
Chapter 4
Systems with Nondegenerate Characteristics

Abstract In this chapter we introduce the notion of nondegenerate multiple
characteristics. Simple characteristics are nondegenerate characteristics of order 1.
A double characteristic ¡ of L is nondegenerate if and only if the rank of the
Hessian at ¡ of the determinant of L.x; Ÿ/ is maximal. We prove that every hyper-
bolic system which is close to a hyperbolic system with nondegenerate multiple
characteristic has a nondegenerate characteristic of the same order nearby. This
implies that hyperbolic systems with a nondegenerate multiple characteristic can
not be approximated by strictly hyperbolic systems which contrasts with the case
of scalar hyperbolic operators. We also prove that if every multiple characteristic of
the system L is nondegenerate then there exists a smooth symmetrizer and hence
the Cauchy problem for L is C 1 well posed for any lower order term. Finally we
discuss about the stability of symmetric systems in the space of hyperbolic systems.

4.1 Nondegenerate Characteristics

Let P.x/ be an m � m matrix valued smooth function defined near Nx 2 R
n.

We assume that P.x/ is a polynomial in x1 so that

P.x/ D
qX

j D0

Aj .x0/xq�j
1 (4.1)

where x0 D .x2; : : : ; xn/. We adapt the definitions of hyperbolicity and characteris-
tics in Chap. 1 to P.x/.

Definition 4.1. We say P.x/ is hyperbolic near Nx with respect to ™ D
.1; 0; : : : ; 0/ 2 R

n if det A0.x
0/ ¤ 0 near x0 D Nx0 and

det P.x C œ™/ D 0 H) œ is real (4.2)
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162 4 Systems with Nondegenerate Characteristics

for any x near Nx. We say that Nx is a characteristic of order r of P.x/ if

@’
x.det P /. Nx/ D 0; 8j’j < r; @’

x.det P /. Nx/ ¤ 0; 9j’j D r: (4.3)

We now define nondegenerate characteristics. To do so we first define the
localization of P.x/ at a characteristic.

Definition 4.2. Let Nx be a characteristic of P.x/ verifying

KerP. Nx/ \ Im P. Nx/ D f0g: (4.4)

Set dim KerP. Nx/ D r . Let fv1; : : : ; vrg be a basis for KerP. Nx/ and let f`1; : : : ; `rg
be the dual basis vanishing on Im P. Nx/, that is

`i .Im P. Nx// D 0; `i .vj / D •ij

where •ij is the Kronecker’s delta. Then we define the localization of P at Nx, a
linear transformation on Ker P. Nx/, defined by a r � r matrix P Nx.x/ with respect to
the basis fv1; : : : ; vrg

�
`i .P. Nx C �x/vj /

�
1�i;j �r

D �ŒP Nx.x/ C O.�/�: (4.5)

Remark. Let f Qvj g be another basis for KerP. Nx/ where Qvj D P
tkj vk with a non

singular r � r matrix T D .tij/ and let f Q̀
ig be the dual basis vanishing on Im P. Nx/.

Define QP Nx.x/ by (4.5) with f Qvj g and f Q̀
ig then it is clear that QP Nx.x/ D T �1P Nx.x/T

and hence P Nx.x/ is a well defined linear map on KerP. Nx/.
Let us denote

P Nx D fP Nx.x/ j x 2 R
ng � Mr.C/ (4.6)

which is a linear subspace of Mr.C/.

Definition 4.3. We call dim RP Nx , the dimension of the linear subspace fP Nx.x/ j
x 2 R

ng over R, the real reduced dimension of P Nx.x/.

We first show

Lemma 4.1. Let T .x/ be a smooth non singular m � m matrix near Nx and let
QP .x/ D T �1.x/P.x/T .x/. Then if Nx is a characteristic of order r of P.x/ verifying

(4.4) then Nx is also a characteristic of order r of QP .x/ verifying (4.4) and there is a
non singular r � r matrix such that

QP Nx D T �1P NxT:

Proof. Since Ker QP . Nx/ D T �1.Ker P. Nx// and Im QP . Nx/ D T �1.Im P. Nx// with
T D T . Nx/ it is easy to see
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Q̀
i

� QP . Nx C �x/ Qvj

� D `i

�
P. Nx C �x/vj

�C O.�2/

where Q̀
i .�/ D `i .T �/ and Qvj D T �1vj . This proves the assertion. ut

Lemma 4.2. Assume that P.x/ is hyperbolic near Nx. Let Nx be a characteristic
verifying (4.4) with dim KerP. Nx/ D r . Then we have

det P. Nx C �x/ D �r
�
c det P Nx.x/ C O.�/

�
(4.7)

with c ¤ 0. Assume further that det P Nx.x/ 6� 0 then

det P Nx.™/ ¤ 0; (4.8)

det P Nx.x C œ™/ D det
�
P Nx.x/ C œP Nx.™/

� D 0 H) œ 2 R; 8x 2 R
n: (4.9)

Proof. In view of (4.4) we can choose a non singular constant matrix T so that

T �1P. Nx/T D
�

0 0

0 G

�

where G is a non singular .m � r/ � .m � r/ matrix. With QP .x/ D T �1P.x/T we
write

QP . Nx C �x/ D QP . Nx/ C � OP .x/ C O.�2/:

Denoting

OP .x/ D
� OP11.x/ OP12.x/

OP21.x/ OP22.x/

�

it is clear QP Nx.x/ D OP11.x/ which follows from the definition. Since det QP Nx D det P Nx
by Lemma 4.1 we have

det P Nx.x/ D det OP11.x/: (4.10)

Note that

det P. Nx C �x/ D det QP . Nx C �x/ D �r
�
det G det OP11.x/ C O.�/

�
(4.11)

which shows the first assertion. To prove the second assertion suppose det P Nx.™/ D 0

so that det P. Nx C �™/ D o.�r/ by (4.7). This implies that .@=@x1/j det P. Nx/ D 0

for j D 0; : : : ; r . Since detP.x/ is hyperbolic in the sense (4.2) it follows from
Lemma 1.9 that

�
@’

xdet P
�
. Nx/ D 0; 8j’j � r:
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This implies det P Nx.x/ � 0 which is a contradiction. We turn to the third assertion.
Since

det P. Nx C �.x C œ™// D �r
�
c det P Nx.x C œ™/ C O.�/

�

if det P Nx.x C œ™/ D 0 has a non real root œ, then taking � ¤ 0 sufficiently small
the equation

c det P Nx.x C œ™/ C O.�/ D 0

admits a non real root. This contradicts (4.2). ut
Definition 4.4. Denote by M h

r .C/ the set of all r � r Hermitian matrices and by
M s

r .R/ the set of all real r � r symmetric matrices. Then r2 and r.r C 1/=2 is the
dimension of M h

r .C/ and M s
r .R/ over R respectively.

Definition 4.5. We say that Nx is a nondegenerate characteristic of order r of P.x/

if the following conditions are verified;

KerP. Nx/ \ Im P. Nx/ D f0g; (4.12)

dim RP Nx D r2 D dim RM h
r .C/; .r D dim Ker P. Nx//; (4.13)

det P Nx.™/ ¤ 0; P Nx.™/�1P Nx.x/ is diagonalizable 8x 2 R
n: (4.14)

When P.x/ is real valued then we say that Nx is a nondegenerate characteristic of
order r if

Ker P. Nx/ \ Im P. Nx/ D f0g; (4.15)

dim RP Nx D r.r C 1/=2 D dim RM s
r .R/; .r D dim Ker P. Nx//; (4.16)

det P Nx.™/ ¤ 0; P Nx.™/�1P Nx.x/ is diagonalizable 8x 2 R
n: (4.17)

Example 4.1. Simple characteristics verify (4.12)–(4.14) with r D 1 and hence a
simple characteristic is a nondegenerate characteristic of order 1.

Example 4.2. Let q D 1 and m D 2 so that P.x/ D x1 C A1.x0/ where A1.x
0/ is

a real valued 2 � 2 matrix with A1.0/ D O . As we will see in the next section that
if the rank of the Hessian of det P.x/ at x D 0 is 3 then x D 0 is a nondegenerate
characteristic of order 2.

Example 4.3. Let us consider

P.x/ D Ÿ1I C
dX

j D2

Fj Ÿj
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where fI; F2; : : : ; Fd g span M s
m.R/ and d D m.mC1/=2. Then every characteristic

of P is nondegenerate. We check this. Let NŸ be a characteristic of order r of P.Ÿ/ so
that 0 is an eigenvalue of P.NŸ/ of multiplicity r . Take an orthogonal matrix T such
that

T �1P.NŸ/T D
�

O O

O G

�

where G is a .m � r/ � .m � r/ non singular matrix. Denoting

QP .Ÿ/ D T �1P.Ÿ/T D .®ij.Ÿ//1�i;j �m

we note that ®ij.Ÿ/ D ®ji.Ÿ/ and ®ij.Ÿ/, i � j are linearly independent. Writing

QP .Ÿ/ D
� QP11

QP12

QP21
QP22

�

it is clear that QPNŸ.Ÿ/ D QP11.Ÿ/ and dim QPNŸ D r.r C 1/=2 because ®ij, i � j

are linearly independent. Since QP11.Ÿ/ is symmetric for every Ÿ then (4.14) is also
obvious. Thus by Lemma 4.1 we conclude that NŸ is a nondegenerate characteristic
of P .

To study P.x/ we consider the following mq � mq matrix valued function

P.x/ D x1I C

2

666664

0 �Im

0 0 �Im

: : :

�Im

Aq.x0/ � � � � � � A1.x
0/

3

777775
D x1I C A .x0/

where I and Im are the mq � mq and m � m identity matrix respectively. It is clear
that

detP.x/ D det P.x/: (4.18)

Then the condition (4.2) implies that all eigenvalues of A .x0/ are real, equivalently

all eigenvalues of P.x/ are real: (4.19)

In the rest of this section we prove

Proposition 4.1.1 Let Nx be a nondegenerate characteristic of order r of P.x/. Then
Nx is also a nondegenerate characteristic of order r of P.x/ and vice versa.
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Proof. Assume that Nx is a nondegenerate characteristic of order r of P.x/ and show
that Nx is also a nondegenerate characteristic of order r of P.x/. We first check

h @P

@x1

. Nx/KerP. Nx/
i

˚ Im P. Nx/ D C
m: (4.20)

Let fv1; : : : ; vrg be a basis for KerP. Nx/ and take f`ig so that `i .Im P. Nx// D 0 and
`i .vj / D •ij. Then by definition we have

P Nx.x/ D
 

`i

�
.

nX

kD1

@P

@xk

. Nx/xk/vj

�
!

D
nX

kD1

�
`i

�
.

@P

@xk

. Nx//vj

��
xk

and hence

P Nx.™/ D
�

`i

�
.

@P

@x1

. Nx//vj

��
:

Then det P Nx.™/ ¤ 0 implies that

h @P

@x1

. Nx/KerP. Nx/
i

\ Im P. Nx/ D f0g

and hence (4.20).
We note that

KerP.x/ D ft .u; x1u; : : : ; x
q�1
1 u/ j u 2 Ker P.x/g

and dim KerP. Nx/ D r . We next describe Im P.x/. Write

¥k.x/ D
q�kX

j D0

Aj .x0/xq�j �k
1

then it is easy to see that

Im P.x/ D ft .w.1/; : : : ; w.q�1/; P.x/v�
q�1X

kD1

¥k.x/w.k// j w.1/; : : : ; w.q�1/; v 2C
mg:

We now show that

KerP. Nx/ \ Im P. Nx/ D f0g: (4.21)

Let ` be a linear form on C
mq . Writing v D t .v.1/; : : : ; v.q// 2 C

mq with v.j / 2 C
m

one can write
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`.v/ D
qX

j D1

`.j /.v.j //

where `.j / are linear forms on C
m. Assume `.Im P. Nx// D 0. This implies that

`.j /.�/ D `.q/.¥j . Nx/�/; 1 � j � q � 1; `.q/.Im P. Nx// D 0 (4.22)

and then we have

qX

j D1

`.j /. Nxj �1
1 u/ D

q�1X

j D1

`.q/. Nxj �1
1 ¥j . Nx/u/ C `.q/. Nxq�1

1 u/ (4.23)

D `.q/.

q�1X

j D1

Nxj �1
1 ¥j . Nx/u C Nxq�1

1 u/ D 0:

From this, noting the identity

q�1X

j D1

x
j �1
1 ¥j .x/ C x

q�1
1 D @P

@x1

.x/

one gets

`.q/.
@P

@x1

. Nx/u/ D 0; 8u 2 KerP. Nx/: (4.24)

From (4.20) and (4.22) it follows that `.q/ D 0 and hence ` D 0. This proves that

KerP. Nx/ C Im P. Nx/ D C
mq (4.25)

and hence (4.21).
We next examine (4.13), (4.14) for P.x/. Let U D t .u; Nx1u; : : : ; Nxq�1

1 u/ 2
KerP. Nx/ where u 2 KerP. Nx/. Consider P.x/U

P.x/U D t ..x1 � Nx1/u; .x1 � Nx1/ Nx1u; : : : ; .x1 � Nx1/ Nxq�2
1 u; v/

D t .w.1/; w.2/; : : : ; w.q�1/; v/

where the last component v is

v D P. Nx1; x0/u C .x1 Nxq�1
1 � Nxq

1 /u

D P.x/u C ŒP. Nx1; x0/ � P.x1; x0/�u C Nxq�1
1 .x1 � Nx1/u:
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Now it is easy to see that this is equal to

P.x/u �
q�1X

kD1

¥k. Nx/w.k/ C O..x1 � Nx1/
2/: (4.26)

Let ` be a linear form on C
mq with `.Im P. Nx// D 0. From (4.26) it follows that

`.P.x/U / D
q�1X

j D1

`.j /.w.j // C `.q/
�
P.x/u

�
q�1X

kD1

¥k. Nx/w.k/
�C O..x1 � Nx1/2/ (4.27)

D `.q/.P.x/u/ C O..x1 � Nx1/
2/

by (4.22). Let us take Uj D t .uj ; Nx1uj ; : : : ; Nxq�1
1 uj / 2 KerP. Nx/ where fuj g is a

basis for KerP. Nx/. Then one can write

@P

@x1

. Nx/uj �
rX

kD1

ajkuk 2 Im P. Nx/;

thanks to (4.20) with a non singular A D .ajk/. Take Q̀
i so that

Q̀
i .Im P. Nx// D 0; Q̀

i .uj / D •ij:

Let us take `
.q/
i

`
.q/
i D

rX

kD1

bik
Q̀
k; B D .bik/ D tA�1

so that

`
.q/
i .

@P

@x1

. Nx/uj / D
rX

kD1

bik

rX

pD1

ajp
Q̀
k.up/ D •ij:

We now define linear forms `i on C
mq by

`i .w
.1/; : : : ; w.q// D

q�1X

tD1

`
.q/
i .¥t . Nx/w.t// C `

.q/
i .w.q//
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then we have

`i .Im P. Nx// D 0; `i .Uj / D •ij (4.28)

as observed above. From (4.27) it follows that

`i .P. Nx C �x/Uj / D `
.q/
i .P. Nx C �x/uj / C O.�2/

D
rX

kD1

bik
Q̀
k.P. Nx C �x/uj / C O.�2/

D �
�
BP Nx.x/ C O.�/

�
:

Since B D .tA/�1 D P Nx.™/�1 we conclude that

P Nx.x/ D P Nx.™/�1P Nx.x/: (4.29)

Since P Nx.™/ D I then (4.13) and (4.14) for P Nx.x/ follow immediately.
Conversely assume (4.25). Let `.q/ be a linear form on C

m with `.q/.Im P. Nx// D
0, `.q/.KerP. Nx// D 0 and define `.j /, 1 � j � q � 1 by (4.22). Then we have
`.Im P. Nx// D 0 and moreover (4.22) shows `.KerP. Nx// D 0 and hence ` D 0 by
(4.25). Thus we have `.q/ D 0 which proves KerP. Nx/ ˚ Im P. Nx/ D C

m and hence
(4.12). To check (4.13), (4.14) for P.x/ we note that KerP. Nx/ \ Im P. Nx/ D f0g
implies that

u 2 KerP. Nx/;
@P

@x1

. Nx/u 2 Im P. Nx/ H) u D 0:

Hence we have (4.20) again and thus (4.29). Then the rest of the proof is clear. ut
Remark. Assume that q D 1 and A1.x

0/ is symmetric in (4.1). Then (4.12) and
(4.14) are always verified.

Remark. By definition, the order of nondegenerate characteristics never exceed m,
the size of the matrix whatever q is.

4.2 Nondegenerate Double Characteristics

Nondegenerate double characteristics have a special feature.

Lemma 4.3. Let Nx be a double characteristic. Then Nx is nondegenerate if and only
if dimKerP. Nx/ D 2 and the rank of the Hessian of det P.x/ at Nx is 4. When P.x/

is real valued then Nx is nondegenerate if and only if dimKerP. Nx/ D 2 and the rank
of the Hessian of det P.x/ at Nx is 3.
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To prove the lemma we first note

Lemma 4.4. Let Aj be 2 � 2 constant matrices with Tr Aj D 0, 1 � j � m.
Assume that the quadratic form

Q.x/ D det
� mX

j D1

Aj xj

�

is real nonpositive definite in R
m. Then the rank of Q.x/ is at most 3 and if

rank Q D 3 then there is a constant matrix N such that

N �1Aj N

is an Hermitian matrix for all j . If all Aj are real then rank Q � 2 and if rank Q D 2

then there is a real constant matrix N such that all

N �1Aj N

are real symmetric.

Proof. With a non singular real matrix T D .tij/ one can assume

Q.T x/ D det
� mX

j D1

Hj xj

� D �
kX

j D1

x2
j ; Tr Hj D 0 (4.30)

where Hj D Pm
iD1 tjiAi and rank Q D k. If k � 2 then nothing to be proved. Thus

we assume k � 3. Since det H1 D �1, Tr H1 D 0, one can diagonalize H1

H 0
1 D N �1

1 H1N1 D
�

1 0

0 �1

�
:

Denoting H 0
2 D N �1

1 H2N1 D .hij/ and taking xj D 0, j � 3 it follows from (4.30)
that h11 D h22 D 0, h12h21 D 1. Setting

N �1
2 D

�
1 0

0 h12

�

it follows that

N �1
2 H 0

1N2 D H 0
1; N �1

2 H 0
2N2 D

�
0 1

1 0

�
:
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Let us put N D N1N2 and N �1Hj N D H 0
j D .h

.j /
pq /, j � 3. Take xj D 0 unless

j D 1, 3 then we get h
.3/
11 D h

.3/
22 D 0, h

.3/
12 h

.3/
21 D 1 and taking xj D 0 unless j D 2,

3 we get h
.3/
12 C h

.3/
21 D 0. Thus we conclude h

.3/
12 D ˙i . The same procedure gives

H 0
j D –j

�
0 i

�i 0

�
; .–j D 1 or � 1/; 3 � j � k:

Repeating similar arguments we obtain Hj D O for j > k. We summarize

N �1.

kX

j D1

Hj xj /N D
�

1 0

0 �1

�
x1 C

�
0 1

1 0

�
x2

C
�

0 i

�i 0

�
.

kX

j D3

–j xj /; Hj D O; j > k (4.31)

and from (4.30)

� det.
kX

j D1

Hj xj / D x2
1 C x2

2 C .

kX

j D3

–j xj /2 D
kX

j D1

x2
j : (4.32)

The identity (4.32) holds only if k D 3 and all N �1Hj N are Hermitian. Since T is
real then N �1Aj N are also Hermitian. This proves the assertion. If all Aj are real,
we can take N real and the proof is similar. ut
Proof of Lemma 4.3. Take T so that

T �1P. Nx/T D
�

A O

O G

�
(4.33)

where G is a non singular matrix of order m � 2 and all eigenvalues of A are zero.
Assume that dimKer P. Nx/ D 2. Then it follows that A D O and hence Ker P. Nx/ \
Im P. Nx/ D f0g.

Assume that rank Hess Nx det P D 4 and hence det P Nx.x/ 6� 0 by Lemma 4.2.
From Lemma 4.2 again we have det P Nx.™/ ¤ 0 and P Nx.™/�1P Nx.x/ has only zero
eigenvalues for every x. Then writing

P Nx.™/�1P Nx.x/ D x1I2 C
nX

j D2

Aj xj

D
�
x1 � 1

2
Tr .

nX

j D2

Aj xj /
	
I2 C

nX

j D2

QAj xj
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it follows that det.
Pn

j D2
QAj xj / is a real nonpositive quadratic form on R

n�1 of
which rank is 3 since the rank of the real quadratic form det .P Nx.™/�1P Nx.x// is 4.
Note Tr QAj D 0. From Lemma 4.4 there exists a constant 2 � 2 matrix T such that
T �1 QAj T is Hermitian for every j so that one can write

T �1.P Nx.™/�1P Nx.x//T (4.34)

D ¥1.x/

�
1 0

0 1

�
C ¥2.x/

�
1 0

0 �1

�
C ¥3.x/

�
0 1

1 0

�
C ¥4.x/

�
0 i

�i 0

�

with real linear forms ¥i.x/ and obviously P Nx.™/�1P Nx.x/ is diagonalizable for
every x. Since ¥i .x/, i D 1; 2; 3; 4 are linearly independent it is clear that
dim RP Nx D 4.

Conversely we assume that a double characteristic Nx is nondegenerate. Take T

so that (4.33) holds. From KerP. Nx/ \ ImP. Nx/ D f0g it follows that A D O and
hence dimKer P. Nx/ D 2. Assume dim P Nx D 4 and det P Nx.™/ ¤ 0. Let us write

P Nx.™/�1P Nx.x/ D .x1 � §.x//I2 C
4X

j D2

Aj xj

where Tr Aj D 0 and fI2; A2; A3; A4g are linearly independent by assumption.
Since P Nx.™/�1P Nx.x/ has only real eigenvalues for every x then det.

P4
j D2 Aj xj /

is nonpositive definite so that one can write

det.
4X

j D2

Aj xj / D �
kX

iD1

`j .x/2

with linearly independent `j .x/ where k � 3 by Lemma 4.4. Assume that
`i .x/ D 0, i D 1; : : : ; k then

P4
j D2 Aj xj has only zero eigenvalues because

Tr Aj D 0. Since
P4

j D2 Aj xj is diagonalizable by assumption then we conclude

that
P4

j D2 Aj xj D O so that

4X

j D2

Aj xj D
kX

iD1

Hj `j .x/

which proves k D 3. Thus det.P Nx.™/�1P Nx.x// has rank 4 and from Lemma 4.2 it
follows that rank Hess Nxdet P D 4. This proves the assertion.

The case that P.x/ is real valued, the proof is just a repetition with obvious
modifications. ut
Proposition 4.1. Let m D 2 and q D 1. Assume that P. Nx/ D O and the rank of
Hess det P is 4 at Nx (3 if P.x/ is real valued ). Then † D fx j @’

x.det P /.x/ D 0;
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j’j � 1g is a C 1 manifold near Nx with codim † D rank Hess Nx det P on which
P.x/ D O .

In fact, in Sect. 4.5, we prove this proposition in much more generality (Proposi-
tion 4.3). The smoothness of the characteristic set is closely related to the existence
of smooth symmetrizers (see [48]). Indeed we have

Proposition 4.2 ([17, 48]). Let m D 2 and q D 1. Assume that P. Nx/ D O and the
rank of Hess det P is 4 at Nx (3 if P.x/ is real valued). Then P.x/ has a smooth
symmetrizer near Nx, that is there is a smooth 2 � 2 matrix valued S.x0/ defined near
Nx0 such that

S�.x0/ D S.x0/ and S.x0/ is positive definite;

S.x0/P.x/ D P �.x/S.x0/

where P �.x/ denotes the adjoint matrix of P.x/.

Example 4.4. Let us consider second order differential operator P.D/ D .pik.D//

with 3 � 3 constant matrix coefficients

pik.£; Ÿ/ D .£2 � ¢i jŸj2/•ik � .1 � ¢i /ŸiŸk

which is called the modified elasticity operator in [25] where Ÿ D .Ÿ1; Ÿ2; Ÿ3/ and

0 < ¢1 < ¢2 < ¢3 < 1:

Note that the excluded case where ¢1 D ¢2 D ¢3 yields the elasticity equations.
We follow the arguments in John [25]. Let Q.£; Ÿ/ D det P.£; Ÿ/ then Q.£; Ÿ/ can
be written

Q.£; Ÿ/ D .£2 � q0.Ÿ//.£4 � 2q1.Ÿ/£2 C q0.Ÿ/q2.Ÿ//

where q0, q1, q2 are the definite quadratic forms given by

q0 D jŸj2; q2 D ¢1¢2¢3

3X

j D1

1

¢j

Ÿ2
j ; q1 D 1

2
.¢1 C ¢2 C ¢3/jŸj2 � 1

2

3X

j D1

¢j Ÿ2
j :

Taking the homogeneity into account we consider multiple characteristics .£; Ÿ/

with jŸj D 1. It is shown in [25] that .£; Ÿ/, jŸj D 1 is a multiple characteristic
if and only if

D.Ÿ/ D 4.q2
1 � q0q2/ D 0; jŸj D 1

which gives 4 points

˙ .“3=“2; 0; “1=“2/; ˙.�“3=“2; 0; “1=“2/ (4.35)
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where “1 D .¢3 � ¢2/
1=2, “2 D .¢3 � ¢1/

1=2, “3 D .¢2 � ¢1/
1=2. If we set

D�.Ÿ/ D D.Ÿ/ C “2
1“2

3.q0.Ÿ/ � 1/2

then we have at a double characteristic (4.35) which we denote OŸ

@2D�.OŸ/

@Ÿi Ÿk

D 8“2
1“

2
3.•ik � 1

2
.•i1•k3 C •k1•i3/OŸi

OŸk/

and hence Hessian of D� is positive definite. This shows that the Hessian of D.Ÿ/

has at least rank 2 and then the Hessian of .£2 �q1/2 CD.Ÿ/ has rank 3 which proves
that the double characteristic (4.35) are nondegenerate.

We find similar second order differential operators P.D/ D .pik.D// with 3 � 3

constant matrix coefficients in [64] in the studies of relativistic elastodynamics.

Example 4.5. We have

Theorem 4.1 ([22]). In the set P of all positive definite real symmetric 3�3 matrix
valued quadratic forms

A.Ÿ/ D
3X

j;kD1

AjkŸj Ÿk

the subset for which the characteristics of det .£2I � A.Ÿ// are at most double and
the double characteristics are nondegenerate is an open and dense subset.

We have also

Theorem 4.2 ([22]). One can choose a positive definite real symmetric 3�3 matrix
valued quadratic form A such that the characteristics of det .£2I �A.Ÿ// are at most
double, the double characteristics are nondegenerate, and there are at least 12 of
them.

4.3 Symmetrizability (Special Case)

We first note that, considering �A0.x
0/�1P.x/, we may assume that P.1; 0; : : : ;

0/ D �I2 so that

P.x/ D �x1I2 C A0.x0/; A0.x0/ 2 C 1.�; M2.C//

which is also written

P.x/ D �.x1 � 1

2
Tr A0.x0//I2 C A.x0/; Tr A.x0/ D 0:
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Note that

g.x0/ D det A.x0/ 5 0

and Tr A0.x0/ is real which follows from the hyperbolicity of det P.x/. Let us denote

A.x0/ D
�

a.x0/ b.x0/
c.x0/ �a.x0/

�
:

We denote by da.x0/ the differential of a at Nx0 so that a.x0 C Nx0/ D da.x0/CO.jx0 �
Nx0j2/ and by Re a and Im a the real part and the imaginary part of a respectively.

We first assume that P.x/ is real valued and rank Hess Nxdet P D 3. The
assumption is reduced to rank Hess Nxg D 2. From Proposition 4.1 it follows that
†0 D fx0 j g.x0/ D 0g is a smooth manifold of codimension 2. Then there are
`i .x

0/, i D 1; 2 such that †0 D f`1.x
0/ D 0; `2.x

0/ D 0g and

A.x0/ D H1.x
0/`1 C H2.x

0/`2; g.x0/ D �`2
1 � `2

2

where d`i.x
0/ are linearly independent. Let K1 be the restriction of H1 to `2 D 0

then it is clear that det K1 D �1 and Tr K1 D 0. Hence there is a real 2 � 2 matrix
N.x0/ such that

N �1K1N D
�

1 0

0 �1

�

and then we have

N �1AN D
�

1 0

0 �1

�
.`1 C ’`2/ C

�
0 “

” 0

�
`2:

From the Taylor expansion of det A.x0/ around Nx0 it is easy to see that ’. Nx0/ D 0,
“. Nx0/”. Nx0/ D 1 and consequently the matrix

M D
�

1 0

0 1=”.x0/

�

is well defined near Nx0. Putting T .x0/ D N.x0/M.x0/ and writing “.x0/”.x0/ D
1 C § we have

T �1AT D
�

1 0

0 �1

�
.`1 C ’`2/ C

�
0 1 C §

1 0

�
`2:
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We now define S by

S D
�

1 0

0 1 C §

�
:

Since §. Nx0/ D 0 it is easy to see that S is a desired symmetrizer of T �1AT. Since
the symmetrizability is invariant under similar transformations we get the desired
assertion.

We next prove the proposition assuming that rank Hess Nxdet P D 4. Since the
hypothesis rank Hess Nxdet P D 4 reduces to rank Hess Nxg D 3 we may assume that

Q D .dRe a/2 � .d Im a/2 C .dRe b/.dRe c/ � .d Im b/.d Im c/

is nonnegative definite and has rank 3. Here we note that a real quadratic form
Q which is nonnegative definite can not vanish on a linear subspace V unless
codim V = rank Q. We first remark that dRe a ¤ 0. If it were not true we would
have

0 	 Q D �.d Im a/2 C .dRe b/.dRe c/ � .d Im b/.d Im c/

	 .dRe b/.dRe c/ � .d Im b/.d Im c/:

It is clear that there is a linear subspace V (� R
n�1) with codim V 5 2 on which Q

vanishes and hence rank Q 5 2. This contradicts the assumption.
Set ® D Re a and denote by bj®D0 the restriction of b to the surface f® D 0g.

Lemma 4.5. Let b D “® C Qb, c D ”® C Qc with Qb D bj®D0 D Qb1 C i Qb2, Qc D
cj®D0 D Qc1 C i Qc2 where Qbi ; Qci are real. Then we have

d Qbi ¤ 0; d Qci ¤ 0 at Nx0; i D 1; 2:

Proof. Denoting Im a D ’® C Q’ with Q’ D aj®D0 one can write

A.x0/ D ®

�
.1 C i’/ “

” �.1 C i’/

�
C
�

i Q’ Qb1 C i Qb2

Qc1 C i Qc2 �i Q’
�

:

From the non-positivity of g on f® D 0g it follows that

Qb1 Qc1 � Qb2 Qc2 � Q’2 = 0; (4.36)

Qb1 Qc2 C Qb2 Qc1 D 0 (4.37)

near Nx0. Suppose, for instance, that d Qb1. Nx0/ D 0 and hence d Qb2 D 0 or d Qc1 D 0

(at Nx0) by (4.37). If d Qb2 D 0 then d Q’ D 0 by (4.36) and then Q vanishes on
fx0 j d®.x0/ D 0g because da D .1C i’/d® at Nx0. This is a contradiction. The other
cases will be proved similarly. ut
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Lemma 4.6. d Qb1 is not proportional to d Qb2 at Nx0. There is a positive function m.x0/
defined near Nx0 such that

Qc1.x0/ D m.x0/ Qb1.x
0/; Qc2.x0/ D �m.x0/ Qb2.x

0/:

Proof. Suppose that d Qb2 D kd Qb1 at Nx0 with some k 2 R and hence d Qc2 D �kd Qc1

by (4.37) at Nx0. Since from (4.36) we see

d Qb1d Qc1 � d Qb2d Qc2 � d Q’d Q’ D .1 C k2/d Qb1d Qc1 � d Q’d Q’ 
 0;

and hence d Qb1 and d Qc1 must be proportional to d Q’ at Nx0 if d Q’ ¤ 0. Then it is
clear that Q vanishes on fx0 j d Q’.x0/ D d®.x0/ D 0g which is a contradiction. If
d Q’ D 0 (at Nx0) then Q vanishes on fx0 j d®.x0/ D d Qc1.x

0/ D 0g which also gives
a contradiction. This proves the first assertion. The second assertion easily follows
from the first one and (4.36), (4.37). ut
We can put A in a special form.

Lemma 4.7. Let “ D “1 C i“2, ” D ”1 C i”2, “i , ”i real. Set §i D Qbi C “i ®

.i D 1; 2/, B D ”2 C m“2, C D ”1 � m“1. Then we have

A D ®

�
1 0

C C iB �1

�
C §1

��iB=2 1

m iB=2

�
C §2

��iC=2 i

�im iC=2

�
:

Moreover d®; d§i are linearly independent at Nx0 and the set fx0 j A.x0/ D Og is
given by

S D fx0 j ®.x0/ D §1.x
0/ D §2.x

0/ D 0g:

Proof. Recall that

A D ®

�
1 C i’ “

” �.1 C i’/

�
C
�

i Q’ Qb1 C i Qb2

m. Qb1 � i Qb2/ �i Q’
�

:

We observe the imaginary part of g

Im g D 2’®2 C 2 Q’® C Im .“”/®2 C Im .” C “m/® Qb1 C Re .” � “m/® Qb2:

Since Im g D 0 near Nx0 and d® ¤ 0 at Nx0 it follows that

2’® C 2 Q’ C Im .“”/® C Im .” C “m/ Qb1 C Re .” � “m/ Qb2 D 0 (4.38)

near Nx0. Now we set
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D D Im .“”/; B D Im .” C “m/ D ”2 C “2m;

C D Re .” � “m/ D ”1 � “1m:

Noticing D D “1B C “2C it follows from (4.38) that

.’® C Q’/ D �1

2
.§1B C §2C / (4.39)

which shows that a D .1 C i’/® C i Q’ D ® � i.§1B C §2C /=2. On the other hand
it is easy to see

m. Qb1 � i Qb2/ C ”® D .C C iB/® C m.§1 � i§2/; Qb1 C i Qb2 C “® D §1 C i§2

because ”1 D C C m“1 and ”2 D B � m“2. These prove the first part. The rest of
the assertion is obvious. ut
Lemma 4.8. We have

4m � .B2 C C 2/ > 0 at Nx0:

Proof. Let us set QB D Bj®D0, QC D C j®D0. From (4.39) it follows that

Q’ D �. QB Qb1 C QC Qb2/=2:

On the other hand (4.36) and Lemma 4.6 give that

m. Qb2
1 C Qb2

2/ � Q’2 = 0 near Nx0:

Since the quadratic form m..d Qb1/
2 C.d Qb2/

2/�. QBd Qb1 C QC d Qb2/
2=4 is the restriction

of Q to fx0 j d®.x0/ D 0g this must have rank 2 and then positive definite.
This shows that 4m � . QB2 C QC 2/ > 0 at Nx0 and hence the result. ut

To finish the proof of Proposition 4.2 we give a required smooth symmetrizer
S.x0/ for P by

S.x0/ D
�

2m.x0/ �C.x0/ C iB.x0/
�C.x0/ � iB.x0/ 2

�

which satisfies S.x0/ D S�.x0/ clearly. Using Lemma 4.7 it is easy to check that
S.x0/A.x0/ D A�.x0/S.x0/ and hence

S.x0/P.x/ D P �.x/S.x0/:

The positivity of S follows from Lemma 4.8.
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4.4 Stability and Smoothness of Nondegenerate
Characteristics

In this section we discuss the stability of nondegenerate characteristics and the
smoothness of nondegenerate characteristic set.

Theorem 4.3. Assume that P.x/ is an m � m (resp. real) matrix valued smooth
function of the form (4.1) verifying (4.2) in a neighborhood U of Nx and let Nx be a
nondegenerate characteristic of order r of P . Let QP .x/ be another m�m (resp. real)
matrix valued smooth function of the form (4.1) verifying (4.2) which is sufficiently
close to P.x/ in C qC2, then QP .x/ has a nondegenerate characteristic of the same
order close to Nx. Moreover, near Nx, the characteristics of order r are nondegenerate
and they form a smooth manifold of codimension r2 (resp. r.r C1/=2). In particular,
near Nx the set of characteristics of order r of P.x/ itself consists of nondegenerate
ones which form a smooth manifold of codimension r2(resp. r.r C 1/=2).

To prove Theorem 4.3, taking Proposition 4.1.1 into account, we study P.x/ of
the form

P.x/ D x1I C P #.x0/ (4.40)

where we assume that

det P.x/ D 0 H) x1 is real near x0 D Nx0: (4.41)

This is equivalent to say that all eigenvalues of P #.x0/ are real. Now to prove
Theorem 4.3 it suffices to prove

Proposition 4.3. Assume that P.x/ is an m � m (resp. real) matrix valued smooth
function of the form (4.40) verifying (4.41) and Nx is a nondegenerate characteristic
of order r of P.x/. Let QP .x/ be another m � m (resp. real) matrix valued smooth
function of the form (4.40) verifying (4.41) which is sufficiently close to P.x/ in C 2

near Nx. Then QP .x/ has a nondegenerate characteristic of the same order close to
Nx. Moreover, near Nx, the characteristics of order r of QP .x/ are nondegenerate and
form a smooth manifold of codimension r2 (resp. r.r C 1/=2). In particular, the
characteristics of order r of P.x/ itself consists of nondegenerate ones which form
a smooth manifold of codimension r2 (resp. r.r C 1/=2).

The rest of this section is devoted to the proof of Proposition 4.3. We first show
that the proof is reduced to the case that P and QP are r � r matrix valued function.
Without restrictions we may assume that Nx D 0. As in the previous section, we take
T so that one has

T �1P.0/T D
�

0 0

0 G

�
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where G is non singular. Denote T �1P.x/T and T �1 QP .x/T by P.x/ and QP .x/

again. Writing

P.x/ D
�

P11.x/ P12.x/

P21.x/ P22.x/

�

we have

P11.x/ D x1I C
nX

j D2

Aj xj C O.jxj2/ D P0.x/ C O.jxj2/: (4.42)

From the assumption P0.x/ is diagonalizable for every x and fI; A2; : : : ; Ang span
a r2 (resp. r.r C 1/=2) dimensional subspace over R in Mr.C/ (resp. Mr.R/).
By Lemma 4.2 all eigenvalues of P0.x/ are real then one can apply

Lemma 4.9 ([52, 66, 68, 69]). Let us consider

L.x/ D
nX

j D1

Aj xj ; A1 D I

where Aj are r � r constant matrices. Assume that the real reduced dimension of
L.x/, that is the dimension of the space spanned by fAj g over R, is at least r2 � 2

(.r.r C1/=2/�1 if all Aj are real) and L.x/ is diagonalizable with real eigenvalues
for every x. Then there is a constant matrix T such that

T �1L.x/T

is Hermitian (symmetric) for every x 2 R
n.

Thus we conclude that there is a constant matrix S such that

S�1.x1 C
nX

j D2

Aj xj /S D x1 C
nX

j D2

QAj xj

where QAj are Hermitian (resp. symmetric) and fI; QA2; : : : ; QAng span M h
r .C/

(resp. M s
r .R/). We still denote

�
S�1 0

0 I

�
P.x/

�
S 0

0 I

�
;

�
S�1 0

0 I

�
QP .x/

�
S 0

0 I

�

by P.x/ and QP .x/ again so that writing
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P.x/ D
�

P11.x/ P12.x/

P21.x/ P22.x/

�

we may assume that

P11.x/ D x1I C
nX

j D2

Aj xj C O.jxj2/ (4.43)

where

fI; A2; : : : ; Ang span M h
r .C/ (resp. M s

r .R//: (4.44)

Let fF1; F2; : : : ; Fkg, F1 D I be a basis for M h
r .C/ (resp. M s

r .R/) where k D r2

(resp. k D r.r C 1/=2). Writing

x1I C
nX

j D2

Aj xj D
kX

j D1

Fj `j .x/

we make a linear change of coordinates Qxj D `j .x/, j D 1; : : : ; n so that denoting
xj D Qxj , 1 � j � k again and . QxkC1; : : : ; Qxn/ D .y1; : : : ; yl / we have

P11.x; y/ D
kX

j D1

Fj xj C O..jxj C jyj/2/: (4.45)

Note that the coefficient of x1 in QP11.x; y/ is the identity matrix I . We now prepare
the next lemma.

Lemma 4.10. Let P.x/ be an m � m matrix valued C 1 function defined near
x D 0. With a blocking

P.0/ D
�

A11 A12

A21 A22

�

assume that A11 and A22 has no common eigenvalue. Then there is – D
–.A11; A22/ > 0 such that if kA21k C kA12k < – then one can find a smooth
matrix T .x/ defined in jxj < – such that

T .x/�1P.x/T .x/ D
� OP11.x/ 0

0 OP22.x/

�

where T .x/ D I C T1.x/ and kT1.0/k ! 0 as kA21k C kA12k ! 0.
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Proof. We first show that there are G12, G21 such that

�
A11 A12

A21 A22

� �
I G12

G21 I

�
D
�

I G12

G21 I

� �
A11 C X11 0

0 A22 C X22

�
(4.46)

provided kA12k C kA21k is small. Equation (4.46) is written as

�
A11 C A12G21 A11G12 C A12

A21 C A22G21 A21G12 C A22

�
D
�

A11 C X11 G12A22 C G12X22

G21A11 C G21X11 A22 C X22

�
:

This gives A12G21 D X11, A21G12 D X22. Plugging these relations into the
remaining two equations we have

A12 C A11G12 D G12A22 C G12A21G12;

A21 C A22G21 D G21A11 C G21A12G21:

Let us set

F1.G12; G21; A12; A21/ D G12A22 � A11G12 C G12A21G12 � A12;

F2.G12; G21; A12; A21/ D G21A11 � A22G12 C G21A12G21 � A21

then the equations become



F1.G12; G21; A12; A21/ D 0;

F2.G12; G21; A12; A21/ D 0:
(4.47)

It is well known that (see [71] for example)

@.F1; F2/

@.G12; G21/
.0; 0; 0; 0/

is non singular if A11 and A22 have no common eigenvalue. Then by the implicit
function theorem there exist smooth G12.A12; A21/ and G21.A12; A21/ defined
for small kA12k C kA21k with G12.0; 0/ D 0, G21.0; 0/ D 0 verifying (4.47).
This proves the assertion.

We next look for T .x/ in the form

T .x/ D T0 C T1.x/; T0.x/ D
�

I G12

G21 I

�
; T1.0/ D 0:

The equation which is verified by T .x/ is

.P0 C P1.x//.T0 C T1.x// D .T0 C T1.x//. QP0 C QP1.x// (4.48)
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where P0 D P.0/, P0T0 D T0
QP0 and

QP1.x/ D
� QP11.x/ 0

0 QP22.x/

�
:

Recall that

QP0 D
�

A11 C A12G21 0

0 A22 C A21G12

�
; P1.x/ D

�
P11.x/ P12.x/

P21.x/ P22.x/

�
:

Look for T1.x/ in the form

T1.x/ D
�

0 T12.x/

T21.x/ 0

�
:

Equating the off diagonal entries of both sides of (4.48) we get

8
ˆ̂̂
<

ˆ̂̂
:

A11T12 C P12.x/ C P11.x/G12 C P11.x/T12

D .G12 C T12/ QP22.x/ C T12.A22 C A21G12/;

A22T21 C P21.x/ C P22.x/G21 C P22.x/T21

D .G21 C T21/ QP11.x/ C T21.A11 C A12G21/:

(4.49)

On the other hand, equating the diagonal entries of both sides we have

( QP11.x/ D A12T21 C P11.x/ C P12.x/.G21 C T21/;

QP22.x/ D A21T12 C P22.x/ C P21.x/.G12 C T12/:
(4.50)

Plugging (4.50) into (4.49) we obtain

f1.T12; x/ D A11T12 � T12.A22 C A21G12/

CP11.x/G12 C P12.x/ C P11.x/T12

�.G12 C T12/.A21T12 C P21.x/.G12 C T12/ C P22.x// D 0

and

f2.T21; x/ D A22T21 � T21.A11 C A12G21/

CP22.x/G21 C P21.x/ C P22.x/T12

�.G21 C T21/.A12T21 C P12.x/.G21 C T21/ C P11.x// D 0:

Since

f1.T12; 0/ D A11T12 � T12A22; f2.T21; 0/ D A22T21 � T21A11
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when A21 D 0, A12 D 0, x D 0, it is clear that

@f1

@T12

.0; 0/;
@f2

@T21

.0; 0/

are non singular if kA12k C kA21k is small. Then by the implicit function theorem
there exist smooth T12.x/ and T21.x/ with T12.0/ D 0, T21.0/ D 0 such that

f1.T12.x/; x/ D 0; f2.T21.x/; x/ D 0:

This proves the assertion. ut
We return to the proof of Proposition 4.3. Since QP .x; y/ is sufficiently close to

P.x; y/ and

P.0; 0/ D
�

0 0

0 G

�
; det G ¤ 0

one can apply Lemma 4.10 to QP .x; y/ and find a G.x; y/ such that

G.x; y/�1 QP .x; y/G.x; y/ D
� QP11.x; y/ 0

0 QP22.x; y/

�
: (4.51)

Denote G.x; y/�1P.x; y/G.x; y/ and G.x; y/�1 QP .x; y/G.x; y/ by P.x; y/ and
QP .x; y/ again. We summarize our arguments in

Proposition 4.4. Assume that Porig and QPorig verify the assumption in Proposi-
tion 4.3. Then we may assume that Porig and QPorig have the form

QP .x; y/ D
� QP11.x; y/ 0

0 QP22.x; y/

�
; P.x; y/ D

�
P11.x; y/ P12.x; y/

P21.x; y/ P22.x; y/

�

with

P11.x; y/ D
kX

j D1

Aj xj C
lX

j D1

Bj yj C R.x; y/; R.x; y/ D O.j.x; y/j2/

where the following properties are verified; for any neighborhood U of the origin
there is a neighborhood W � U of the origin such that for any – > 0 one can find
Q– > 0 so that if j QPorig � PorigjC 2.U / < Q– then we have

j QP11.x; y/ � P11.x; y/jC 2.W / < –; (4.52)

j
kX

j D1

Aj xj C
lX

j D1

Bj yj �
kX

j D1

Fj xj j < C –.jxj C jyj/: (4.53)
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Moreover one has

det.œ C QP11.x; y// D 0 H) œ is real:

Proof. Since P.x; y/ and QP .x; y/ are obtained from Porig and QPorig by a smooth
change of basis and a linear change of coordinates then (4.52) is clear. Let us recall

G.x; y/ D
�

I G12.x; y/

G21.x; y/ I

�

which verifies (4.51) where kG12.0; 0/k C kG21.0; 0/k becomes as small as we
please if Q– is small. Hence G.x; y/ is enough close to the identity and then (4.53)
follows from (4.45). Note that

det.œ C QPorig/ D det.œ C QP11.x; y//det.œ C QP22.x; y//:

Then the last assertion follows immediately. ut
We proceed to the next step. Write

QP11.x; y/ D QP11.0; y/ C . Q¥i
j .x; y//1�i;j �r (4.54)

so that Q¥i
j .0; y/ D 0. Let us define t i

j .x; y/ by

Q¥i
j .x; y/ D ¥i

j .x/ C t i
j .x; y/

where

F.x/ D
kX

j D1

Fj xj D .¥i
j .x//1�i;j �r :

Lemma 4.11. Assume that j QP11.x; y/ � P11.x; y/jC 2.W / < – and f.x; y/ j
jxj; jyj < –g � W . Then for jxj, jyj < – we have

jt i
j .x; y/j � C jxj; j@x�t i

j .x; y/j � C –; � D 1; : : : ; k:

Proof. Write

QP11.x; y/ D QP11.0; y/ C
kX

j D1

QAj .y/xj C QR.x; y/; QR.x; y/ D O.jxj2/

so that
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T D .t i
j .x; y// D

kX

j D1

QAj .y/xj �
kX

j D1

Fj xj C QR.x; y/: (4.55)

Noting @xj
QP11.0; y/ D QAj .y/, @xj P11.0; y/ D Aj C @xj R.0; y/ and

j@xj R.0; y/j � C jyj � C – if jyj < –

with C independent of QP , one gets

j QAj .y/ � Aj j � C – if jyj < –: (4.56)

Now it is clear that

j QAj .y/ � Fj j � C 0– if jyj < – (4.57)

because of (4.53) and (4.56). On the other hand from

P11.0; y/ D
lX

j D1

Bj yj C R.0; y/

and (4.53) it follows that

jP11.0; y/j � C –jyj C C jyj2 � C –jyj if jyj < –:

Moreover j QP11.0; y/ � P11.0; y/jC 2.W / < – shows

j QP11.0; y/j < – C C –jyj < C 0– if jyj < –: (4.58)

We now estimate T .x; y/ D .t i
j .x; y// and @xj T .x; y/. Note that j@xj

QR.x; y/j �
C jxj since @xj

QR.0; y/ D 0 and j@’
x

QR.x; y/j � C for j’j D 2 with C independent
of QP . Then by (4.55) and (4.57) one sees

(
jT .x; y/j � C –jxj C C jxj2 � C 0–jxj if jxj < –;

j@xj T .x; y/j � C – C C jxj � C 0– if jxj; jyj < –
(4.59)

which proves the assertion. ut
Recall

F.x/ D
kX

j D1

Fj xj D .¥i
j .x//1�i;j �r
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where F1 D I and fF1; : : : ; Fkg be a basis for M h
r .C/ over R (resp. M s

r .R/) and
hence k D r2 (resp. k D r.r C 1/=2).

Proposition 4.5. Assume that P.x/ is a r�r matrix valued smooth function defined
in a neighborhood of the origin of Rn. Assume that all eigenvalues of P.x/ are real
and

nX

j D1

@P

@xj

.0/xj (4.60)

is sufficiently close to F.x/ in C 1. Then there is a • > 0 such that P.x/ is
diagonalizable for every x with jxj < •.

Proof. Let us write

P.¨ C x/ D P.¨/ C Q.x; ¨/

so that Q.0; ¨/ D 0. For T 2 U.r/, a unitary matrix of order r we consider

T �P.¨ C x/T D T �P.¨/T C T �Q.x; ¨/T

D P T .¨/ C QT .x; ¨/ D P T .¨/ C .¥i
j .x; ¨I T //1�i;j �m:

We show that there exist a • > 0 and a neighborhood W of the origin of Rk such
that with x D .xa; xb/, xa D .x1; : : : ; xk/, xb D .xkC1; : : : ; xn/ the map

W 3 xa 7! �
.Re ¥i

j .x; ¨I T //i�j ; .Im ¥i
j .x; ¨I T //i>j /

� 2 R
k

is a diffeomorphism from W into fy 2 R
k j jyj < •g for every T 2 U.r/ and every

xb , ¨ with jxb j, j¨j < •. To see this we write

Q.x; ¨/ D P.x C ¨/ � P.¨/ D
nX

j D1

@P

@xj

.¨/xj C QR.x; ¨/

D
kX

j D1

Fj xj C
kX

j D1

�
@P

@xj

.¨/ � Fj

�
xj C

nX

j DkC1

@P

@xj

.¨/xj C QR.x; ¨/

D
kX

j D1

Fj xj C R.x; ¨/

then it is clear that for any – > 0 one can find •0 > 0 such that

kR.x; ¨/k � –jxj (4.61)
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if jxj, j¨j < •0 and if (4.60) is sufficiently close to F.x/. Let us study

QT .x; ¨/ D
kX

j D1

F T
j xj C RT .x; ¨/ D

kX

j D1

`j .xaI T /Fj C RT .x; ¨/

where `j .xaI T / are linear in xa. Since U.r/ � R
r2

is compact it is clear that we
have

ˇ̌
ˇ̌ @.`1; : : : ; `k/

@.x1; : : : ; xk/
.xaI T /

ˇ̌
ˇ̌ � c > 0

with some c > 0 for every T 2 U.r/. In view of (4.61), taking – > 0 so small we
conclude that

ˇ̌
ˇ̌
ˇ
@
�
.Re ¥i

j /i�j ; .Im ¥i
j /i>j /

�

@.xa/
.0; 0; 0I T /

ˇ̌
ˇ̌
ˇ � c0 > 0

with some c0 > 0 for every T 2 U.r/. By the implicit function theorem and the
compactness of U.r/ there exists a smooth xa.ya; xb; ¨I T / defined in jyaj, jxbj,
j¨j < •00 and T 2 U.r/ such that

(
Re ¥i

j .xa.ya; xb; ¨I T /; xb; ¨I T / D yi
j for i � j;

Im ¥i
j .xa.ya; xb; ¨I T /; xb; ¨I T / D Qyi

j for i > j

where we have set ya D �
.yi

j /i�j ; . Qyi
j /i>j

� 2 R
k . This proves the assertion.

We now show that P.¨/ is diagonalizable for every ¨ 2 R
n with j¨j < • D

minf•0; •00g. Take T 2 U.r/ so that

P T .¨/ D .

sM

iD1

œi Iri / C .Aij/1�i;j �s (4.62)

where fœig are different from each other and Aij are ri �rj matrices such that Aij D 0

if i > j and Aii are upper triangular with zero diagonal entries. Let us set

J D
s�1[

pD1

f.i; j / j rp < i � m; rp�1 < j � rpg

where r0 D 0. As observed above one can take ..yi
j /i�j ; . Qyi

j /i>j ; xb/ as a new
system of local coordinates around the origin of Rn. Denote

yII D
�
.yi

j /.i;j /2J ; . Qyi
j /..i;j /2J;i>j /

	
; ya D .yI ; yII/
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and, putting yII D 0, xb D 0, consider

det.œ C P.¨ C x// D det.œ C P T .¨ C x// D
sY

iD1

det.œ C Ki.yI ; ¨I T //

where

Ki.yI ; ¨I T / D œi Iri C Aii C .¥p
q .yI ; ¨I T //si�1<p;q�si

with si D r1 C � � � C ri , s0 D 0. Note that we have

(
¥

p
q .yI ; ¨I T / D y

p
q C i Qyp

q if p > q;

¥
p
p.yI ; ¨I T / D y

p
p C Im ¥

p
p.yI ; ¨I T /:

We will conclude Aii D 0 repeating the same arguments proving the next lemma.

Lemma 4.12. Let A be a constant matrix of order r such that A D ’Ir C QA where ’

is a real constant and QA is upper triangular with zero diagonal entries. Let P.x/ D
AC.¥i

j .x// where ¥i
j .x/ are linear in x and Re ¥i

j .x/, i � j , Im ¥i
j .x/, i > j are

linearly independent over R. Suppose that all eigenvalues of P.x/ are real. Then A

is necessarily diagonal matrix.

Proof. Let us set ya D .yi
j / D .Re ¥i

j /i�j , yb D .Im ¥i
j /i>j and let .ya; yb; yc/

is a new system of local coordinates of Rn which is related to x by a non singular
linear transformation. Let A D .apq/ and we first show that ap;pC1 D 0 for p D
1; : : : ; r � 1. Take yi

j D 0 for i � j unless .i; j / D .p C1; p/ and yb D 0, yc D 0.
Then it is clear that

det.œ C A C .¥i
j //

D
Y

j ¤p;pC1

.œ C ’ C Im ¥
j
j /

�
�
.œ C ’ C Im ¥p

p/.œ C ’ C Im ¥
pC1
pC1/ � ypC1

p .ap;pC1 C ¥
p
pC1/

	
:

Since Im ¥i
i .x/ and ¥

p
pC1.x/ are constant times y

pC1
p then we see

.œ C ’ C Im ¥p
p/.œ C ’ C Im ¥

pC1
pC1/ � ypC1

p .ap;pC1 C ¥
p
pC1/

D .œ C ’/2 C O.jypC1
p j/.œ C ’/ � ypC1

p ap;pC1 C O.jypC1
p j2/ D 0

would have a non-real root for small y
pC1
p unless ap;pC1 D 0.

We now proceed by induction on q � p. Suppose that

apq D 0 for p C 1 � q � p C r � 1:
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Let q D p C r and take yi
j D 0 for i � j unless .i; j / D .q; p/ and yb D 0,

yc D 0. We note that

det.œ C A C .¥i
j // D

Y

j ¤p;pC1;:::;q

.œ C ’ C ¥
j
j /Q.œ/

where Q.œ/ has the form

.œ C ’/rC1 � .œ C ’/r�1yq
papq C

r�1X

j D0

O.jyq
pjr�1�j /.œ C ’/j :

If we have set œ C ’ D
q

jyq
pjz then Q.œ/ D 0 is reduced to

zrC1 � zr�1apq C O.jyq
pj/R.z; yq

p/ D 0 (4.63)

where R is a polynomial in z of degree r � 1. Thus if apq ¤ 0 then (4.63) has a non
real root for small y

q
p and hence Q.œ/ D 0 would have a non real root. This proves

that apq D 0. By induction we get the desired assertion.
For the real matrix case the proof is similar. ut
Since ¨, j¨j < • is arbitrary to prove Proposition 4.5 it suffices to show that

P T .¨/ is diagonalizable which follows from the next lemma.

Lemma 4.13. Let A D .Aij/1�i;j �s be a constant matrix of order m where Aij are
ri � rj matrices. Suppose that Aii D œi Iri where œi ¤ œj if i ¤ j and Aij D O if
i > j . Then A is diagonalizable.

Proof. It suffices to construct S so that S�1AS D D D œ1Ir1 ˚ � � � ˚ œsIrs . Let us
set S D .Sij/ where the blocking corresponds to that of A and Sij D O if i > j and
Sii D Iri . From AS D SD it follows that

.œi � œj /Sij D �
X

k�iC1

AikSkj .i < j /:

In particular Sr�1;r D �.œr�1 � œr/
�1Ar�1;r is determined by the above equation.

Inductively Sir are determined for 1 � i � r � 1. Then we proceed to

.œi � œr�1/Si;r�1 D �
X

k�iC1

AikSk;r�1:

Repeating this argument we obtain Si;r�1 and hence the desired assertion. ut
We now prove that near .0; 0/ the set of characteristics of order r of QP .x; y/ is

a smooth manifold. We first show that near y D 0 there is a unique smooth g.y/

such that

QP11.g.y/; y/ D O:
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To see this let us study the map

ˆ W Ba 3 x 7! �
.Re Q¥i

j .x; y//i�j ; .Im Q¥i
j .x; y//i>j

� 2 R
k

where Ba D fx 2 R
k j jxj � ag. Let

A W Rk 3 x 7! �
.Re ¥i

j .x//i�j ; .Im ¥i
j .x//i>j

� 2 R
k

which is a linear transformation on R
k . Since .Re ¥i

j .x//i�j ; .Im ¥i
j .x//i>j are

linearly independent then A is non singular. From Lemma 4.11 one can choose
– > 0 so that

jA�1ˆ0
x.x; y/ � I j < 1=2 if jxj; jyj < –:

Let us write QP11.0; y/ D .bi
j .y// and note that jbi

j .y/j � C 0– for jyj < – by (4.58).
Then choosing – > 0 sufficiently small we can apply the implicit function theorem
to conclude that there exists a unique smooth g.y; ™; ›/ defined in j.™; ›/j � –,
jyj � – such that

(
Re Q¥i

j .g.y; ™; ›/; y/ D ™i
j � Re bi

j .y/; i � j;

Im Q¥i
j .g.y; ™; ›/; y/ D ›i

j � Im bi
j .y/; i > j

(4.64)

and in the real case

Q¥i
j .g.y; ™/; y/ D ™i

j � bi
j .y/; i � j (4.65)

such that

jg.y; ™; ›/j < C –: (4.66)

Set

.§i
j .y; ™; ›// D QP11.g.y; ™; ›/; y/ (4.67)

then from (4.54) and (4.64) it follows that

(
Re §i

j .y; ™; ›/ D ™i
j ; i � j;

Im §i
j .y; ™; ›/ D ›i

j ; i > j:
(4.68)

Let us write

§i
j .y; ™; ›/ D ci

j .y/ C ¦i
j .y; ™; ›/

where ci
j .y/ D §i

j .y; 0; 0/ and ¦i
j .y; ™; ›/ D O.j.™; ›/j/. Let us put h.œ/ D

det.œ C QP11.g.y; ™; ›/; y//. From Proposition 4.4 it follows that h.œ/ D 0 implies
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œ is real. Repeating the same arguments as in the proof of Lemma 4.12 we conclude
that c

p
q .y/ D 0 for p < q and Im c

p
p .y/ D 0. This, together with (4.68), implies

QP11.g.y; 0; 0/; y/ D O: (4.69)

The proof for the real case is similar.
We now prove that near .0; 0/ the set of characteristics of order r of QP .x; y/ is a

smooth manifold given by x D g.y; 0; 0/. Let . Nx; Ny/ be a characteristic of order r

of QP .x; y/ close to .0; 0/. Then it is clear that . Nx; Ny/ is a characteristic of the same
order for QP11.x; y/ because det QP22.x; y/ ¤ 0 near .0; 0/. Recalling that QP11.x; y/

has the form

QP11.x; y/ D x1 C QP #
11.x0; y/; x0 D .x2; : : : ; xk/

we see that det QP11.x1; Nx0; Ny/ D .x1 � Nx1/r and hence

det .œ C QP11. Nx; Ny// D œr :

Thus the zero is an eigenvalue of multiplicity r of QP11. Nx; Ny/. On the other hand
Proposition 4.4 gives

ˇ̌
ˇ̌
ˇ
@ QP11

@xj

.0/ � Fj

ˇ̌
ˇ̌
ˇ ;

ˇ̌
ˇ̌
ˇ
@ QP11

@yj

.0/

ˇ̌
ˇ̌
ˇ < C –: (4.70)

Then one can apply Proposition 4.5 to conclude that QP . Nx; Ny/ is diagonalizable.
This shows that

QP11. Nx; Ny/ D O

and hence one gets Nx D g. Ny; 0; 0/.
Finally we show that the characteristics .g.y; 0; 0/; y/ are nondegenerate.

From (4.69) we have

QP .g.y; 0; 0/; y/ D
�

0 0

0 QP22.g.y; 0; 0/; y/

�

and hence

Ker QP .g.y; 0; 0/; y/ \ Im QP .g.y; 0; 0/; y/ D f0g: (4.71)

It is also clear that QP.g.y;0;0/;y/.x; y/ is given by

kX

j D1

@ QP11

@xj

.g.y; 0; 0/; y/xj C
lX

j D1

@ QP11

@yj

.g.y; 0; 0/; y/yj :
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On the other hand since j QP11 � P11jC 2.W / < – it follows from Proposition 4.5 and
(4.66) that

ˇ̌
ˇ̌
ˇ
@ QP11

@xj

.g.y; 0; 0/; y/ � Fj

ˇ̌
ˇ̌
ˇ ;

ˇ̌
ˇ̌
ˇ
@ QP11

@yj

.g.y; 0; 0/; y/

ˇ̌
ˇ̌
ˇ < C – (4.72)

if jyj < –. This clearly shows that

dim QP.g.y;0;0/;y/ D r2: (4.73)

To finish the proof, taking QP.g.y;0;0/;y/.™/ D I into account, it is enough to show
that QP.g.y;0;0/;y/.x; y/ is diagonalizable for every .x; y/. Note that from Lemma 4.2
all eigenvalues of QP.g.y;0;0/;y/.x; y/ are real. Then from Proposition 4.5 and (4.72)
it follows that QP.g.y;0;0/;y/.x; y/ is diagonalizable for every .x; y/ near .0; 0/ and
hence for all .x; y/.

The proof for the real case is similar. Thus the proof of Proposition 4.3 is
completed. ut
Example 4.6. Consider a second order differential operator P.x; D/ D .pik.x; D//

with 3 � 3 matrix coefficients

pik.x; £; Ÿ/ D .£2 � ¢i .x/jŸj2/•ik � .1 � ¢i .x//Ÿi Ÿk

where ¢i .x/ are real smooth and close to ¢i in Example 4.4. We assume that
Q.x; £; Ÿ/ D det P.x; £; Ÿ/ D 0 has only real roots for any x and Ÿ. Then from
Theorem 4.3 it follows that every characteristic of P.x; Ÿ/ are at most double and
the double characteristics are nondegenerate.

Example 4.7. Let A.Ÿ/ D P3
j;kD1 AjkŸj Ÿk be one of them discussed in Exam-

ple 4.5, that is the characteristics of det .£2I � A.Ÿ// are at most double and the
double characteristics are nondegenerate. Let Ajk.x/ be real smooth 3 � 3 matrices
which are close to Ajk and set

A.x; Ÿ/ D
3X

j;kD1

Ajk.x/Ÿj Ÿk

and assume that det .£2I � A.x; Ÿ// D 0 has only real roots for any x and Ÿ.
Then from Theorem 4.3 we see that every characteristic of £2I � A.x; Ÿ/ are at
most double and the double characteristics are nondegenerate.

Example 4.8. As in Example 4.3 take P.Ÿ/ D Ÿ1I C Pd
j D2 Fj Ÿj where

fI; F2; : : : ; Fd g is a basis for M s
m.R/. Consider

P.x; Ÿ/ D Ÿ1I C
dX

j D2

Aj .x/Ÿj
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where Aj .x/ are real smooth m � m matrices which are enough close to Fj in
C 2 and we assume that P.x; Ÿ/ has only real eigenvalues for any x and any Ÿ.
Then from Theorem 4.3 it follows that every multiple characteristic of P.x; Ÿ/ is
nondegenerate.

4.5 Symmetrizability (General Case)

In this section to simplify notations let us write P.x/, x D .x0; x1; : : : ; xn/ which
is a real analytic m � m matrix valued function defined near the origin of RnC1.
We assume that all eigenvalues of P.x/ are real near x D 0. We also denote by dm

the dimension of M h
m.C/ (resp. M s

m.R/) over R, that is

dm D m2 .resp: dm D m.m C 1/=2/:

Our main concern in this section is to prove

Theorem 4.4. Assume that all eigenvalues of P.x/ are real near a nondegenerate
characteristic x D 0 of order m and P0.‚/ D Im with some ‚ 2 R

nC1. Then there
is a real analytic symmetrizer near x D 0, that is there is a real analytic positive
definite H.x/, H �.x/ D H.x/, defined near x D 0 such that

P.x/H.x/ D H.x/P�.x/:

Corollary 4.1. Assume that P.x/ has the form x0I CP.x0/ with x0 D .x1; : : : ; xn/

and all eigenvalues of P.x0/ are real near x0 D 0. Suppose that x D 0 is a
nondegenerate characteristic of order m of P.x/. Then there is a real analytic
positive definite H.x0/, H �.x0/ D H.x0/, defined near x0 D 0 such that

P.x0/H.x0/ D H.x0/P �.x0/:

We first give another proof, based on Theorem 4.4, for that the set of nondegen-
erate characteristics is a smooth manifold of codimension dm.

Proposition 4.6. Assume the same assumptions as in Theorem 4.4. Then we can
choose a new system of local coordinates X and a real analytic T .X/ defined near
X D 0 so that

T .X/�1P.x.X//T .X/ D
k�1X

j D0

Fj Xj

with k D dm where F0 D I and fFj g span M h
m.C/ over R (resp. M s

m.R/).
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Proof. From Theorem 4.4 there is a positive definite H.x/ such that P.x/H.x/ D
H.x/P�.x/. This shows that

S.x/ D H.x/�1=2P.x/H.x/1=2

is Hermitian. Let us write S.x/ D .¥i
j .x// and hence ¥i

j .0/ D 0. With ¥i
j .x/ D

d¥i
j .x/ C O.jxj2/ we note that f.Re d¥i

j .x//i�j ; .Im d¥i
j .x//i>j g are linearly

independent over R. Then taking a new system of local coordinates X so that
X0 D Re ¥1

1.x/, Xi D Re ¥i
i .x/ � Re ¥1

1.x/, 2 � i � m, .XmC1; : : : ; Xp�1/ D
.Re ¥i

j .x//i>j , .Xp; : : : ; Xk�1/ D .Im ¥i
j .x//i>j we get the assertion with T .X/ D

H.x.X//1=2. ut
From Proposition 4.6 it is clear that, near x D 0, the set P.x/ D O is given by

† D fXj D 0 j j D 0; : : : ; dm�1g which is a smooth manifold of codimension dm.
It is also clear that for x 2 † the properties (4.13) and (4.14) hold, that is † consists
of nondegenerate characteristics. On the other hand let Nx be a characteristic of order
m for P.x/ so that 0 is the eigenvalue of P. Nx/ of multiplicity m. Then 0 is the
eigenvalue of

Pdm�1
j D0 Fj

NXj of multiplicity m where Nx D x. NX/. Since
Pdm�1

j D0 Fj
NXj

is Hermitian we see
Pdm�1

j D0 Fj
NXj D O and hence NXj D 0 for j D 0; : : : ; dm � 1.

Thus we conclude NX 2 †.
We start to prove Theorem 4.4. Choosing a system of local coordinates so that

‚ D .1; 0; : : : ; 0/ we can assume that P0.x/ verifies the assumption of Lemma 4.9.
Then one can assume that T �1P0.x/T is Hermitian (resp. symmetric) for every x

with some constant matrix T . By a linear change of coordinates x one may assume
that

T �1P0.x/T D x0I C
kX

j D1

F j xj

with k D dm �1 where fI; F j g span the space M h
m.C/ (resp. M s

m.R/) over R. Since
P.x/ D P0.x/CR.x/, R.x/ D O.jxj2/ as x ! 0, to prove Theorem 4.4, writing
P.x/ D x0I C P.x/, it is enough to show the following theorem.

Theorem 4.5. Let P.x/ D Pk
j D1 F j xj CR.x/ where x D .x0; : : : ; xn/, and R.x/

is real analytic near the origin so that R.x/ D O.jxj2/ as x ! 0. Assume that fF j g
are Hermitian (resp. symmetric) l � l constant matrices such that fI; F j g span the
space M h

l .C/ (resp. M s
l .R/) over R and k D dl � 1. Suppose that all eigenvalues

of P.x/ are real near the origin. Then there is a positive definite real analytic G.x/

with G.0/ D I defined near the origin verifying

P.x/G.x/ D G.x/P �.x/; G�.x/ D G.x/: (4.74)

Remark. Assume, for instance, that a positive definite G.x/ verifying (4.74) exists.
Expanding both sides of (4.74) in the Taylor expansions around the origin and
equating the first order terms we see that
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kX

j D1

F j G.0/xj D
kX

j D1

G.0/F j xj

so that G.0/ commutes with all Hermitian (resp. symmetric) matrices of order m

and hence G.0/ D ’I with ’ ¤ 0. Since G.0/ is positive definite and hence ’ > 0

we may suppose that G.0/ D I considering ’�1G.x/ which also verifies (4.74).

To prove Theorem 4.5, we proceed by induction on the size of matrices. When
l D 2, since P.0/ D O and x D 0 is a nondegenerate double characteristic thanks
to Proposition 4.2 there is a real analytic symmetrizer G.x/ verifying (4.74). Let
the assumption of Theorem 4.5 be verified for l < m. Since fI; F j g span M h

l .C/

(resp. M s
l .R/), choosing a new system of local coordinates x we may suppose that

the Hermitian (resp. symmetric) part of R.x/ can be removed so that

P.x/ D x0I C
kX

j D1

F j xj C R.x/

with k D dl � 1 where R.x/ is anti-Hermitian (resp. anti-symmetric). Since the all
eigenvalues of P.x/ are real it follows that

R.x0; 0; : : : ; 0; xkC1; : : : ; xn/ D O:

Changing notations slightly we write x D .x1; x2; : : : ; xk/, y D .x0; xkC1;

: : : ; xn/ with k D dl � 1 and

P.x; y/ D
kX

j D1

F j xj C R.x; y/

so that P.0; y/ D O . We divide the proof of the assertion for l D m into two steps.
In the first step, introducing the polar coordinates x D r¨, we blow up P.x; y/ at
x D 0 so that

Q.r; ¨; y/ D r�1P.r¨; y/

will be studied. We prove

Proposition 4.7. Suppose that the assertion of Theorem 4.5 holds for l < m.
Let P.x; y/ D Pk

j D1 F j xj C R.x; y/, k D dm � 1 be a real analytic m � m

matrix valued function with real eigenvalues near the origin such that R.x; y/ D
O.j.x; y/j2/ as .x; y/ ! 0 and R.0; y/ D O . Assume that fI; F j g span M h

m.C/

(resp. M s
m.R/). Then for every ¨ ¤ 0 there is a positive definite H.r; ¥; y/ with

diagonal entries 1 which is real analytic near .0; ¨; 0/ such that

P.r¥; y/H.r; ¥; y/ D H.r; ¥; y/P �.r¥; y/; H �.r; ¥; y/ D H.r; ¥; y/: (4.75)
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Thus we can construct a symmetrizer with diagonal entries 1 of the blown up
P.r¥; y/ in a neighborhood of every .0; ¨; 0/ with ¨ ¤ 0. In the second step we
first observe that such symmetrizers can be continued analytically to a neighborhood
of f0g � Sk�1 � f0g.

Lemma 4.14. Suppose that at every .0; ¨; 0/ with ¨ ¤ 0 there is a positive definite
real analytic symmetrizer H.r; ¥; y/ with diagonal entries 1 verifying (4.75). Then
there is H.r; ¥; y/ with diagonal entries 1 which is real analytic in I � Sk�1 � J

such that

P.r¥; y/H.r; ¥; y/ D H.r; ¥; y/P �.r¥; y/; H �.r; ¥; y/ D H.r; ¥; y/ (4.76)

holds for .r; ¥; y/ 2 I � Sk�1 � J where I , J are open intervals containing the
origin.

We next show that the symmetrizer obtained in Lemma 4.14 is the blown up of a
real analytic G.x; y/ defined near the origin .x; y/ D .0; 0/.

Proposition 4.8. Assume that H.r; ¥; y/ verifies (4.76) where H.r; ¥; y/ is real
analytic in I � Sk�1 � J with diagonal entries 1. Then H.r; ¥; y/ is a blown up of
a real analytic G.x; y/, that is

H.r; ¥; y/ D G.r¥; y/:

In particular we have

P.x; y/G.x; y/ D G.x; y/P �.x; y/; G�.x; y/ D G.x; y/:

Combining Propositions 4.7 and 4.8, Theorem 4.5 follows immediately by
induction on l .

First step: We prove Proposition 4.7. Assume that the assertion of Theorem 4.5
holds for l < m. We study the case l D m. Let us recall

P.x; y/ D L.x/ C R.x; y/; L.x/ D
kX

j D1

F j xj

where k D dm � 1 and fI; F j g span the space M h
m.C/ (resp. M s

m.R/) over R.
Let S.a/ D –I C diag.a1; : : : ; am/, jai j < – where a D .a1; : : : ; am/ 2 R

m and set

P1.x; y; a/ D S.a/�1P.x; y/S.a/:

Introducing the polar coordinates x D r¨ we study

QP .r; ¨; y; a/ D r�1P1.r¨; y; a/

near .r; ¨; y; a/ D .0; ¨; 0; 0/.
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Lemma 4.15. All eigenvalues of QP .r; ¨; y; a/ are real near .0; ¨; 0; 0/ with ¨ ¤ 0.
The multiplicity of eigenvalues of QP .0; ¨; 0; 0/ are less than m if ¨ ¤ 0.

Proof. The first assertion is clear. Recall that

QP .r; ¨; y; a/ D S.a/�1
�
L.¨/ C P 2.¨I r; y/ C O.j.r; y/j2/�S.a/

with some m � m matrix P 2.¨I r; y/ which is linear in .r; y/ so that

QP .0; ¨; 0; 0/ D L.¨/: (4.77)

If L.¨/, ¨ ¤ 0 has an eigenvalue œ 2 R of multiplicity m then it follows that
L.¨/ � œI D O because L.¨/ is Hermitian (resp. symmetric). This contradicts the
fact that fI; F j g are linearly independent. Hence the assertion. ut

We fix ¨ ¤ 0 and choose a unitary (resp. an orthogonal) T0 so that

T �1
0 L.¨/T0 D ˚p

j D1œj Isj

where œj are different from each other and p � 2 as was seen above. Taking into
account

S.a/ D –I C O.jaj/; S�1.a/ D –�1I C O.jaj/;
P 2.¨ C ™I r; y/ D P 2.¨I ™; y/ C O.j.r; ™; y/j2/;
L.¨ C ™/ D L.¨/ C L.™/

we set

Q.r; ™; y; a/ D r�1T �1
0 P1.r.¨ C ™/; y; a/T0 D T �1

0
QP .r; ¨ C ™; y; a/T0

D QL.¨/ C QL.™/ C QP 2.¨I r; y; a/ C O.j.r; ™; y; a/j2/

where QL.¨/ D ˚œj Isj , QL.™/ D T �1
0 L.™/T0 and QP 2.¨I r; y; a/ is linear in .r; y; a/.

It is also clear that with QL.™/ D Pk
j D1

QF j ™j , the matrices fI; QF j g span M h
m.C/

(resp. M s
m.R/).

Note that the coefficients of aj in QP 2.¨I r; y; a/ are anti-Hermitian (resp. anti-
symmetric) although the fact is not used in the sequel.

Set Q.r; ™; y; a/ D .Qij.r; ™; y; a// then it is well known that there is a real
analytic T .r; ™; y; a/ defined near the origin with T .0/ D I such that

QT D T .˚p
j D1

QQj / (4.78)
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(see for example [72]). We need a little bit more information on QQj . Let T D .Tij/

with Tii D Isi then (4.78) yields

X
QikTki D QQi ;

X
QikTkj D Tij QQj ; i ¤ j: (4.79)

Plugging the first term of (4.79) into the second, we get

QiiTij � TijQjj D
X

k¤j

TijQjkTkj �
X

k¤i

QikTkj

and hence for i ¤ j

.œi � œj /Tij D �Qij C O.j.r; ™; y; a/j
X

k¤l

jTkl j/: (4.80)

By the implicit function theorem one can solve (4.80) so that Tij D Tij.r; ™; y; a/,
Tij.0/ D 0. Plugging Tij into (4.79) we get QQi to be

QQi.r; ™; y; a/ D Qii.r; ™; y; a/ C O.j.r; ™; y; a/j2/:

We summarize what we have proved; there is a real analytic T .r; ™; y; a/ defined
near the origin with T .0/ D I such that

Q.r; ™; y; a/T .r; ™; y; a/ D T .r; ™; y; a/.˚p
j D1

QQj .r; ™; y; a//

where QQj .r; ™; y; a/ verifies

QQj .r; ™; y; a/ D œj Isj C QLjj.™/ C QP 2
jj .¨I r; y; a/ C O.j.r; ™; y; a/j/2:

Here we have written QL.™/ D . QLij.™//, QP 2.¨I r; y; a/ D . QP 2
ij .¨I r; y; a// and the

blocking corresponds to that of ˚œj Isj .

Lemma 4.16. All eigenvalues of QQj .r; ™; y; a/ are real near .r; ™; y; a/ D
.0; 0; 0; 0/. In a new system of local coordinates .r; §; y; a/, where § is linear
in .r; ™; y; a/, QQj takes the form

QQj .r; §; y; a/ D .œj C bj .r; §; y; a//Isj C
rjX

iD1

QF i
jj §i C O.j.r; §; y; a/j2/

with rj D dsj � 1 where bj .r; §; y; a/ is linear in .r; §; y; a/ and fIsj ; QF i
jj g span

M h
sj

.C/ (resp. M s
sj

.R/).
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Proof. It is clear that all eigenvalues of QQj .r; ™; y; a/ are real near the origin
because so are those of Q.r; ™; y; a/ by Lemma 4.15. We next show that
QP 2
jj .¨I r; y; a/ is Hermitian (resp. symmetric). Recall that

QLjj.™/ D
X

i

QF i
jj ™i

where f QF i
jj g are Hermitian (resp. symmetric) matrices and, together with Isj , span

the space M h
sj

.C/ (resp. M s
sj

.R/) over R since QF i D T �1
0 F i T0 and I span the

M h
m.C/ (resp. M s

m.R/). Take N™, £ 2 R so that

QLjj.N™/ C QP 2
jj .¨I r; y; a/ D QP 2.ah/

jj .¨I r; y; a/ C £Isj

where QP 2.ah/
jj .¨I r; y; a/ denotes the anti-Hermitian (resp. anti-symmetric) part of

QP 2
jj .¨I r; y; a/. Then we have

QQj .�r; �N™; �y; �a/ D .œj C �£/Isj C � QP 2.ah/
jj .¨I r; y; a/ C O.�2/:

If QP 2.ah/
jj .¨I r; y; a/ ¤ O then QQj .�r; �N™; �y; �a/ has non-real eigenvalues, taking

� small enough, and hence a contradiction. Thus we can write

QP 2
jj .¨I r; y; a/ D

X

i

ci .r; y; a/ QF i
jj C c0.r; y; a/Isj

where ci .r; y; a/ are linear functions of .r; y; a/ so that

QQj .r; ™; y; a/ D .œj Cc0.r; y; a//Isj C
X

i

QF i
jj .™i Cci .r; y; a//CO.j.r; ™; y; a/j2/:

Renumbering f QF i
jj g, if necessary, we may suppose that fI; QF 1

jj ; : : : ; QF rj

jj g are linearly
independent so that

X

i

QF i
jj .™i C ci .r; y; a// D

rjX

iD1

QF i
jj §i .r; ™; a/:

This proves the assertion. ut
By Lemma 4.16, each QQj .r; ™; y; a/ � .œj C bj /Isj verifies the hypothesis of

Theorem 4.5 with l D rj < m and hence there are positive definite Kj .r; ™; y; a/

which are real analytic near the origin such that

QQj .r; ™; y; a/Kj .r; ™; y; a/ D Kj .r; ™; y; a/ QQ�
j .r; ™; y; a/;

K�
j .r; ™; y; a/ D Kj .r; ™; y; a/
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with Kj .0/ D Isj . Let us define K.r; ™; y; a/ as

K.r; ™; y; a/ D ˚p
j D1Kj .r; ™; y; a/1=2

so that

K.r; ™; y; a/�1.˚p
j D1

QQj .r; ™; y; a//K.r; ™; y; a/ D Hermitian .resp: symmetric/:

With V D T .r; ™; y; a/K.r; ™; y; a/, this shows that

V �1Q.r; ™; y; a/V D Hermitian .resp: symmetric/:

Setting U D ST0TK we conclude that U �1P.r.¨ C ™/; y/U becomes Hermitian
(resp. symmetric) and hence

P.r.¨ C ™/; y/U U � D U U �P �.r.¨ C ™/; y/:

Since U U � D ST0T .KK�/T �T �
0 S , noting that

KK� D ˚Kj D I C O.j.r; ™; y; a/j/; T0T T �T �
0 D I C O.j.r; ™; y; a/j/

we see that

U U � D S.a/.I C K 0/S.a/

where K 0 D O.j.r; ™; y; a/j/. Hence every diagonal entry of U U � takes the form

–2 C 2–ai C a2
i C O.–2j.r; ™; y; a/j/ C O.j.r; ™; y; a/j2/:

Now taking – > 0 small enough, by the implicit function theorem one can solve
a.r; ™; y/ D .a1.r; ™; y/; : : : ; am.r; ™; y// so that ai .0/ D 0 and

every diagonal entry of U U � D –2

where a.r; ™; y/ is real analytic near the origin. With

H.r; ¥; y/ D –�2U.r; ¥ � ¨; y; a.r; ¥ � ¨; y//U �.r; ¥ � ¨; a.r; ¥ � ¨; y//

which is real analytic near .0; ¨; 0/ we conclude that

P.r¥; y/H.r; ¥; y/ D H.r; ¥; y/P �.r¥; y/

where all diagonal entries of H.r; ¥; y/ are 1. Since ¨ ¤ 0 is arbitrary the proof of
Proposition 4.7 is completed.
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Second step: We prove Proposition 4.8. We begin with proving Lemma 4.14.
Recall that

r�1P.r¨; y/ D L.¨/ C
X

j Cj’j�1

rj y’Rj’.¨/; Rj’.¨/ D
X

j“jDj C1

Rj’“¨“

with constant m � m matrices Rj’“ so that Rj’.¨/ is a homogeneous polynomial in
¨ of degree j C 1.

Lemma 4.17. Let Hi .r; ¨; y/, i D 1; 2 be real analytic Hermitian (resp. sym-
metric) m � m matrix with diagonal entries 1 defined in open neighborhoods
Ui D I � Ui � J of .0; ¨i ; 0/ such that

P.r¨; y/Hi .r; ¨; y/ D Hi .r; ¨; y/P �.r¨; y/ in Ui : (4.81)

Then we have H1.r; ¨; y/ D H2.r; ¨; y/ in U1 \ U2.

Proof. We expand Hi .r; ¨; y/ around .r; y/ D .0; 0/

Hi .r; ¨; y/ D
X

j;’

rj y’Hij’.¨/; Hij’.¨/ 2 A .Ui/:

Then (4.81) yields

X

j CkDp;’C“D”

Rj’.¨/Hik“.¨/ D
X

j CkDp;’C“D”

Hik“.¨/R�
j’.¨/

where R00.¨/ D L.¨/ D R�
00.¨/. Hence we get

ŒL.¨/; Hip”.¨/�

D
X

j CkDp;’C“D”;j Cj’j�1

Hik“.¨/R�
j’.¨/ � Rj’.¨/Hik“.¨/: (4.82)

Note that the right-hand side of (4.82) is anti-Hermitian (resp. anti-symmetric).

For the time being we stop to continue the proof and we make more detailed look
on (4.82) than needed here, which will give a key of the proof of Proposition 4.8.

Let L 2 Mm.C/. We consider the mapping from H 2 M h
m.C/ with the zero

diagonal entries to the space consisting of off diagonal entries of m � m matrices
defined by

H 7! off diagonal entries of ŒL; H�:

This is a linear mapping from the real m.m � 1/ dimensional linear space V

consisting of H to the linear space W of real dimension m.m � 1/ consisting
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of off diagonal entries of m � m matrices. These vector spaces admit complex
structures and we are naturally identifying C

m.m�1/=2 to R
m.m�1/. We denote by

S the representation matrix with respect to fixed bases of V and W .

Lemma 4.18. Let L D .lij/. Then there is a real polynomial f 2 RŒRe lij; Im lij�

such that det S D f 2.

Proof. 1 In the proof we are regarding components lij and lji D lij are independent
variables. We write H D .hij/ where hii D 0 and hji D hij. We identify .hij/ 2 V

with the complex vector .h12; h13; : : : ; hm�1;m; h12; h13; : : : ; hm�1;m/ and .cij/ 2 W

with .c12; c13; : : : ; cm�1;m; �c12; �c13; : : : ; �cm�1;m/. Sometimes we write z D
.h12; : : : ; hm�1;m/ 2 C

m.m�1/=2 and V D f.z; Nz/ j z 2 C
m.m�1/=2g and also write

Z D .c12; : : : ; cm�1;m/ and W D f.Z; � NZ/ j Z 2 C
m.m�1/=2g. We represent S with

respect to these bases and write

S

�
z
Nz
�

D
�

S11 S12

S21 S22

� �
z
Nz
�

D
�

Z

� NZ
�

where Sij 2 Mm.m�1/=2.C/. Since we have

��S11z C S12Nz� D S21z C S22Nz

for any z 2 C
m.m�1/=2 we have S22 D �S11 and S21 D �S12. We now show that S

is a Hermitian matrix. This is checked by direct calculation. Let L D .aij/1�i;j �m.
(Here we use the letter a since the letter l seems confusing.) We may write S D
.s.i;j /; s.k;l// (1 � i ¤ j � m, 1 � k ¤ l � m) since components of V and W

are indexed by .i; j / (1 � i ¤ j � m). We compare s.i;j /;.k;l/ and s.k;l/;.i;j / and
show that

s.k;l/;.i;j / D s.i;j /;.k;l/:

We determine s.i;j /;.k;l/. Since

cij D
mX

pD1

aiphpj �
mX

pD1

hipapj

then s.i;j /;.k;l/ is the coefficient of hkl of cij.

(i) If .i; j / D .k; l/, then we have

s.i;j /;.i;j / D aii � ajj

which is a real number.

1We owe the proof of this lemma to T. Ibukiyama.
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(ii) If i D k and j ¤ l , then

s.i;j /;.k;l/ D �alj

so that s.k;l/;.i;j / D �ajl D �alj D s.i;j /;.k;l/.
(iii) If j D l and i ¤ k, then

s.i;j /;.k;l/ D aik

so that s.k;l/;.i;j / D aki D aik D s.i;j /;.k;l/.
(iv) If i ¤ k and j ¤ l , then we have

s.i;j /;.k;l/ D s.k;l/;.i;j / D 0:

These proves S� D S . We summarize what we have checked.

(1) S is Hermitian and moreover

S D
"

S11 S12

�S12 �S11

#
:

(2) If we write S11 D A1 C iB1 and S12 D A2 C iB2 with Aj , Bj 2 Mm.m�1/=2.R/

then A1 is symmetric and A2, B1, B2 are anti-symmetric, that is tA1 D A1,
tA2 D �A2, tBj D �Bj for j D 1; 2.

Indeed the relation t S11 D tA1 � i tB1 D S11 D A1 C iB1 shows that tA1 D A1 and
tB1 D �B1. Since S is Hermitian and hence �S12 D t S12 it follows that tA2 D �A2

and tB2 D �B2.
We now prove that a representation matrix of S can be taken to be an anti-

symmetric matrix by a suitable change of basis. We write down matrices with
respect to the real coordinates. Recall

�
Z

� NZ
�

D S

�
z
Nz
�

:

So writing z D x C iy and Z D X C iY for real vectors x, y, X , Y we have

�
Em iEm

�Em iEm

� �
X

Y

�
D S

�
Em iEm

Em �iEm

� �
x

y

�
:

We put

T D
�

Em iEm

�Em iEm

��1

S

�
Em iEm

Em �iEm

�
:
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Then we have

T D 1

2

"
S11 C S11 C S12 C S12 i.S11 � S11 C S12 � S12/

�i.S11 � S11 C S12 � S12/ S11 C S11 � S12 � S12

#

D
�

A1 C A2 �B1 C B2

B1 C B2 A1 � A2

�
:

Then the matrix

T1 D
�

O �Em

Em O

�
T D

��B1 � B2 �A1 C A2

A1 C A2 �B1 C B2

�

is an anti-symmetric matrix, in fact since Bi are anti-symmetric and t .�A1 CA2/ D
�tA1 C tA2 D �A1 � A2 D �.A1 C A2/. So det T1 is a square of the Pfaffian,
that is det T1 D f 2 where f is a real polynomial in components of T1, that is
a real polynomial in components of Ai and Bi and hence a real polynomial in
.Re lij; Im lij/. Thus det S is also a square of a real polynomial in .Re lij; Im lij/. ut
We now check

Lemma 4.19. Let f be in Lemma 4.18. Then f is irreducible in RŒRe lij; Im lij� and
ff D 0g contains a regular point.

We postpone the proof until stating the next lemma. We now consider the real
symmetric case, that is L 2 M s

m.R/ and study the mapping from H 2 M s
m.R/ with

the zero diagonal entries to the space consisting of off diagonal entries of m � m

real matrices defined by

H 7! off diagonal entries of ŒL; H�:

This is a linear mapping from the real m.m � 1/=2 dimensional linear space
V consisting of such H to the linear space W of real dimension m.m � 1/=2

consisting of off diagonal entries of m � m real matrices. We denote by S again
the representation matrix with respect to fixed bases of V and W .

Lemma 4.20. Let us write L D .lij/. Then det S is irreducible in RŒlij� and
fdet S D 0g contains a regular point.

Proof. 2 We write H D .hij/ where hii D 0 and hji D hij. We identify .hij/ 2 V

with .h12; h13; : : : ; hm�1;m/ and .cij/ 2 W with .c12; c13; : : : ; cm�1;m/. We represent
S with respect to these bases. In the proof of Lemma 4.18, putting Bj D O and
Im hij D 0, we easily see that

S D A1 C A2:

2Another proof is found in [53].
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Let us write A1 C A2 D .Xij/ then it is clear that Xii D lii � ljj and for .i; j /,
i ¤ j we have either Xij D 0 or Xij D lpq with some .p; q/ with p ¤ q.
Suppose that det S is reducible so that det S D fg where f , g are homogeneous
polynomials in lij of degree greater than or equal to one. Assume that f contains
Xii and assume that the i -th row of S consists of flpqg.p;q/2J and 0. Note that
the i -th column consists of the same flpqg.p;q/2J and 0 because tA1 D A1 and
tA2 D �A2. Replace these lpq , .p; q/ 2 J , by œlpq with œ > 0. Then, in the
det S , the coefficient of Xii is multiplied by œ. This proves that g is independent of
these lpq , .p; q/ 2 J . Renumbering if necessary we may assume that f contains
X11,. . . ,Xrr and g contains XrC1;rC1,. . . ,XNN with N D m.m � 1/=2. From
the above arguments it follows that f is a polynomial in .Xij/1�i;j �r and g is a
polynomial in .Xij/rC1�i;j �N so that det S is independent of Xij with 1 � i � r ,
r C 1 � j � N . This is a contradiction. Indeed it is easy to check that there is
.i�; j �/ with 1 � i� � r , r C 1 � j � � N such that Xi�j � D lpq and this shows
that det S contains the term

l2
pq

Y

i¤i�;j �

Xii

up to the sign. Thus we have proved that det S is irreducible in RŒlij�. Let us set

S 0.lij/ D S.lij/
ˇ̌
lijD0;i¤j

then it is obvious that det S 0 D Q
i<j .lii � ljj/ which clearly shows fdet S 0 D 0g

contains a regular point. This proves that fdet S D 0g contains a regular point
clearly. ut
Proof of Lemma 4.19. Let us put Im lij D 0. Then it follows that

det S D .det.A1 C A2//2

up to the sign. This shows that f .Im lij D 0/ D det .A1 C A2/ up to the sign.
Thus the assertion follows from Lemma 4.20. ut
Completion of the Proof of Lemma 4.17. Assume that

ŒL.¨/; H.¨/� D C.¨/:

Introduce a new system of coordinates ™ D �
.Re lij.¨//i�j ; .Im lij.¨//i<j

�
. From

Lemmas 4.18 and 4.19 it follows that the above equation can be written with

LH.™/ D .h12; h13; : : : ; hm�1;m; h12; h13; : : : ; hm�1;m/;

LC .™/ D .c12; c13; : : : ; cm�1;m; �c12; �c13; : : : ; �cm�1;m/

so that
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SL.™/ LH.™/ D LC.™/

where det SL.™/ D f .™/2 with an irreducible f . We turn to (4.82). Let H.r; ¨; y/ D
H1.r; ¨; y/ � H2.r; ¨; y/. Then with

H.r; ™; y/ D
X

j Cj’j�0

rj y’Hj’.™/; (4.83)

Cp”.™/ D
X

j CkDp;’C“D”;j Cj’j�0

Hk“.™/R�
j’.™/ � Rj’.™/Hk“.™/

(4.82) can be written as

SL.™/ LH00.™/ D O; SL.™/ LHp”.™/ D LCp”.™/; p C j”j � 1: (4.84)

Note that Hj’.™/ are Hermitian and the diagonal entries of Hj’.™/ are 0 by the
assumption. Since det SL.™/ ¤ 0 on a dense subset we conclude that LH00.™; ¥/ D O

and hence H00.™/ D O . Then Cp”.™/ D O for p C j”j D 1 from (4.83). By
induction on p C j”j it follows that Hp”.™/ D O for all p C j”j � 0. ut
Completion of the Proof of Lemma 4.14. Suppose that at every .0; N̈ ; 0/, N̈ ¤ 0

there is an positive definite real analytic symmetrizers H.r; ¨; y/ with all diagonal
entries 1 defined near .0; N̈ ; 0/. By Lemma 4.17 these symmetrizers are continued
analytically and yields H.r; ¨; y/ which is positive definite with all diagonal entries
1 and real analytic in a neighborhood of f0g � Sk�1 � f0g. ut
Remark. Note that Hj’.™/ are Hermitian (resp. symmetric) and the diagonal entries
of H00.™/ and Hj’.™/, j C j’j � 1 are 1 and 0 respectively and LHj’.™/ verifies
(4.84). Since SL.™/ is linear in ™ and Rj’.™/ are homogeneous of degree j C 1 in
™, then by the homogeneity, LHj’.™/ extends uniquely to a homogeneous function in
R

k nf0g of degree j with respect to ™. Then Hj’.™/ extends there as a homogeneous
function of degree j in ™.

Proof of Proposition 4.8. We prove the case that L.¨/ is Hermitian since the real
case is similar. Let H.r; ¨; y/ be positive definite and satisfy (4.76). With the
coordinates .r; ™; y/, we again expand H.r; ™; y/ around .r; y/ D .0; 0/

H.r; ™; y/ D
X

j;’

rj y’Hj’.™/; Hj’.™/ 2 A .Sk�1/

where Hj’.™/ are Hermitian and all diagonal entries of H00.™/ and Hj’.™/, j C
j’j � 1 are 1 and 0 respectively. As before Hp”.™/ verifies

ŒL.™/; Hp”.™/� D Cp”.™/
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where Cp”.™/ is given by (4.83). The same argument as in the proof of Lemma 4.17
gives that

H00.™/ D I:

Then it follows that Cp”.™/ D R�
p”.™/ � Rp”.™/ for p C j”j D 1 which is a

homogeneous polynomial of ™ of degree 2. Recall that there is an m.m � 1/ �
m.m � 1/ matrix SL.™/ whose entries are linear functions of ™ such that Hp”.™/

satisfies

SL.™/ LHp”.™/ D LCp”.™/:

Moreover det SL.™/ D f .™/2 where f .™/ is irreducible in RŒ™� and ff .™/ D 0g
contains a regular point. Let us denote by coSL.™/ the cofactor matrix of SL.™/. It is
clear that LHp”.™/, p C j”j D 1 verifies

f .™/ LHp”.™/ D coSL.™/ LCp”.™/=f .™/ D .fij.™/=f .™//:

Recalling that Cp”.™/ D R�
p”.™/ � Rp”.™/ for p C j”j D 1 we see that fij.™/

are homogeneous polynomials of degree m.m � 1/ C 1 in ™. Since LHp”.™/ is real
analytic in R

k n f0g as remarked after the proof of Lemma 4.17 it follows that fij.™/

vanishes on ff .™/ D 0g. Since f .™/ is irreducible and ff .™/ D 0g contains a
regular point from Lemma 4.19 we can apply Lemma 2.5 in [41] (for example) to
conclude that fij.™/=f .™/ are homogeneous polynomials of degree m.m � 1/=2 C 1

in ™. Thus f .™/ LHp”.™/ is a homogeneous polynomial in ™ of degree m.m � 1/ C 1.
Repeating the same arguments we conclude that LH.™/ is a homogeneous polynomial
in ™ of degree 1 for p C j”j D 1 and so is Hp”.™/ because Hp”.™/ is Hermitian
and whose diagonal entries are 0. By (4.83), Cp”.™/, p C j”j D 2 becomes a
homogeneous polynomial in ™ of degree 3. By induction on j C j’j we prove that
Hj’.™/ is a homogeneous polynomial of degree j in ™. In the coordinates ¨, Hj’ is
a homogeneous polynomial in ¨ of degree j . Then one can write

rj Hj’.¨/ D Gj’.r¨/:

where Gj’.x/ is a homogeneous polynomial of degree j in x. Let us define

G.x; y/ D
X

j;’

y’Gj’.x/:

Since the convergence follows from that of
P

j;’ rj y’Hj’.¨/ then G.x; y/

becomes real analytic near .0; 0/ and the proof is complete. ut
Remark. The arguments proving that Hp”.™/ is a homogeneous polynomial in ™

can be applied under less restrictive hypotheses. Let f .™/, g.™/ be homogeneous
polynomials in ™ of degree n, m respectively where n � m. Let
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g.™/ D
sY

j D1

gj .™/rj

be the irreducible factorization of g.™/ in RŒ™�. We assume that f .™/=g.™/ is C 1
apart from the origin and Vj D f™jgj .™/ D 0g, 1 � j � s contains a regular point.
Then applying Lemma 2.5 in [41] again, we conclude that f .™/ is a homogeneous
polynomial in ™ of degree n � m.

4.6 Well Posed Cauchy Problem

Let us study a differential operator of order q

P.x; D/ D
X

j’j�q

A’.x/D’; Dj D 1

i

@

@xj

(4.85)

where A’.x/ are m � m matrix valued smooth functions defined in a neighborhood
� of the origin of R

n. We assume that x1 D const: are non characteristic and
without restrictions we may assume that

A.q;0;:::;0/.x/ D I: (4.86)

We are concerned with the following Cauchy problem

(
P.x; D/u D f; suppf � fx1 � 0g;
supp u � fx1 � 0g: (4.87)

Let Pq.x; Ÿ/ be the principal symbol of P.x; D/

Pq.x; Ÿ/ D
X

j’jDq

A’.x/Ÿ’

and we assume that

det Pq.x; Ÿ/ D 0 H) Ÿ1 is real 8x 2 �; 8Ÿ0 D .Ÿ2; : : : ; Ÿn/ 2 R
n�1: (4.88)

We first study the case that Pq is of constant coefficients.

Theorem 4.6 ([22, 26]). Let P.Ÿ/ be a homogeneous polynomial of degree q in
Ÿ 2 R

n with real m � m matrix values such that det P.Ÿ/ satisfies (4.88) and every
multiple characteristic of det P.Ÿ/ is at most double and nondegenerate. Then the
Cauchy problem for P.D/ C R.x; D/ is C 1 well posed for every R of order q � 1

with C 1 m � m matrix coefficients.
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In [22, 26] their proof is based on the estimate of P.Ÿ C i£N /�1 such that

j£j.jŸj C j£j/m�1jP.Ÿ C i£N /�1j � C; if 0 ¤ .£; Ÿ/ 2 R
nC1 (4.89)

which is derived from the assumption of the non degeneracy of double
characteristics. For f 2 C 1

0 with supp f � fx1 � 0g we look for a solution

.P.D/ C R.x; D//u D f

such that supp u � fx1 � 0g. We set u D u£e
£Nx1 and f D f£e

£Nx1 and obtain the
equivalent equation

.P.D � i£N / C R.x; D � i£N //u£ D f£: (4.90)

Let E£ be the inverse Fourier transform of P.Ÿ � i£N /�1 and set u£ D E£ � v.
Then (4.90) becomes

v C R.x; D � i£N /E£ � v D f£: (4.91)

On the other hand assuming (4.89) we have

£kE£ � wksCm�1;£ � C kwks;£; kwk2
s;£ D .2 /�n

Z
jOu.Ÿ/j2.jŸj2 C £2/sdŸ:

Thus from this estimate it follows that

kR.x; D � i£N /E£ � vks;£ � C 0£�1kf£ks;£:

Choosing £ > 2C 0 we conclude that (4.91) has a unique solution v 2 H s .

We prove the following result which extends Theorem 4.6. Our proof is
completely different from that in [22,26] and based on the smooth symmetrizability
of corresponding first order system (Proposition 4.1) and hence can be applicable to
differential operators with variable coefficients.

Theorem 4.7. Assume that every characteristic .0; Ÿ1; Ÿ0/, jŸ0j D 1 of Pq.x; Ÿ/ is
at most double and nondegenerate. Then the Cauchy problem for P.x; D/ is C 1
well posed near the origin for arbitrary lower order term. Moreover if QP .x; D/

is another system of the form (4.85) verifying (4.88) with the principal symbol
QPq.x; Ÿ/ D P

j’jDq
QA’.x/Ÿ’ of which QA’ are sufficiently close to A’.x/ in C 2.�/

then the Cauchy problem for QP .x; D/ is C 1 well posed near the origin for any
lower order term.

Assuming the analyticity of the coefficients we have

Theorem 4.8. Assume that A’.x/, j’j D q are real analytic in � and every
characteristic .0; Ÿ0; Ÿ0/, jŸ0j D 1 of Pq.x; Ÿ/ is nondegenerate. Then the Cauchy
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problem for P.x; D/ is C 1 well posed near the origin for arbitrary lower
order term.

The proof is very simple. We reduce the Cauchy problem for P.x; D/ to that
for a first order system P.x; D/. Taking the invariance of non degeneracy of
characteristics proved in Proposition 4.1.1, to prove Theorems 4.7 and 4.8, it suffices
to apply Proposition 4.2 and Theorem 4.4 respectively which asserts the existence
of a smooth symmetrizer S .x; D0/ for P.x; D/ defined near the origin.

Let us write

P.x; D/u D D
q
1 u C

qX

j D1

Aj .x; D0/Dq�j
1 u D f: (4.92)

Put

u.k/ D hD0iq�kDk�1
1 u; k D 1; : : : ; q

where hD0i2 D 1 CPn
j D2 D2

j . Then (4.92) is reduced to

D1U C

2

6666664

0 �I

0 0 �I
: : :

0 �I

A#
q.x; D0/ � � � A#

1.x; D0/

3

7777775
hD0iU D F

where U D t .u.1/; : : : ; u.q//, F D t .0; : : : ; 0; f / and

A#
j .x; D0/ D Aj .x; D0/hD0i�j :

Let us denote by A0
j .x; Ÿ0/ the principal symbol of A#

j .x; Ÿ0/ and set

A .x; Ÿ0/ D

2

6666664

0 �I

0 0 �I
: : :

0 �I

A0
q.x; Ÿ0/ � � � A0

1.x; Ÿ0/

3

7777775
: (4.93)

Fix .0; NŸ0/, jNŸ0j D 1. Let .0; œi ; NŸ0/, i D 1; : : : ; p, be characteristics of Ÿ1 CA .x; Ÿ0/
where .0; œi ; NŸ0/ are nondegenerate and œi are different from each other. Then there
exists a smooth T .x; Ÿ0/ defined near .0; NŸ0/, homogeneous of degree 0, such that

T .x; Ÿ0/�1A .x; Ÿ0/T .x; Ÿ0/ D A1.x; Ÿ0/ ˚ � � � ˚ Ap.x; Ÿ0/
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where .0; œi ; NŸ0/ is a nondegenerate characteristic of Pi .x; Ÿ/ D Ÿ1 C Ai .x; Ÿ0/.
Then one can apply Proposition 4.2 or Theorem 4.4 to get a smooth symmetrizer
Si .x; Ÿ0/ of Ai .x; Ÿ0/ defined near .0; NŸ0/, homogeneous of degree 0 such that

Si .x; Ÿ0/�1Ai .x; Ÿ0/Si .x; Ÿ0/

is Hermitian. This proves that A .x; Ÿ0/ is smoothly symmetrizable near .0; NŸ0/ by
S1.x; Ÿ0/ ˚ � � � ˚ Sp.x; Ÿ0/. By the usual argument of partition of unity one can
prove that there is a smooth S .x; Ÿ0/ which symmetrizes A .x; Ÿ0/. Thus the Cauchy
problem for P.x; D/ is C 1 well posed for arbitrary lower order term and hence so
is for P.x; D/.

We turn to prove the second assertion of Theorem 4.7. Recall that .0; œi ; NŸ0/,
i D 1; : : : ; p are characteristics of Ÿ1 C A .x; Ÿ0/ where fœi g are different from
each other. By assumption each .0; œi ; NŸ0/ is either simple characteristic or double
nondegenerate characteristic. Let Ÿ1 C QA .x; Ÿ0/ be the symbol of first order system
associated to QP .x; D/. Let .0; œi ; NŸ0/ be a double nondegenerate characteristic of
Ÿ1 C A .x; Ÿ0/. Since QA .x; Ÿ0/ is enough close to A .x; Ÿ0/, as for characteristics of
Ÿ1 C QA .0; NŸ0/ enough close to .0; œi ; NŸ0/, we have either two simple characteristics
.0; Qœik; NŸ0/ or a double characteristic .0; Qœi ; NŸ0/. From Proposition 4.3 it follows
that the double characteristic .0; Qœi ; NŸ0/ is nondegenerate. Thus we conclude that
every characteristic of Ÿ1 C QA .0; NŸ0/ is nondegenerate and then repeating the same
arguments as above we get the assertion.

Example 4.9. Consider the second order differential operator P.x; D/ D
.pik.x; D// with 3 � 3 matrix coefficients

pik.x; £; Ÿ/ D .£2 � ¢i .x/jŸj2/•ik � .1 � ¢i .x//Ÿi Ÿk

in Example 4.6. Then from Theorem 4.7 it follows that the Cauchy problem for
P.x; D/ C R.x; D/ is C 1 well posed for every R of first order with C 1 3 � 3

matrix coefficients. Let A.x; Ÿ/ be in Example 4.7. Then the Cauchy problem for
D2

0 � A.x; D/ C R.x; D/ is C 1 well posed for every R of first order with C 1
3 � 3 matrix coefficients.

Example 4.10. Let P.Ÿ/ D Ÿ1I C Pd
j D2 Fj Ÿj be the symbol in Example 4.3.

Consider

P.x; Ÿ/ D Ÿ1I C
dX

j D2

Aj .x/Ÿj

where Aj .x/ are real valued real analytic m � m matrices which are enough close
to Fj in C 2 and P.x; Ÿ/ has only real eigenvalues for any x and any Ÿ. Then
Theorem 4.8 shows that the Cauchy problem for P.x; D/CB.x/ is C 1 well posed
for every smooth m � m matrix B.x/.
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4.7 Nondegenerate Characteristics of Symmetric Systems

Let P be a first order system with constant coefficients

P.x/ D x1 C
nX

j D2

Aj xj (4.94)

where Aj are real m � m constant matrices. We always assume that P.x/ is
hyperbolic with respect to ™ D .1; 0; : : : ; 0/. Then from [34] (see also [13]) P.x/

can not be strictly hyperbolic if n > 3 and m � 2 modulo 4, that is P.x/ has
necessarily multiple characteristics x ¤ 0. We want to check whether these multiple
characteristics are nondegenerate.

For symmetric systems with constant coefficients the description of non degen-
eracy of characteristics becomes simple. Consider

L .x/ D
nX

j D1

Aj xj

where Aj 2 M s
m.R/. In this and the following sections we identify a symmetric

system L .x/ with the image of L .x/ when x varies in R
n

L D fL .x/ j x 2 R
ng

which is a linear subspace in M s
m.R/. Indeed if L is a linear subspace of dimension

q in M s
m.R/ which contains the identity then choosing a basis fI; A2; : : : ; Aqg, Aj 2

M s
m.R/ for L we have a symmetric system

x1I C
qX

j D2

Aj xj

and vice versa.
We denote by M s

m.kIR/ the set of all A 2 M s
m.R/ with rank m � k. Then we

have

Lemma 4.21. In order that Nx is a nondegenerate characteristic of L .x/ of order
k if and only if the image L intersects with M s

m.kIR/ at L . Nx/ transversally.

Proof. Since L . Nx/ and L Nx.x/ are symmetric, the conditions (4.15) and (4.17)
in Definition 4.5 are automatically satisfied. Without restrictions we may assume
that Nx D .0; : : : ; 0; 1/. Then An is of rank m � k. We can make an orthogonal
transformation of the matrices so that with a block matrix notation we have

An D
�

O O

O G

�
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where G is a .m�k/�.m�k/ non singular matrix. The tangent space of M s
m.kIR/

at An consists of matrices of the form

�
O *
* *

�
(4.95)

with the corresponding block decomposition. On the other hand, with the same
block decomposition of L .x/

L .x/ D
�

L11.x/ L12.x/

L21.x/ L22.x/

�

it is clear that L Nx.x/ D L11.x/. Thus the transversality of intersection means that
dim L11 D dk that is, dim L Nx D dk and hence Nx is nondegenerate. The converse
follows in the same way. ut

We start with the special case that dim L D dm � 1. Since L has codimension
one in M s

m.R/ then L is defined by

L D fX D .xij/; xij D xji j Tr .AX/ D 0g (4.96)

with some A 2 M s
m.R/. Note that Tr A D 0 because L contains the identity. Now

we have

Proposition 4.9. Assume that L is given by (4.96) with O ¤ A 2 M s
m.R/ and

that the rank of A is greater than k. Then every characteristic of order k of L .x/

is nondegenerate.

Proof. Let Nx be a characteristic of order k of L .x/ and hence H D L . Nx/ 2
L \ M s

m.kIR/. Here we note that dim TH .M s
m.kIR// D dm � dk which is seen by

the proof of Lemma 4.21. To show Nx is nondegenerate it suffices to prove that

dim .L \ TH .M s
m.kIR// D dm � dk � 1 (4.97)

by Lemma 4.21. As in the proof of Lemma 4.21, considering T �1L T with a
suitable T 2 O.m/ we may assume that

H D
�

O O

O G

�
(4.98)

where G is a .m�k/� .m�k/ non singular matrix. Set xij D 0 for 1 � i � j � k.
Then Tr .AX/ D 0, X D .xij/ implies that

X

kC1�i�j �m

aijxij D 0
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where A D .aij/. Recalling that the tangent space TH .M s
m.kIR// spanned by

matrices of the form (4.95) we see that L \ TH .M s
m.kIR// consists of the matrices

of the form

X D
�

O xij

xij xij

�
; Tr .AX/ D

X

kC1�j;i�j

.2 � •ij/aijxij D 0

where •ij is the Kronecker’s delta. Since A is symmetric and the rank of A is greater
than k by assumption then it follows that .aij/kC1�j;i�j ¤ O . This proves (4.97)
and hence the assertion. ut

We turn to the case that 1 � dim L � dm � 1. We first give a parametrization of
the Grassmannian of l dimensional subspaces of M s

m.R/ containing the identity.
Take a map

¢ W f1; : : : ; �g ! f.i; j /j1 � i � j � m; .i; j / ¤ .m; m/g

which is injective. Denote by U¢ the set of all �-tuple of m � m symmetric matrices
A D .A1; : : : ; A�/ such that Tr Aj D 0 and the ¢.k/-th entry of Aj is zero unless
k D j and the ¢.j /-th entry of Aj is 1. It is clear that U¢ can be identified with
R

�.dm���1/. Taking all such injective ¢ , U¢ and the inverse of the map

¥¢ W U¢ 3 A 7! L ; L D fX 2 M s
m.R/jTr .Aj X/ D 0; 1 � j � �g

then f.¥�1
¢ ; �¢ D ¥¢.U¢//g give charts of the Grassmannian of l D dm � �

dimensional subspaces of M s
m.R/ containing I , which we denote by Gl

dm;I .

Proposition 4.10. In the Grassmannian Gl
dm;I consisting of l dimensional sub-

spaces of M s
m.R/ containing the identity I , the subset for which every characteristic

of order less than m is nondegenerate is an open and dense subset.

Let PN .R/ be the N dimensional real projective space and let X � PN .R/ be a
non-singular algebraic manifold of dimension r and assume that x0 62 TxX for all
x 2 X . Let us denote

QGs
N;x0

D fW � PN .R/jW is a linear space; dim W D s; x0 2 W g

and set s0 D N � s. Then we have

Lemma 4.22. A generic W 2 QGs
N;x0

intersects X transversally.

Proof. 3 Let Y D f.x; W / 2 X � QGs
N;x0

jx 2 W g and denote by p1, p2 the

projections onto X and QGs
N;x0

respectively. Note that dim Y D s0s � s0 C r and

3The author owes this simple proof to A. Gyoja.
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dim QGs
N;x0

D s0s. Then if r < s0 a generic W 2 QGs
N;x0

does not intersect X and
hence the result. Thus it is enough to study the case r � s0. Let us set

Z D f.x; W / 2 Y jdim .TxX C W / � N � 1g:

It is not difficult to see that

dim .p1jZ/�1.x/ D ss0 � r � 1; x 2 X

so that dim Z D ss0 � 1 D dim QGs
N;x0

� 1. Thus for every W belonging to the open

dense subset QGs
N;x0

np2.Z/, W intersects X transversally. This proves the assertion.
ut

Proof of Proposition 4.10. Take X and QGs
N;x0

as the projective spaces M s
m.kIR/pr

and .GsC1
dm;I /pr based on M s

m.kIR/ and GsC1
dm;I respectively. Applying Lemma 4.22

with N D dm � 1, r D N � dk, x0 D I we get the desired result. ut

4.8 Hyperbolic Perturbations of Symmetric Systems

In this section, we discuss hyperbolic perturbations, of which definition is given
below, of symmetric systems with constant coefficients near multiple characteristics
which are not necessarily nondegenerate. To motivate our study in this section let us
consider

L.x; D/ D
nX

j D0

Aj .x/Dj ; A0.x/ D I

where Aj .x/ are real m � m real analytic matrices and let ¡ be a multiple
characteristic of order m with involutive ƒ.¡/. If L.x; D/ is strongly hyperbolic
near the origin we have dim KerL.¡/ D m by Theorem 2.2 which implies L.¡/ D O .
We can assume ¡ D .0; en/ so that An.0/ D O then one can write

L.x; Ÿ/ D Ÿ0I C
n�1X

j D1

Aj .x/Ÿj C
nX

j D0

Anj.x/xj Ÿn

D Ÿn

˚
.Ÿ0=Ÿn/I C

n�1X

j D1

Aj .x/.Ÿj =Ÿn/ C
nX

j D0

Anj.x/xj

�

and note that

L¡.x; Ÿ0/ D Ÿ0I C
n�1X

j D1

Aj .0/Ÿj C
nX

j D0

Anj.0/xj :
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From Lemma 4.2 L¡.x; Ÿ0/ is hyperbolic with respect to ™ D .0; : : : ; 0; 1; 0; : : : ; 0/.
Assume that L¡.x; Ÿ0/ is diagonalizable for every .x; Ÿ0/. If dim RL¡ D dm so that ¡

is nondegenerate then by Theorem 4.4 we see that L.x; Ÿ/ is symmetrizable near ¡.
Moreover under the assumption

dim RL¡ � dm � 1

it follows from Lemma 4.9 that there exists T 2 Mm.R/ such that T �1L¡.x; Ÿ0/T is
symmetric for every .x; Ÿ0/. Considering T �1L.x; Ÿ/T from the beginning we can
assume that L¡.x; Ÿ0/ is symmetric. Thus we can write

L.x; Ÿ/ D Ÿn

˚
L¡.x; Ÿ0=Ÿn/ C R.x; Ÿ0=Ÿn/

�
; R.x; Ÿ0=Ÿn/ D O.jxj2 C jŸ0=Ÿnj2/

where L¡.x; Ÿ0/ C R.x; Ÿ0/ is hyperbolic with respect to .0; : : : ; 0; 1; 0; : : : ; 0/.
Let us consider symmetric systems with constant coefficients

L .x/ D x1I C
qX

j D2

F j xj D x1I C L.x0/ (4.99)

where F j 2 M s
m.R/ and fI; F j g are linearly independent. Note that if q � dm � 1

then x D 0 is a degenerate characteristic of L .x/.
We perturb L .x/ near x D 0 by adding R.x/ D O.jxj2/ as x ! 0. We start

with

Definition 4.6. We say that Mm.R/ valued real analytic R.x/ D O.jxj2/, x ! 0

is a hyperbolic perturbation to L .x/ near x D 0 if the perturbed system

P.x/ D L .x/ C R.x/

remains to be hyperbolic near x D 0, that is

all eigenvalues of P.x C œ‚/ are real near x D 0 (4.100)

where ‚ D .1; 0; : : : ; 0/ and

R.x/ D O if L .x/ D O: (4.101)

Example 4.11. Let L .x/ be as in (4.99) and let T .x/ be real analytic m�m matrix
defined near x D 0 with T .0/ D I . Then it is clear that

T �1.x/L .x/T .x/ D x1I C
qX

j D2

T �1.x/Fj T .x/xj D L .x/ C R.x/

is a hyperbolic perturbation, while it is never trivial to find T .x/ starting from
L .x/ C R.x/.
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As before, we define SL .x/ as the representation matrix of the linear map
sending M s

m.R/ 3 H with zero diagonal entries to the anti-symmetric matrix
ŒL .x/; H�. Note that

SL .x/ D S QL .x/ (4.102)

if QL .x/ � L .x/ is a scalar matrix. Let

g.x/ D
sY

j D1

gj .x/rj

be the irreducible factorization of det SL .x/ in RŒx�. We assume that

fxjgj .x/ D 0g contains a regular point (4.103)

for 1 � j � s. Then we have

Theorem 4.9. Assume that every characteristic of L .x/ of order less than m is
nondegenerate. Suppose that det SL .x/ satisfies (4.103). Then for every perturbed
P.x/ D L .x/ C R.x/ with a hyperbolic perturbation R.x/ we can find real
analytic A.x/, B.x/ defined near the origin with A.0/ D B.0/ D I such that

A.x/P.x/B.x/

becomes symmetric.

Proof. By a preparation theorem proved in [11], generalizing the Weierstrass
preparation theorem to matrix valued functions, one can write

P.x C œ‚/ D C.x; œ/.œI C Q.x// (4.104)

where C.x; œ/ is real analytic near .0; 0/ with det C.0; 0/ ¤ 0 and Q.x/, Q.0/ D
O is real analytic with values in Mm.R/. Comparing the first order term in the
Taylor expansion at .x; œ/ D .0; 0/ of both sides we see that C.0; 0/ D I and
Q.x/ D L .x/C QR.x/ where QR.x/ D O.jxj2/. Since L .0; : : : ; 0; xqC1; : : : ; xn/ D
O taking œ D �x1, xj D 0, 2 � j � q in (4.104) it follows from (4.101) that
O D C.x1; 0; : : : ; 0; xqC1; : : : ; xn; �x1/ QR.x1; 0; : : : ; 0; xqC1; : : : ; xn/ and hence

QR.x1; 0; : : : ; 0; xqC1; : : : ; xn/ D O:

Since C.x; 0/�1P.x/ D L .x/ C QR.x/ it is enough to study a perturbation term
R.x/ which verifies R.x1; 0; : : : ; 0; xqC1; : : : ; xn/ D O . Changing notations we set
x D .x2; : : : ; xq/, y D .x1; xqC1; : : : ; xn/ and
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P.x; y/ D L.x/ C R.x; y/; L.x/ D
qX

j D2

F j xj

where SL.x/ verifies the assumptions because of (4.102). As in Sect. 4.5 we set

QP .r; ¨; y; a/ D r�1S.a/�1P.r¨; y/S.a/:

Since QP .0; ¨; 0; 0/ D L.¨/ and fI; F j g are linearly independent the multiplicity of
eigenvalues of QP .0; ¨; 0; 0/ are less than m if ¨ ¤ 0. We then fix ¨ ¤ 0 and proceed
exactly as the same way in Sect. 4.5. Take an orthogonal T0 so that T �1

0 L.¨/T0 D
˚p

iD1œi Isi . Then we have

Q.r; ™; y; a/ D r�1T �1
0 S.a/�1P.r.¨ C ™/; y/S.a/T0

D QL.¨/ C QL.™/ C QP .¨I r; y; a/ C O.j.r; ™; y; a/j2/

where QL.¨/ D ˚œi Isi and QL.™/ D T �1
0 L.™/T0 D . QLij.™//1�i;j �p. Let

QLii.™/ D
qX

j D2

QF j
ii ™j

then we get

Lemma 4.23. fIsi ;
QF j
ii g span M s

si
.R/.

Proof. Let QL .x/ D T �1
0 L .x/T0, x D .x1; x2; : : : ; xq/. Since .x1; x2; : : : ; xq/ D

.�œi ; ¨/ is a characteristic of QL .x/ of order less than m and hence nondegenerate
by assumption. It is clear that the localization of QL .x/ at .�œi ; ¨/ is

QL.�œi ;¨/.x/ D x1Isi C
qX

j D2

QF j
ii xj

because QL .�œi ; ¨/ is diagonal. Noting that the non degeneracy of characteristics
is invariant under changes of basis for Cm, the matrices fIsi ;

QF j
ii g span a subspace

of dimension si .si C 1/=2. Since QF j
ii are symmetric this proves the assertion. ut

Completion of the Proof of Theorem 4.9. In view of Remark at the end of Sect. 4.5,
the rest of the proof of Theorem 4.9 goes exactly as the same way in Sect. 4.5. ut
Taking into account the invariance of non degeneracy of characteristics under
change of basis we have

Corollary 4.2. Assume that every characteristic of L .x/ of order less than m

is nondegenerate and there is an orthogonal matrix T 2 O.m/ such that
det ST �1L T .x/ verifies (4.103). Then the same conclusion as in Theorem 4.9 holds.
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Remark. The condition (4.103) is not invariant under orthogonal changes of basis
for Cm. Indeed let

L .x/ D x1I2 C
�

0 x2

x2 0

�

then it is obvious that SL .x/ D O . On the other hand it is easy to see that there is
an orthogonal T 2 O.2/ such that ST �1L T .x/ verifies (4.103).

Example 4.12. Let us take

L1.x/ D
2

4
x2 C x5 x5 x5

x5 x3 C x5 x5

x5 x5 x4 C x5

3

5 ; L2.x/ D
2

4
x2 x4 x5

x4 x3 �x5

x5 �x5 x4

3

5

for which constant hyperbolic perturbation must be trivial (see Definition 4.7 in the
next section and Theorems 3.5 and 3.6 in [22]). Applying Theorem 4.9 we show
that not only constant hyperbolic perturbations but also more general hyperbolic
perturbation is trivial.

Note that it is easy to see that

det SL1.x/ D x2
2x3 C x2

3x4 C x2
4x2 � x2x2

3 � x3x2
4 � x4x

2
2

D �.x2 � x3/.x3 � x4/.x4 � x2/;

det SL2.x/ D x2
2x3 C x2

3x4 C x2
5x2 � x2x2

3 � x4x2
2 � x3x

2
5

D .x2 � x3/.x2x3 � x2x4 � x3x4 C x2
5/:

Let ‚1 D .1; 1; 1; 0/ and ‚2 D .2; 2; 1; 0/. It is obvious that Li .‚i/ is positive
definite. Let us set

QLi .x/ D Li .‚i /
�1=2Li .x/Li .‚i /

�1=2:

It follows from Theorems 3.5, 3.6 in [22] and Lemma 4.3 that

Lemma 4.24. Every characteristic of QLi .x/, i D 1; 2 of order less than 3 is
nondegenerate.

To apply Theorem 4.9 to QLi .x/ we examine that

Lemma 4.25. det S QLi
.x/, i D 1; 2 verifies (4.103).

Proof. We first note that det SLi .x/ verifies (4.103). The assertion for S QL1
.x/ is

clear because L1.‚1/ D I . To prove the assertion for S QL2
.x/ we note that

C D L2.‚2/
�1=2 D

2

4
’ “ 0

“ ’ 0

0 0 1

3

5 ; QL2.x/ D CL2.x/C
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with ’ > 0, “ > 0 and ” D ’2 �“2 > 0. Let x be so that det SL2.x/ D 0. Then there
is a H 2 M s

3 .R/, H ¤ O with zero diagonal entries such that ŒL2.x/; H� D O .
Setting QH D C �1HC it follows that

QL2.x/ QH � QH QL2.x/ D O:

Hence we have Œ QL2.x/; QH s� D O where QH s is the symmetric part of QH . It is easy
to check that the diagonal entries of QH and hence those of QH s are zero. Thus we
conclude that det S QL2

.x/ D 0. Since det SL2.x/ verifies (4.103) by Remark at the
end of Sect. 4.5 we get det S QL2

.x/ D c det SL2.x/ with a constant c ¤ 0 and hence
the assertion. ut

4.9 Stability of Symmetric Systems Under Hyperbolic
Perturbations

We start with

Definition 4.7. Let R.x/ be a hyperbolic perturbation to L .x/ near x D 0. We say
that the perturbation is trivial if there exist real analytic A.x/, B.x/ defined near the
origin with A.0/B.0/ D I such that A.x/P.x/B.x/ becomes symmetric.

In this section we prove that generically every hyperbolic perturbation of symmetric
system L

L .x/ D x1I C
nX

j D2

F j xj ; F j 2 M s
m.R/

is trivial if dim L is enough large. As in Sect. 4.7 we identify L .x/ with the
subspace L D fL .x/ j x 2 R

ng.

Theorem 4.10. Assume dm � m C 3 � l � dm. Then in the .dm � l/.l � 1/

dimensional Grassmannian of l dimensional subspaces of M s
m.R/ containing the

identity, the subset for which every hyperbolic perturbation is trivial is an open and
dense subset.

As in Sect. 4.5 we study SL .x/ for symmetric L .x/ when dim L D dm � �

where 1 � � � m � 3. We first examine the representation matrix SL .x/. Let

Vm D fH D .hij/ 2 M s
m.R/jhii D 0g

and recall that SL .x/ is defined as the linear map between two dm�1 dimensional
linear subspaces Vm and Wm D M as

m .R/

Vm 3 H 7! ŒL .x/; H� D K 2 Wm
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where M as
m .R/ denotes the set of all real m � m anti-symmetric matrices. Let us

write

L .x/ D .¥i
j .x//1�i;j �m; ¥i

j .x/ D ¥
j
i .x/: (4.105)

For H 2 Vm we write LH D t .h12; h13; h23; h14; h24; h34; : : : ; hm�1m/ 2 R
dm�1 .

Then the equation ŒL .x/; H� D K can be written as

SL .x/ LH D LK

where SL .x/ is a dm�1 � dm�1 matrix. For instance when m D 3 we have

SL .x/ D
2

4
¥1

1.x/ � ¥2
2.x/ �¥2

3.x
0/ ¥1

3.x
0/

�¥2
3.x

0/ ¥1
1.x/ � ¥3

3.x/ ¥1
2.x

0/
�¥1

3.x
0/ ¥1

2.x
0/ ¥2

2.x/ � ¥3
3.x/

3

5 : (4.106)

We turn to the case L .x/ is a m � m matrix. Let

L .x/ D
�

L.x/ l.x0/
t l.x0/ ¥m

m.x/

�

where l.x0/ D t .¥1
m.x0/; : : : ; ¥m�1

m .x0// and L.x/ stands for L .x/ in (4.105) with
m � 1. For H 2 Vm and K 2 Wm we write

H D
�

H1 h
t h 0

�
; K D

�
K1 k
t k 0

�

with H1 2 Vm�1, K1 2 Wm�1 and h D t .h1m; : : : ; hm�1m/. Then it is easy to see
that the equation ŒL .x/; H� D K is written as

�
SL.x/ c.l/

c0.l/ L.x/ � ¥m
mI

� � LH1

h

�
D
� LK1

k

�
D LK

and hence we get

SL .x/ D
�

SL.x/ c.l/

c0.l/ L.x/ � ¥m
mI

�
: (4.107)

Our aim in this section is to prove

Proposition 4.11. Assume that 1 � � � m � 3. Then in the Grassmannian G
dm��
dm;I ,

the subset of L for which the condition (4.103) is fulfilled for T �1L T with some
T 2 O.m/ is an open and dense subset.
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Here we use a parametrization of the Grassmannian Gl
dm;I used in Sect. 4.7.

We set 4 D f.i; i/j1 � i � mg and let 1 � k � m � 1. We first remark that

Lemma 4.26. Assume that 1 � k � m � 1. Then one can find finitely many
S1; : : : ; SN 2 O.m/ such that for any L 2 G

dm�k
dm;I there is Si 2 fS1; : : : ; SN g

so that S�1
i L Si 2 �¢ with some ¢ verifying ¢.f1; : : : ; kg/ \ 4 D ;.

Proof. In this proof we denote jC j D maxi;j jcijj for a matrix C D .cij/. Let Tpq.–/

be the orthogonal matrix obtained replacing p-th and q-th, p < q, rows of the
identity matrix by

.0; : : : ; 0; f .–/; 0; : : : ; 0; –; 0; : : : ; 0/; .0; : : : ; 0; �–; 0; : : : ; 0; f .–/; 0; : : : ; 0/

where –2 C f .–/2 D 1. We show that it is enough to take fSig as the set of all

K1K2 � � � Km

where

Kj 2 fI; Tpq.–i / j –i D .Cim
2i�1

/�1; i D 1; : : : ; m; 1 � p < q � mg

and C1 < C2 < � � � < Cm will be chosen suitably. Let L 2 G
dm�k
dm;I and let A1,. . . ,Ak

define L so that L consists of all X 2 M s
m.R/ such that Tr .Aj X/ D 0, 1 � j � k

where Aj are linearly independent and Tr Aj D 0. We first note that we may assume

.H/�: there is an injective £ W f1; : : : ; �g ! f.i; j /j1 � i < j � mg such that
£.i/-th entry of Aj is zero unless i D j and £.j /-th entry of Aj is 1, jAj j �
a�m2��1

for 1 � j � � where a1 D 1, a�C1 D Ba�C� with a fixed large B and
A�C1, . . . , Ak are diagonal matrices.

In fact if some Aj has a non-zero off diagonal entry we may assume that the
off diagonal £.1/-th entry of A1 is 1 and jA1j � 1. Replacing Aj by Aj � ’j A1,
j ¤ 1, with suitable ’j one can assume that £.1/-th entry of Aj is zero if j ¤ 1.
A repetition of this argument gives the assertion. If � D k then £.f1; : : : ; kg/ \
4 D ; and there is nothing to prove. Then we may assume that � � k � 1. Let
A�C1 D diag .œ1; : : : ; œm/. Since Tr A�C1 D 0 it is easy to see that there are at least
m � 1 pairs .i; j /, i < j such that

3jœi � œj j � jœr j; r D 1; : : : ; m:

Since � � m � 2 there exists such a .p; q/ with .p; q/ 62 £.f1; : : : ; �g/. Let us set

Aj .–�/ D Tpq.–�/�1Aj Tpq.–�/; 1 � j � k

and note that jAj .–�/ � Aj j � B1a�C �1
� , 1 � j � �. Choose C� so that

a�C �1
� is small enough then taking QAj .–�/ D P�

iD1 cjiAi.–�/, 1 � j � �, with a
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non singular C D .cji/ we may suppose that £.i/-th entry of QAj .–�/ is zero unless
i D j and £.j /-th entry of QAj .–�/ is 1 and j QAj .–�/j � 2jAj j. Note that the off
diagonal entries of A�C1.–�/ are zero except for .p; q/, .q; p/-th entries which are
–�f .–�/.œq � œp/. Set

QA�C1.–�/ D f–�f .–�/.œq � œp/g�1A�C1.–�/

and hence j QA�C1.–�/j � B2C�m2��1
. Replacing QAj .–�/ by QAj .–�/ � ’j

QA�C1.–�/

with suitable ’j we can conclude that £.� C 1/ D .p; q/-th entry of QAj .–�/ is zero
for 1 � j � � and j QAj .–�/j � a�C1m

2�
, 1 � j � � C 1. By subtraction again

we may suppose that Aj .–�/, j � � C 2 are diagonal matrices and then we get to
.H/�C1. The rest of the proof is clear. ut
Proof of Proposition 4.11. We first assume that L 2 �£ with £.f1; : : : ; �g/ \ 4 D ;
and let A D .A1; : : : ; A�/ 2 U£ be the coordinate of L . Let us denote

L .x/ D
nX

j D1

Kj xj D .¥i
j .x//

where fKj g, 1 � j � n D dm � � is a basis for L and set g.x/ D det SL .x/.
Let J£ D f.i; j /j1 � i � j � mg n £.f1; : : : ; �g/ and note that ¥i

j .x/, .i; j / 2 J£

are linearly independent and 4 � J£. With Ak D .a
.k/
ij / it is clear that the equations

¥i
j .x/ D 0, .i; j / 2 J£ n 4 and Tr .AkL .x// D 0 define a plane

mX

j D1

a
.k/
jj ¥

j
j .x/ D

m�1X

j D1

a
.k/
jj .¥

j
j .x/ � ¥m

m.x// D 0; 1 � k � � (4.108)

and SL .x/ is diagonal matrix on the plane with the determinant

g.x/ D
Y

1�i<j �m

.¥i
i .x/ � ¥

j
j .x//: (4.109)

We show that there is a polynomial  .A/ in a
.k/
jj , 1 � k � �, 1 � j � m � 1 such

that if  .A/ ¤ 0 then no two ¥i
i .x/ � ¥

j
j .x/, i < j are proportional on the plane

(4.108). To simplify notations we write yi for ¥i
i .x/ � ¥m

m.x/ so that

g.y/ D
Y

1�i<j �m�1

.yi � yj /y1 � � � ym�1

provided that y QA D 0 where y D .y1; : : : ; ym�1/ and QA D .a
.k/
jj / which is a

.m � 1/ � � matrix. Suppose that some two yi � yj are proportional on the plane
y QA D 0 and hence yb D 0 with some b 2 R

m�1 for every y with y QA D 0.
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Then it is clear that rank . QA; b/ D rank QA. Note that at most two components of b

are the constant of the proportionality c and the other components are either 0 or 1

(at most two 1 appear). Take a .� C 1/ � .� C 1/ submatrix of . QA; b/ and expand
the determinant with respect to the last column. Equating the determinant to zero
we get a linear relation of �-minors of QA with coefficients which are either 1 or the
proportional constant c. Since � C 1 � m � 2 we have at least m � 1 such linear
relations. Elimination of c gives a quadratic equation in �-minors of QA. Denote this
equation by  .A/ D 0. Then we conclude that the rank of the matrix . QA; b/ is � C 1

if  .A/ ¤ 0. This shows that no two yi � yj are proportional if  .A/ ¤ 0.
Let g.x/ D Q

gj .x/rj be the irreducible factorization in RŒx�. Without
restrictions we may assume that the plane y QA D 0 is given by yb D f .ya/, after a
linear change of coordinates y if necessary, where y D .ya; yb/ is a partition of the
coordinates y. Then we have

Y
gj .ya; f .ya//rj D

Y
pi .ya/

where pi .ya/ are linear in ya and no two pi .ya/ are proportional if  .A/ ¤ 0. Then
it follows that rj D 1 and gj .ya; f .ya// is a product of some pi .ya/’s;

gj .ya; f .ya// D
Y

i2Ij

pi .ya/:

From this it is obvious that fgj .ya; f .ya// D 0g contains a regular point. Then it
follows that fgj .x/ D 0g contains a regular point. This shows that, in U£, the set of
A such that SL .x/ does not verify (4.103) is contained in an algebraic set. We now
study L 2 �¢ with ¢.f1; : : : ; �g/ \ 4 ¤ ;. By Lemma 4.26 there is Si 2 O.m/

such that S�1
i L Si 2 �£ with some £ verifying £.f1; : : : ; �g/ \ 4 D ;. Since fSig

is a finite set the proof is clear. ut
Proof of Theorem 4.10. Let dm � m C 3 � l � dm. Then Theorem 4.10 follows
immediately from Propositions 4.10, 4.11 and Corollary 4.2. ut

4.10 Some Special Cases

In the case m D 3 one can improve Theorem 4.10.

Theorem 4.11. Assume that m D 3 and 4 � l � 6 D d3. Then in the .6 � l/.l � 1/

dimensional Grassmannian of l dimensional subspaces of M s
3 .R/ containing the

identity, the subset for which every hyperbolic perturbation is trivial is an open and
dense subset.

We assume m D 3 throughout the section. Let L 2 Gl
6;I for l D 4 or 5. Taking

a basis fKj g for L , L is the image of
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L .x/ D
nX

j D1

Kj xj :

We first study the case l D 5.

Lemma 4.27. In the Grassmannian G5
6;I , the subset of L for which the condition

(4.103) is fulfilled for T �1L T with some T 2 O.m/ is an open and dense subset.

Proof. Let A D A1 2 U¢ be the coordinate of L and assume that ¢.1/ \ 4 D ; so
that the diagonal entries of L .x/ are linearly independent. Considering T �1L .x/T

with suitable permutation matrix T , if necessary, we may assume that ¢.1/ D .1; 2/

so that with L .x/ D .¥i
j .x// we have from Tr .AL .x// D 0 that

�2¥1
2.x/ D a11.¥1

1 � ¥3
3/ C a22.¥2

2 � ¥3
3/ C 2a13¥

1
3 C 2a23¥

2
3:

From (4.106), simplifying notations, it is enough to study

S.x; y/ D
2

4
x1 � x2 �y1 y2

�y1 x1 ¥.x; y/

�y2 ¥.x; y/ x2

3

5

where ¥.x; y/ D a1x1 C a2x2 C b1y1 C b2y2. We show that if a1 C a2 ¤ 1 and
4a1a2 � 1 ¤ 0 then the condition (4.103) is fulfilled. We first assume that x1x2 �
¥.x; 0/2 is irreducible. Note that g.x; y/ D det S.x; y/ is then irreducible. Indeed
if g.x; y/ were reducible so that g.x; y/ D h.x; y/k.x; y/ then from g.x; 0/ D
.x1 � x2/§.x/ with §.x/ D x1x2 � ¥.x; 0/2 we may suppose that

h.x; y/ D §.x/ C p.x; y/; k.x; y/ D x1 � x2 C q.y/

where p.x; 0/ D 0, q.y/ D ’y1 C“y2. Equating the coefficients of yj in both sides
of g.x; y/ D h.x; y/k.x; y/ we see that ’§.x/, “§.x/ have a factor x1 � x2 which
implies that q D 0. This gives g.x; y/ D h.x; y/.x1 � x2/ which is a contradiction.
Thus g is irreducible. It is clear that fg.x; 0/ D 0g has a regular point and hence so
does fg.x; y/ D 0g. This proves the assertion.

Assume now that §.x/ D x1x2 � ¥.x; 0/2 is reducible. From the assumption
4a1a2 � 1 ¤ 0 it follows that §.x/ has no multiple factor. Note that a1 C a2 ¤ ˙1

implies that §.x/ and x1�x2 are relatively prime. The rest of the proof is a repetition
of the last part of the proof of Proposition 4.11. ut

We turn to the case l D 4. We show that

Lemma 4.28. Assume that l D 4 and every double characteristic of L .x/ is
nondegenerate. Then the condition (4.103) is fulfilled for T �1L .x/T with a suitable
T 2 O.3/.
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Proof. Following the proof of Theorems 3.5 and 3.6 in [22] we choose a specific
basis for QL D T �1L T with suitably chosen T 2 O.3/ and show that (4.103) is
fulfilled for QL using this basis. From the proof of Theorem 3.3 in [22], if every
double characteristic of L is nondegenerate, then only two cases occur, that is L
has either four nondegenerate double characteristics or two nondegenerate double
characteristics.

We first treat the case that L has four nondegenerate characteristics. Choosing
a suitable T 2 O.3/ we see from [22] that A˙ D ’˙ ˝ ’˙ and B˙ D “˙ ˝ “˙
is a basis for QL D T �1L T where ’˙ D .a; ˙a; 1/, “˙ D .b; ˙b; 1/ and a ¤ b,
ab ¤ 0. Now we can write

QL .x/ D ACx1 C A�x2 C BCx3 C B�x4:

With X D x1 C x2, Y D x1 � x2, Z D x3 C x4, W D x3 � x4 we have

QL D
2

4
a2X C b2Z a2Y C b2W aX C bZ

a2Y C b2W a2X C b2Z aY C bW

aX C bZ aY C bW X C Z

3

5 : (4.110)

Therefore it follows from (4.106) and (4.110) that

S QL D
2

4
0 �aY � bW aX C bZ

�aY � bW cX C dZ a2Y C b2W

�aX � bZ a2Y C b2W cX C dZ

3

5

where c D a2 � 1, d D b2 � 1. Let Qg D det S QL . On the plane a2Y C b2W D 0,
that is, if W D �a2Y=b2 D eY we get

Qg D .cX C dZ/.aX C bZ C .a C be/Y /.aX C bZ � .a C be/Y /:

Note that a C be ¤ 0 because a ¤ b and no two factors in the right-hand side are
proportional. Now, as the end of the proof of Proposition 4.11, it is easy to conclude
that Qg satisfies (4.103).

We next study the case L has two nondegenerate double characteristics. With
a suitable T 2 O.3/ we see that QL D T �1L T contains K˙ D ’˙ ˝ ’˙ with
’˙ D .a; ˙a; 1/, a ¤ 0, which are intersections with M s

3 .2IR/. Since QL contains
the identity, as a member of basis for QL , one can take K3

K3 D
2

4
0 0 �2a

0 0 0

�2a 0 2.a2 � 1/

3

5
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because KC C K� C K3 D 2a2I . The last member of basis for QL can then be
chosen of the form

K4 D
2

4
0 0 0

0 œ �

0 � �

3

5 :

Thus with X D x1 C x2, Y D x1 � x2, Z D x3, W D x4 and c D a2 � 1 the matrix
KCx1 C K�x2 C K3x3 C K4x4 can be written

QL D
2

4
a2X a2Y aX � 2aZ

a2Y a2X C œW aY C �W

aX � 2aZ aY C �W X C 2cZ C �W

3

5 : (4.111)

We examine if there are other double characteristics, that is, if QL is of rank 1 for
some .X; Y; Z; W / with Z2 C W 2 ¤ 0. It is not difficult to see that six 2-minors of
(4.111) vanish for such .X; Y; Z; W / if and only if the equation

4a2Z2 C 2.a2 C 1/œZW C .œ� � �2/W 2 D 0

has a real solution .Z; W / ¤ .0; 0/. Thus in order that QL has two nondegenerate
double characteristics it is necessary and sufficient that

4a2œ� > 4a2�2 C .a2 C 1/2œ2: (4.112)

In particular œ and � have the same sign. From (4.111) and (4.106) it follows that

S QL D
2

4
�œW �aY � �W aX � 2aZ

�aY � �W cX � 2cZ � �W a2Y

�aX C 2aZ a2Y cX � 2cZ C .œ � �/W

3

5 :

If c ¤ 0 then we consider Qg D det S QL on W D 0 so that

Qg D .cX � 2cZ/.aX � 2aZ C aY /.aX � 2aZ � aY /:

The same argument as before proves that (4.103) is verified for Qg. If c D 0 and
hence a2 D 1 then

Qg D W.��.aX � 2aZ/2 C œ.�2 � �2/’�1Y 2 C .œ � �/’.W � a�’�1Y /2/

D W h.X; Y; Z; W /

where ’ D œ� � �2. From (4.112) it follows that ’ > 0 and �2 � �2 > 0 because
�2 Cœ2 � œ� > �2 Cœ2. Then the quadratic form h is indefinite and hence fh D 0g
contains a regular point. This proves the assertion. ut
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Proof of Theorem 4.11. If l D 6 then the assertion follows from Theorem 4.2 in
[53]. If l D 5, combining Proposition 4.10 and Lemma 4.27 we get the result by
Corollary 4.2. Let l D 4. Then by virtue of Proposition 4.10 and Lemma 4.28 one
can apply Corollary 4.2 to get the assertion. ut

4.11 Concluding Remarks

In [25], F. John discovered mysterious phenomena on the characteristics of hyper-
bolic systems. He considered the system P of 3 second order equations in 4

independent variables, which is the system discussed in Example 4.4. He showed
that any system QP near P is hyperbolic if and only if QP has 4 double characteristics
near the double characteristics of P . In [26] he showed that P is strongly hyperbolic.
In [22], L. Hörmander studied hyperbolic systems with nondegenerate double
characteristics. In particular, it was proved there that nondegenerate double charac-
teristics are stable, that is we can not remove nondegenerate double characteristics
by hyperbolic perturbations which shows a complexity of hyperbolic systems
compared with the scalar case (see [58]).

For first order systems the notion of nondegenerate characteristics of any order is
introduced in [53, 54]. We adapt this definition for higher order systems through
the associated first order system in [57]. According to this definition, simple
characteristics are nondegenerate characteristics of order 1 and nondegenerate
double characteristics coincide with those studied in [4, 17, 22, 25, 26, 48].

Theorem 4.3 (in the real case) was proved for analytic first order systems in [53]
and for systems with nondegenerate double characteristics in [22]. The results about
hyperbolic perturbations of symmetric systems with constant coefficients are found
in [54].

Problem. Generalize Theorem 4.4 to C 1 m � m matrix valued P.x/.

Problem. Determine the minimal l such that Theorem 4.10 holds.

Problem. Determine the minimal dim R fL.x/ j x 2 R
ng such that Lemma 4.9

holds. In the real valued case it is known that 5 is optimal when m D 3 (see [59]).
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