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Abstract Manual analysis of pedestrians and crowds is often impractical for
massive datasets of surveillance videos. Automatic tracking of humans is one of
the essential abilities for computerized analysis of such videos. In this keynote
paper, we present two state of the art methods for automatic pedestrian tracking
in videos with low and high crowd density. For videos with low density, first we
detect each person using a part-based human detector. Then, we employ a global
data association method based on Generalized Graphs for tracking each individual
in the whole video. In videos with high crowd-density, we track individuals using
a scene structured force model and crowd flow modeling. Additionally, we present
an alternative approach which utilizes contextual information without the need to
learn the structure of the scene. Performed evaluations show the presented methods
outperform the currently available algorithms on several benchmarks.

Keywords Human detection • Tracking • Data association • Crowd density •
Crowd analysis • Automatic surveillance

1 Introduction

The number of surveillance cameras in urban area is increasing at a significant
rate which results in massive amounts of videos to be analyzed. Observing crowds
and pedestrians manually in such large amount of data is cumbersome and often
impractical which makes automated methods extremely favorable for this purpose.
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Automatic tracking of pedestrians is one of the required abilities for computerized
analysis of such videos.1

The density of pedestrians significantly impacts their appearance in a video. For
instance, in the videos with high density of crowds, people often occlude each other
and usually few parts of the body of each individual are visible. On the other hand,
the full body or a significant portion of the body of each pedestrian is visible in
videos with low crowd-density. These different appearance characteristics require
tracking methods which suite the density of the crowd. In this paper, we present two
state of the art methods for tracking pedestrians in videos with low and high density
of crowds.

For videos with low density of pedestrians (Sect. 2), first we detect individuals
in each video frame using a part-based human detector which efficiently handles
occlusion (Sect. 2.1). Later, we employ a global data association method based on
Generalized Minimum Clique Graphs for tracking each person over the course of
the whole video (Sect. 2.2).

We present two approaches to tracking for videos with high density of crowds.
In the first one, the scene layout constraint which is captured by learning Dynamic
Floor Field, Static Floor Field and Boundary Floor Field along with crowd flow
is leveraged to track individuals in the crowd. In the second approach, no learning
or crowd flow is used to track targets. Instead, the tracking is performed utilizing
salient and contextual information.

2 Pedestrian Tracking in Videos with Low Crowd Density

Our framework for tracking pedestrians in videos with low density of crowds
consists of two main steps: Human Detection (Sect. 2.1) and Data Association
(Sect. 2.2):

2.1 Part-based Human Detection

Human detection is a fundamental problem in video surveillance. Robust human
tracking is highly dependent on reliable detection in each frame. Although human
detection has been well studied in computer vision, most of the existing approaches
are unsuitable for detecting targets with large variance in appearance. Therefore,
robust human detection remains a challenge due to the highly articulated body
postures, occlusion, background clutter and viewpoint changes.

1In alphabetical order.
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Fig. 1 (a) A sample positive image and its HOG descriptor. (b) Left: detections obtained using
part-based human detector in [6]. Right: a model for root and parts and a spatial model for the
location of each part relative to the root

Many approaches have been proposed for human detection over the last decade.
In most of them, the problem is formulated as a binary sliding window classification,
i.e. an image pyramid is constructed and a fixed size window is scanned over all of
its levels to localize humans using a non-maximum suppression procedure.

Dalal and Triggs [5] use HOG as low a level feature which is shown to
outperform other competitive features, such as wavelets, for human detection.
HOG provides a robust feature set that allows the human body to be distinguished
discriminatively even in cluttered background. The descriptor purposed by Dalal and
Triggs computes an edge oriented histogram on a dense grid of uniformly spaced
cells. Then, they use overlapping local contrast normalizations in order to improve
the overall performance. A linear SVM classifier is used to learn a model for the
human body using positive and negative samples. The detector is then applied to
the image to localize human bodies, i.e. the detector takes an image, a position
within that image and a scale as the inputs and determines if there is a person in that
particular location and scale. Figure 1a shows a sample positive image and its HOG
descriptor.

Using local features to learn body parts is another approach to human detection.
Part-based approaches which model an object as a rigid or deformable configuration
of parts are shown to be very effective for occlusion handling. Felzenszwalb et al. [6]
simultaneously learn parts and an object model. Their model is an enriched version
of Dalal and Triggs’ which uses a star structured part-based model defined by a root
filter plus a set of parts associated using a deformation model. The score associated
to each star model is the summation of the scores of the root filter and parts at a
given location and scale minus a deformation cost which measures the deviation of
parts from their ideal location relative to the root. The scores of both parts and root
are defined as the dot product of a learnt filter which belongs to that part and a set
of extracted features for that specific location. The same set of features as [5], i.e.
HOG, is used in [6] with the difference that principle component analysis has been
applied to HOG features in order to reduce the dimensionality.
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Fig. 2 Left: human detection results using [6]. Right: human detection results using our approach
where red boxes show the human detected as full bodies, green boxes show the humans detected as
upper bodies, and yellow boxes show the humans detected as heads only. It is clear that [6] failed
to detect occluded humans since it does not have an explicit occlusion model, while our approach
detects the occluded parts and excludes them from the total detection scores, thus achieving
significant improvements especially in crowded scenes

2.1.1 Human Detection with Occlusion Handling

While the deformable part-based model has recently shown excellent performance
in object detection, it achieves limited success when the human is occluded. In
particular, the final score in [6] is computed using the score of all the parts without
considering that some of them can be occluded by other pedestrians or static objects
in the scene. The occlusion happens especially in crowded scenes such as the
example shown in Fig. 2 which signifies the drawback of this method. Considering
the score of the occluded parts in the final decision score may cause the algorithm
to ignore most of the partially occluded humans in the final detection results.
Therefore, some methods such as [7] or [8] rely on head detection only and disregard
the rest of the body.

To address this problem, we purpose in [9] to infer occlusion information from
the score of the parts and utilize only the ones with high confidence in their
emergence. By looking at the score of each part, we find the most reliable set of
parts that maximizes the probability of detection. Let H denote the HOG feature
of the image, and p D (x,y) represent the location of a part. The detection score at
location (x0,y0) defined in [6] is:

score .x0; y0/ D b C
iDnX

iD1

s .pi / ;

where b is the bias term, n is the number of parts, and s(pi) is the score of part i
which is computed as:

s .pi/ D Fpi :¿ .H; pi / � dpi :¿d

�
dx; dy

�
;

where Fpi is the part filter, and ¿ (H,pi) denotes the vector obtained by concate-
nating the feature vectors from H at the sub window of the part pi (dx,dy) denotes
the displacement of the parts with respect to the anchor position. To address the
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discussed issue, instead of aggregating the score of all the parts, we select the subset
of parts which maximize the detection score:

score .x0; y0/ D b C argmaxSm

1

jSmj �
X

i2Sm

1

1 C exp .A .pi / :s .pi / C B .pi //
:

The sigmoid function is introduced to normalize the score of the parts. The
parameters A and B are learned by the sigmoid fitting approach and jSmj is the set
cardinality. This equation corresponds to the average score of the parts in a subset
which makes the comparison between different subsets easy.

If there is an occluded part in a subset jSmj, its average score will be lower than
a case which doesn’t have any occluded parts. Therefore, by maximizing the above
equation, we obtain the most reliable set of parts and its corresponding detection
score. In our experiments we consider only three subsets of parts (full body, upper
body and head only). We found these three subsets to be representative enough for
most scenarios. That way, we do not need to search for all the 2n parts. Figure 2
demonstrates the qualitative comparison between [6] and our approach.

2.2 Data Association Using Generalized Graphs

The method explained in Sect. 2.1 detects humans in each video frame. However, it
does not specify which detections belong to one identity. We need to determine
the detections which correspond to one particular pedestrian in order to form a
trajectory. We employ a data association method based on Generalized Minimum
Clique Problem (GMCP) for this purpose. The input to the data association method
is the detections obtained using the human detector of Sect. 2.1, and the output is
the trajectory of each pedestrian in the video. Figure 3 shows the block diagram of
this process. First a video is divided into smaller segments and the human detector
is applied to each video frame. Then, the GMCP-based data association method
is utilized in order to form the tracklets of pedestrians in each segment. Later, we
perform another data association using GMCP to merge the tracklets of one person
found in different video segments into a full trajectory spanning over the course of
the whole video.

2.2.1 Finding Tracklets of Pedestrians in One Video Segment

In order to determine if a group of detections from different video frames belong
to one person, we utilize two features for each detection: Appearance and Spatial
Location. If the visual appearances of a group of detections are similar and the
tracklet they form is smooth, we conclude that they belong to one identity. On
the other hand, if the appearances of some of the detections are not similar to
the rest or if the trajectory they form includes abrupt jumps, we infer that some
of the detections must belong to other pedestrians. In order to perform this task,
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Fig. 3 Block diagram of the data association method. A video is divided into smaller segments,
and the GMCP-based method is employed to find pedestrian tracklets and trajectories

we formulate the input to our data association problem as the graph G D (V,E,W)
where V, E and W denote the set of nodes, edges and edge weight respectively. Each
node represents one human detection. The nodes in V are divided into a number
of disjoint clusters. Each cluster represents one video frame and the nodes therein
represent the detections in that particular frame. An edge weight is defined as the
difference between the color histograms of two detections. Therefore, if two human
detections are visually similar, the weight of the edge between their representing
nodes is expected to be low and vice versa.

The solution to our data association problem is found by identifying one
detection from each frame in a way that all the selected detections belong to
one person. In other words, a feasible solution can be represented by a subset of
the nodes of G which we call Vs. We define the appearance cost of a feasible
solution, ”appearance(Vs) as the summation of all the edge weights between its nodes.
Therefore, by solving the optimization problem arg minV s

�
�appearance .V s/

�
, the

feasible solution with the most consistent appearance features is found.
Generalized Minimum Clique Problem (GMCP) [11] is defined as selecting a

subset of nodes from a superset in a way that the summation of edges weights
between the selected nodes is minimized. The nodes in the superset are divided into
a number of disjoint clusters. Exactly one node from each cluster should be included
in the subset of selected nodes. As can be understood from the definition of GMCP,
solving GMCP for the graph G is equivalent to solving our data association problem
of arg min

V s

�
�appearance .V s/

�
. Therefore, we find the generalized minimum clique

of G in order to find the feasible solution Vs which has the minimum cost.
However, we add a term based on motion to our optimization function in order

to incorporate the smoothness of trajectory in identifying the best feasible solution.
Therefore, the optimal feasible solution, bV s , is found by solving:

bV s D argmin
V s

�
�appearance .V s/ C �motion .V s/

�
:

The motion cost, �motion(Vs), is based on the fact that humans tend to move
smoothly and avoid unnecessary abrupt changes in direction and speed. Since a
video segment usually covers a short temporal span of a few seconds, the motion
of pedestrians therein can be assumed to be near constant velocity. We utilize a
global motion model proposed in [10] in order to assign a cost to a feasible solution
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Fig. 4 (a) Tracklets found in four segments of a sample video sequence. (b) Tracklets are merged
into full trajectories for all the pedestrians

based on motion. The employed motion model assigns a low cost to Vs if the
corresponding tracklet follows constant velocity model and vice versa.

bV s found by solving the aforementioned optimization problem identifies the
detections in different video frames which belong to one person. Therefore, by
finding bV s the tracklet of one pedestrian in one video segment is found. Then,
we exclude the nodes included in bV s from the graph G and solve the optimization
problem again in order to compute the tracklet for the next pedestrian in the segment.
This process continues until the time no or few nodes are left in graph G which
implies all the pedestrians are tracked.

The human detector may fail to detect a pedestrian in one frame. This may
happen due to several reasons such as occlusion, articulated pose or noise. Since
GMCP selects one detection from each frame, it will choose an incorrect node for
the frames where a particular person does not have a detection. Therefore, we add
hypothetical nodes to each cluster which are supposed to represent virtual detections
for the cases where human detector failed. The appearance features and spatial
locations of hypothetical nodes are calculated based on the other detections included
in Vs as explained in [10].

The tracklets found in four segments of a sample video sequence are shown in
Fig. 4a.

2.2.2 Merging Tracklets into Trajectories

The explained process forms the tracklets of pedestrians in each video segment.
In order to form the full trajectory of one person over the course of the whole
video, we need to identify the tracklets which belong to one identity and merge
them into a trajectory. This task in fact requires solving another data association
problem. We employ a method similar to the one explained earlier in order to
perform the association between tracklets. For this purpose, each tracklet in one
segment is represented by one node. The appearance feature of each node is the
average of color histograms of the detections in the corresponding tracklet. The
spatial location of a node is defined as the middle point of the corresponding tracklet.
We form an input graph similar to G and solve the optimization problem explained
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Table 1 Tracking results on town center data set

MOTA MOTP MODP MODA

Benfold et al. [13] 64.9 80.4 80.5 64.8
Zhang et al. [14] 65.7 71.5 71.5 66.1
Pellegrini et al. [15] 63.4 70.7 70.8 64.1
Yamaguchi et al. [16] 63.3 70.9 71.1 64.0
Leal-Taixe et al. [17] 67.3 71.5 71.6 67.6
Ours/GMCP 75.59 71.93 72.01 75.71

Table 2 Tracking results on TUD and PETS 09 sequence

Dataset MOTA MOTP Prec Rec IDsw

TUD-Crossing [18] 84.3 71.0 85.1 98.6 2
TUD-Crossing [19] 85.9 73.0 89.2 98.8 2
TUD-Crossing-Ours 91.63 75.6 98.6 92.83 0
TUD-Stadtmitte [20] 60.5 65.8 – – 7
TUD-Stadtmitte-Ours 77.7 63.4 95.6 81.4 0
PET2009-View 1 [21] 80.00 58.00 81.00 60.00 28
PET2009-View 1 [22] 81.46 58.38 90.66 90.81 19
PET2009-View 1 [20] 81.84 73.93 96.28 85.13 15
PET2009-View 1 [23] 84.77 68.742 92.40 94.03 10
PET2009-View 1-Ours 90.3 69.02 93.64 96.45 8

earlier [11]. Doing that, the tracklets which include visually similar detections and
form a smooth trajectory are associated together. Therefore, the trajectories of all
pedestrians in the whole video are found. Sample result of the merging process
is shown in Fig. 4b. The tracklets shown in Fig. 4a are merged to form the full
trajectories shown in Fig. 4b.

2.2.3 Experimental Results

We evaluated the described data association method on four standard sequences.
Town Center is a sequence of 4,500 frames which shows a semi-crowded scene.
TUD-Crossing and TUD-Stadtmitte are two sequences with 201 and 170 frames
respectively. PETS2009-S2L1 includes 800 frames with a challenging scenario
because of frequent changes in the directions of the pedestrians.

Table 1 shows the tracking results for town center sequence along with com-
parison to the state of the art. MOTA and MOTP represent the accuracy and
precision of tracking based on CLEAR MOT metrics [12]. Prec. and Rec. denote
precision and recall value of assigning detections to their appropriate trajectories
respectively. IDsw denotes number of ID-switches which represents the number
of times a trajectory incorrectly switches between two different identities. Table 2
shows the evaluation results for TUD-Crossing, TUD-Stadtmitte and PET2009-
S2L1 sequences. As can be seen, the presented data association method outperforms
the state of the art on all the sequences.
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The average time of performing data association is 4.4 s per frame using
non-optimized Matlab code. The time complexity can be significantly improved
upon availability of a parallel and optimized implementation in C.

3 Pedestrian Tracking in Videos with High Crowd Density

High density crowded scenes are characterized by a large number of individuals per
unit area. With high density comes a new set of challenges that are not present in
non-crowded scenes. These include a large number of individuals and their complex
interactions, small target size, and difficulty in establishing correspondences due
to proximity among individuals as well as occlusions caused by inter-object
interactions. Furthermore, these challenges are dependent on density, the higher
the crowd density, the more difficult it is to detect and track individuals. Figure 5
provides some examples of dense crowds.

3.1 Tracking in Dense Crowds Using Floor Fields

The first approach [25] we present for tracking high-density crowds leverages on
the observation that the behavior of one individual in a crowded scene is dependent
on its interactions with other individuals as well as structure of the scene. A model
that captures these interactions in space-time can serve as an auxiliary source of
information, thereby constraining the likely movement of individuals in the scene.
Since movement of individuals in a crowd is restricted by other individuals and
scene structure, we can treat the crowd as a collection of mutually interacting
particles. At each point in the scene, we build a matrix of preferences that captures
the likelihood of transition of a particle from one point in the scene to another
point in its spatial neighborhood. Each transition is associated with a probability,
where higher probability higher likelihood for a transition to occur. With inspiration
from evacuation dynamics, where floor fields are manually specified for simulation
purposes, in this approach, we automatically learn and model the interactions among
individuals of a crowd through floor fields and use them for generating better
predictions when establishing correspondences across frames (Fig. 6).

Static Floor Field (SFF) SFF captures the general movement of crowd in the
scene, for instance, the dominant path taken by the crowd towards the preferred exit
location. People tend to form crowds when they share the same goal and this goal-
directed and rational behavior of crowds provides an important cue to the movement
of individuals in the crowd. The process to compute SFF follows: First, optical flow
is computed at each location for the initial Ns frames. The flow vectors are then
averaged over Ns frames providing smoothed-out average flow at each location in
the scene. Next, sink seeking process is performed to discover the sinks – attractive
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Fig. 5 Examples of high-density crowded scenes

Fig. 6 In (a, b), the red dots are the particles on an individual while (c) shows the transition matrix
that is obtained from the floor fields

Fig. 7 Computation of Static Floor Field. (a) Shows the dense optical flow whereas (b) is the
smoothed out flow. (c) Describes the sink-seeking process where red dots are velocity vectors from
(b) for one particle, cyan dots are the neighbors, orange dot is the sink, whereas rectangles are the
sliding windows. (d) Shows the path for one particle originating at yellow and ending at red (the
sink)

regions towards which the individuals in the crowd move. For this, we initialize a
grid of particles over computed flow field. Each particle moves under the influence
of the flow field taking into account the influence from neighboring flow vectors
(Fig. 7).

Xi;tC1DXi;tCVi;t ; Vi;t D
X

j 2neighbors
Vj;tWi;j;t

X
j 2neighbors

Wi;j;t

; Wi;j;tD exp
�
���Vi;t�1�Vj;t

��2
�

where X is the location, V is the velocity, i denotes the individual and j is its
neighbor. After performing sink seeking for each point in the scene, each point in
a path is replaced by the number of steps required to reach the sink. Repeating this
for all paths gives the SFF (shown in Fig. 8d).

Boundary Floor Field (BFF) BFF captures the influence from barriers and
boundaries of the scene. Walls and boundaries tend to repel the individuals away
from them. BFF is computed on NB frames from the future. First, crowd flow is
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Fig. 8 (a) Is the FTLE field computed using [24] and (b) shows the boundaries computed as the
derivative of (a). (c) Is BFF using distance transform on (b). (d) Is SFF obtained after sink-seeking
process

segmented using the segmentation algorithm proposed in [24] where the boundaries
in the flow field are computed as ridges in Finite Time Lyapunov Exponent (FTLE)
field. The segmentation map is then used compute an edge map retaining only
the boundary pixels. Next, for each point in the scene, its distance to the nearest
barrier/boundary is computed using a distance transform thus, giving BFF. The
larger the distance of a point from the boundary, the smaller its influence on an
individual near that point. Figure 8a–c show the computation of BFF.

Dynamic Floor Field (DFF) DFF captures the instantaneous flow around point,
using the ND frames in the future. The idea is similar to SFF but DFF is temporally
localized compared to SFF. Stacking optical flow for ND frames into a 3D volume,
a grid of particles is then overlaid and numerically advected while keeping counts of
how many times a particle jumps from one point to another during advection. This
gives a measure of dynamic interaction between points at each time instant, or DFF.

Tracking The probability for an individual at cell i transitioning to cell j is given
by:

pij D CekDDijekS SijekB BijRij

where Dij, Sij and Bij are the transition probabilities based on the three floor fields
and kD, kS and,kB are the corresponding coefficients while Rij is probability based
on appearance calculated using Normalized Cross Correlation.

Experiments We performed experiments on three marathon sequences for this
approach. Sequence 1 has 492 frames and 199 individuals were selected for
tracking, sequence 2 has 333 frames with 120 individuals, and 50 individuals were
selected for tracking in sequence 3 which has 453 frames. Figure 9a–c shown the
tracks obtained through the proposed approach. We compared this approach against
MeanShift and the ground truth. Figure 9d shows a significant difference in tracking
error between the proposed approach (green) and MeanShift (yellow). Figure 9e
shows the comparison with the ground truth for selected individuals. The y-axis
is the track length from proposed approach (black) and ground truth (green). As
evident from the graph, for the 100 individuals compared, track length is very close
to that of ground truth.
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Fig. 9 (a–c) Tracked individuals in the three sequences. (d) Comparison with Meanshift. (e) Com-
parison with ground truth

3.2 Tracking in Dense Crowds Using Prominence
and Neighborhood Motion Concurrence

The approach presented in previous section depends on learning the crowd flow,
both averaged over time (SFF) as well as dynamic flow (DFF). The floor fields
serve as a strong prior on the motion of individuals at each point in the scene. The
assumption that an individual always behaves in a manner consistent with global
crowd behavior does not always hold. The restriction on the motion of individuals
from time-invariant priors may cause the tracker to fail when the crowd flow is
dynamic, the crowd flow explores new region in the scene not previously learned, or
when there is camera motion which may introduce errors in learning. In this section,
we introduce the second approach [26] to the problem of tracking dense crowds in
an online fashion without using any learning or crowd flow modeling.

Similar to the previous approach, we use Normalized Cross Correlation to obtain
confidence for appearance. Owing to the challenges introduced by the high density
crowds, the simplicity of template based tracker demands more than just appearance
to perform well in crowded scenes. For that, we supplement the tracker with salient
and contextual sources of information that significantly reduce the confusion in
establishing correspondence across frames.
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Fig. 10 Intermediate steps for the method of selecting prominent individuals. Red are the ground
truth (manually selected) prominent individuals whereas green are the rest of the individuals. As
evident, during back assignment, templates belonging to prominent individuals get filled first and
therefore selected

Prominence The first idea in this approach is the prominence of individuals in
terms of appearance. In any crowded scene, appearance of certain individuals will
be different from the rest, that is, such prominent individuals can be tracked with
high confidence.

In order to select prominent individuals, we generate features from the templates
by extracting RGB values at each pixel. Then, we cluster all the features into k
clusters using mixture of Gaussians. The clusters are sorted w.r.t density, where mass
equals the number of points in that cluster and volume is given by (2�)3/2j P j1/2.
Next, all the points in each cluster are assigned back to individual templates starting
from the least dense cluster. This process of back assignment is stopped once T %
of the templates are filled by at least two-thirds. Figure 10 shows the intermediate
results of this procedure.

Neighborhood Motion Concurrence (NMC) The motion of an individual
in dense crowd is similar to its neighbors. This information can be captured
through a motion model that incorporates influence from neighbors. Let xt

i D
Œx Px�T .position; velocity/ ; †t

i represent the state and covariance of an individual
i at time t, A be the 2 � 4 matrix that captures state transition, and @(�,˙) a 2d
Gaussian distribution. NMC for individual i with neighbors j is has two components,
self and neighbor. The two components are given by:

pS D p
�

zt�1
i

ˇ̌
ˇbxt�1

i

�
:@ �

Axt�1
i ; A†t�1

i AT
�

;

pN D
X

j

wj :@
�
Axt�1

ij ; A†t�1
j AT

�
;

wj D exp
�� ��xj � xi

���
X

k2Neighbors

exp
�

� kxk � xik
� :

Figure 11b, c is an illustration depicting NMC. Black Gaussian in Fig. 11 ©
corresponds to self-component of the individual under consideration (black square
in Fig. 11b) while the colored Gaussians show the neighbor component of NMC.
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Fig. 11 Final output of the procedure to detect prominent individuals. (b) Black square is the
individual under consideration while colored squares are its neighbors. Black arrows show the
velocities with which the individuals are moving. (c) Cross hair marks the position of individual
with black square in (b). Colored Gaussians are the corresponding contributions to NMC of
individual under consideration

Fig. 12 Hierarchical update. (a) White square marks a prominent individual whereas red square
marks its non-prominent neighbor. (b, c) Are their appearance surfaces which shows that prominent
individuals with their unique appearance are less likely to be confused with the neighbors and
therefore should be places at the top of tracking hierarchy. (d) Shows the order in which individuals
in this scene were updated (red to yellow)

Hierarchical Update After having defined the notions of prominence and NMC,
the final aspect of this approach is the order in which individuals in a crowded
scene are updated. In Fig. 12, the prominent individual (white square in Fig. 12a)
has appearance surface given in Fig. 12b, whereas its neighbor (red square in
Fig. 12a) has the appearance surface given in Fig. 8c. It is evident that prominent
individuals have less confusion with their neighbors and they should be placed on
top of the tracking hierarchy. The algorithm, therefore, starts by updating prominent
individuals, followed by their neighbors and continues till all the position of all
individuals is updated. The position of non-prominent individuals is updated using
NMC.

Results We compared approach presented in this section with MeanShift, Nor-
malized Cross Correlation tracker, MeanShift Belief Propagation as well as the
approach based on floor fields presented in previous section. The experiments
were performed on nine sequences of medium to high density. In Table 3, various
characteristics of the nine sequences such as number of frames, number individuals
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Table 3 Quantitative comparison for the two approaches against Normalized Cross Correlation,
MeanShift and MeanShift Belief Propagation for nine crowded sequences of medium to high
density

Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 Seq 6 Seq 7 Seq 8 Seq 9

# Frames 840 134 144 492 464 333 494 126 249
# People 152 235 175 747 171 600 73 58 57
Template size 14 16 14 16 8 10 10 10 14
NCC 49 % 85 % 57 % 52 % 33 % 52 % 50 % 86 % 35 %
MeanShift 19 % 67 % 17 % 8 % 7 % 36 % 28 % 43 % 11 %
MSBP 57 % 97 % 80 % 69 % 62 % 81 % 68 % 94 % 45 %
Floor fields 75 % 99 % 85 % 84 % 66 % 92 % 67 % 97 % 57 %
Prominence/NMC 80 % 100 % 93 % 94 % 72 % 94 % 67 % 92 % 63 %

Fig. 13 This figure provides the comparison between the two approaches presented. Green is the
ground truth trajectory, yellow is from first approach and red is from the second approach

and template size used for tracking are given in first three rows. Tracking accuracy
is reported for the five methods and nine sequences as a percentage of number of
points (in all trajectories) that lie within 15 pixel threshold.

Qualitative comparison between the two approaches is given in Fig. 13. The three
cases are presented where the second approach (red) performs better than floor fields
(yellow). Ground truth trajectory is drawn in green.

4 Conclusion

Automatic tracking of pedestrians is essential for computerized analysis of surveil-
lance videos. In this keynote paper, we present two state of the art tracking methods
for videos with low and high density of crowds. The method for low density
scenarios first detects pedestrians in each video frame using a part-based human
detector. Then, a data association method based on Generalized Graphs is employed
for tracking each individual in the whole video. For videos with high crowd density,
two approaches are presented. The first one is based on using the scene structure
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based force model, while the second approach utilizes contextual information. Our
Experiments show the presented frameworks outperform the currently available
methods on several benchmarks.
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