =1+ Y _, D?. Then (4.92) is reduced to

0 -1
0 0 -1
DU + (D'\U = F
0 -1
Az(x,D/) A¥(x,D")

where U = "(uV, ..., u'?), F =(0,...,0, f) and
A% (x, D) = A;(x, D")(D")7/.

Let us denote by A(} (x, &’) the principal symbol of A? (x,&’) and set

0 I
0 0 —I
o (x,8) = . (4.93)
0 —1
A (x,E) e AYx,ED

Fix (0, &), |§’_| = 1.Let (0,%;,£),i = 1,..., p, be characteristics of &, +.o7(x, &)
where (0, A;, ') are nondegenerate and ); are different from each other. Then there
exists a smooth .7 (x, &) defined near (0, £'), homogeneous of degree 0, such that

T, E) A (3 E)T(x,8) = A (x,8) & @ Fp(x, &)
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where (0, \;,€) is a nondegenerate characteristic of % (x,€) = & + < (x,&’).
Then one can apply Proposition 4.2 or Theorem 4.4 to get a smooth symmetrizer
5 (x, &) of o (x, &) defined near (0, £’), homogeneous of degree 0 such that

SACR I WTACRISACR S

is Hermitian. This proves that .7 (x, £') is smoothly symmetrizable near (0, £’) by
(%, 8) @ - ® Fp(x,E). By the usual argument of partition of unity one can
prove that there is a smooth . (x, £’) which symmetrizes <7 (x, £’). Thus the Cauchy
problem for & (x, D) is C* well posed for arbitrary lower order term and hence so
is for P(x, D).

We turn to prove the second assertion of Theorem 4.7. Recall that (0, A;, é’ ),
i = 1,..., p are characteristics of & + 7 (x,&’) where {\;} are different from
each other. By assumption each (0, A;, é’ ) is either simple characteristic or double
nondegenerate characteristic. Let &; + o (x, &’) be the symbol of first order system
associated to P (x, D). Let (0, ;,£’) be a double nondegenerate characteristic of
€1 + /(x,&). Since o (x,€)is enough close to .7 (x,§’), as for characteristics of
€1+ o (0, &) enough close to (0, A, £"), we have either two simple characteristics
(0, M. ) or a double characteristic (0, ;,£’). From Proposition 4.3 it follows
that the double characteristic (0, X, Z ) is nondegenerate. Thus we conclude that
every characteristic of €, + o (0, E ) is nondegenerate and then repeating the same
arguments as above we get the assertion.

Example 4.9. Consider the second order differential operator P(x,D) =
(pir(x, D)) with 3 x 3 matrix coefficients

pin(x, T, &) = (¥ — i (%) [E)8x — (1 — 07 (x))&;Ex

in Example 4.6. Then from Theorem 4.7 it follows that the Cauchy problem for
P(x,D) + R(x, D) is C* well posed for every R of first order with C* 3 x 3
matrix coefficients. Let A(x,£) be in Example 4.7. Then the Cauchy problem for

— A(x, D) 4+ R(x, D) is C* well posed for every R of first order with C*°
3 x 3 matrix coefficients.

Example 4.10. Let P(§) = &1 + 2?22 F;&; be the symbol in Example 4.3.
Consider

d
P(x.&) =&i1 + ) Aj(1E;

i=2

where A (x) are real valued real analytic m x m matrices which are enough close
to F; in C? and P(x,£) has only real eigenvalues for any x and any & Then
Theorem 4.8 shows that the Cauchy problem for P(x, D) + B(x) is C*° well posed
for every smooth m x m matrix B(x).
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4.7 Nondegenerate Characteristics of Symmetric Systems

Let P be a first order system with constant coefficients

P(x)=x1+ ) Ajx; (4.94)
j=2

where A; are real m x m constant matrices. We always assume that P(x) is
hyperbolic with respect to 6 = (1,0, ...,0). Then from [34] (see also [13]) P(x)
can not be strictly hyperbolic if » > 3 and m = 2 modulo 4, that is P(x) has
necessarily multiple characteristics x 7# 0. We want to check whether these multiple
characteristics are nondegenerate.

For symmetric systems with constant coefficients the description of non degen-
eracy of characteristics becomes simple. Consider

g(X) = ZA]'X]'
j=1

where A; € M, (R). In this and the following sections we identify a symmetric
system .Z(x) with the image of .Z(x) when x varies in R”

L ={ZL(x)|x eR"}

which is a linear subspace in M} (R). Indeed if .# is a linear subspace of dimension
q in M} (R) which contains the identity then choosing a basis {/, A2,..., A4}, A} €
M; (R) for £ we have a symmetric system

q
xi1 1 +ZA]'X]'
j=2

and vice versa.
We denote by M, (k;R) the set of all A € M, (R) with rank m — k. Then we
have

Lemma 4.21. In order that X is a nondegenerate characteristic of £ (x) of order
k if and only if the image £ intersects with M, (k;R) at £ (x) transversally.

Proof. Since .Z(x) and Z;(x) are symmetric, the conditions (4.15) and (4.17)
in Definition 4.5 are automatically satisfied. Without restrictions we may assume
that x = (0,...,0,1). Then A4, is of rank m — k. We can make an orthogonal
transformation of the matrices so that with a block matrix notation we have

00
A, =
o¢]
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where G is a (m —k) x (m — k) non singular matrix. The tangent space of M, (k; R)
at A, consists of matrices of the form

[ o ::} (4.95)

with the corresponding block decomposition. On the other hand, with the same
block decomposition of .Z(x)

_ | Lu(x) Lia(x)
Zx) = [L21(X) Lzz(x):|

it is clear that %% (x) = Lj;(x). Thus the transversality of intersection means that
dim L;; = dj thatis, dim.%; = dj and hence X is nondegenerate. The converse
follows in the same way. O

We start with the special case that dim ¥ = d,, — 1. Since .Z has codimension
one in M}, (R) then .Z is defined by

L = {X = (x,-j),x,-j = Xji | Tr (AX) = 0} (496)

with some A € M} (R). Note that Tr A = 0 because . contains the identity. Now
we have

Proposition 4.9. Assume that £ is given by (4.96) with O # A € M} (R) and
that the rank of A is greater than k. Then every characteristic of order k of £ (x)
is nondegenerate.

Proof. Let X be a characteristic of order & of .Z(x) and hence H = Z (%) €
Z N M, (k;R). Here we note that dim Ty (M), (k;R)) = d,, — di which is seen by
the proof of Lemma 4.21. To show X is nondegenerate it suffices to prove that

dim (Z N Ty (M (k;R)) = dyy — dj — 1 (4.97)

by Lemma 4.21. As in the proof of Lemma 4.21, considering 7' ZT with a
suitable 7 € O(m) we may assume that

00
H_[OG} (4.98)

where G is a (m — k) x (m — k) non singular matrix. Set x; = Ofor1 <i < j <k.
Then Tr (AX) = 0, X = (x;;) implies that

E a,-jx,-j =0

k+l<i<j<m
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where A = (aj;). Recalling that the tangent space Ty (M, (k;:R)) spanned by
matrices of the form (4.95) we see that Z N Ty (M), (k; R)) consists of the matrices
of the form

Xz[Oxi,-] Tr(AX)= Y  (2-8)ax; =0

Xij Xij k+l<ji<j

where §;; is the Kronecker’s delta. Since A is symmetric and the rank of A4 is greater
than k by assumption then it follows that (a;)x+1<ji<; # O. This proves (4.97)
and hence the assertion. O

We turn to the case that 1 < dim.Z < d,, — 1. We first give a parametrization of
the Grassmannian of / dimensional subspaces of M, (R) containing the identity.
Take a map

o f{l,.... V= {i. DI <i<j<m(ij)# (mm)}

which is injective. Denote by U, the set of all v-tuple of m x m symmetric matrices
A = (Ay,...,A,) such that Tr A; = 0 and the o(k)-th entry of A; is zero unless
k = j and the o(j)-th entry of A; is 1. It is clear that U, can be identified with
R =D Taking all such injective o, U, and the inverse of the map

O :Us2A 2L, L={XeM,(R)Tr(4;X)=0,1<j <v}

then {(¢;!, Qs = ¢o(Us))} give charts of the Grassmannian of [ = d,, —
dimensional subspaces of M} (R) containing /, which we denote by Gél I

Proposition 4.10. In the Grassmannian Gl | consisting of | dimensional sub-
spaces of M, (R) containing the identity I, the subset for which every characteristic
of order less than m is nondegenerate is an open and dense subset.

Let PV (R) be the N dimensional real projective space and let X C PV (R) be a
non-singular algebraic manifold of dimension r and assume that xo ¢ T, X for all
x € X. Let us denote

G}‘\,’XO = {W c PY(R)|W is a linear space, dim W = s, xo € W}

and set s’ = N — s. Then we have

Lemma 4.22. A generic W € G intersects X transversally.

Y

Proof. * Let Y = {(x,W) € X x G~‘}'v,x0|x € W} and denote by pi, p» the
projections onto X and G?V,x(, respectively. Note that dimY = s’s — s’ 4+ r and

3The author owes this simple proof to A. Gyoja.
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dim G]YV’C() = s's. Then if r < s’ a generic W € G‘]"V,XO does not intersect X and
hence the result. Thus it is enough to study the case r > s’. Let us set

Z ={(x,W)eY|dim(TxX + W) <N —1}.
It is not difficult to see that
dim(p|Z)'(x) =ss'—r—1, xeX

so that dim Z = ss’ — 1 = dim ij’x[) — 1. Thus for every W belonging to the open
dense subset G~}v Yo \ p2(Z), W intersects X transversally. This proves the assertion.

O
Proof of Proposition 4.10. Take X and G‘]"V,XO as the projective spaces M, (k;R)""
and (G;:’ll )P based on M, (k;R) and G;:’II respectively. Applying Lemma 4.22
with N =d,, —1,r = N — di, xo = I we get the desired result. O

4.8 Hyperbolic Perturbations of Symmetric Systems

In this section, we discuss hyperbolic perturbations, of which definition is given
below, of symmetric systems with constant coefficients near multiple characteristics
which are not necessarily nondegenerate. To motivate our study in this section let us
consider

L(x.D) =) A;(x)D;, Ao(x) =1
j=0

where A;(x) are real m x m real analytic matrices and let p be a multiple
characteristic of order m with involutive A(p). If L(x, D) is strongly hyperbolic

near the origin we have dim KerL (p) = m by Theorem 2.2 which implies L(p) = O.
We can assume p = (0, e,) so that A,(0) = O then one can write

n—1 n
L(x.8) =&l + Y A;j(x)E; + Y Ay(x)x;E,

j=1 Jj=0
n—1 n
=&, {(Eo/E] + Y A;()E; /&) + ) Ay(x)x;}
j=1 j=0
and note that

n—1 n
Lo(x.E) =Eol + ) A;(0)&; + ) Ay(0)x;.
j=1 j=0
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From Lemma 4.2 L,(x, £’) is hyperbolic with respectto 6 = (0,...,0,1,0,...,0).
Assume that L,(x, £") is diagonalizable for every (x,&’). If dimg L, = d,, so that p
is nondegenerate then by Theorem 4.4 we see that L(x, £) is symmetrizable near p.
Moreover under the assumption

dimgL, > dp — 1

it follows from Lemma 4.9 that there exists 7 € M,,(R) such that T~'L,(x,&")T is
symmetric for every (x, &’). Considering T~ L(x,&)T from the beginning we can
assume that L,(x, £’) is symmetric. Thus we can write

L(x.8) = & {Ly(x.8'/8) + R(x.E'/8x)}. R(x.E'/8:) = O(x|> +[§'/841%)

where L,(x,&") + R(x, &) is hyperbolic with respect to (0,...,0,1,0,...,0).
Let us consider symmetric systems with constant coefficients

q
Lx)=xil +Y Flxj=xil + L(x) (4.99)
j=2

where F/ € M} (R) and {I, F/} are linearly independent. Note that if ¢ < d,, — 1
then x = 0 is a degenerate characteristic of .Z(x).

We perturb .Z(x) near x = 0 by adding R(x) = O(|x|?) as x — 0. We start
with

Definition 4.6. We say that M,,(R) valued real analytic R(x) = O(|x[*),x — 0
is a hyperbolic perturbation to .Z(x) near x = 0 if the perturbed system

P(x) = Z(x) + R(x)
remains to be hyperbolic near x = 0, that is
all eigenvalues of & (x + A®) are real near x = 0 (4.100)
where ® = (1,0,...,0) and
Rx)y=0 it Z(x)=0. (4.101)

Example 4.11. Let Z(x) be as in (4.99) and let T'(x) be real analytic m x m matrix
defined near x = 0 with 7(0) = /. Then it is clear that

q
T\ x0)Zx)T(x) = x11 + Z T_l(x)Fj T(x)x; = Z(x)+ R(x)

i=2

is a hyperbolic perturbation, while it is never trivial to find 7'(x) starting from

Z(x) + R(x).
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As before, we define S (x) as the representation matrix of the linear map
sending M, (R) > H with zero diagonal entries to the anti-symmetric matrix
[-Z(x), H]. Note that

Sz(x) = S 5(x) (4.102)

if Z(x) — Z(x) is a scalar matrix. Let
gx)=J]gix)"
j=1

be the irreducible factorization of det S »(x) in R[x]. We assume that
{x|g;(x) = 0} contains a regular point (4.103)

for 1 < j <s.Then we have

Theorem 4.9. Assume that every characteristic of £ (x) of order less than m is
nondegenerate. Suppose that det S »(x) satisfies (4.103). Then for every perturbed
P(x) = ZL(x) + R(x) with a hyperbolic perturbation R(x) we can find real
analytic A(x), B(x) defined near the origin with A(0) = B(0) = I such that

A(x)Z(x)B(x)

becomes symmetric.

Proof. By a preparation theorem proved in [11], generalizing the Weierstrass
preparation theorem to matrix valued functions, one can write

P(x +A0) = C(x. (M + Q(x)) (4.104)

where C(x, \) is real analytic near (0, 0) with det C(0,0) # 0 and Q(x), Q(0) =
O is real analytic with values in M,,(R). Comparing the first order term in the
Taylor expansion at (x,A) = (0,0) of both sides we see that C(0,0) = [ and
Q(x) = Z(x)+ R(x) where R(x) = O(|x|?). Since Z(0,...,0,Xg41,...,X,) =
O taking A = —x1, x; = 0,2 < j < g in (4.104) it follows from (4.101) that
O =C(x1,0,...,0,x441,... ,x,,,—xl)ﬁ(xl,O,...,O,xq+1, ..., X,) and hence

ﬁ(xl,O,...,O,xq+1,...,x,,) = 0.
Since C(x,0)~' 2 (x) = Z(x) + R(x) it is enough to study a perturbation term

R(x) which verifies R(x1,0,...,0,x441,...,x,) = O.Changing notations we set
X =(x2,...,%g),y = (X1, Xg+1,...,X,) and
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q
P(x.y) = L(x) + R(x,y). L(x)=) Flx,
j=2

where Sy (x) verifies the assumptions because of (4.102). As in Sect. 4.5 we set
P(r,o,y,a) =r"'Sa)"'P(ro, y)S(a).

Since P (0, ,0,0) = L(w) and {I, F/} are linearly independent the multiplicity of
eigenvalues of P (0, w, 0, 0) are less than m if @ # 0. We then fix @ # 0 and proceed
exactly as the same way in Sect.4.5. Take an orthogonal T} so that T, ' L(w) Ty =
@f;ﬁ»i I;,. Then we have

0(r.0,y,a) = r'T;'S(a) ' P(r(w + 0), y)S(a) To
= L(w) + L(®) + P(w;r,y,a) + O(|(r,0, y,a)*)

where L(w) = @\ I;; and L(0) = Ty ' L(O)To = (L;j(0))1<i <, Let
~ q ~
Li®) =) F6;
j=2

then we get
Lemma 4.23. {I,, F/} span M (R).

Proof. Let j(x) = TO_lf(x)TO, X = (X1,X2,...,Xg). Since (x1,X2,...,Xy) =
(=\i, w) is a characteristic of £’(x) of order less than m and hence nondegenerate
by assumption. It is clear that the localization of .Z(x) at (—A;, ) is

q
Linw () =x1l5; + Z Fiix;

j=2

because .Z (—\i, w) is diagonal. Noting that the non degeneracy of characteristics
is invariant under changes of basis for C”, the matrices {/j;, Fuj } span a subspace

of dimension s; (s; + 1)/2. Since I*:”] are symmetric this proves the assertion. O

Completion of the Proof of Theorem 4.9. In view of Remark at the end of Sect. 4.5,
the rest of the proof of Theorem 4.9 goes exactly as the same way in Sect.4.5. O

Taking into account the invariance of non degeneracy of characteristics under
change of basis we have

Corollary 4.2. Assume that every characteristic of £ (x) of order less than m
is nondegenerate and there is an orthogonal matrix T € O(m) such that
det S7—1 o (x) verifies (4.103). Then the same conclusion as in Theorem 4.9 holds.
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Remark. The condition (4.103) is not invariant under orthogonal changes of basis
for C. Indeed let

Z(x) =X112+[O x2:|
X2 0

then it is obvious that S (x) = O. On the other hand it is easy to see that there is
an orthogonal 7" € O(2) such that S;—1 7 (x) verifies (4.103).

Example 4.12. Let us take

X2 + X5 X5 X5 X2 X4 X5
Li(x) = Xs X3+ X5  Xs o La(x) = | x4 x3 —xs5
X5 X5 X4 + X5 X5 —X5 X4

for which constant hyperbolic perturbation must be trivial (see Definition 4.7 in the
next section and Theorems 3.5 and 3.6 in [22]). Applying Theorem 4.9 we show
that not only constant hyperbolic perturbations but also more general hyperbolic
perturbation is trivial.
Note that it is easy to see that
det Sy, (x) = x§X3 + x§x4 + xfxz — x2x§ — x3xf — x4x§
= —(x2 — x3)(x3 — x4) (x4 — x2),
det Sy, (x) = x§x3 + x§x4 + xgxz — x2x§ — x4x§ — x3x§

(2 — x3)(2X3 — X4 — X3X4 + X2).

Let ® = (1,1,1,0) and ®, = (2,2,1,0). It is obvious that L;(®;) is positive
definite. Let us set

Li(x) = Li(©)72L; (x)L; (®;,) 7%,

It follows from Theorems 3.5, 3.6 in [22] and Lemma 4.3 that

Lemma 4.24. Every characteristic of Z,-(x), i = 1,2 of order less than 3 is
nondegenerate.

To apply Theorem 4.9 to L; (x) we examine that
Lemma 4.25. det S; (x), i = 1,2 verifies (4.103).

Proof. We first note that det Sy, (x) verifies (4.103). The assertion for S; (x) is
clear because L1 (®) = I. To prove the assertion for S;_ (x) we note that

apo
C=L0)""2=|Ba0]|. Lyx)=CLyx)C
001
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witha > 0, > Oandy = a®>—fB? > 0. Let x be so thatdet S, (x) = 0. Then there
isa H € M;(R), H # O with zero diagonal entries such that [L»(x), H] = O.
Setting H = C ' HC it follows that

Ly(x)H — HL,(x) = O.

Hence we have [L,(x), HS ] = O where H* is the symmetric part of H.1tis easy
to check that the diagonal entries of H and hence those of H* are zero. Thus we
conclude that det S7_(x) = 0. Since det Sy, (x) verifies (4.103) by Remark at the
end of Sect. 4.5 we get det Sy, (x) = ¢ det Sy, (x) with a constant ¢ # 0 and hence
the assertion. O

4.9 Stability of Symmetric Systems Under Hyperbolic
Perturbations

We start with

Definition 4.7. Let R(x) be a hyperbolic perturbation to .Z(x) near x = 0. We say
that the perturbation is trivial if there exist real analytic A(x), B(x) defined near the
origin with A(0) B(0) = I such that A(x)Z?(x)B(x) becomes symmetric.

In this section we prove that generically every hyperbolic perturbation of symmetric
system .Z

L(x)=xil+) Flx;. F/eMyR)
j=2

is trivial if dim .2 is enough large. As in Sect.4.7 we identify .Z(x) with the
subspace .Z = {Z(x) | x € R"}.

Theorem 4.10. Assume d,, —m + 3 < | < d,,. Then in the (d,, — I)(I — 1)
dimensional Grassmannian of | dimensional subspaces of M, (R) containing the
identity, the subset for which every hyperbolic perturbation is trivial is an open and
dense subset.

As in Sect.4.5 we study S¢(x) for symmetric .Z(x) when dim.¥ = d,, — v
where 1 < v < m — 3. We first examine the representation matrix S (x). Let

Vin ={H = (hy) € M, (R)|hi; = 0}

and recall that S »(x) is defined as the linear map between two d,,—; dimensional
linear subspaces V,, and W,, = M2 (R)

Vwa Hw— [ZL(x),H]l =K € W,
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where M2(IR) denotes the set of all real m x m anti-symmetric matrices. Let us
write

L(x) = (@ (Dizijzm. O5(x) = ¢ (). (4.105)

For H € V,, we writt H = "(hiy.huz, hos, hig.hog, haa, .. 1) € Ré—1,
Then the equation [.Z(x), H] = K can be written as

Sy(x)H = K
where S (x) is a d,,—1 X d;,—; matrix. For instance when m = 3 we have

b)) —3(x)  —9F(x") Oy(x")
Sg(x) = —03(x)  HI() —PIx)  dh(x) . (4.106)
—oi(x") () 9(x) — d3(x)

We turn to the case -Z(x) is a m x m matrix. Let

Lo 1)
<) = [W) ¢::1(x)}

where [(x") = (oL, (x"), ..., " "1(x")) and L(x) stands for .Z(x) in (4.105) with
m—1.For H € V,, and K € W,, we write

_[Hih _[Kik
w=[le] w= ]

with H; € V,y—1, Ky € Wy—y and h = "(hym, ..., hu—1m). Then it is easy to see
that the equation [Z(x), H] = K is written as

[SL(x) c(l) Hﬁll}_[lﬂ_k
) Ly =t L h | T kT

and hence we get

[ SLx) c(l)
R | 1om

Our aim in this section is to prove

Proposition 4.11. Assume that 1 < v < m — 3. Then in the Grassmannian GZ’";V,

the subset of £ for which the condition (4.103) is fulfilled for T~'.ZT with some
T € O(m) is an open and dense subset.
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Here we use a parametrization of the Grassmannian G .1 used in Sect.4.7.
Weset A ={(i,i)|]l <i <m}andletl <k <m—1.We ﬁrst remark that

Lemma 4.26. Assume that 1 < k < m — 1. Then one can find finitely many
S1,...,Sy € O(m) such that for any £ € Gd”’ there is S; € {S1,...,Sn}
so that ST'.ZS; € Qq with some o verifying 0({1, Lk NA=0.

Proof. In this proof we denote |C | = max; ; |c;| for a matrix C = (c;;). Let T (€)
be the orthogonal matrix obtained replacing p-th and g-th, p < ¢, rows of the
identity matrix by

©,...,0, £(€),0,...,0,6,0,...,0), (0,...,0,—¢,0,...,0, f(€),0,...,0)
where €2 + f(€)?> = 1. We show that it is enough to take {S;} as the set of all
KKy K,
where
Kje{l.Ty(e) e =(Cm* ) i=1,....m1<p<q=<m}

and Cy < C; < +++ < C,, will be chosen suitably. Let £ € G§" " andlet A;..... A,
define .Z so that f consists of all X € M, (R) such that Tr (A X)=0,1<j<k
where A ; are linearly independentand Tr A ; = 0. We first note that we may assume

(H),: there is an injective T : {1,...,u} — {(i, /)|l <i < j =< m} such that
1(i)-th entry of A; is zero unless i = j and t(j)-th entry of A4; is 1, |[4;] <
aumz'h1 for1 < j < wwherea; =1, a,4+1 = Ba, C, with a fixed large B and
A, 41, ..., A are diagonal matrices.

In fact if some A; has a non-zero off diagonal entry we may assume that the
off diagonal t(1)-th entry of A; is 1 and |[4;| < 1. Replacing A; by 4; — a; A1,
J # 1, with suitable a; one can assume that t(1)-th entry of A; is zero if j # 1.

A repetition of this argument gives the assertion. If @ = k then t({l,...,k}) N
A = ¢ and there is nothing to prove. Then we may assume that @ < k — 1. Let
Ap41 =diag (A1, ..., Ay). Since Tr A, 41 = 01itis easy to see that there are at least

m — 1 pairs (i, j),i < j such that
3 =N =N, r=1,...,m.
Since i < m — 2 there exists such a (p, g) with (p,q) &€ T({1,...,}). Let us set
Aj(en) = Tpg(e) A Tpe(e), 1<) <k

and note that |A;(e,) — 4;| < BlauCu_l, 1 < j =< p. Choose C, so that
a,C," is small enough then taking A (e,) = Y_; ¢iidi(ey), 1 < j < ., with a
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non singular C = (cj;) we may suppose that (i )-th entry of A j(€,) is zero unless
i = j and ©(j)-th entry of A;(e,) is 1 and |A;(¢,)| < 2|A;|. Note that the off
diagonal entries of A, +1(¢, ) are zero except for (p, q), (¢, p)-th entries which are
€ f(€)(hg — Xp). Set

Au+l(€u) = {fuf(eu)o\q - )\p)}_lAu+l(€u)

and hence |1‘Iu+l(€u)| < Bzcumzu_l. Replacing /fj (ep) by /fj (ep) — o “Iu+l(€u)
with suitable o; we can conclude that t(n + 1) = (p, ¢)-th entry of /Ij (ep) is zero
forl < j < and |/fj(eu)| < a,+1m*, 1 < j < + 1. By subtraction again
we may suppose that A;(e,), j > p + 2 are diagonal matrices and then we get to
(H ), 41. The rest of the proof is clear. O

Proof of Proposition 4.11. We first assume that . € Q. witht({1,...,v)) NA =0
andlet A = (Ay,..., Ay) € U, be the coordinate of .%. Let us denote

L(x) = Kjx; = (¢}(x)

j=1

where {K;}, 1 < j <n = d,, — v is a basis for .2 and set g(x) = detSe(x).
Let J. ={(,j)|1 <i <j <m}\ t({l,...,v}) and note that q);(x), @i, j) e Jq
are linearly independentand A C J;. With 4y = (afjk) ) it is clear that the equations
d);» (x)=0,(,j) € J:\ Aand Tr (Ax-Z(x)) = 0 define a plane

m

m—1
YoafPe]n = Y af @) - e =0, 1=k=v  @108)

Jj=1 =1

and S #(x) is diagonal matrix on the plane with the determinant

g =[] @) -l (4.109)

I<i<j<m

We show that there is a polynomial (A) in a;k), 1<k<v,1<j<m-1such
that if (A4) # 0 then no two ¢’ (x) — ¢jﬁ (x),i < j are proportional on the plane

(4.108). To simplify notations we write y; for ¢!(x) — ¢ (x) so that

g = J] Gi=y)yieyma

I<i<j<m—1

provided that yA = 0 where y = (y1,...,Vm—1) and A = (a;ik)) which is a
(m — 1) x v matrix. Suppose that some two y; — y; are proportional on the plane
yA = 0 and hence yb = 0 with some b € R”"! for every y with y4 = 0.
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Then it is clear that rank (/I, b) = rank A. Note that at most two components of b
are the constant of the proportionality ¢ and the other components are either O or 1
(at most two 1 appear). Take a (v 4+ 1) x (v + 1) submatrix of (4, b) and expand
the determinant with respect to the last column. Equating the determinant to zero
we get a linear relation of v-minors of A with coefficients which are either 1 or the
proportional constant c¢. Since v + 1 < m — 2 we have at least m — 1 such linear
relations. Elimination of ¢ gives a quadratic equation in v-minors of A. Denote this
equationby (A4) = 0. Then we conclude that the rank of the matrix (4, b) is v + 1
if (A) # 0. This shows that no two y; — y; are proportional if (4) # 0.

Let g(x) = []g;(x)" be the irreducible factorization in R[x]. Without
restrictions we may assume that the plane yA =0is given by y, = f(y,), after a
linear change of coordinates y if necessary, where y = (y,, yp) is a partition of the
coordinates y. Then we have

[180a fGa))7 =T piva)

where p; (y,) are linear in y, and no two p; (y,) are proportional if (A) # 0. Then
it follows that r; = 1 and g; (y4, f(Y4)) is a product of some p; (y4)’s;

i 0ar f) = [ ] pia)-

i€l

From this it is obvious that {g; (y4, f(y«)) = 0} contains a regular point. Then it
follows that {g; (x) = 0} contains a regular point. This shows that, in U, the set of
A such that S« (x) does not verify (4.103) is contained in an algebraic set. We now
study .Z € Q, witho({1,...,v}) N A # @. By Lemma 4.26 there is S; € O(m)
such that S71.#S; € Q. with some t verifying ©({1,...,v}) N A = @. Since {S;}
is a finite set the proof is clear. O

Proof of Theorem 4.10. Let d,, —m + 3 < [ < d,,. Then Theorem 4.10 follows
immediately from Propositions 4.10, 4.11 and Corollary 4.2. O

4.10 Some Special Cases

In the case m = 3 one can improve Theorem 4.10.

Theorem 4.11. Assume thatm = 3 and4 <1 <6 = ds. Theninthe (6—1)(I —1)
dimensional Grassmannian of | dimensional subspaces of M3(R) containing the
identity, the subset for which every hyperbolic perturbation is trivial is an open and
dense subset.

We assume m = 3 throughout the section. Let .Z € Gé, ; for I = 4 or 5. Taking
abasis {K;} for £, . is the image of
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Z(X) = ZKJ'X]'.
Jj=1

We first study the case / = 5.

Lemma 4.27. In the Grassmannian Gg,l’ the subset of £ for which the condition
(4.103) is fulfilled for T~' £ T with some T € O(m) is an open and dense subset.

Proof. Let A = A, € U, be the coordinate of .# and assume that 6(1) N A = @ so
that the diagonal entries of .#(x) are linearly independent. Considering T~!.%(x)T
with suitable permutation matrix 7', if necessary, we may assume that o(1) = (1, 2)
so that with £ (x) = (q;Q (x)) we have from Tr (4.2 (x)) = O that

—2¢5(x) = an (b} — ¢3) + an(d3 — §3) + 2a1305 + 2axsd;3.

From (4.106), simplifying notations, it is enough to study

X1 —X2 —)i1 Y2
S(x,y) = =1 X o(x,y)
=2 6(x.y) X2

where ¢(x,y) = a1x; + axxy + b1yy + byy,. We show that if a; + a, # 1 and
4aja; — 1 # 0 then the condition (4.103) is fulfilled. We first assume that x;x, —
$(x,0)? is irreducible. Note that g(x, y) = det S(x, y) is then irreducible. Indeed
if g(x, y) were reducible so that g(x,y) = h(x, y)k(x, y) then from g(x,0) =
(x1 — x2)P(x) with Y(x) = x;x2 — dp(x, 0)> we may suppose that

h(x,y) = V(x) + p(x,y), k(x,y)=x1—x2+q(y)

where p(x,0) = 0, ¢(y) = ay1 +Py». Equating the coefficients of y; in both sides
of g(x,y) = h(x, y)k(x, y) we see that ar(x), Byr(x) have a factor x; — x, which
implies that ¢ = 0. This gives g(x, y) = h(x, y)(x1 — x2) which is a contradiction.
Thus g is irreducible. It is clear that {g(x,0) = 0} has a regular point and hence so
does {g(x, y) = 0}. This proves the assertion.

Assume now that {(x) = x;x — ¢(x,0)? is reducible. From the assumption
4a1a; — 1 # 0 it follows that {r(x) has no multiple factor. Note that a; + a, # £1
implies that {/(x) and x; —x; are relatively prime. The rest of the proof is a repetition
of the last part of the proof of Proposition 4.11. O

We turn to the case [ = 4. We show that

Lemma 4.28. Assume that | = 4 and every double characteristic of £ (x) is
nondegenerate. Then the condition (4.103) is fulfilled for T~' £ (x)T with a suitable
T € 0(3).
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Proof. Following the proof of Theorems 3.5 and 3.6 in [22] we choose a specific
basis for . = T~!' #T with suitably chosen T € O(3) and show that (4.103) is
fulfilled for . using this basis. From the proof of Theorem 3.3 in [22], if every
double characteristic of . is nondegenerate, then only two cases occur, that is .
has either four nondegenerate double characteristics or two nondegenerate double
characteristics.

We first treat the case that . has four nondegenerate characteristics. Choosing
a suitable 7 € O(3) we see from [22] that A* = a1 ® ax and B* = 1+ ® P+
is a basis for & = T~ 2T where ax = (a, +a,1),p+ = (b, +b,1) and a # b,
ab # 0. Now we can write

j(x) =AY x + A x, + Bt x3+ B xy4.
With X = x1 +x2,Y = X1 — X2, Z = x3 + x4, W = x3 — x4 we have

3 a’X + b*Z a*Y + b*W aX +bZ
L = | a*Y + bW a*X + b*Z aY + bW |. (4.110)
aX+bZ aY +bW X+Z

Therefore it follows from (4.106) and (4.110) that

0 —aY —bW aX +bZ
S;=| —aY —bW cX +dZ a*Y +b*W
—aX —bZ a’Y +b*W cX +dZ

where ¢ = a*> — 1,d = b? — 1. Let § = det S ;. On the plane a*Y + b*W = 0,
that is, if W = —a’Y /b*> = eY we get

g=(cX+dZ)aX +bZ + (a+be)Y)(aX +bZ —(a+be)Y).

Note that a + be # 0 because a # b and no two factors in the right-hand side are
proportional. Now, as the end of the proof of Proposition 4.11, it is easy to conclude
that g satisfies (4.103).

We next study the case .2 has two nondegenerate double characteristics. With
a suitable T € O(3) we see that L = T7' T contains K* = o+ ® at with
a+ = (a,%xa, 1), a # 0, which are intersections with M3 (2; R). Since 2 contains
the identity, as a member of basis for Z , one can take K3

0 0 —2a
K; = 00 0
—2a02@>—-1)
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because KT + K~ + K3 = 24%I. The last member of basis for Z can then be
chosen of the form

000
Ky = O)\l,l,
Opv

Thus with X = x; +x2,Y = x; —x2, Z = x3, W = x4 and ¢ = a? — 1 the matrix
K*x, + K~x5 + K3x3 + K4x4 can be written

a’X a*y aX —2aZ

L = a’y  a?X + AW aY +pW : 4.111)
aX —2aZ aY +pW X +2cZ +VvW

We examine if there are other double characteristics, that is, if % is of rank 1 for
some (X, Y, Z, W) with Z2 + W2 #£ 0. It is not difficult to see that six 2-minors of
(4.111) vanish for such (X, Y, Z, W) if and only if the equation

4a*Z* +2(a* + DAZW + (W — pHW? =0

has a real solution (Z, W) # (0,0). Thus in order that 2 has two nondegenerate
double characteristics it is necessary and sufficient that

4a* v > 4a’p? + (@® + )22 (4.112)

In particular A and v have the same sign. From (4.111) and (4.106) it follows that

= 4 —aY —uWw aX —2aZ
Sg=| —aY —pW cX —2cZ —vW a’y
—aX +2aZ a’y cX —2¢cZ+(A—v)W

If ¢ # 0 then we consider ¢ = detS ; on W = 0 so that
g= (X —-2cZ)(aX —2aZ +aY)(aX —2aZ —aY).

The same argument as before proves that (4.103) is verified for g. If ¢ = 0 and
hence a®> = 1 then
g =W(v(@aX —2aZ)> + M0 —p2)a'Y2 + (L —v)a(W —apa'Y)?)
=Wh(X.,Y,Z,W)
where o = Av — p%. From (4.112) it follows that a > 0 and v> — u? > 0 because

v2 4+ A2 > W > p? 4 A% Then the quadratic form / is indefinite and hence {h = 0}
contains a regular point. This proves the assertion. O
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Proof of Theorem 4.11. 1f | = 6 then the assertion follows from Theorem 4.2 in
[53]. If / = 5, combining Proposition 4.10 and Lemma 4.27 we get the result by
Corollary 4.2. Let / = 4. Then by virtue of Proposition 4.10 and Lemma 4.28 one
can apply Corollary 4.2 to get the assertion. O

4.11 Concluding Remarks

In [25], F. John discovered mysterious phenomena on the characteristics of hyper-
bolic systems. He considered the system P of 3 second order equations in 4
independent variables, which is the system discussed in Example 4.4. He showed
that any system P near P is hyperbolic if and only if P has 4 double characteristics
near the double characteristics of P. In [26] he showed that P is strongly hyperbolic.
In [22], L. Hormander studied hyperbolic systems with nondegenerate double
characteristics. In particular, it was proved there that nondegenerate double charac-
teristics are stable, that is we can not remove nondegenerate double characteristics
by hyperbolic perturbations which shows a complexity of hyperbolic systems
compared with the scalar case (see [58]).

For first order systems the notion of nondegenerate characteristics of any order is
introduced in [53, 54]. We adapt this definition for higher order systems through
the associated first order system in [57]. According to this definition, simple
characteristics are nondegenerate characteristics of order 1 and nondegenerate
double characteristics coincide with those studied in [4,17,22,25,26,48].

Theorem 4.3 (in the real case) was proved for analytic first order systems in [53]
and for systems with nondegenerate double characteristics in [22]. The results about
hyperbolic perturbations of symmetric systems with constant coefficients are found
in [54].

Problem. Generalize Theorem 4.4 to C* m x m matrix valued &(x).
Problem. Determine the minimal / such that Theorem 4.10 holds.

Problem. Determine the minimal dimg {L(x) | x € R"} such that Lemma 4.9
holds. In the real valued case it is known that 5 is optimal when m = 3 (see [59]).
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