
Preface

This book offers a systematic and thorough examination of theoretical and compu-
tational aspects of the modern mimetic finite difference (MFD) method. The MFD
method preserves or mimics underlying properties of physical and mathematical mod-
els, thereby improving the fidelity and predictive capability of computer simulations.
We focus here on the numerical solution of elliptic partial differential equation (PDEs)
on unstructured polygonal and polyhedral meshes for which the MFD method has
proven to be very successful in the last five decades.

The book covers advanced research topics and issues. Most of the presented ma-
terial is the result of our research work that has been published in the last decade. Our
intention is to offer a deep introduction to the major aspects of the MFD method such
as the design principles for the development of new schemes, tools for the conver-
gence analysis, and matrix formulas ready for a code implementation, to the widest
possible audience. Nonetheless, to appreciate our effort a minimum background is
required in the linear algebra, functional analysis, and numerical analysis of PDEs.
It will be helpful for the reader to have some familiarity with the classical lowest-
order finite element schemes, such as the primal linear and mixed Raviart-Thomas
methods, the classical finite volume and finite difference schemes.

The book is structured in three parts with four chapters each.
The MFD method has a strong theoretical foundation, which is reviewed in Part I,

entitled Foundation. In Chap. 1, after a short motivation for using the MFD method
in applications, we give an historical introduction to the development of the mimetic
technology and an overview of all mathematical models considered in the book. We
present their strong and weak formulations and summarize results concerning the
existence and regularity of weak solutions. We also introduce the notion of shape-
regular polyhedral and polygonal meshes that are extensively used throughout the
book. In Sect.1.3 we illustrate a few basic design principles of the mimetic discretiza-
tion method on the simplest one-dimensional Poisson equation. This section is par-
ticularly suitable for readers not familiar with the mimetic technology.

The theoretical foundation of the existing compatible discretization methods dates
back to the fundamental work of Withney on geometric integration. No surprise that
the MFD method is related to some of the most basic concepts of discrete differential
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forms such as the chain-cochain duality and discrete Stokes theorems. The mimetic
schemes are derived in part by mimicking the Stokes theorems in a discrete setting.
The further development of this concept is in Chap. 2, where a discrete vector and ten-
sor calculus (DVTC), the core of the MFD method that separates it from finite volume
methods, is introduced. Using fundamental physical principles, we formulate natural
discrete analogues of the first-order differential operators divergence, gradient, and
curl. Compatible adjoint discrete operators are defined via duality relationships, more
precisely, via discrete integration by parts formulas. The derivation of these operators
uses the notion of mimetic inner products that approximate L2 products of scalar or
vector functions.

The practical construction of accurate inner products on unstructured polygonal
and polyhedral meshes requires a set of new theoretical tools that are introduced in
Chap. 3. We introduce the stability and consistency conditions that play the funda-
mental role in proving well-posedness and accuracy of the mimetic discretizations.
We also connect the mimetic inner products with reconstruction operators that make a
useful theoretical tool but are never built in practice. This chapter highlights a unique
feature of the MFD method. On polyhedral (including hexahedral and sometimes
simplicial) meshes, it produces a family of schemes with equivalent properties such
as the stencil size and convergence rate.

In Chap. 4 we extend the mimetic discretization technology to general bilinear
forms, which allows us to apply the MFD method to a wider range of problems. We
moreover present a different approach to mimetic discretizations that takes the steps
from the weak formulation of the problem, rather than the strong one. Although this
approach turns out to be often equivalent to the construction presented in the previ-
ous chapters, this is not always the case and it is very useful to have a clear picture
of both methodologies. Furthermore, in Chap. 4 we focus on the detailed analysis of
the stability and consistency conditions. We show again that the MFD method pro-
vides a family of schemes that share some important properties, e.g., accuracy and
stability, so that the convergence analysis can be carried out simultaneously for the
entire family.

Part II is entitled Mimetic Discretization of Basic PDEs. It explains how the MFD
method can be applied for solving the steady-state diffusion equation in the primal
and mixed formulations, Maxwell’s equations, and the steady Stokes equations. We
extended the construction of mimetic inner products (in three discrete spaces) to the
case of tensorial coefficients. We also provide theoretical construction of various
reconstruction operators, prove stability results, and derive a priori and a posteriori
error estimates in mesh-dependent norms.

A useful but also limited viewpoint is to consider the MFD method as an exten-
sion of some classical discretization methods to polygonal and polyhedral meshes.
Indeed, the family of low-order mimetic schemes contains many well-known finite
volume, finite difference and finite elements schemes. On special regular grids (or-
thogonal Cartesian grids or logically rectangular grids), we recover such schemes as
the particular members of the mimetic family. However, the mimetic schemes work
perfectly on unstructured polygonal and polyhedral meshes, with arbitrarily-shaped
cells that may be even non-convex and degenerate.
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In Chap. 5, we apply the MFD method for solving the steady-state diffusion equa-
tion in a mixed form and show how this method generalizes the lowest-order Raviart-
Thomas and BDM finite element methods on simplicial meshes to unstructured polyg-
onal and polyhedral meshes in two and three spatial dimensions. We also investigate
additional important issues such as the super convergence, solution post-processing,
a-posteriori error estimation and adaptivity.

In Chap. 6, we apply the MFD method for solving the steady-state diffusion equa-
tion in a primal form and show how this method generalizes the linear Galerkin meth-
od on simplicial meshes to unstructured polygonal and polyhedral meshes in two and
three spatial dimensions. On meshes of simplices, the nodal mimetic formulation of
coincides with the linear Galerkin finite element method. On rectangular meshes,
particular members of the mimetic family coincide with a number of classical finite
difference schemes (5-point Laplacian, 9-point Laplacian, Q1 finite element method).
For two-dimensional problems, we also describe and analyze arbitrary-order mimetic
schemes. Finally, we consider the a-posteriori error estimation and adaptivity for the
low order mimetic schemes.

In Chap. 7, we apply the MFD for two time-dependent problems governed by
Maxwell’s equations and the magnetostatic problem. We discuss the conservation
of energy in the mimetic discretizations and provide formulas ready for the code
implementation. The convergence analysis of the MFD method for the magnetostatic
problem is a work in progress and therefore is incomplete.

In Chap. 8, we derive and analyze mimetic schemes for the steady-state Stokes
equations. Analysis of the inf-sup stability condition imposes constraints on the dis-
crete spaces for the velocity and pressure. We first develop a mimetic method that
takes inspiration from classical finite elements and show the good behavior of such
scheme. Afterwards, we use the flexibility of the mimetic technology to build a more
computationally efficient method, that makes use of much less degrees of freedom
and still satisfies the constraints above.

We were asked frequently by our colleagues about the applicability of the MFD
method to a wider class of problem. The Part III entitled Further Developments de-
scribes how the mimetic technology contributes to solving challenging problems
emerging in modeling complex physical processes. This includes solution of non-
linear PDEs, preservation of maximum principles, and stability and accuracy of dis-
cretizations on deforming (e.g., Lagrangian) meshes.

Chapter 9 is devoted to the problems of structural mechanics. We first present an
MFD method for the linear elasticity problem, considering both the displacement-
pressure and stress-displacement formulations. Afterwards, we present a mimetic
scheme for the Reissner-Mindlin plate bending problem, which uses deflection and
rotation as unknown variables. Our additional interest of these problems is related to
the fact that, in order to derive and analyze the numerical schemes, a large number
of mimetic operators and discrete spaces must be considered at once.

In Chap. 10, we present the MFD method for the convection-diffusion equation,
and the obstacle problem. We also consider the case of high Peclet numbers charac-
terizing a convection-dominated regime where the continuum solution may display
strong parabolic and exponential boundary layers.
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In Chap. 11, we consider a new emerging research direction dubbed m-adaptation,
which stands for mimetic adaptation. The m-adaptation allows us to select an opti-
mal scheme from the family of mimetic schemes in accordance with some problem-
dependent criteria that may include a discrete maximum principle (DMP), reduction
of a numerical dispersion, and boosting performance of algebraic solvers. Even if the
m-adaptation is still under development, a few interesting results are already available
for the derivation of positive schemes or schemes satisfying a DMP. In this chapter,
we analyze the family of the lowest-order mimetic schemes for the diffusion equation
in the mixed and primal forms. We formulate the constructive sufficient conditions
for the existence of a subfamily of mimetic scheme that satisfy the DMP.

In Chap. 12, we extend the MFD method to generalized polyhedral meshes with
cells featuring non-planar faces. Such cells appear in Lagrangian simulations where
the computational mesh is moved and deformed with the fluid. We use again the
flexibility of the mimetic construction to add velocity unknowns only on strongly
curved mesh faces in order to recover the optimal convergence rate.

Our final note is about the computational aspects of the mimetic technology. In
each of the Chaps. 5–12, one or more sections are dedicated to the implementation
details. The reader will find explicit formulas for the local mass and stiffness matrices.
Additional interesting implementation details can be found in Chap. 4. Once the local
matrices are coded, building the global mass or stiffness matrix can be done using
the conventional assembly process, like in the finite element method.
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