
Chapter 2
A Computational Model for the Insect Brain

P. Arena, L. Patanè and P. S. Termini

Abstract As seen in the Chap.1, the fruit fly Drosophila melanogaster is an
extremely interesting insect because it shows a wealth of complex behaviors, despite
its small brain. Nowadays genetic techniques allow to knock out the function of
defined parts or genes in the Drosophila brain. Together with specific mutants which
show similar defects in those parts or genes, hypothesis about the functions of every
single brain part can be drawn. Based upon the results reported in the Chap. 1, a
computational model of the fly Drosophila has been designed and implemented to
emulate the functionalities of the two relevant centres present in insects: the Mush-
room Bodies and the Central Complex. Their actions and inter-actions are adapted
from the neurobiological prospective to a computational implementation. A com-
plete block scheme is proposed where the proved or conjectured interactions among
the identified blocks are depicted. Several simulations results are finally provided
to demonstrate the capability of the system both considering specific parts of the
complete structure for comparison with insect experiments, and the whole model for
more complex simulations.

2.1 Introduction

In the bio-inspired robotics field, robots can be used to reproduce animal behavior
in order to study their interaction with the environment. Robots help to improve the
understanding of animal behavior and animals help to create efficient and robust
robotic systems. The study of animal brains leads to new control systems that could
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allow robots to be able to orient themselves in complex environments, to take deci-
sions, to accomplish dangerousmissions, in order to becomecompletely autonomous.
Robotic implementation of biological systems could also lead to the introduction of
new models for basic sciences, in particular when investigating the emergent prop-
erties of models. Several attempts are present in literature related to algorithms or
bio-inspired networks able to mimic the functionalities of parts of the brain. A lot
of work has been done in several animal species belonging to mammals, mollusks
and insects [1]. Looking into the insect world different research groups around the
world are trying to design models which are able to reproduce interesting behaviors
shown by insects: cooperation mechanisms in ants [2], navigation strategies in bees
[3], looming reflex in locusts [4], homing mechanisms in crickets [5], central pattern
generator and obstacle climbing in cockroaches [6, 7], reflex-based locomotion con-
trol in the stick insect [8], just to cite some examples. It is evident that the effort is
focused on specific peculiarities associated with the different insect species that can
be also useful for robotic applications. Nevertheless, amore challenging task consists
of trying to model the main functionalities of an insect brain, looking from an higher
level, trying to identify the mechanisms involved in the sensing-perception-action
loop. The proposed work is focused on the development of an insect brain computa-
tional model mainly focused on theDrosophila melanogaster, the fruit fly. The insect
brain architecture, structured in functional blocks, has been developed in a complete
software/hardware framework in order to evaluate the capabilities of this bio-inspired
control system on both simulated and real robotic platforms. In order to develop an
useful and suitable architecture, the proposed framework is flexible and robust and
presents a structure suitable to decouple simulations from control algorithms. The
functional separation helps to isolate the application itself from graphic interfaces
and the underlying hardware. The main aim is to develop an extensible and general
purpose architecture. The insect brain model has been evaluated in scenarios strictly
linked to the neurobiological experiments tomake a direct comparison.Moreover the
available data on wild type flies and mutant brain-defective flies allows to identify
the main role of each neural assembly in performing specific tasks like visual ori-
entation, olfactory learning, adaptive termination of behaviours and others. Finally
the main guidelines used for the definition of evaluation criteria and the creation of
benchmarking scenarios where the system performance can be evaluated, are also
reported.

2.2 Insect Brain Cognitive Architecture and Learning Issues

In the previous chapter a first model of the interplay between MB and CX was
presented. In thatmodel there is not a specific block representing a specific function of
theMBor of theCX; the interestwas focussed to functional aspects. In the following a
model useful in view of a robotic implementation will be first considered. This builds
upon a previously designed model [13] and outlines sensory motor pathways with
the addition of learning and representation blocks. Subsequently biological aspects
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will bemore andmore included leading to themost recent scheme of a complete inset
brain computational model, which will be simulated and implemented for robotic
experiments.

In this section a preliminary description of the insect brain cognitive architecture
developed on the basis of the Drosophila experiments is given. An overview of the
general architecture is reported and particular attention is devoted to the learning
strategies that are envisaged inside the cognitive structure.

2.2.1 Various Steps in Modeling the Insect Brain

The actual insect brain computational model is the result of a number of previous
versions, that were further refined and updated, once new results, especially on the
neurobiological perspective, were available. The first perceptual architecture pro-
posed was designed and organized in various control levels consisting of functional
blocks, acting either at the same level, as competitors, or at distinct hierarchical levels
showing the capability to learn more complex, experience-based behaviors [9].

The control architecture (as reported in Fig. 2.1) consisted of series of parallel
sensory-motor pathways (i.e. basic behaviours) that were triggered and controlled
by specific sensory events in a reflexive way, giving the knowledge baseline to the
system. Going up in the hierarchical scheme, two relevant centers of the insect brain
were considered: the Mushroom Bodies (MBs) and the Central Complex (CX). Tak-
ing into account the known facts about these centres, from a biological/neurogenetic
point of view and their role in perceptual processes [9–11], some preliminary main
functions were initially focussed, to be assessed and refined during the project activi-
ties. In particular, a function ascribed toMBs was to have a role, due to their learning
capabilities, in the enhancement of causal relations arising among the basic behav-
iours, by exploiting the temporal correlation between sensory events; information
storage and retrieval in the case of the olfaction sense; resolving contradictory cues
through the visual sense by imposing continuation or adaptive termination of ongoing
behaviour. Relevant functions ascribed to the CXwere integration and elaboration of
visual information, storing and retrieving information on objects and their position
in space, controlling the step length in order to approach or avoid such objects; motor
control, landmark orientation and navigation, orientation storage and others.

These learning aspects were treated using causal Hebbian rule in an array of
spiking neurons for anticipation [12], on the basis of what already studied in [13],
where memory structures based on Recurrent Neural Networks were considered.

At a higher level of the scheme, a representation layer was introduced, able to
process sensory information in order to define the final behavior. Here we introduced
a lattice of non spiking neurons. This neural lattice shows distinct characteristics
of complex dynamical systems. The emerging patterns of neural states take on the
meaning of percepts. These ones are then associated to suitable modulations of the
basic behaviors. This modulation is performed through an unsupervised learning
process which creates associations among sensory stimuli and patterns. In this way,
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Fig. 2.1 Functional block diagram of the initial version of the insect brain cognitive architecture.
The interaction between the robot and the environment is realized by direct sensory-motor path-
ways, the basic behaviors, which aremodulated by the representation layer.MB andCX are relevant
centers of the insect brain devoted to temporal correlation, information storage and retrieval, and
other functionality summarized in a correlation layer. Finally the high level functions of the repre-
sentation layer consists of a preprocessing block, a perceptual core, a selection network, while the
Reward function drives the learning process

at the end of the leaning stage, each pattern represents a particular behavior modu-
lation, while its trained basin of attraction represents the set of all the environment
conditions, as recorded through the sensors, leading to the emergence of that partic-
ular behavior modulation. The modulation parameters associated with each pattern
are learned through a reinforcement learning: here the reinforcement signal is pro-
vided by a motivation layer implementing the degree of satisfaction of the robot.
This depends on the local satisfaction of the single basic behaviors with the addition
of other terms that reflect the robot mission. The presence of additional information
into the motivation layer, not used by the basic behaviors can be exploited by the
Representation layer in order to increase the robot performance.

Memory was distributed in the whole architecture, but a specific block was also
considered (i.e. Memory in space and time in Fig. 2.1). This block develops a con-
textual layer, like in [14]. Here sequences of successfully emerged patterns can be
memorized to be retrieved when needed. The whole architecture was conceived in
such a way that the basic behaviors, which are often life-saving sensory-motor path-
ways, are progressively enriched with emergent capabilities which incrementally
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increase the animal skills. The main focus was therefore on the application of com-
plex dynamics to obtain a proper, complex, context-learned modulation of the basic
skills.

In a first attempt, following the results reported in [13], this process of com-
plex emerging of situation related percepts was an important characteristic of our
approach whichmakes it different from the other control strategies, based on the sub-
sumption architecture proposed by [15]. The latter in fact, uses a high level approach
to face with the design of both basic behaviors and the coordination block. In our
strategy, complex dynamical systems are successfully used. Both architectures use a
behavioral decomposition of the system to exploit parallel computation, although the
Subsumption network makes a rigid hierarchy among the basic behaviors: the lower
ones cannot influence the upper ones, whereas the latter can act on the former. In
our scheme all the basic behaviors are sensory-motor pathways elicited by only one
sensory modality and on the same hierarchical level: knowledge is incrementally
built upon their modulation, giving importance to one or the other, depending on
the context. Under this perspective the proposed architecture resembles the Motor
Schemas, introduced by [16]. Turing Patterns in RD-CNN are hosted, in our architec-
ture, within a layer here called Representation Layer. This term is here not referred to
a place where a predictivemodel of the body-environment interaction is learned. This
is rather a layerwhere the single-sensorymotormodalities, constituted by the parallel
sensory motor pathways, are modulated in a feedforward way, taking into account
all the incoming sensory stimuli. This leads to the emergence of a contextually self
organising activity, focusing at modulating the basic behaviors.

This was the insect brain model inspired by previous results [13] and object of
an intense speculation phase. The aim of the research activity was to tightly link
the emergent approach to cognition, based on nonlinear complex dynamics, to the
knowledge gained from insect neurobiology. Therefore, the initial approach, briefly
discussed above, mainly based on emergence and self organization, was modified
to take into account the biological perspective. From a deep analysis of the state
of the art and direct experiments performed, current knowledge from insect Neu-
robiology provided precious information on the details of the (mainly) low level
information processing (i.e. excluding the representation level). Therefore our effort
moved toward the lower level blocks. Once defined these parts, a suitable connection
with the higher layers is envisaged. This is clear since the details about how insects
gain a structuring of the whole information for decision making and planning is
really a challenge, and at the present stage, it is unknown. So to cope with the lack
of this information, the high level representation layer could be used to complete the
architecture. Following such a path, the functional block scheme in Fig. 2.1 has been
modified to include details from Neurobiology that led to a modification on handling
the different sensory inputs and the sequence of processing steps involved, adding
new details, mostly at the basic sensorimotor pathways and medium level of infor-
mation processing. Moreover two different learning mechanisms were identified,
which are mainly involved in this process: Classical Conditioning through positive
and negative reward signals, and Operant Conditioning at the pre-motor area level.
Fig. 2.2 shows the relevant elements of the updated insect brain architecture taken
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Fig. 2.2 Revised block diagram of the insect brain architecture. The diagram proposed in Fig. 2.1
is here modified to further match with the biological counterpart. Question marks indicate hypoth-
esized connections that have to be still assessed

into consideration and the interaction among them. The architecture includes a series
of sensorial stimuli acquired and preprocessed by the insect, that are successively
handled by the two main structures taken into consideration: MBs and CX.

As it can be seen in Fig. 2.2, input sensory modalities are divided into different
sensorimotor pathways:

• visual stimuli, through the compound eye and a pre-processing phase are further
processed by the CX, which, with all its constituent parts, contributes to vision
related functions like orientation (through direct connections to the ventral lobe),
object detection, classification and memory.

• Tactile stimuli: there is behavioral evidence for mechanosensory information to
be present in the Drosophila CX from the legs. Mechanosensation is the next best
proven modality to be represented in the CX, besides the visual one.

• Smells and their connections to the MBs: MBs play a relevant role in olfactory
processing, through input from the antennal lobe and olfactory receptors. They
play also a role in context generalization starting from visual information. As
far as the learning aspects are concerned, Classical conditioning mechanisms are
constantly used in insects, and MBs seem to be the main center where learning
takes place. Two distinct paths for positive and negative rewards exist. Another
important learning mechanism occurs in the pre-motor area and it is basically an
instrumental learning. Experiments shown how a long termmemory can be created
and the sleep phase is fundamental to stabilize and improve the learning process;
for these reasons a kind of internal model is expected.
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• Humidity and temperature conditioning are included into the model but not further
directly exploited for the insect brain computational model as themselves. Indeed
the information about the role and specific functions of MBs in these processing
(like responses to temperature gradients) was used to perform specific experi-
ments to study a memory effect called memotaxis in flies, in view of the robot
implementation.

• Other functionalities can be considered taking information from data acquired
through neuron recording in freely moving cockroaches and involving MBs
processing. Their results suggest several until now unrecognized functions of the
MBs: extrinsic neurons that discriminate between imposed and self-generated sen-
sory stimulation, extrinsic neurons that monitor motor actions, and a third class of
extrinsic neurons that predict episodes of locomotion and modulate their activity
depending on the turning direction. The relevant neurons sent their processes gen-
erally ascend to other areas of the protocerebrum. Their results support the idea of
multiple roles for the MBs. These include sensory discrimination, the integration
of sensory perception with motor actions, and a role in place memory.

• Internal states and motivations are considered in the process but hypotheses and
speculations will be done due to the lack of specific neurobiological evidences.

The evolution of the various stages of the model improvement leads to the scheme
shown in Fig. 2.3.

In the insect brain block scheme it is possible to distinguish four main sensorial
pathways; the olfactory and the visual pathways allow to perceive the environment,
whereas gustation and nociception are indispensable to obtain information about
the goodness or badness of the current situation. In particular the gustatory sensory
modality, placed in the front legs of the fly, is reproduced in robotic experiments
through signals coming from light sensors placed in the ventral part of the robots,
facing with the ground. This modality is used in experiments like the adaptive ter-
mination of behaviours. Nociceptory signals, used for punishment, are reproduced
through sound signals (or through the ventrally placed light sensors) and applied
in such experiments as visual/odour learning. These sensorial pathways are linked
together to make the system able to perform anticipatory actions to improve effi-
ciency in finding rewards and to avoid dangerous situations. In the actual structure,
learning is attained using mechanisms based on classical as well as operant con-
ditioning. Olfactory and visual inputs, due to their complexity, are considered as
pre-processed at the sensory level. Olfaction, has been studied at the aim to derive
the corresponding MB neural models. Regarding the olfactory sensors, since the
artificial ones are still too slow and difficult to be efficiently characterized, they
were substituted by sound sensors, which are more reliable and able to provide both
unconditioned and conditioned inputs to the neural processing network. Soon after
the visual pre-processing stage we can find the Central Complex neuropil model,
containing all its main components:

PB The Protocerebral Bridge (PB), which, in our model, performs its three main
functions (Object Detection, Distance Estimation and Object Position extrac-
tion), as drawn by the biological experiments and neuro anatomical evidence;
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Fig. 2.3 Block diagram of the insect brain model

FB the Fan-shaped Body (FB), which performs two main functions: feature extrac-
tion (color, orientation, size, center of gravity, wideness, height) and feature
evaluation/learning (the robot collects features and is able to associate those
features to punishment or neutral situations.

EB the Ellipsoid Body (EB), where the robot spatial and the newly discovered deci-
sion making memory is formed and contained.

The other fundamental neuropil of the insect brain is constituted by theMushroom
Bodies (MBs). MBs were found to influence many different aspect of the insect brain
plasticity. The main function of MBs is olfactory learning: this was implemented
in our architecture through a hebbian or STDP based learning scheme in spiking
networks. The other function experimentally found in MBs is behaviour evaluation,
mainly acting at the decision level. For this reason this MB functionality, here called
MB2 (Fig. 2.3) is included into the decision layer and implemented as a separate
block with respect to the olfactory learning block. Another addressed function is
decision making: this function was discovered working with MB defective flies
which were unable to make a sharp choice among two different contradictory visual
features (color and shape) in front of the fading of the preferred one (color). This
is a function that, involving visual learning, cannot be ascribed to the conventional
functionality of MBs (olfactory representation and leaning). So this function was
modeled as a separated block (MB3) and placed at the decision layer (Fig. 2.3) [17].
Moreover, from the block-size perspective, direct connections among FB and MB
cannot be directly drawn for the lack of experimental evidence in the fly. So it is
hypothesized that particular visual information, like color saturation reaches the
MBs indirectly through other brain parts (like for example the Lateral Horn) and
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gives it the possibility to concurrently act on the Behaviour Selection block at the
level of decision making.

A series of internal states are monitored through a set of virtual proprioceptive
sensors; these internal states undergo a continuous interactionwith the ongoing exter-
nal state of the agent, recorded through the exteroceptive sensors. Internal states are
chosen according to the applications prepared, discussed within each experimental
scenario. An internal state (like hunger or “need for charging”, need to sleep, etc.)
is supposed to be directly related to drives which are typically reference control
signals for the following Behaviour Selection Network (BSN) block (like desired
battery level, zero home distance, etc.). In order to satisfy its drives, the robot has
to choose a precise behaviour from a pre-defined set of available behaviours, each
one oriented to satisfy one or several contemporary drives. Up to this stage, the BSN
is implemented through a spiking network with dynamic synapses, leaving opened
the possibility to learn other behaviours better satisfying the strongest drive. This
functionality within the BSN takes place at the highest layer in the insect brain archi-
tecture. Till now, there are not yet specific experiments that can demonstrate the
existence of such a network in the Drosophila brain; therefore the hypothesized arti-
ficial BSN was maintained to represent the highest level control functionality. The
BSNwas endowed, at this stage, with auto-excitatory synapses to avoid a continuous
switching among the selected behaviours.

The other block residing at the decision layer is Behavior Evaluation. Experiments
on theMB less flies show that this function is ascribed toMBs, even if apparently sep-
arated by the common MB functionality. So also this block was modeled separately
with respect to the main MB block and so called MB2, as also mentioned above.
This block evaluates the capability of the selected behaviour to satisfy the active
drive, represented by a given setpoint to be reached. As soon as a given behaviour is
initiated (behaviour initiation is ascribed as a specific CX role) the MB2 block starts
an increasing inhibitory function on the ongoing behaviour in order to completely
inhibit this one if the drive is not satisfied within a certain time window. In this case
another behaviour wins the competition and is selected.

The Motor layer contains the following blocks: The Description of Reflexive
Behaviours describes the fixed actions that allow the robot to take the right direction
in the case of punishment. Here additional functions are included, considering the
fact that a fly, repetitively punished, can reach a “no-motion state”: i.e. the insect is
frozen for a certain amount of time.

The Description of Behavior block describes the available behaviours that the
robot can follow. The type and number of the possible behaviours the robot can
exhibit depends on the robot applications.As an example implemented is the targeting
behaviour. This behaviour, when selected in the BSN, causes a series of actions
focussed at moving the robot towards the visual target that elicited that behaviour,
while maintaining it at the centre of the visual scene.

The Motor Programs block contains all the possible elementary actions the robot
canperform.They are supposed, up to now, to bepre-programmedunless awide space
for hosting learning strategies exists, which is currently under investigation. This
block is strictly dependent on the robotic architecture to be used. It contains a series
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of control signals for the wheels/legs in order to realize the desired advancement,
steering or rotation. In particular, dealing with legged robots, the central Pattern
Generator paradigmwas taken into account. This approachwas recently accompanied
to some powerful theoretical conditions which a-priori guarantee global exponential
convergence to any imposed gait that the structure is asked to show [18].

As it can be derived from the analysis of the new scheme, almost all of the blocks
enhanced are truly biologically driven, from experiments on flies or other insects. The
last item outlined, i.e the path internal states—drives—behavior selection—behavior
evaluation (the really high level functionalities) up to now does not find any specific
experimentally driven model. The behavior evaluation is addressed to the MBs, and
indeed such areas are recognized to have a role in decision making, resolving contra-
dictory cues, imposing adaptive termination or continuation of ongoing behaviors,
but how this is linked to the choice of the behaviors and to the internal states and
drives, is unknown. This information flow can really be included into the Represen-
tation layer and could be modeled using the Reaction-diffusion approach discussed
at the highest layer in the former scheme of Fig. 2.1. In this part of the insect brain
architecture could well find place all the spatial-temporal dynamics leading to the
experience based control of ongoing behaviors.

2.3 Memory and Learning Mechanisms in Nature

Artificial agents (i.e. simulated and real robots) need learning algorithms to construct
a knowledge and to improve their basic capabilities. In Nature, learning mechanisms
are part of living beings and act at different form and level of complexity. Accord-
ing to a general definition, “learning is an adaptive change in behavior caused by
experience” [19].

It is important to notice that learning mechanisms, in whichever form, need a
memory structure to correctly work. Memory is the storage and recall of previous
experiences. Memory is necessary for learning; it is the mechanism whereby an
experience is incorporated into the organism, so that it can later be used to bring
about adaptive changes in behavior [19].

There are a number of different types of learning and memory. Table 2.1 lists the
main categories. In otherwords, learning is one of themost importantmental function
present in humans, animals and artificial cognitive systems. It relies on the acquisition
and processing of different types of knowledge supported by perceived information.
It leads to the development of new capacities, skills, values, understanding.

2.3.1 Memory and Learning in MBs and CX

In relation with the Insect Brain Model, memory elements and learning mecha-
nisms are distributed on the whole architecture. The instruments used to unravel
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Table 2.1 Main categories of
learning and memory [19]

Types of learning Types of memory

Simple Immediate
Habituation Short-term
Sensitization Long-term
Associative Specific
Passive (classical)
Operant (instrumental)
One-trial (aversion)
Complex
Imprinting
Latent
Vicarious

Table 2.2 Memory and learning in insect brain

Experiments Functionality STM LTM Memory/Learning

Exploration Increase of mean free path ? ? Working memory
Olfactory-based navigation Olfactory MBs MBs Classical conditioning
Visual-based navigation Visual learning FB (CX) ? Operant conditioning
Detour paradigm Path integration EB (CX) – Working memory
Heatbox learning Orientation memory ? – Operant conditioning
Gap climbing Motor learning MBs CX Operant learning

the information flow that characterizes this complex structure are focused biological
experiments that can be used to distinguish involved blocks and functionalities. A
summary of the results obtained is reported in Table2.2 where a series of experi-
ments are used to identify which parts of the insect brain are involved in performing
specific behaviors. In particular the table includes the locations of the short term
(STM) and long term (LTM) components of the memory system involved and the
learning mechanism used.

The identification of the role of each center in the cognitive process that charac-
terizes the fly is not always easy to obtain. An example could be the analysis of the
exploration phase. Through experiments a centrophobic behavior has been identi-
fied: the fly adopts an exploration strategy that probably includes the increasing of
its mean free path. The resulting behavior in a closed arena consists in reaching and
following the external walls. This kind of behavior needs a working memory but up
to now the location of this element is unknown.

As far as the olfactory learning is concerned, the fly is able to navigate into an
environment following a smell. Both the short term and long term memory can be
located in the MBs and a simple but efficient classical conditioning is performed to
associate a meaning to specific smells that can be either rewarded or punished.

Similarly to the olfactory learning where the MBs are the structure responsible in
the fly, visual processing and the corresponding memory and learning structures is
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completely associated to the Central Complex. The fly is able to learn both through
classical and operant conditioning to classify objects, extracting from the segmented
image a series of characteristic features. The fan-shaped body (FB) is the structure
of the CX devoted to the STM: the fly associates a meaning to objects, depending
on its past experience.

Another important neural structure belonging to the CX is the ellipsoid body (EB),
that is responsible for orientation memory.

In the detour experiment (addressing the capability to aim to a formerly seen target,
even after being luring away) the parameters characteristic for path integration have
been identified. The capability to retain, recall and integrate positional information
about the target into guiding behavior has been summarized under the term spatial
working memory and is ascribed to the EB.

Finally as concern the motor learning, relevant information were obtained using
the gap climbing experiment where the fly is forced to climb several consecutive
gaps. The strategy used to overcome the obstacle can be improved through operant
learning both in the short term (the STM was located in the MBs) and in the long
term after a sleeping phase (the LTM was located in the CX). The modeling of the
mechanisms used for motor learning is complex task that up to now represents an
open issue and will be investigated.

As previously discussed, important functions can be referred to the MBs and
CX: all the experiments carried on up to now reveal that these two areas are not
directly connected, although many indirect connections are present. Therefore olfac-
tory and visual stimuli could be treated independently but, finally, they converge to
the pre-motor area. The final decision will be taken but we do not know where. Some
experiments envisaged that the CX decides what to do but the MBs modulate the
intensity of the response.

2.4 Description of the Computational Architecture

The main parts of the insect brain have been modeled and integrated into a compu-
tational architecture. This global computational model inspired by the Drosophila
brain is presented in Fig. 2.3. It has been designed in order to be directly linked
to a robotic implementation [20, 21]. The main parts of the whole architecture are
described in the following.

2.4.1 Sensorial Pathways and Internal States

In the model, it is possible to distinguish four main sensorial pathways; the olfactory
and the visual pathways allow to percept the environment while the gustation and the
nociception are indispensable to obtain information about the goodness or badness
of the current situation. The interaction among the sensorial pathways allow the
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emergence of anticipative actions to improve efficiency in finding rewards and to
avoid dangerous situations. Learning mechanisms based on classical and operant
conditioning are used in the architecture [22]. Olfactory and visual inputs, due to
their complexity, are pre-processed to be easily handled by the spiking networks
used for the learning processes. The internal states of the system are also important
and can be monitored through a set of virtual proprioceptive sensors. These states
are chosen according to the application; for example, autonomous navigation-based
tasks need an accurate monitoring of the batteries level of the robot.

2.4.2 Drives and Behavior Selection Network

External stimuli and internal states are essential information for living beings to
survive in unstructured environments. An internal state is supposed to be directly
related to drives like hunger, thirst, the will to sleep that are used by animals to
adapt the behavioral responses. In a robotic implementation, drives will be chosen
following the robot applications: a classical example is the need for power supply. In
order to satisfy its needs, the robot has to choose a behavior fromapre-definednumber
of available behaviors. Behavior is meant like a sequence of programmed actions.
Each behavior is oriented to satisfy one or more drives. The aim is to make the robot
able to choose the right behavior that can satisfy the strongest drives. Even if there
are not specific experiments that can demonstrate the existence of such a network in
the Drosophila brain, an artificial Behavior Selection Network (BSN) was envisaged
and implemented. The BSN was thought as a two-layers neural network, in which
each unit is an Izhikevich Class I spiking neuron [23], having the following equation:

{
ν̇ = 0.04ν2 + 5ν + 140 − I
u̇ = 0.02(−0.1ν − u)

(2.1)

if ν ≤ 0.03, then ν ← −0.055 and u ← u + 6

where ν is the membrane potential of the neuron, u is a recovery variable and I
is the synaptic current. A typical example of a BSN structure is shown in Fig. 2.4.

The number of neurons in the first layer matches the number of drives the robot
has to satisfy whereas, in the second layer, each neuron corresponds to the available
behaviors. Every drive introduces a current, that is then converted in a spike-rate
by the corresponding first layer neuron. The weight of the synapses connecting the
first and the second layer neurons are chosen according to the capacity of each
behavior to satisfy each drive. Synaptic weights Wi j represent the importance of
drive i for the behavior j . Synaptic efficiencies are fixed: no learning is considered
at this step. The second layer is a Winner-Takes-All (WTA) network; during every
simulation step the neurons in the second layer are competing and only one neuron
can win the competition: the behavior represented by the winning neuron is the
selected behavior for the next robot step. To avoid a continuous switching among
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Drive 1

Drive 2

Drive 3

Drive N

WTA

Behavior 1

Behavior 2

Behavior 3

Behavior M

Wij Yij

Fig. 2.4 Example of a spiking network used to simulate the behavior selection functionalities.
Drives are represented by input currents. Each drive can excite more than one behavior. Synaptic
efficiencies between the input layer and the WTA layer represent the influence that each drive has
in each behavior. Only the most excited behavior can win the competition and can be selected

the selected behaviors, a self-excitatory synapse has been introduced in each neuron
of the second layer of the BSN. In this way, if a behavior is been selected during a
simulation step, the probability to be selected again is increased during the next step.
Synaptic weights Yi j , i �=j, represent the inhibitory synapses between neuron i and
j in the WTA layer. Synaptic weights Yii represent the self-excitatory synapses of
neuron i in the WTA layer. The last point to clarify is how to transform drives in an
input current. Considering for instance the drive “recharge”, the robot analogue to
“sleep”, strongly connected to an internal sensor that measures voltage in batteries.
It is possible to implement a transfer function that takes as input the battery level
and gives as output a numerical evaluation of the “sleep” drive. Other methods for
behavior selection have been used in literature, in particular for sequence learning
[16]. The proposed approach could be modified in order to implement sequence
learning, even if, up to now, there are no biological evidences about the capabilities
of Drosophila in learning sequences of behaviors.

2.4.3 Central Complex Model

2.4.3.1 Protocerebral Bridge Model

Object detection and distance estimation are functions related to the PB in fruit flies.
Mronz and Strauss proposed a simple model based on parallax motion [24] that can
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be used to model these functions and a hardware implementation for an autonomous
roving robot has been proposed in [25]. However, it is possible to use a generalized
PB model, realized by a cascade of three simple blocks:

• Object Detection Block. This block takes input from the visual system and is used
to detect the presence of an object.

• Distance Estimation Block. When an object has been detected, this block estimates
its distance from the robot. In real flies, distance is estimated using a parallax
motion approach.

• Object Position Block. It is possible to reproduce fly behavior assuming as interest-
ing objects those standing in the compartments ranging from the frontal direction
to ±100◦ in the two lateral sides and repulsive ones those standing in the com-
partments from ±100◦ to ±160◦ on the rear part of the robot. Objects at angles
exceeding 160◦ cannot be seen.

2.4.3.2 Fan-Shaped Body Model

The fan-shaped body model has been designed as a cascade of two sub-blocks: a
feature extraction and a feature evaluation element.

• Feature Extraction. Once an object has been detected, the Feature ExtractionBlock
classifies it by using a series of features. As underlined in focused experiments
with flies [26], the following features can be considered:

– Color. Using aHSV representation, it is assumed to consider only theHue value.
– Orientation. Orientation is meant as the angle between the vertical direction and
an axis that represents the direction in which an object is mainly distributed.

– Size. Size is meant as the portion of total visual area of the robot occupied by
the object, normalized with respect to the distance from the robot.

– Center of Gravity. This feature is given by the height of the center of gravity
normalized with respect to the vertical dimension of the visual area and the
distance from the robot.

– Wideness. Wideness is meant as the maximal horizontal extension of the object,
normalized with respect to the total horizontal dimension of the visual area and
the distance from the robot.

– Height. Height is meant as the maximal vertical extension of the object, nor-
malized with respect to the total horizontal dimension of the visual area and the
distance from the robot.

• Feature Evaluation. The robot is able to associate object features to punishment
or neutral situations. Every feature has a Punishment Value: if this value exceeds
a threshold, the robot escapes every time it meets an object with that feature. The
Punishment Value of a feature decreases if the robot is not punished when that
feature is encountered. When the robot meets an object, it evaluates its Escaping
Value: this is aweighted sumof thePunishmentValues of the features of that object.
When the Escaping Value is high enough, the robot escapes from the object, even
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Fig. 2.5 Path Integration scheme. The values of r and ν represent the position of the robot from
the object. Every robot step r and ν are updated according to the last robot movements, in direction
λ by a path increment �s

if not punished. This is the simplest way to implement a classifier. Other, more
performing and sophisticated algorithms, either bio-inspired, or more information
theory-bases, like the Neural Gas [27], could also be taken into account to improve
the system plasticity. A neural model has been finally used to implement visual
learning capabilities in flies [28].

2.4.3.3 Ellipsoid Body Model

Neuser [29] described the role of the Drosophila ellipsoid body in the visual short
term memory. That functional analysis leads to the implementation of a model able
to create a spatial memory in a robot. By using polar coordinates to code the robot
position in the environment, it is possible to design neural architectures inspired
by the ant’s path integration [30]. However other solutions could be based on a
mathematical implementation of a polar path-integration algorithm and this kind
of approach (easier and more robust) has been taken into consideration. A scheme
describing the path integration mechanism is shown in Fig. 2.5. Supposing �s � r ,
defining λ as the direction of the current robot movement and δ = λ − ν, the
approximation of the current robot position is recursively given by:

{
rn+1 = rn + �rn = rn + �sncos(δn)

νn+1 = νn + �νn = νn + �snsin(δn/rn)
(2.2)

where �sn is the length of the robot step of index n and r and ν are the coordinates
that represent the position of the robot with respect to the object that is supposed to
be the origin of the polar coordinate system.
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2.4.4 Mushroom Bodies Model

The MBs are a key structure of the insect brain. In particular, two main functions
are related to this structure. Mushroom Bodies are primarily involved in olfactory
learning [31, 32] and in a more complex function that will be called behavior evalu-
ation. Because experiments are not able to demonstrate the connection between the
two functions, two uncoupled models were implemented.

2.4.4.1 Olfactory Learning Model

A two layer spiking neural network was designed and implemented to model the
olfactory learning function. The Spike Timing Dependent Plasticity (STDP) has
been applied as learning algorithm [33, 34]. This algorithm can reproduce Heb-
bian learning in biological neural networks. The algorithm works on the synaptic
weights, modifying them according to the temporal sequence of spikes occurring.
The algorithm is represented by the following formula:

{
�W = A+ exp (�t/τ+), i f �t < 0
�W = −A− exp (�t/τ−), i f �t ≥ 0

(2.3)

where �t is the time delay between pre and post synaptic spikes. In this way the
synapse is reinforced if the pre-synaptic spike happens before the post-synaptic one,
it is weakened in the opposite situation. Parameters τ+ and τ− represent the slope of
exponential functions, while positive constants A+ and A− represent the maximal
variations of the synaptic weight.

Each neuron is modeled by an Izhikevich Class I neural model [23]. A scheme
of the neural model is shown in Fig. 2.6. The Shock (Punishment) Neuron takes as
an input a current proportional to the value of the robot punishment, while the Good
(Reward) Neuron takes as input a current proportional to the reward. In experiments
with Drosophila, the punishment could be represented by an electrical shock, while
the reward is represented by sugar. Each of the remaining neurons of the first layer
takes as an input a current proportional to the odors the robot can detect in the envi-
ronment. Each odor has a corresponding receptor and a neuron that converts the
current in a spiking-rate if the current is high enough above the threshold for the
Class I Izhikevich model. In a real robotic implementation odors can be substituted
with other sensorial inputs, according to the application. Specific neural network
composed by Izhikevich neurons and STDP learning were already implemented to
realize approaching or escaping behaviors [12, 35]. In the present implementation
Synapses between the Shock and the Reward Neuron and the output layer have a
fixed value. Outputs of the second layer neurons are connected to a Motor Program
block. The robot escapes from the actual position if the Escape Neuron is firing,
while it begins an approaching algorithm if the Approach Neuron is firing. Synapses
between unconditioned stimuli (i.e. shock and reward) and motor neurons are fixed
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Fig. 2.6 Olfactory Learning Model. Solid line (dashed) connections correspond to fixed (plas-
tic) synapses; arrows (bullet) correspond to excitatory (inhibitory) connections. The model here
presented can be easily extended to the desired number of odors

and represent the inherited knowledge whereas connections between conditioned
stimuli (i.e. odors) and the motor system are subject to learning, according to the
STDP rule. If not reinforced, the efficiency of a synapse decays with time.

2.4.4.2 Behavior Evaluation Model

When a behavior is selected, the robot defines a setpoint to be reached. A setpoint is
meant as a desired value for a vector of physical quantity linked to the definition of the
drives: to satisfy its needs, the robot has to minimize the error between this setpoint
and its actual state. For example, let us assume that the robot has a low battery voltage
and that a charging-station is present in the environment. In this situation the robot
could choose to go to the base station whereas the desired battery level would be the
setpoint. If the selected behavior is not able to allow the robot to satisfy its needs,
that behavior has to be inhibited: in the opposite situation, if the selected behavior
leads to satisfy its needs, that behavior has to be excited. The Behavior Evaluation
block inhibits or excites the actual behavior depending on the amount of time already
spent and the level of success in reaching the setpoint. Inhibition or stimulation is
easily implemented sending a current to the neuron of the WTA layer in the BSN
associated to the ongoing behavior. Moreover some additional plasticity could be
implemented into the Behavior Selection Network through the Behavior Evaluation
model. In particular, the synapses between the neuron related to the selected behavior
and drives that represent the setpoint could be reinforced (or weakened) if the last
selected behavior has been able (or not) to reach the last setpoint. However, there are
no biological evidences about this point.
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2.4.5 Motor Programs and Description of Behaviors

TheMotor Program block describes all the possible elementary actions that the robot
can perform. Motor learning is not considered up to now, although it is envisaged to
be investigated and added in the near future.

2.4.6 Reflexive Behaviors

When the robot is punished in some way it needs to escape as fast as possible from
the object responsible for the shock. The Description of Reflexive Behaviors is a
simple high level block that allows the robot to take the right direction in the case it
is punished.

2.4.7 Complex Behaviors

The Description of Behavior block is a high level part of the complete model that
describes the available behaviors that the robot can follow. The choice of the possible
behaviors the robot can exhibit depends on the robot applications. Applying a search-
ing strategy to find a charging station could be an example of a typical behavior. The
description of each behavior, however, could depend on the robotic structure and the
embedded sensorial system.

2.5 Simulation Description

The implementation of drives and behaviors on a real robot strongly depends on the
field of application in which that robot is involved. The simulation of the general
model of an insect brain requires a simulated environment, where behaviors and
drives, which the robot has to satisfy, need to be defined. The focus is to simulate the
model in a context that can present analogies with the Drosophila real experimental
set-up, in order to obtain the experimental validation of the model. Details about the
implementation of the complete model are reported in the following.

2.5.1 Drives

A brief description about the drives chosen in simulations and their analogies with
real fruit flies is presented here.
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Fig. 2.7 Example of the transfer function used to model the sleep drive. A low battery level leads
to a high value of the current related to the Sleep drive. The optimal battery level is represented by
the point in which the drive Sleep is equal to zero. If the battery level exceeds the optimal point, the
drive became negative, in order to inhibit a possible dangerous battery charging

• Sleep—The drive Sleep is assumed to be the need for a robot to charge its batteries.
In real fruit flies sleep is indispensable for learning [36]. In common robots we
can quantify the drive sleep using a function of the battery level:

Idrive = Kdrive tanh(� − χ) + ψ (2.4)

where Kdrive, �, χ and ψ are the parameters of the function. Through these
parameters it is possible to set the maximum and the minimum value of the current
and the optimal battery level. An example is shown in Fig. 2.7. The optimal battery
level is represented by the point in which the drive Sleep is equal to zero. If the
battery level exceeds the optimal point, the drive became negative, in order to
inhibit a battery charging. In order to simulate the battery level, it is convenient
to implement a virtual sensor. The output of such sensor is the estimated battery
level. The battery level must decrease each step in which the robot is far from the
charging station, and reaches the Max Battery Level after a given time spent in the
charging station area. A sleep drive is indispensable for every time it is necessary
to have a completely autonomous robot, which must be able to find power supply
sources and use them to move for a long time.

• Hunger—The need of food can be reproduced putting inside the environment
objects or landmarks that the robot should periodically find and/or visit. The drive
Hunger could be thought as proportional to the time the robot left the object. This
drive is indispensable to obtain a behavior that can match with reality but also to
force the robot to find objects that can be periodically useful. The drives Hunger
and Sleep have some similarities; their differences will be remarked according to
the application.
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• Shelter—When in danger, a fly looks for a safe place. A fly in open spaces often
has the tendency to protect itself, typically aiming to approach and follow walls.
Shelter can be related to the distances of the robot from the walls.

• Curiosity—The drive Curiosity allows a fly to search for other resources when the
other drives are satisfied. Curiosity can be quantified with a constant value. From
a robotic point of view, curiosity leads the robot to explore the environment and
to acquire information about the detected objects.

2.5.2 Behaviors

To make the robot able to satisfy its drives, the following behaviors have been imple-
mented. They constitute the output of the Behavior Selection Network:

• Exploration. During an exploration behavior the robot tries to find new resources.
In flies, the environment exploration is characterized by an increase of the mean-
free path algorithm [37]. As in real flies, during an exploration behavior it is
possible to distinguish two behaviors [38]:

– Sitter larvae behavior: short path length and tight turning angles.
– Rover larvae behavior: long path length and wide turning angles.

Exploration can be thought as a default behavior: the robot could choose this
behavior when no particular drives are enabled. Usually curiosity is the drive that
mainly influences the choice of an exploration behavior. The implementation of
the exploration behavior requires also the management of the obstacle avoidance
and object detection. Moreover, the robot must be able to update its position at
each step; in our case, the ellipsoid body model is involved.

• Homing. The homing behavior consists in returning to the charging station, where
the simulation is started. Of course, the position of the Home must be known and
updated every step. An obstacle avoidance algorithm has to be implemented during
the homing behavior. Homing behavior is needed to have an autonomous robot,
able to charge its battery before its autonomy is compromised.

• Landmark Recalling and Achievement. During the navigation the robot meets
objects: if some objects are associated to food, the robot must remember their
position in order to reach them when it is needed. The biological plausibility of
this behavior is evident. The robot must use the path integration system to update
its position from each interesting object.

• Centrophobism. A centrophobic behavior has been found in flies [39]. From a
biological point of view, centrophobism in flies could be a consequence of the
increase of mean-free path in the exploration behavior. A fly uses centrophobic
behavior to protect itself in dangerous environments. Shelter is the drive thatmainly
influences the choice of a centrophobic behavior.
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2.5.3 The Robot and the Simulator

The robot used in the first experiments is a Pioneer P3-AT differential-drive roving
robot. The platform operates as a server in a client-server environment; the onboard
PC is used to host the control architecture.

MobileSim is the software used for simulating the Pioneer P3-AT roving robot
in a virtual 2D environment. This simulation environment has been used to evaluate
the performance of the proposed control system.

2.5.4 Implementation of Odors, Punishments and Rewards
in the Simulator

In order to implement olfactory classical conditioning it is necessary for the robot
to have sensors that can detect odors and that can monitor rewards or punishments
given to the robot. In a simulation environment it is convenient to implement virtual
sensors. For instance, if an object releases an odor called Odor1, it is convenient to
assume the output of the olfactory sensor as a Gaussian function of the distance d
from the robot to that object:

fod(d) = Kode−d/τod (2.5)

where Kod is a constant gain and τod represents the decay of the sensor output when
the robot goes away from the object.

It is possible to use a similar strategy to determine the output of a punishment
sensor and the output of a reward sensor:

f pun(d) = K pune−d/τpun (2.6)

frew(d) = Krewe−d/τrew (2.7)

The values of the constants can be determined in order to obtain a tighter Gaussian
function for the output of the punishment and reward sensors: in this way, if the robot
is approaching the object, it will first detect the odor and then it will be rewarded or
punished if that object is not neutral.

2.6 Simulation Results

This section presents the experiments made in order to perform a first evaluation for
eachmodel of the general computational architecture of theDrosophila melanogaster
brain.
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Table 2.3 Summary of the
characteristic of the objects in
the MBs model test

Object Odor P/N/R

Object A Odor 1 Punishment
Object B Odor 2 Reward
Object C Odor 2 Punishment
Object D Odor 2 Neutral

2.6.1 Mushroom Bodies and Olfactory Learning

The following simulation shows how the MBs model for odor learning works. The
simulation of the model has been done using the Euler integration method with a
constant integration time of 20ms. The synapses time constant is 800 milliseconds
and synaptic weights are initialized to the value of 0.05. A priori known information
is codified in the fixed synaptic weights that have been initialized to the value of 10
(excitatory) and -3 (inhibitory). A decay rate has been introduced: every 100 simula-
tion steps all synaptic weights are decreased by 1% of their value. The implemented
network is the same as shown in Fig. 2.6. This simulation was performed to verify
the capability of the MBs model to make the right associations between odors and
rewards or punishments in a complex environment. The robot is introduced into a
square arena, 10×10m, in which four objects are present. There is an odor spreading
out from each object in the environment. In particular, Eq. 2.5 has been used. Two
different odors are associated to these objects and a reward or a punishment is given
to the robot when one of the objects is reached, following the association reported
in Table2.3.

Exploring the environment, the robot has to learn that there is a strong association
is between the Odor 1 and the punishment: in a testing phase, the robot will be able
to escape when detecting that odor, before the shock occurs. The behavior of the
network neurons during the simulation is shown in Fig. 2.8 while Fig. 2.9 presents
the trend of the synaptic weights during the simulation. The network evolves for 100
simulation steps for each robot action.

At the end of the simulation the robot explored the environment completely and it
is able to make the right association. Other experiments were performed, obtaining
similar results.

2.6.2 Protocerebral Bridge and Fan-Shaped Body

Through a functional analysis of Drosophila protocerebral bridge and fan-shaped
body, it is possible to suppose that object detection and distance estimation are
mainly performed by the PB, while the FB is related to feature extraction and classi-
fication. In the following experiments, the properties of the PB and FB models and
the capabilities of the robot in terms of visual learning are presented.
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Fig. 2.8 Simulation results of the olfactory learning model: behavior of the neuron membrane
potential during simulation. The implemented network is shown in Fig. 2.6
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Fig. 2.9 Simulation results of the olfactory learning model: trend of the synaptic weights during
the simulation. The implemented network and the parameter meaning are illustrated in Fig. 2.6
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Fig. 2.10 Objects used in
the fan-shaped body model
simulation. a blue inverted
T-shape; b green upright
T-shape; c blue upright
T-shape; d green inverted
T-shape

(a) (b)

(c) (d)

In particular, the proposed simulation is inspired by the experiment designed by
Liu and collaborators on real flies [40] about visual learning and object recognition.
The robot has to explore a square arena, (10 × 10m), in which four objects are
present. Even if these objects are different, they can have some similar features. The
objects used in this simulation are shown in Fig. 2.10. Every time the robot meets
an object, it tries to recognize that object, extracting features and comparing them
with the stored ones. If the robot meets an object for the first time, it extracts and
stores the new features. It has been assumed to consider six features: color (in the
Hue Saturation Brightness representation, here only the Hue value is considered),
orientation, size, center of gravity position, wideness and height. The PB model has
been set so that the robot is able to detect objects in a range of 4m. Objects associated
to a punishment shock the robot if its distance from these objects is less than 2.7m.
In this experiment the color “green” is a bad feature: the robot will be punished every
time it tries to approach a green object. The robot has to learn to avoid green objects.
The arena and the simulation results are shown in Fig. 2.11. At the beginning of the
simulation, the robot tries to approach every object standing in its visual range. If
punished, the robot increases the punishment value of the features of the approached
object. If an object is neutral, the punishment value of the features associated to that
object decreases. If the escaping value of an object reaches a threshold, the robot will
escape when that object is detected. In this simulation the robot learns correctly to
avoid green objects. Figure2.12 shows also the Punishment Value of the bad feature
(green color) and the Punishment Value of a neutral feature, the wideness, that is
the same for all the objects. In order to implement a hysteretic response, when the
Punishment Value exceeds 2, it is simply raised to 7. In this way the robot will
remember this bad feature association for a long time, even if the learning is not
reinforced. If the robot detects an object, the Punishment Value of all the features
that do not belong to that object will remain the same. A time-dependent decay rate
could also be introduced.
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Fig. 2.11 Robot trajectories obtained during the testing of the fan-shaped body model. After being
punished enough times, the robot is able to isolate the dangerous feature (the green color) and
escapes when a green object is detected

In a second experiment, the robot has to learn to avoid each “T” object. Color is
now neutral for the robot. Even if the shape is not a feature, a T is different from
an inverted T because of the different center of gravity. This experiment leads to the
same conclusion of the first experiment; the robot is able to recognize bad features
and to avoid them.

2.6.3 Ellipsoid Body

In real fruit flies, the ellipsoid body is necessary for a visual short-term memory
and orientation. In the following simulation, the behavior of the EB model while the
robot is moving around the environment is evaluated. In the simulated environment
an odometry error has been introduced, to make the results more realistic. In this first
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Fig. 2.12 Comparison between the punishment value of the dangerous feature and the punishment
value of a neutral feature, the wideness. Using the punishment value algorithm the robot is able to
discriminate the dangerous feature. The decreasing of the punishing value of the dangerous feature
is due to the steps in which the robot can detect a green object but is not so near to be punished

experiment we want to show how the ellipsoid body model works: the robot must
be able to update its position while moving into a square arena (8× 8m). The robot
starts from the Home position and moves randomly into the arena: its capability to
update its relative position with the Home is analyzed. Of course the coordinates
stored into the robot memory will be different from the real ones, because of the
odometry errors and the approximation of the path integration method. Figure 2.13
show an example of trajectory and the response of the ellipsoid body. The same test
has been repeated many times, in order to make a better analysis of the model.

In order to test the capability of the model in real situations, it is convenient to
simulate the robot behavior and the EB response in more complex arenas. In the
following experiment the robot has to explore a large arena, in which several objects
are present. The robot starts from the Home and initially it moves randomly: this
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Fig. 2.13 Information stored in the EB. The relative position of the robot with respect to the Home
is represented in polar coordinates and it is indicated in millimeters (distance) and degrees (angular
position). In this case the current robot position is r = 5730mm, ν = −12◦

behavior is created to simulate a typical escaping reaction of real flies when newly
introduced into an arena.

After that, the robot starts an Exploration behavior. If the robot meets objects it is
able to learn about their danger or neutrality, thanks to the MBs model. During the
exploration, the robot updates its position from the Home. An obstacle avoidance
mechanism was also implemented. During this experiment two behaviors are avail-
able: Exploration and Homing. The level of the battery decreases while the robot
explores the arena. A virtual battery sensor has been implemented. If the level of the
battery is too low, the BSN switches the selected behavior to the Homing Behavior.
If the stored position is correct, the robot must be able to return to the Home position.
Obstacle avoidance is used also during the Homing behavior. Simulation results are
shown in Fig. 2.14. The robot starts to move and, after the escaping reaction imple-
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(a)

(b)

(c)

Fig. 2.14 The robot starts to move and, after the escaping reaction implemented to match the
biological experiments with real flies, it begins an exploration phase (a). The escaping reaction
from the Home position to position (a) is not outlined for clarity reasons. After fifteen exploration
steps, the battery level is low and the robot starts its homing behavior (b). Using an obstacle
avoidance algorithm, the robot is able to return to the Home (c). In order to have a more complex
simulation, some objects have been also introduced into the arena

mented to match the biological experiments with real flies, it begins an exploration
(a). The escaping reaction from the Home position to position (a) is not outlined for
clarity reasons. After fifteen exploration steps, the battery level is low and the robot
starts its homing behavior (b). Using an obstacle avoidance algorithm, the robot is
able to return to the Home (c).

2.6.4 Behavior Selection

In order to allow the robot to choose the more suitable behavior, the Behavior Selec-
tion Network (BSN) has been implemented. The BSN has been tested and its prop-
erties have been analyzed. In a real implementation of the model the drives are the
inputs of the first layer of the network. In the following simulations drives have been
simulated in order to study the response of the BSN in different possible situations.
This experiment shows how the Behavior Selection Network works. It has been
assumed to have four behaviors and four drives, and to represent these drives with
four input currents.

In this first example a perfect symmetry in the complete network has been sup-
posed: Wi j = 1.5; Wii = 10; Yi j = −3; Yii = 3 (see Fig. 2.4 for the network
topology). A random Gaussian noise has been added in the input currents (σ =2).
Fig. 2.15 presents the behavior of the neurons of the network. When a second layer
(WTA layer) neuron is firing faster than the others, the respective behavior is selected.
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The network has been simulated for ten thousand simulation steps, with an integra-
tion step of 20 milliseconds. During a short transient, all theWTA neurons are firing:
this situation is due to the response of the synapses between WTA neurons. After
this transitory period, only one neuron can win the competition.

2.7 Real Life Scenario Application

In the Sect. 2.6.4 a model of the main parts of a fly brain computational model has
been introduced. Herewith the capability of the model to solve realistic tasks is
shown. Modifying the behavior repertoire but maintaining the conceptual structure
of the general model we can obtain a versatile robot that is able to learn about
the environment, to make choices and to face potentially dangerous situations. The
experiment presented in this section is only one example of the real applications of
the insect brain model, and it could be easily modified or generalized [41, 42].

2.7.1 Description of the Experiment

Let us imagine to have a critical situation in which, after a disaster (earthquake,
fire) it is necessary to rescue people trapped in a place. Often situations like this
are very dangerous both for survivors and people who try to help them. Now let us
image to have a smart robot able to explore the environment and which can learn,
recognize people and remember their position. Such a robot could menage a critical
situation acquiring the information needed to solve it. In the present experiment an
environment that can represent a place after a disaster has been implemented into a
robot simulator. The robot has to explore the environment, find some good objects
that it is able to recognize, remember their position and learn about all kinds of
dangers present in the environment. At the end of the exploration, the robot must
escape from the environment and give all the information useful for humans to
know the position of the survivors and organize a safe rescue. In order to solve
this problem, the behavior repertoire of the robot has been limited to two possible
behaviors, exploration (rover type) and homing. In the same way, two drives are
considered, Curiosity and Sleep, the latter indispensable for the robot to understand
when to leave the environment and return home; for this, a virtual battery level sensor
is used. The MBs model was also simplified: only the olfactory learning model will
be considered. The synaptic weights, the synapses time constant and the integration
step are the same of the previous simulations. Every robot step of the robot includes
only one hundred simulation steps of the MBs and BSN neural networks.

The arena implemented for the simulation and the results are shown in Fig. 2.16.
The Home represents the starting point for the robot exploration and the point the
robot has to reach at the end of the simulation.
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Fig. 2.15 Results of the simulation of the BSN. After a short transient in which all the WTA
neurons are firing, only one neuron can win the competition. The transient is a consequences of
the time response of the synapses between WTA neurons. Variation of the drives could also lead
to new transient, in which the WTA neurons compete. A low value of the auto-excitatory synapses
weights in the WTA layer can cause a continuous switching of the selected behavior, while a too
high value leads to a conservative behavior selection
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S1 and S2 represent the position of the targets: let us assume the robot considers
them as interesting objects and, after an approach, it is able to recognize them. Let
us assume that the targets are a blue T-shaped object and a blue inverted T-shaped
object. Identical objects Obj1, Obj2 and Obj3, are also considered. The robot cannot
see them, but can sense them thanks to another sensorial system (i.e. olfactory). The
robot is punished every time it tries to approach them. In the environment, two other
objects are present, a green upright T-shaped object and a green inverted T-shaped
object. The robot can detect them with the visual system. The robot is punished only
when it tries to approach the first one, while the second one is neutral.

After a long exploration, the robot must be able to detect the targets, learn to
avoid as soon as possible the objects Obj1, Obj2 and Obj3, understand that the
green upright T-shaped object is dangerous and finally reach the Home and give the
position of the targets at the end of the exploration. Mushroom Bodies model will
be used for the learning involving Obj1, Obj2 and Obj3; the protocerebral bridge
model will be used for the detection of the objects and the fan-shaped body model
for the visual learning; the ellipsoid body model is indispensable for homing and
remembering the position of the targets. For this simulation, the capabilities of real
flies have been extended, for instance, improving the performances of the EB that
is now able to store multiple target information in a long time memory. This is an
example of how the elementary functions of the Drosophila brain that allows the
insect to face with its world can be easily extended in a modular way to make a
robot able to fulfill more complex tasks, not affordable for the real fly. The Behavior
Selection Network is useful to select the homing behavior if the battery level is too
low. The parameters of the model have been set so that the robot can sense odors if
its distance is lower than 3m away from the nearest odor source, while it is punished
if its distance from that source is <1m. In the same way, the visual system of the
robot can detect objects if they are closer than 2.5m. It is punished if an object is
closer than 1.5m. The arena used for the simulation is 28m long and 15m wide.

2.7.2 Results and Discussion

In this section experimental results obtained in a typical simulation are shown, dis-
cussing step by step the behavior of the robot. Only the most relevant robot steps are
depicted in Fig. 2.16, whereas Fig. 2.17 shows the MBs model response during the
whole simulation.

At step 1 the robot starts the simulation from the Home position. At the second
step the robot enters the arena and begins an exploration behavior. The ellipsoid
body model updates the position of the robot. Neurons of the MBs model are not
stimulated and they lie in their silent state. At the following step (step 5, not shown),
the robot uses the increase of themean free path algorithm. The EBmodel updates the
position of the robot. During the exploration, the robot must find objects and sense
odors. At step 9, the robot senses Odor1, but it is not punished, because it is not close
enough to Obj1. In the following step the robot continues its exploration following



2 A Computational Model for the Insect Brain 75

Fig. 2.16 Most relevant robot steps of the proposed simulation. After the exploration of the envi-
ronment the robot returns to the Home and gives the position of the target S1 and S2. Moreover,
information about the dangers in the environment are stored in the FB and the MBs model

the increase of themean free path algorithm, while the EBmodel updates the position
it has stored. At step 11 (not shown), the robot detects the green T-shaped object.
The FB model extracts features from this object and the robot tries to approach it.
While the robot is approaching the new object, it is punished (step 12). After being
punished, the robot escapes from the green upright T-shaped object (step 13). It has
to be notice an unexpected situation: the robot sensed Odor1 and was punished after
two subsequent steps, due to the punishing visual input, and not for the odor. So,
even if not planned in this way, the robot has made an association between Odor1
and Punishment. This situation is plausible and it is a natural consequence of the
correlation based on STDP learning.

As a consequence, the association between Odor1 and the need to escape is
reinforced. While it is escaping, the robot again detects Obj1, senses Odor1, is
punished and escapes again in the opposite direction (step 14, not shown), reaching
once more the green inverted T-shaped object (step 15). The robot is then punished
for the third time. At step 16 (not shown), the robot is escaping again. At step 20 and
21 the robot is sensing Odor1 again, without being punished. It is very interesting
to analyze how the MBs model responds to this contradictory situation. Studying
the firing of each neuron of the MBs model, it is possible to see that at a first time
the robot was punished immediately after sensing Odor1, while at a second time it
senses Odor1 but it is not punished. In this way, at a first time the robot made an
association between punishment and Odor1, but at a second time this association
was weakened. However, the synaptic weight between the Odor1 neuron and the
Escape neuron of the olfactory learning model was not high enough to make the
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Fig. 2.17 Mushroom Bodies model response during the simulation

robot escape when sensing again Odor1, without being punished. Now the robot
continues its exploration of the arena. At step 22 the robot is near Obj2, it is sensing
Odor1 again but it is not close enough to be punished. The association between
punishment and Odor1 must decrease again. While exploring, the robot detects
the first target (step 27). The fan-shaped body analogue extracts the features of the
object, the robot recognizes the target and tries to approach it. The EB model stored
the position of the robot. The target S2 is now reachable in the future. The robot
leaves the object and begins another exploration.

After many steps, the robot detects and reaches the target S1 and stores its position
(step 41). After leaving the second target, the robot begins another long exploration.
At step 55, the robot is into the area of detection of the green T-shaped object, but
in this case the PB model leads the robot to consider that object repulsive because it
is standing in the rear of the robot, therefore the robot leaves the object. The robot
continues its exploration and, detecting Obj3, the robot senses Odor1 again at step
59. At step 63, the robot is close enough to Obj3 to be punished. Because of the
position of the robot, the punishment is not so strong, but the robot is sensing Odor1
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Fig. 2.19 During the simulation, the EB model estimates the distance of the robot from the Home
position. Errors in the position are due to the simulated odometry error and to the path integration
method approximations

and it is recalling the association with punishment: even if the Punishment neuron
only spikes once, the robot escapes.

Analyzing MBs response and the synaptic weights at step 64, it is evident how
the robot reinforced the association between Odor1 and Punishment, as shown in
Fig. 2.18. Learning allowed the robot to escape fast, without strong punishment. After
escaping, at step 65, the robot meets again the green T-shaped object.

While the robot tries to approach it, the low output level of the virtual battery
sensor determines the behavior and initiates the homing procedure. The EB model
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is involved to remember the Home position. The response of the EB model at step
65 is shown in Fig. 2.19. At steps 67, 69 (not shown) and 71 the robot tries to return
to the Home position. At the end of the simulation, the robot can communicate the
approximated position of the targets. Moreover, the robot is aware of the association
between an odor and a danger. Nevertheless, in this simulation, the robot was not
able to certainly associate a visual feature with reward or punishment, because it has
been punished only once while approaching a landmark.

2.8 Conclusions

The concept of cognitive abilities is commonly associated to humans and animals like
mammals, birds and others. Nevertheless, in the last years several research groups
have intensified the studies on insects that posses a much simpler brain structure even
if they are able to show interesting memory and learning capabilities. In this chapter,
some results toward the design and implementation of a model of the insect brain
inspired by the Drosophila melanogaster have been presented. Particular attention
was paid to the main neural centers the Mushroom Bodies and the Central Complex.
In this chapter the parts of the model have been presented and simulation results are
reported. In the followingPart III of the book aSoftware/Hardware framework,where
the complete architecture could be tested and evaluated by using both simulated and
real robots, is presented.
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