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Abstract Fetal glucocorticoid exposure is a key mechanism involved in adverse

programming outcomes in the adult. Impairment of fetal growth has predominantly

been attributed to direct effects of glucocorticoids on the fetus, prematurely shifting

tissue development from a proliferative to a more functionally mature state. How-

ever, fetal growth is dependent on a complex interplay of maternal, placental, and

fetal endocrine signals, and glucocorticoid-mediated fetal growth retardation is

likely also to relate to disturbances in placental growth and function. Regulation

of fetal glucocorticoid exposure is achieved by the placental glucocorticoid barrier,

which involves glucocorticoid inactivation within the labyrinth zone of the murine

placenta by 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Overexposure
to glucocorticoids or depletion of 11β-HSD2 has a dramatic effect on placental

development and function, with a reduction in capillary networks and alterations in

nutrient transport. This work highlights the finding that adverse programming

effects of glucocorticoids are not exclusively due to direct actions on the fetus

but are also a consequence of changes in placental development and function.

Developmental Programming

Low birth-weight and other indicators of reduced fetal growth are associated with

adult cardio-metabolic and psychiatric disease. This association is the result of

“developmental programming,” whereby a stimulus during a sensitive period of

early development exerts permanent effects on structure, physiology or metabolism

(Cottrell and Seckl 2009). The environmental mechanisms of developmental
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programming identified so far can be simplified into two major groups: fetal stress

exposure and maternal nutrition, although changes in glucocorticoids appear to

underpin the programming effects of both (Langley-Evans et al. 1996; Gardner

et al. 2007; Harris and Seckl 2010). In many animals, including mice and humans,

there is an increased exposure of the developing fetus to glucocorticoids late in

pregnancy, as they have a crucial role in the structural development and functional

maturation of fetal organs. However, glucocorticoid overexposure of the fetus can

be detrimental, as glucocorticoids cause a shift from cell proliferation to differen-

tiation. Therefore, exposure to excess glucocorticoids in utero alters fetal organ

growth and maturation patterns, which can result in adverse consequences in later

life. In humans, the actions of glucocorticoids are exploited for preterm births to

advance fetal lung maturation (Roberts and Dalziel 2006), although this may set the

stage for adverse effects in later life (Benediktsson et al. 1993; Brown et al. 1996a;

Levitt et al. 1996; Lindsay et al. 1996; Dodic et al. 1998, 1999, 2002a, b; Gatford

et al. 2000; Langdown and Sugden 2001; Jensen et al. 2002).

The Feto-Placental Glucocorticoid Barrier: 11β-HSD2

As glucocorticoids are highly lipophilic, they readily diffuse across biological

membranes and, therefore, control of intracellular levels of bioactive glucocorticoid

is critical. This control arises from the enzyme 11β-hydroxysteroid dehydrogenase

(11β-HSD), which interconverts the active glucocorticoids cortisol and corticoste-

rone with their biologically inactive forms, cortisone and 11-dehydrocorticosterone

(DHC), respectively. There are two distinct forms of 11β-HSD: 11β-HSD1, which
is a low affinity, NADP(H)-dependent bidirectional enzyme, although in vivo it

appears to act predominantly as an 11β-oxoreductase to enhance glucocorticoid

activity; and 11β-HSD2, which is a high affinity NAD-dependent enzyme that

exhibits exclusive 11β-dehydrogenase activity (conversion of corticosterone to

DHC) to reduce glucocorticoid potency. 11β-HSD2 is highly expressed in

aldosterone-selective target tissues such as the distal nephron (Roland

et al. 1995), colon (Whorwood et al. 1994), salivary glands (Roland and Funder

1996) and skin (Kenouch et al. 1994), thus serving to confer aldosterone specificity

on the mineralocorticoid receptor (MR) to which both corticosterone and aldoste-

rone can bind. Importantly, 11β-HSD2 does not always colocalize with MR, such as

within placental and fetal tissues, and so its function has expanded beyond involve-

ment in electrolyte transport to include regulation of corticosteroid action.

During much of normal pregnancy, circulating levels of glucocorticoids in the

fetus are substantially lower than in the mother. This difference arises in part from

the high expression of 11β-HSD2 in both the placenta and fetus, and this 11β-HSD2
expression serves as a “glucocorticoid barrier,” enabling tight regulation of

materno-fetal glucocorticoid transfer. Within the placenta, 11β-HSD2 is highly

expressed at the interface between maternal and fetal circulations, in the syncytio-

trophoblast in humans (Brown et al. 1996a,b) and the labyrinthine zone in rodents
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(Waddell et al. 1998). In the rodent, 11β-HSD2 expression within the labyrinthine

zone of the placenta falls during late gestation, which may facilitate glucocorticoid

passage to the fetus and thus lung maturation (Brown et al. 1996a, b; Burton

et al. 1996).

The high expression of 11β-HSD2 in placenta and fetal tissues and the growth-

retarding and maturational effects of glucocorticoids upon the fetus (Meyer 1983)

have lead to the proposal that variations in feto-placental 11β-HSD2 may underlie

developmental programming. Thus, placental 11β-HSD2 activity correlates with

birth parameters in rodents and, less consistently, in humans (Benediktsson

et al. 1993; Stewart et al. 1995; Murphy et al. 2002), suggesting that normal

variation in fetal exposure to maternal glucocorticoids has an impact on fetal

growth. Numerous studies have shown that inhibition, deficiency or by-pass (poor

substrate steroids such as dexamethasone or betamethasone) of 11β-HSD2 in

gestation in rodents and humans associates with alterations in pregnancy duration,

birth weight and programmed outcomes in the offspring (Benediktsson et al. 1993;

Burton and Waddell 1994; Mune et al. 1995; Lindsay et al. 1996; Dave-Sharma

et al. 1998; Nyirenda et al. 1998; Smith and Waddell 2000; Welberg et al. 2000,

2001; O’Regan et al. 2004; Holmes et al. 2006; Wyrwoll et al. 2006, 2007;

Newnham and Jobe 2009). Furthermore, maternal stress in rodents during preg-

nancy has been associated with decreased expression of placental 11β-HSD2
(Mairesse et al. 2007; Lucassen et al. 2009; Pankevich et al. 2009). Interestingly,

programming models involving maternal low-protein diet show an increase in

maternal and fetal glucocorticoid levels (Lesage et al. 2001; Guzmán et al. 2006)

in addition to a decrease in placental 11β-HSD2 activity and/or expression

(Langley-Evans et al. 1996; Lesage et al. 2001; Stocker et al. 2004). Moreover,

dexamethasone administration during pregnancy decreases food intake (Woods and

Weeks 2005). Consequently, there seems to be considerable overlap in mechanisms

by which maternal undernutrition and fetal glucocorticoid overexposure elicit

developmental programming.

Placental 11β-HSD2 Is More than Just a Glucocorticoid

Barrier

As described above, placental 11β-HSD2 may underpin aspects of developmental

programming by allowing excess glucocorticoid passage from the “high” gluco-

corticoid maternal circulation to the “low” glucocorticoid fetal environment

(Edwards et al. 1993), thus impairing fetal growth by direct effects of glucocorti-

coids on the fetus. Fetal growth is, however, dependent on a complex array of

maternal, placental and fetal endocrine signals, and glucocorticoid-mediated fetal

growth retardation must also relate, at least in part, to disturbances in placental

growth and function. Indeed, treatment of rats with glucocorticoids such as dexa-

methasone, which are poor substrates for 11β-HSD2, restricts placental vascular
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development, via inhibition of the endothelial cell-specific mitogen, vascular endo-

thelial growth factor-A (VEGF-A), and peroxisome proliferators-activated receptor

gamma (PPARγ), which regulates VEGF-A expression (Hewitt et al. 2006a,b).

Impaired vascular arborization within key areas of the placenta that are involved in

nutrient exchange between the maternal and fetal circulations is likely to have

effects on placental function. However, glucocorticoid effects on placental function

have been discordant. Thus, chronic restraint stress during late gestation in rats

reduces placental 11ß-HSD2 expression and expression of GLUT1, with an asso-

ciated reduction in fetal plasma glucose (Mairesse et al. 2007), whereas late

gestation dexamethasone increases placental GLUT1 and 3 expression (Langdown

and Sugden 2001), and another synthetic glucocorticoid, triamcinolone, down-

regulates placental GLUT1 and 3 protein and mRNA (Hahn et al. 1999). Any

physiological relevance of these manipulations is unresolved. Furthermore, while

system A amino acid transporter (SNAT) activity and expression are upregulated by

cortisol exposure in BeWo cells (Jones et al. 2006), they are unaltered in human

placental villous fragments exposed to cortisol (Jansson et al. 2003; Ericsson

et al. 2005). Importantly, it is unknown whether the above observations of altered

placental function in whole animal experiments are a direct effect of glucocorti-

coids on the placenta or occur via indirect effects on the dam. Thus, recent work

utilizing 11β-HSD2+/� mice sought to demonstrate a direct effect of increased

glucocorticoid exposure on placental function. This model of 11β-HSD2 heterozy-

gous matings, whereby 11β-HSD2+/+, +/� and �/� fetuses are generated by the same

mother, clearly demonstrates a direct effect of increased glucocorticoid exposure on

placental development and function.

Absence of Placental 11β-HSD2 Alters Placental Function

and Development

Depletion of 11β-HSD2 in mice (generated by 11β-HSD2+/� matings) has been

recently shown to compromise not only fetal but also placental growth (Wyrwoll

et al. 2009) and to increase placental and fetal exposure to glucocorticoids (Cottrell

et al. 2012). In this model, as 11β-HSD2 is expressed in the labyrinth zone of the

placenta (which originates from fetal tissue), the genotype of the fetus is also the

genotype of the placenta with regard to 11β-HSD2. At E15, despite a reduction in

placental size, fetal weight is maintained, generating an increase in fetal/placental

ratio that is indicative of enhanced placental function (Wyrwoll et al. 2009). Indeed,

placental amino acid transport of 11β -HSD2�/� fetuses was upregulated at E15

alongside increased expression of the amino acid transporters Slc38a2 and Slc38a4
(Wyrwoll et al. 2009). Later in pregnancy, at E18, the smaller placenta of the

11β-HSD2�/� fetus appears unable to maintain normal fetal growth, and fetal

weight falls behind control littermates (Wyrwoll et al. 2009). At this time, the

transplacental transfer of glucose and plasma glucose levels was reduced in
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11β-HSD2�/� fetuses (Wyrwoll et al. 2009). Glucose is a primary nutrient required

for fetal development and is transported across the placenta by facilitated diffusion,

primarily via GLUT1 and GLUT3 (Uldry and Thorens 2004). The reduced Slc2a3
expression we observed in the labyrinth zone of placentas from 11β-HSD2�/�

fetuses most likely accounts for the reduction in the transplacental transfer of

glucose.

This altered placental function is further associated with reduced capillary

networks (Wyrwoll et al. 2009). Thus, 11β-HSD2�/� placentas have significantly

reduced fetal capillary development within the labyrinth zone, the zone regulating

nutrient exchange, accompanied by a decline in VEGF-A and PPARγ mRNA

expression, which are factors known to regulate angiogenesis (Wyrwoll

et al. 2009). The decrease in fetal capillary vascularity in the 11β-HSD2�/�

placentas may have implications for blood flow within the placenta and the umbil-

ical cord. Indeed, ultrasound measures of blood flow have revealed decreased blood

flow in the 11β-HSD2�/� placenta towards the end of gestation (Wyrwoll,

unpublished data). Furthermore, umbilical vein flow in 11β-HSD2�/� fetuses

does not undergo the normal gestational increase that occurs in wild-type litter-

mates (Wyrwoll, unpublished data).

Ultrasound measures have also revealed altered cardiac function in 11β-HSD2�/�

fetuses. Thus, the normal increase in E/A wave ratio [the E wave represents passive

filling of the left ventricle (LV) and the A wave represents LV filling due to

contraction of the atria] over gestation as the fetal heart becomes more compliant is

not apparent in 11β-HSD2�/� hearts (Wyrwoll, unpublished data). Furthermore, the

resistance index [RI ¼ systole/(systole + diastole); systole being blood flow during

maximal contraction of the heart and diastole being maximal relaxation] in the

umbilical artery does not undergo the normal gestational decline as blood flow

from the fetus to placenta increases (Wyrwoll, unpublished data).

These novel ultrasound data have lead to the proposal that impaired placental

hemodynamics in the 11β-HSD2�/� fetus may have direct implications for fetal

cardiac function. As the site of gaseous exchange in the fetus is the placenta, fetal

circulation is distinct from the postnatal period. Thus oxygenated blood from the

placenta travels through the umbilical vein and enters the fetal circulation either

through the ductus venosus (a fetal shunt that bypasses the hepatic circulation such

that blood is directly delivered into the inferior vena cava) or, after perfusing the

liver, enters the inferior vena cava via the hepatic veins. Once circulated, blood

returns to the placenta via the umbilical artery. Therefore, given that both the fetal

heart and liver are the immediate organs exposed to blood leaving the placenta, the

placenta is uniquely placed to have a direct influence on these particular organs.

Indeed, epidemiological studies have revealed associations between placental size

and the shape and incidence of cardiovascular disease in later life (Barker

et al. 2010).

However, the results discussed above provide only indirect evidence of changes

in placental blood flow and vascularity impacting on fetal heart development and

function. What is required to provide a conclusive link in this relationship is to

produce an amelioration of the compromised fetal capillary development in
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11β-HSD2�/� placentas and to then investigate how this alters placental and fetal

hemodynamics. Indeed, restoration of angiogenic balance in mouse models of

preeclampsia has striking effects. Thus, administration of pravastatin (one of a

class of lipid-lowering compounds, the HMG-CoA reductase inhibitors, that reduce

cholesterol biosynthesis) in various mouse models of preeclampsia appears to

ameliorate preeclamptic pathology (Ahmed et al. 2010 , Kumasawa et al. 2011),

The precise mechanisms by which this improvement transpires is unclear but there

was marked restoration of vasculogenesis in the preeclamptic placentas which has

been variously attributed to stimulation of placental VEGF release (Ahmed

et al. 2010) or placental growth factor (Kumasawa et al. 2011). The previous finding

that VEGF is decreased in the placentas of 11β-HSD2�/� fetuses and thus presum-

ably accounts for the observed decline in normal fetal capillary development is

notable (Wyrwoll et al. 2009).

Therefore, recent work has sought to establish the effects of pravastatin on

placental blood flow and fetal heart function of 11β-HSD2�/� fetuses. Administra-

tion of pravastatin to 11β-HSD2+/� dams from E6 of gestation onwards had marked

effects on placental blood flow and fetal heart measures. Thus, both placental blood

flow and the fetal cardiac E/A ratio of 11β-HSD2�/� fetuses remained comparable

to those in wild-type fetuses in the pravastatin-treated pregnancies (Wyrwoll,

unpublished data). Strikingly, gene expression of placental VEGF-A is upregulated

in the pravastatin-treated pregnancies, which would presumably enhance angiogen-

esis within the placenta, with consequent ramifications for blood flow (Wyrwoll,

unpublished data). Characterization of vascularity within these placentas is cur-

rently being undertaken to establish if this is indeed the case.

Optimal Placental Function, Optimal Health in Later Life?

The work conducted over the last few years on placental function and development

of 11β-HSD2�/� fetuses provides a convincing argument that, while maternal

glucocorticoids could play a direct role in programming the fetus, placental devel-

opment and function also play key roles. Thus, the observations of altered placental

transport of nutrients may have important ramifications for “setting” fetal metab-

olism and, thus, adult health in later life. Furthermore, the possibility that placental

hemodynamics have the potential to alter fetal cardiac development and function

opens up a novel research avenue. Additionally, placental function may shape

health outcomes beyond cardio-metabolic disease. Indeed, there is growing recog-

nition that the placenta generates hormones that are critical for neural function prior

to the time such hormones are produced by the fetal brain itself, raising the

possibility that the placenta may have a significant role in fetal neurodevelopment

(Bonnin et al. 2011). Therefore, the placenta is key in influencing fetal development

and shaping health outcomes in later life.
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