
Chapter 2
Network Identification via Node Knockout

In this chapter, we examine the problem of identifying the interaction geometry
among a known number of agents, adopting a consensus-type algorithm for their
coordination. The proposed identification process is facilitated by introducing “ports”
for stimulating a subset of network vertices via an appropriately defined interface
and observing the network’s response at another set of vertices.

2.1 Problem Formulation

Consider the weighted consensus protocol described in (2.1) as

ẋ(t) = A(G)x(t) + Bu(t), y(t) = Cx(t), (2.1)

where A(G) = −Lw(G) ∈ Rn×n , B ∈ Rn×rI , and C ∈ RrO×n .

Example 2.1.1. Consider the network in Fig. 2.1; set I = {1, 2}, O = {1, 4}, and
the corresponding weights equal to one on every edge. Then,

A(G) = −

⎡
⎢⎢⎢⎢⎣

1 −1 0 0 0
−1 3 −1 −1 0
0 −1 3 −1 −1
0 −1 −1 3 −1
0 0 −1 −1 2

⎤
⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎣

1 0
0 1
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦

, C =
[
1 0 0 0 0
0 0 0 1 0

]
. (2.2)

Even though in general, sets I and O can be distinct and contain more than
one element, for the convenience of our presentation, we will assume that they are
identical- and at times, wewill assume that the resulting input-output system is in fact
SISO. The extension of the presented results to the case when I and O are distinct
will be discussed after introducing the basic setup and approach.
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Fig. 2.1 a The network in Example 2.1.1, and b the percentage of random planar graphs that are
controllable from at least one node

Wenowpose the inverse problemof graph-based coordination algorithms, namely,
the feasibility of identifying the spectral and structural properties of the underlying
networkG via data facilitated by the input-output portsI andO. In order to implement
this program we will assume that: (1) the identification procedure has knowledge of
the number of agents in the network, (2) if the removal of oneor twonodes disconnects
the underlying graph, the input/output sets I and O have non-trivial intersections
with each of the resulting connected components,1 and (3) the input/output sets I
and O have been chosen such that the system described in (2.1) is controllable and
observable. Although the first assumption is reasonable and the second an artifact of
our approach,2 the last assumption requiresmore justificationwhichwe now provide.
In the trivial case when I = V and B is equal to the identity matrix, the input-output
weighted consensus (2.1) is clearly controllable, and byduality, observable.However,
more generally, the controllability/observability of the network from a subset of its
boundary nodes, is less trivial, and more to the point, not guaranteed for general
graphs [1]. In the meantime, since we will need controllability and observability of
the network for its identifiability, we will rely on an intriguing topical conjecture in
algebraic graph theory, to the effect that for large values of n, the ratio of graphs with
n nodes that are not controllable from any single node to the total number of graphs
on n nodes approaches zero as n → ∞ [2]. This phenomena is depicted in Fig. 2.1b;

1 Thus, for example, when the graph is 3-connected, the input/output sets can be chosen arbitrary
to satisfy this connection.
2 The procedure, knowing the number of nodes in the network, can identify when in fact the graph
is disconnected.
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for every node n, the percent of controllable networks from one node is calculated
from 400 sample random graphs. In the present research, we take the controllability
and the observability of the underlying graph from the input and output nodes as
our working assumption. In the meantime, it is always convenient to know when the
network is uncontrollable from a given node.

Lemma 2.1.2. Let P(s) = C(s I − A)−1B be the input-output realization of (2.1).
The uncontrollable/unobservable eigenvalues of (2.1) will not appear in the corre-
sponding entry of P(s). Specifically, P(s) will be order n − i polynomial for the
SISO case with n agents and i uncontrollable/unobservable eigenvalues.

Proof. Since the underlining graph is undirected, the matrix A(G) in (2.1) is sym-
metric, and there exists a unitary matrix U and a real nonnegative diagonal matrix
� = diag(λ1, . . . ,λn) such that A(G) = U�U T . In this case, the columns of U are
an orthonormal set of eigenvectors for A(G) and the corresponding diagonal entries
of � are its eigenvalues. Therefore,

P(s) = C(s I − A(G))−1B = C(s I − U�U T )−1B = CU (s I − �)−1U T B. (2.3)

From the PBH test, if the system (2.1) is not controllable, there is an eigenvector
that is orthogonal to B. Therefore, for an arbitrary uncontrollable eigenvalue λi , the
i-th row of U T is orthogonal to B, and λi will not appear in (s I − �)−1U T B. An
analogous argument works for the unobservable case as well. �

2.2 System Identification

We now consider various standard system identification procedures in the context of
identifying the spectra of the underlying graph Laplacian, and subsequently, gaining
insights into the interconnection structure that underscores the agents’ coordinated
behavior.

System identification methods are implemented via sampling of the system (2.1)
at discrete time instances3 δ, 2δ, . . . , kδ, . . ., with δ > 0, so that the assumes the
form

z(k + 1) = Ad z(k) + Bdv(k), w(k) = Cd z(k), (2.4)

where z(k) = x(kδ), v(k) = u(kδ), w(k) = y(kδ), Ad = eδA, Bd =
(∫ δ

0 eAt dt
)

B,

and Cd = C .4 In fact, the system identification process leads to a realization of the
model

3 The system identification methods work based on data sampling from the system. Since we aimed
to identify the interaction geometry of the network, we originally considered a continuous system.
Therefore, we need to discretize the system (2.1).
4 The notation eA for a square matrix A refers to its matrix exponential.
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z̃(k + 1) = Ãd z̃(k) + B̃dv(k), w̃(k) = C̃d z̃(k), (2.5)

where ( Ãd , B̃d , C̃d) is the realization of (Ad , Bd , Cd) in (2.4). The identified system
(2.5), on the other hand, corresponds to the continuous-time system

˙̃x(t) = Ãx̃(t) + B̃u(k), y(t) = C̃ x̃(t), (2.6)

with Ãd = eδ Ã, B̃d =
(∫ δ

0 eÃt dt
)

B̃, and C̃d = C̃; in this case, Ã = (1/δ) logM Ãd

where logM denotes the matrix logarithm. Since the system (2.5) is a realization
of the system (2.4), it follows that the estimated triplet ( Ã, B̃, C̃) is a realization
of (A, B, C) in (2.1). As a result, there exists a similarity transformation induced
by the matrix T , such that Ã = T AT −1, B̃ = T B, and C̃ = CT −1. In fact,
in the controllable/observable case, the eigenvalues of Ãd are precisely matched
with the eigenvalues of Ad . Obtaining a zero as eigenvalue of Ãd , which is equiv-
alent of obtaining −∞ as the eigenvalue of Ã, is a sign of an uncontrollable
and/or unobservable mode in (2.1).5 For example in the identification procedure
called Iterative Prediction-Error Minimization Method, the model (2.4) for every
input vi and output w j can be represented as A(q)w j (k) = B(q)vi (k), where
A(q) = 1 + a1q−1 + · · · + anq−n and B(q) = b1q−1 + · · · + brIq−rI . The
unknown model parameters θ = [a1, . . . , an, b1, . . . , brI ] can then be estimated by
comparing the actual output w j (k) with the predicted output w̃ j i (k|k − 1) using
the mean-square minimization. In this case, the output predictor is constructed as
w̃ j i (k|k−1) = [−w j (k−n), . . . ,−w j (1), vi (k−rI), . . . , vi (1)]. In yet another can-
didate system identification procedure, namely the Subspace Identification Method,
the system (2.4) is approximated by another system in the form (2.5) using a state
trajectory of the dynamic system that has been determined from input-output obser-
vations. TheHankel matrix, which can be constructed from the gathered input-output
data, plays an important role in this method. By constructing the Hankel matrix, the
discrete time systemmatrices Ãd , B̃d , and C̃d can then be determined. Subsequently,
the continuous-time estimated matrices Ã, B̃, and C̃ can be identified; see [3] for an
extensive treatment of system identification methods.

In summary, an identification procedure such as the above two methods, imple-
mented on a controllable and observable steered-and-observed coordination protocol
(2.1), leads to a system realization whose state matrix is similar to the underlying
graph Laplacian and in particular shares the same spectra and characteristic polyno-
mial. However, a distinct and fundamental issue in our setup is that having found a
matrix that is “similar” to the Laplacian of a network is far from having exact knowl-
edge of the network structure itself [4]. This observation motivates the following
question: to what extent does the knowledge of the spectra of the graph, combined
with the knowledge of the input-output matrices, reduce the search space for the
underlying interaction geometry? In this chapter, we explore this question using
techniques based on integer partitioning and degree-based graph reconstruction.

5 This follows from Lemma 2.1.2 since −∞ will appear as zero in the corresponding entries of
P(s).
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Inspired by how biologists use gene knockouts for experimentally identifying
genetic interaction networks in cellular organisms, we propose a node-knockout
procedure for the complete characterization of the interaction geometry in consensus-
typenetworks. In our context, the nodeknockout is essentially a groundingprocedure–
where the node broadcasts a zero state to its neighbors without being removed from
the network. The proposed identification process is also facilitated by introducing
“ports” for stimulating a subset of network vertices via an appropriately defined
interface and observing the network’s response at another set of vertices. We then
provide an example for the utility of such a network identification process in the
context of fault detection for networked systems.

2.3 Characterization of the Network Topology via Node
Knockout

We now explore means by which a system identification procedure as discussed in
Sect. 2.2 can be used for the exact characterization of the interaction topology for
consensus-type networks. Consider again the input-output LTImodel (2.1). For nota-
tional simplicity, we consider unweighted Laplacian matrices; the extension of this
work to the weighted Laplacian is straightforward from our analysis. In this section,
we explore a method for characterizing the network by resorting to “grounding”
the graph at a vertex. First, recall that via one of the system identification methods
discussed previously, the characteristic equation of the system (2.1) can be found
to be

φG(s) = det(s I − A(G)) = det(s I + L(G)). (2.7)

Definition 2.3.1. The grounded consensus at node v evolves according the dynamics

ẋ(t) = −Lv(G)x(t),

where Lv(G) = L(G\v) + �v , G\v is the graph obtained after removing v from G,
and the diagonal matrix �v is such that [�v]i i = 1 (or [�v]i i = wiv in the weighted
consensus protocol) when {v, i} ∈ E and 0 otherwise. We refer to the grounding
operation as node knockout.

In this section, we make the standing assumption that each vertex in G can be
instructed to “ground” itself upon request. Now, define the polynomial

φv
G(s) := det(s I + (L(G\v) + �v)) (2.8)

which is the characteristic polynomial of the grounded consensus at node v.
Following our presentation in Sect. 2.2, it then follows that the system identification
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procedure can be applied for the cases when one or two nodes in the graph are
grounded. And in fact, provided that the grounded consensus protocol is control-
lable and observable, the characteristic polynomials φv

G(s) and φuv
G (s) for situations

where either vertex v has been grounded or when both vertices v and u have been
grounded can be obtained. But before we proceed, let us address the controllabil-
ity/observability of the influenced/observed grounded consensus.

Proposition 2.3.2. Consider the controllable and observable steered-and-observed
system (2.1) on the n-node graph G with n ≥ 2. Then as long as none of the input-
output vertices are identical to the grounded node(s), the grounded consensus on
Lv(G) remains controllable and observable with the corresponding reduced input
and observation matrices if and only if the graph G\v stays connected.

Proof. Let the grounded node v be different from the input-output nodes. Without
loss of generality, assume that v is the last indexed node in L(G) and also that the input
set contains just one node. In this case, since the input set does not include v, we can
rewrite B as B = [ B̂T , 0 ]T . From the definition of controllability, if the grounded
consensus is controllable with the pair (Lv(G), B̂), the graph G\v is connected. The
next step is to prove that if the graph G\v is connected, the grounded consensus is
controllable, or equivalently, that if the grounded consensus is uncontrollable, the
graph G\v has to be disconnected. This is proven as follows. Since the original graph
is controllable, from the PBH test there does not exist a nonzero z and λ such that
L(G)z = λz and zT B = 0. Thus after partitioning the matrix L(G), one has

� z �= 0, λ s.t.

⎡
⎣

L(G\v) + �v − λI δv

δT
v deg v − λ

B̂T 0

⎤
⎦ z = 0, (2.9)

where I is the identity matrix with proper dimensions, and δv is the vector formed
from the diagonal of�v . Since the grounded consensus is uncontrollable, there exists
a nonzero s ∈ Rn−1 and λ̂ ∈ R such that (L(G\v) + �v)s = λ̂s and sT B̂ = 0 with
λ̂ �= 0 since otherwise the proof is done. Therefore,

[
L(G\v) + �v − λ̂I

B̂T

]
s = 0, (2.10)

where I is the identity matrix with proper dimensions. Note that in order to show that
G\v is disconnected, it suffices to show that there exists a vector r �∈ span{1} ⊆ Rn−1

such that L(G\v)r = 0. The matrix on the left hand-side of (2.9) is full rank for all
values of λ. Thus for any choice of q ∈ Rn , there exists p ∈ Rn+1 such that

[
L(G\v) + �v − λI δv B̂

δT
v deg v − λ 0

]
p = q. (2.11)

By partitioning p = [pT
1 , pT

2 , pT
3 ]T and q = [qT

1 , qT
2 ]T , we obtain
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(L(G\v) + �v − λI )p1 + δv p2 + B̂T p3 = q1, and

δT
v p1 + (deg v − λ)p2 = q2. (2.12)

Choosing λ = λ̂, q1 = δv , and multiplying both sides of the first identity in (2.12)
by s, we obtain p2 = 1. Let us choose q2 = deg v − λ̂+α1 in (2.12) where α1 �= 0.
Therefore, δT

v p1 = α1 or
∑

i∈N (v) p1(i) = α1. In view of (2.12), we conclude that

L(G\v)p1 = (λ̂I − �v)p1 − B̂ p3. If (λ̂I − �v)p1 − B̂ p3 = 0, choosing r = p1
will prove the claim if p1 �∈ span{1}. By choosing p1 = [0, 0, . . . ,α1]T , it can be

verified that (λ̂I − �v)p1 − B̂ p3 = 0 when p3 = α1(λ̂−1)∑
i∈N (v) B̂(i)

. �

When the candidate grounding vertex belongs to the input set I in the original
LTI system (2.1), the controllability and observability of the grounded consensus
should be preserved by switching the control/observe channel to another vertex in
the grounded consensus. The same argument holds valid when the graph G\v is
disconnected, in which case the grounded consensus looses its controllability and
observability. We also note that the controllability/observability of the grounded
network at two vertices follows from the same argument in the Proposition 2.3.2 and
is thereby omitted. We are ready to state the main result of this section.

Theorem 2.3.3. System identification on the steered-and-observed consensus (2.1),
while allowing the grounding operation (Definition 2.3.1) at all nodes and all pairs
of nodes, allows for a complete characterization of the underlying network.

Wewill prove this theoremvia a number of observations—andmost importantly—
with the help of a powerful construct in combinatorics, namely that of generating
functions [5].

Definition 2.3.4. Let a0, a1, . . . be a finite or infinite sequence of real numbers. Then
the ordinary generating function χ(s) of the sequence is the power series

χ(s) = a0 + a1s + a2s2 + · · · =
∞∑

k=0

aksk . (2.13)

On one level, generating functions can be regarded as algebraic objects whose formal
manipulation allows one to address combinatorial problems by means of algebra [7].
Yet on another level, generating functions can be considered as power series expan-
sions of infinitely differentiable functions. Generating functions can conveniently
be extended to matrices and in particular to graph Laplacians. In this venue, define
the generating function χG(s) with respect to the sequence of powers of the graph
Laplacian as

χG(s) : C → Cn×n, χG(s) :=
∞∑

k=0

sk(−L(G))k = (I + sL(G))−1. (2.14)



24 2 Network Identification via Node Knockout

Generating functions based on the adjacency matrix of a graph have been studied
extensively; see for example [6] (Chap. 4). In view of the resemblance of (2.14) to the
transfer matrix of (2.1), our aim will be on clarifying the role of generating functions
for the characterization of steered and observed consensus-type networks. In doing
so, we are then able to devise a procedure for network identification for (2.1) by
identifying the corresponding generating functions for the grounded and ungrounded
characteristic polynomials. The ingredients of such a program are clarified by the
following observations.

In order to determine the entries of the generating function of L(G), define the
matrix �G(s) as the adjugate of s I + L(G), i.e., the complex conjugate transpose of
the matrix of its cofactors. From the definition of the matrix inverse, we then have

�G(s)(s I + L(G)) = det(s I + L(G))I = φG(s)I. (2.15)

Lemma 2.3.5. Let v be a vertex in the graph G. Then

s−1[χG(s−1)]vv = φv
G(s)

φG(s)
, (2.16)

where [χG(s)]vv is the v-th diagonal entry of the generating function χG(s).

Proof. From (2.14), it follows that

s−1χG(s−1) = s−1(I + s−1L(G))−1 = (s I + L(G))−1 = �G(s)

φG(s)
; (2.17)

the last equality in (2.17) is Cramer’s rule. Then (2.16) follows immediately from
(2.17); we note that φv

G(s), as the v-th diagonal entry of �G(s), is the characteristic
polynomials of L(G\v) + �v . On the other hand, as defined in (2.8), φv

G(s) is the
characteristic polynomial of the grounded consensus system matrix at node v. �

Before we can state our next result, we introduce a new notation. For D ⊆ V ,
[χG(s)]D denotes the submatrix of χG(s) with rows and columns indexed by the
vertices in D.

Theorem 2.3.6. (Jacobi) [7] Let D be a subset of d vertices of the graph G. Then

s−d det[χG(s−1)]D = φD
G (s)

φG(s)
; (2.18)

note that this is an extension of (2.16).

Proof. Without loss of generality, we may assume that D consists of the first d
vertices of G. Let K be the matrix obtained by replacing the first d columns of the
n×n identity matrix with the corresponding columns of�G(s). Consider the product

http://dx.doi.org/10.1007/978-3-319-02429-5_4
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(s I + L(G))K. We have

(s I + L(G))K =
[

φG(s)Id X
0 s I + L(G\D) + �D

]
,

where �D = ∑
v∈D �v , and the exact form of the matrix X is inconsequential.

Taking the determinant of both sides of this equation yields

φG(s) detK = φG(s)d det(s I + L(G\D) + �D), (2.19)

where G\D is the graph obtained from removing the node set D from G (as well as
all edges incident on the nodes in D). Note that det(s I + L(G\D) + �D) = φD

G (s).
From (2.17) and the definition of K, one has

s−d det[χG(s−1)]D = φG(s)−d det K,

and in combination with (2.19), this yields the statement of the theorem. �

If D consists of a pair of vertices u and v, then we obtain

det [χG(s−1)]D={u,v} = [χG(s−1)]uu[χG(s−1)]vv − [χG(s−1)]uv[χG(s−1)]vu .

(2.20)
Since G is undirected, [χG(s−1)]uv = [χG(s−1)]vu . Hence, we can determine the
off-diagonal entries of the generating function of L(G).

Lemma 2.3.7. Let G be a graph and u, v ∈ G. Then

s−1[χG(s−1)]uv = [�G(s)]uv

φG(s)
, (2.21)

where [χG(s−1)]uv is the uv-entry of the generating function χG(s), and

[�G(s)]uv = (φu
G(s)φv

G(s) − φG(s)φuv
G (s))1/2.

Proof. From Theorem 2.3.6, set D = {u, v}. Thus,

s−2det[χG(s−1)]{u,v} = φuv
G (s)

φG(s)
. (2.22)

From (2.20) and (2.22), it follows that

s−2([χG(s−1)]uu[χG(s−1)]vv − [χG(s−1)]2uv) = φuv
G (s)

φG(s)
.

From (2.16), on the other hand, it follows that
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s−2(s2
φu
G(s)

φG(s)

φv
G(s)

φG(s)
− [χG(s−1)]2uv) = φuv

G (s)

φG(s)
.

Hence,

s−2[χG(s−1)]2uv = φu
G(s)φv

G(s) − φG(s)φuv
G (s)

φG(s)2
,

and

s−1[χG(s−1)]uv = (φu
G(s)φv

G(s) − φG(s)φuv
G (s))1/2

φG(s)
.

�

Since s−1[χG(s−1)]uv is an entry of s−1(I + s−1L(G))−1 = (s I + L)−1, it is a
rational function with φG(s) as its denominator and the numerator is the uv−entry
of �G(s).

In order to draw a direct connection between the generating function (2.14) and the
steered-and-observed consensus protocol (2.1), note that (s I + L(G))−1 is defined
as s−1χG(s−1). And rather conveniently, according to Lemmas 2.3.5 and 2.3.7, all
entries of s−1χG(s−1) can be determined by the characteristic polynomials of the
ungrounded and grounded consensus through the system identification procedure.
In fact, the impulse response of (s I + L(G))−1 is the state transition matrix of the
consensus system and can be calculated from s−1χG(s−1) as,6

L−1{(s I + L(G))−1} = e−L(G)t = L−1{s−1χG(s−1)}, (2.23)

where L−1 denotes the inverse Laplace transform. Hence, the graph Laplacian L(G)

can be uniquely identified by running the system identification on the ungrounded
and grounded systems corresponding to (2.1).

The next example demonstrates the proposed procedure for the network in
Fig. 2.2a. Notice that if we run system identification with the input and output set to
I = O = {1}, we obtain the characteristic polynomialφG(s) = s4+6s3+10s2+4s.
In the meantime, by running the system identification on the grounded consensus
at node 1 while choosing I = O = {4}, we obtain the characteristic polynomial
φ

{1}
G (s) = s3 + 5s2 + 6s + 1. Notice that in this case

A(G) =
⎡
⎣

−2 1 0
1 −2 1
0 1 −1

⎤
⎦ .

6 Incidentally we should mention that the impulse response of the system with the transfer matrix
function as (2.14), is the state transition matrix for the Markov chain associated with the consensus
protocol [1] (Chap.3).

http://dx.doi.org/10.1007/978-3-319-02429-5 _3
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(a) (b)

(c)

Fig. 2.2 aGraphG,b grounding the consensus protocol, and c the graph considered for the example

In the same manner φ
{1}
G (s) = φ

{2}
G (s). As we ground node 2, two disconnected

components will be generated, and the input and output nodes must be chosen from
these distinct components of the graph. We therefore determine φ

{2}
G (s) and φ

{3}
G (s)

as φ
{2}
G (s) = s3 + 4s2 + 4s + 1 and φ

{3}
G (s) = φ

{2}
G (s). In the next step, in order

to calculate the off-diagonal entries of s−1χG(s−1), one needs to ground a pair of
nodes simultaneously. For example, if we run the system identification procedure on
the consensus system grounded at nodes {1, 2} and choose I = O = {3}, we obtain
φ

{1,2}
G (s) = s2 + 3s + 1. Notice that the system matrix in this case is

A(G) =
[−2 1

1 −1

]
.

Considering the symmetry in the generating matrix χG(s), by running multiple ses-
sions of the system identification procedure, we obtain all entries of s−1χG(s−1).
Thus, the Laplacian matrix, L(G), can be explicitly found from (2.23).
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2.4 Edge Faults in the Network

In this section, we explore the utility of the network identification procedure in the
context of fault detection for networked systems. Consider a remote administrator of
a network, running a protocol similar to (2.1),7 monitoring the network’s behavior by
occasionally sending signals through certain boundary nodes and observing its reflec-
tion. Aswe discussed in previous sections, assuming the observability/controllability
of the underlying network, the identification process provides us with the character-
istic equation for the system and the number of edges in the network. Thus, if there
is an edge failure, the characteristic equation of the modified network will reflect
this failure. We would like to explore now the possibility of identifying the broken
link from running the identification procedure on the network when the grounding
operation is permissible. It is assumed that the nodes can be instructed to ground
themselves, i.e., sending a zero state value to their neighbors, while not being able
to independently and locally determine whether an edge in the network has been
broken. In fact it is assumed that the administrator can only detect faults indirectly
by observing and monitoring a few selected signals from the network. In this venue,
let E = 2|E(G)| be twice the number of edges in the fault-free network G, which
is equal to the sum of the roots of the characteristic polynomial φG(s). In the same
vein, let us denote the sum of the roots of the characteristic equations of the grounded
consensus matrices L(Gu) and L(Guv) as Eu and Euv , respectively.

Proposition 2.4.1. Consider the consensus protocol (2.1) over the graph G. Let
E, Eu, Ev , and Euv denote, respectively, the sum of the roots of the characteristic
polynomials φG(s), φu

G(s), φv
G(s), and φuv

G (s). Then E − Eu − Ev + Euv = 0 if there
is no edge between nodes u and v, while E − Eu − Ev + Euv = 2 indicates that
there is an edge between u and v.

Proof. Let Vu denote the subset of V with node u excluded; see Fig. 2.2. By running
the system identification on G, we obtain the sum of the roots of the characteristic
polynomial φG(s) which is also equal to the sum of the degrees of all nodes in V .
In the meantime, by running the system identification on the grounded consensus
at u, we obtain Eu = E − deg u. Analogously, one obtains Ev = E − deg v

when node v is grounded. Thus by grounding the pair of nodes u and v in the
consensus protocol, the sum of the roots of the characteristic polynomial φuv

G (s) is
Euv = E − deg u − deg v + 2I{u,v}∈E , where I{u,v}∈E is equal to one if nodes u and
v are incident and zero otherwise. Thereby, Eu + Ev − Euv = E − 2I{u,v}∈E and
the statement of the proposition now follows. �

As an example, consider the graph in Fig. 2.2 with |V| = 100 nodes and |E | =
284, running the consensus protocol. Our goal is to resolve whether there is an
edge between nodes 1 and 2 via the proposed network identification procedure. We
note that if we run the system identification with rI = rO = 50, we obtain the

7 Including any class of consensus-type protocols for formation control and distributed estima-
tion [1].
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number of edges in the network, E , as the sum of the roots of the characteristic
polynomial φG(s); in this case there are 568 edges in the network. Applying the
system identification procedure on the grounded consensus at node 1 leads the value
of E1 = 562, where E1 is the sum of the roots of the characteristic polynomial
φ1
G(s). Analogously, the values of E2 and E1,2 are 560 and 554, respectively. Since

E = E1+ E2− E1,2, from Proposition 2.4.1, it follows that there is no edge between
nodes 1 and 2.
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