
Chapter 2
Resource Allocation in Distributed Control
and Embedded Systems

Traditionally, control design problems are decoupled from software design and im-
plementation considerations. Such a separation allowed the control and computer
science communities to focus on specific problems independently, and led to the
development that we are familiar with nowadays. However, as explained in Årzèn
et al. [13], this separation relies on the fact that these two fields use very simplified
models of their interface with each other. In fact, control designers disregard the
characteristics of the implementation and the available computational and commu-
nication resources. On the other hand, real-time designers see the control loop as a
periodic task with a hard deadline, that have sometimes to fulfill data dependency
constraints (especially when the sensing and actuation are distant). Recently, re-
searchers from these two communities have shown that if more elaborate models are
used, significant improvements in terms of implementation efficiency and quality of
control may be achieved. This integrative co-design approach is central to this book.

This chapter is organized into two parts. The first part presents the state of the
art of the real-time scheduling theory, focusing on the most used results in dis-
tributed control and embedded system (DCES) applications. We start by present-
ing real-time single-processor scheduling problems. Next, we focus on the problem
of ensuring real-time networked communications. We emphasize different methods
for managing the access concurrency having a determinant impact on the guarantee
of deterministic real-time communications. Finally, an overview of the problem of
guaranteeing end-to-end real-time constraints in distributed systems is given. In the
second part, we present a state of the art of the new approaches, that are based on
more elaborate models, and that take into account both the dynamic nature of the
controlled systems as well as some characteristics of their implementation. Various
problems and models were discussed in the literature. We propose a classification
of these different approaches and illustrate the different problems and models that
were addressed.

2.1 Real-Time Scheduling Theory
As mentioned above, the objectives of this section concern different tools and mech-
anisms which handle the concurrency in real-time systems at the processor level as

A. Çela et al., Optimal Design of Distributed Control and Embedded Systems,
Communications and Control Engineering, DOI 10.1007/978-3-319-02729-6_2,
© Springer International Publishing Switzerland 2014

9

http://dx.doi.org/10.1007/978-3-319-02729-6_2

10 2 Resource Allocation in Distributed Control and Embedded Systems

well as at the distributed communication architecture. We focus on the models and
tools related to control applications without claiming to be exhaustive. Throughout
this section, we give some references that may help for a deeper and better under-
standing of the models to be used in the particular applications we may be faced
with.

2.1.1 Real-Time Single-Processor Scheduling

This subsection is devoted to real-time scheduling of multiple task on a single pro-
cessor. The objective is to obtain a calculation model related to concurrent execution
of a given number of tasks. For more details, please refer to two excellent books of
Buttazzo [48] and Cottet [67]. In real-time processing systems [48, 67], the proces-
sor is a resource that is shared between various concurrent tasks. A task represents a
sequence of instructions that are intended to be executed by the processor. The ser-
vice that is delivered by a task may be performed several times during the lifetime of
the application. For such reasons, a task may be “instantiated” several times in the
form of jobs or task instances. Jobs or task instances represent the execution flow
that corresponds to the effective execution of the task code.

2.1.1.1 Events Characterizing the Lifetime of a Job

A job or task instance is characterized by the following temporal parameters:

• release time: the time instant at which the scheduler is requested to execute the
job, which have just become ready to run;

• start time: the time instant at which the job starts its execution;
• preemption times: time instants when the scheduler suspends the execution of the

job on behalf of other jobs having a more important priority;
• resumption times: time instants at which the execution of the job is resumed after

a preceding preemption;
• completion time: time instant at which the job finishes its execution;
• its absolute deadline: time instant before which the job should have terminated.

Figure 2.1 illustrates the single processor scheduling of three jobs j1, j2 and j3.
More precisely, in this figure:

• instants t1, t2 and t3 represent the respective release time instants (depicted by up
arrows) of jobs j1, j2 and j3,

• instants t1, t2 and t6 represent the respective start times of jobs j1, j2 and j3,
• instants t2 and t4 represent respectively preemption and resumption times of

job j1,
• instants t6, t4 and t7 represent the respective completion time instants of jobs j1,

j2 and j3,
• instants t5 and t8 represent the respective absolute deadlines (depicted by down

arrows) of jobs j1 and of j2 and j3.

2.1 Real-Time Scheduling Theory 11

Fig. 2.1 Single-processor scheduling of three tasks

2.1.1.2 Task Model

A real-time task τ (i) is characterized by:

• worst case execution time (WCET) c(i);
• activation law of its jobs: the jobs of a given task may be activated periodically

with a period T (i), sporadically with a minimum inter-arrival time or aperiodi-
cally if no temporal constraints are imposed on the activation of its jobs;

• relative deadline D(i): the time interval between the release time of the job and
its absolute deadline.

A real-time task is called periodic, sporadic or aperiodic according to the activation
law of its jobs [48, 67].

2.1.1.3 Scheduling Algorithms Classification

This paragraph describes the commonly used terminology for classifying the exist-
ing scheduling algorithms [48, 67].

• Preemptive/non-preemptive: A scheduler is called preemptive if it is able to sus-
pend a running task on behalf of other tasks that have more important priorities. It
is called non-preemptive in the opposite case. Preemption is supported by the ma-
jority of real-time operating systems. In the opposite, the scheduling of packets
in networks is always non-preemptive.

• Off-line/on-line: In off-line scheduling algorithms, the sequencing of the tasks to
be executed is described at design time, as a schedule or execution plan. Con-
sequently, the scheduler is simply a sequencer, that executes the different tasks
according to the schedule that was pre-computed off-line. The execution order
of the different tasks is then identical to that specified in the execution plan. In
practice, the schedule is executed in a repetitive way. The period of repetition
is called major cycle or hyperperiod. In general, the schedule describes the start

12 2 Resource Allocation in Distributed Control and Embedded Systems

time instants of the different tasks instances, and possibly, their preemption and
resumption time instants, which are expressed as a function of an elementary time
unit, called minor cycle of the schedule. In the opposite, in on-line scheduling al-
gorithms, the choice of what task to execute is determined at run-time by the
scheduler. When activated, the scheduler performs a given processing in order to
determine the next tasks to execute. In most cases, this processing amounts to
the comparison of the priorities of the ready tasks. These priorities may be fixed
in the case of fixed-priority scheduling algorithms or dynamic (i.e., adjustable at
run-time) in the case of dynamic scheduling algorithms.

2.1.1.4 Schedulability Analysis

Real-time scheduling theory [48, 67] aims at providing the sufficient conditions
(and preferably the necessary and sufficient conditions) guaranteeing that a task set
(which is defined by a given model) will respect its real-time constraints (which are
defined by the assigned deadlines). An important theoretical tool that it provides is
the schedulability analysis. Schedulability analysis is performed off-line, in order
to ensure that the scheduling of a task set (which satisfies a given model), using a
given scheduling algorithm, ensures the respect of the tasks deadlines. In the se-
quel, we present the fundamental results that are related to the preemptive real-time
scheduling of periodic tasks whose relative deadlines are equal to their periods, by
fixed-priority and dynamic-priority scheduling algorithms.

Consider a task set containing N independent tasks τ = (τ (1), . . . , τ (N)). Each
task τ (i) is characterized by its worst-case execution time (WCET) c(i), its period
T (i) and its relative deadline D(i) = T (i). The task set τ is said to be schedulable
by a given scheduling algorithm if all the jobs of all the tasks forming τ finish their
execution before their absolute deadlines.

• Fixed-priority scheduling: In this scheduling policy, a fixed priority p(i) is as-
signed to each task τ (i). At each instant, the scheduler executes the ready task
whose priority is the most important. Since preemption is authorized, if during
the execution of a given task τ (i), another task τ (j) that has a more important
priority becomes ready, then task τ (i) is preempted and the processor is allocated
to task τ (j). In 1973, Liu and Layland [156] have shown that the optimal priority
assignment is given by the rate monotonic (RM) rule (i.e., the smaller the pe-
riod is, the higher is the assigned priority). Thus, the rate monotonic scheduling
algorithm is a fixed-priority scheduling algorithm where priorities are assigned
according to the rate monotonic rule. The optimality of a real-time scheduling al-
gorithm was defined by Liu and Layland by its ability to schedule a given task set,
which verifies a given task model, such that the predefined real-time constraints
are met. A fixed-priority (resp. dynamic-priority) scheduling algorithm is optimal
(for a given task model) in the sense that any task set (satisfying the task model)
that is not schedulable under this algorithm will not be schedulable under any
other fixed-priority (resp. dynamic-priority) scheduling algorithm. A sufficient

2.1 Real-Time Scheduling Theory 13

schedulability condition using RM is

U =
N∑

i=1

c(i)

T (i)
≤ N

(
21/N − 1

)
.

The necessary and sufficient schedulability condition by RM requires the analysis
of the maximum response time R(i) of each task (i.e., the maximum among the
response times of its jobs) (see, for instance, Joseph and Pandya [135]). The
response time of a job is defined by the duration between its release time and its
completion time. R(i) is given by:

R(i) = c(i) +
∑

j∈hp(i)

⌈
R(i)

T (j)

⌉
c(j).

where hp(i) is the set of tasks which have priority over τ (i). The task set τ is
schedulable by RM if and only if R(i) ≤ D(i), for all i ∈ {1, . . . ,N }.

• Dynamic-priority scheduling: In this scheduling policy, the priority p(i) that is as-
signed to the task τ (i) may vary over time. Liu and Layland [156] proved that the
optimal dynamic priority assignment policy consists in assigning the most impor-
tant priority to the task that is the closest to its deadline. This priority assignment
rule is called Earliest Deadline First (EDF). The necessary and sufficient schedu-
lability condition under EDF is simpler than that established for RM and is given
by:

U =
N∑

i=1

c(i)

T (i)
≤ 1.

Real-time scheduling theory progressed substantially since the fundamental article
of Liu and Layland [156], to take into account the problems involving the scheduling
of sporadic and aperiodic tasks, the scheduling of tasks whose deadlines are lower
or higher than their periods, the protected access to shared resources, the precedence
constraints and the non-preemptive scheduling. A detailed description of some fun-
damental results concerning these problems can be found in Shin [142], Buttazzo
[48], Liu [157], Burns [46] and Decotigny [71].

2.1.2 Real-Time Medium Access Control in Communication
Networks

Ensuring real-time communications is the responsibility of the entire communica-
tion stack. Nevertheless, as explained by Zimmermann in [267], the crucial role falls
on the MAC (medium access control) sub-layer of the layer 2 of the open systems
interconnection (OSI) model. The MAC sub-layer has the responsibility of manag-
ing the access to the communication medium, which may be shared between several

14 2 Resource Allocation in Distributed Control and Embedded Systems

Fig. 2.2 Bandwidth sharing using the TDMA protocol and used terminology

nodes of the network. In real-time networks, there are several access protocols. The
most deployed ones are described in the sequel:

2.1.2.1 Time Division Multiple Accesses (TDMA)

The TDMA [153, 183] protocol makes it possible to statically divide, the available
bandwidth, in the temporal domain, between several competing nodes. In this pro-
tocol, each node knows exactly the moments when it is allowed to transmit over the
network. As a consequence, each node has to transmit during the time slot which is
allocated to it, called TDMA slot. In this way, collisions are avoided. The time slots
are predetermined off-line. Their sequencing has a periodic structure. The minimal
sequence of time slots allowing to describe the sequencing of the time slots of the
various nodes is called TDMA round (Fig. 2.2).

The TDMA protocol may be implemented in a centralized or a distributed way. In
centralized implementations, a master node has the responsibility of triggering the
communications of the other slave nodes by transmitting a synchronization signal.
The major inconvenient of this approach is that a breakdown of the master node
leads to a total breakdown of the network. The distributed implementations require
the establishment of a sufficiently precise global time in all the nodes of the net-
work, requiring thus the use of some appropriate clock synchronization algorithms.
The TDMA protocol is the cornerstone of the mobile communications GSM proto-
col. The TTP/C communication protocol [238] manages the concurrent access to
the communication medium using a distributed implementation of the TDMA ac-
cess protocol. In order to ensure a global clock, the FTA (Fault-Tolerant Average)
algorithm proposed by Kopetz and Ochsenreiter in [141] is used to ensure the clock
synchronization of the different network nodes.

2.1.2.2 Token-Bus

The Token-Bus access protocol was specified by the IEEE (IEEE standard 802.4)
and by the ISO (ISO standard 8802.4). It represents the cornerstone of many

2.1 Real-Time Scheduling Theory 15

communications protocols that are employed in industrial field busses [231], like
Profibus [18], ControlNet [66], MAP [164] and ProfiNet [39].

In this protocol, the network nodes are logically organized in a ring topology:
each node knows its logical predecessor and its logical successor. The access arbi-
tration is performed by the circulation of the token between the nodes. At any given
moment, only one node has the token. The possession of the token gives to the pos-
sessing node the right to transmit over the network. The node that takes possession
of the token can start transmitting over the network. It must pass the token to its
successor if the time it has held the token reaches a limit or if it finishes transmit-
ting before the expiry of this duration. If a node that does not have any information
to transmit, receives the token, then it transmits it directly to its successor node.
Concerning the real-time properties of this protocol, the analysis of the worst-case
response times of Profibus and ControlNet messages are respectively given by To-
var and Vasques in [236] and by Lian et al. in [153]. The worst-case response time
of a message is defined as the duration between the moment the transmission is
requested and the moment when the message is received by the destination process.

2.1.2.3 Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

The carrier sense multiple access with collision avoidance access protocol (CSMA/
CA is used in many networks such as CAN, DeviceNet or IEEE 802.11 wireless
networks. In this access model, each message is characterized by a unique priority.
Since the shared communication medium can transmit only one message at a time,
each node that wishes to transmit a message must initially check whether the net-
work is free (by sensing the network to find whether or not a carrier signal is being
transmitted). If the network is free, then the node can start transmitting. However,
it is possible that other nodes start transmitting at the same time, because they have
detected at the same time that the communication medium has become free. In this
situation, the transmission of the highest priority message is continued; the other
messages with lowest priorities are discarded. By this way, collisions are explicitly
avoided.

CAN networks [132, 196] use the CSMA/CA protocol in order to manage the
concurrent access to the shared bus. Their implementation of CSMA/CA relies on a
bit synchronization mechanism at the bus level. In CAN networks, each message is
characterized by a unique identifier. Furthermore, no node is particularly addressed:
all the sent messages are broadcasted to all the other network nodes. When several
nodes are emitting and if at least one node sends one a ‘0’ (called dominant level
in CAN terminology), then all listening network nodes will detect a ‘0’ at the same
time, even if there are other nodes which have transmitted a ‘1’. Reciprocally, when
all the transmitting nodes send a ‘1’ (called recessive level), all the listening nodes
will detect a ‘1’. The CAN bus behaves like a logical AND gate. Since the identifier
field is located at the beginning of the frame (the most significant bit is first coded,
the highest priority is 0), and the binary synchronization is implemented on the
bus, when a collision occurs, the different nodes directly compare the identifiers of

16 2 Resource Allocation in Distributed Control and Embedded Systems

Fig. 2.3 Illustration of the bus arbitration mechanism in CAN networks

their messages to the resulting logical level at the bus. A node that detects that the
resulting level is dominant (‘0’) whereas it has sent a ‘1’, knows that it has tried to
send a message whose priority is lower than another message and must consequently
stop transmitting. Figure 2.3 describes a collision between two messages, which
were sent at the same moment by node 1 and node 2. Node 2 stops transmitting
when it detects that it has a lower priority than node 1 (because it has sent a ‘1’ and
the resulting level on the bus was a ‘0’).

CAN protocol is a deterministic protocol. Consequently, it is possible to com-
pute an upper bound over messages response times. A CAN bus may be seen as
a non-preemptive scheduler. The computation of the worst-case response time of
fixed-priority messages have been tackled in Tindell and Burns et al. [232, 233].
The evaluation of a RM priority assignment policy was also addressed in these ref-
erences. The use of EDF scheduling in CAN networks was studied by Di Natale
in [74].

The binary synchronization over the bus, which is necessary to collisions arbi-
tration, introduces a relationship between the maximum data-rate and the length of
the network cable. In fact, to use a data-rate of 1 Mbps, the maximum length of the
cable must be less than 40 m. If it is necessary to use a cable whose length is greater
than 620 m, then the maximum data-rate falls down to 100 kbps.

Note that in data networks, like Ethernet or the Internet, the CSMA/CD (carrier
sense multiple access with collision detection) protocol is the most used medium
access protocol. The fundamental difference between CSMA/CD and CSMA/CA re-
sides in the collision arbitration mechanism. In fact, in the CSMA/CD protocol, the
nodes that generate a collision are able to detect this collision and to stop their
transmission during a random duration. For that reason, it is impossible to bound
messages response times in networks employing the CSMA/CD access protocol. In
wireless networks, such as IEEE 802.11 networks, the CSMA/CA protocol is em-
ployed because it is not possible to detect the collisions (and thus to deploy the
CSMA/CD protocol).

2.2 Integrated Approaches for Control and Resource Allocation 17

2.1.3 Real-Time Scheduling of Distributed Systems

Real-time multiprocessor scheduling problems are still not as well understood as
real-time single-processor scheduling problems; the most obscure points, as under-
lined by Sha et al. in [211], are related to the schedulability analysis. In this field,
the impact of the Dhall and Liu’s paper [73] on real-time multiprocessor scheduling
theory was equivalent to the impact of the Liu and Layland’s paper on real-time
single-processor scheduling theory [156].

Multiprocessor scheduling algorithms may be classified into two categories [211]:

• partitioned scheduling, where each task is assigned to only one processor,
• global scheduling, where all the tasks compete for the use of all the processors.

The problem of the optimal partitioning of tasks among processors, as underlined
by Garey and Johnson [93], is NP-complete complexity.1 For that reason, simulated
annealing or branch and bound-based heuristics were proposed to tackle this prob-
lem. The use of these heuristics relies on the modeling the scheduling problem as an
optimization problem. A detailed presentation of these approaches is given in [16].
An outline of the most important results concerning multiprocessor schedulability
analysis may be found in Sha et al. [211].

The tasks, that may be located on the different processors, may have data-
dependencies and thus exchange messages via a communication medium. The com-
munication medium may be seen as “a processor” that only supports the non-
preemptive scheduling. Among the tools for off-line partitioned scheduling genera-
tion for tasks with precedence, on distributed architectures, one may cite [139, 217],
which is based on the so-called Adéquation Algorithme Architecture (for efficient
matching of the algorithm on the architecture) approach [102]. In Syndex, the ar-
chitecture and the algorithm are described by two graphs. The algorithm graph is
a direct acyclic graph, where the vertices represent the operations to be performed
and where the edges represent the data-dependencies between the operations. The
architecture graph describes the available parallelism as well as the communica-
tion possibilities between the various processors. Based on these two graphs, and
possibly on placement constraints which may be specified by the user, Syndex uses
the greedy list scheduling algorithm given by Yang and Gerasoulis and Kwok and
Ahmad [144, 257] to synthesize the scheduling of the operations on the different
architecture elements.

2.2 Integrated Approaches for Control and Resource Allocation

In the previous subsection, we have described some important results of the real-
time scheduling theory. Disregarding the nature of the considered applications, these

1NP-complete is the set of all decision problems whose solutions can be verified in polynomial
time.

18 2 Resource Allocation in Distributed Control and Embedded Systems

results mainly addressed the problem of communication or computation resource al-
location, in order to respect strict temporal constraints. In this subsection, we outline
other approaches, which jointly consider the problems of control and communica-
tion or computation resources allocation. First, we review some problems and meth-
ods for the adaptive sampling. Second, we give an outline of the methods allowing
to jointly considering the problems of control and communication resource alloca-
tion. Finally, we review the state of the art of the methods for the joint control and
computational resource allocation in embedded systems.

2.2.1 Adaptive Sampling of Control Systems

The analysis of asynchronously sampled systems was undertaken at the end of the
fifties. The research works, which were performed during the sixties and at the be-
ginning of the seventies mainly focused on single-input single-output (SISO) sys-
tems. To the best of our knowledge, the first adaptive sampling method was pro-
posed by Dorf et al. [77]. The proposed adaptive sampler changes the sampling
frequency according to the absolute value of the first derivative of the error signal.
Using analog simulations, the authors have shown that this method reduces between
25 % and 50 % of the number of required samples, with respect to the periodic
sampling, given the same response characteristics.

Other approaches were proposed thereafter, in particular those of Gupta [108,
109], Tomovic and Bekey [234, 235] and Mitchell and McDaniel [176]. The evalu-
ation of these approaches and their comparison to the periodic sampling was per-
formed by Smith in [216]. Simulations have shown that these adaptive sampling
methods are not always better than periodic sampling, especially where the input is
subject to unknown disturbances. Remarking that the methods of Dorf et al. [77]
and [176] are closely related to [125], Hsia proposed a generic approach allowing
to derive adaptive sampling laws [126].

More recently, an important direction of research on the DCES performance en-
hancement through adaptive sampling is that of Event Driven Controllers (EDC).
The aim of this class of controller is to reduce the calculation and communication
resource utilization in order to provide in priority those tasks which need more.
This results in a non periodic sampling depending on the state of all the subsystems
composing a DCES and the “policy” implemented to handle their resources. Natu-
rally, the hight level system specification such as stability needs to be assured which
means that each new control signal has to be calculated, at least, with a minimum
sampling frequency. In Årzèn [11], the EDC adapts its task period with respect to
required system performances expressed as an event condition on the system state.
These events are usually generated when the system state crosses an hyper-surface
in state space. It is clear that the difficulties reside in the detection of this crossing
and the event generator structure.

A second class of event based approaches called self-triggered one, consists in
emulating event-triggered control by computing for each sampling instants a lower
bound of the next sampling interval or the next candidate sampling instant.

2.2 Integrated Approaches for Control and Resource Allocation 19

Fig. 2.4 General model of the information flow in a control system whose control loop is closed
through finite bandwidth communication channels

As stated in Årzèn [11], event-driven control is closer in nature to the way a
human behaves as a controller. Indeed, when a human performs manual control his
behavior is event-driven rather than time-driven. This fact conjugated with the need
to optimally handle calculation and communication resources partially explains the
rationale behind the important research activity in designing event-based controllers.

The EDC controller are triggered by external events or they are self-triggered.
The works of Heemels et al. [110], Åström and Bernhardsson [15], Tabuada and
Wang [226], Suh et al. [223], Heemels et al. [111], Henningsson et al. [113], Lunze
[163], Wang et al. [246], Marchand et al. [165], and many others, fall in the event-
triggered class whereas the works of Velasco et al. [242], Anta and Tabuada [6–9],
Wang and Lemmon [247–250], Mazo and Tabbuada [170, 172], Araujo [10] are
some of the contributions in the latter class of self-triggered controllers.

In a general distributed control architecture related to DCES, reduction of sam-
pling frequency is not always sufficient to enhance system performances. It is also
needed to synchronize the decisions between subsystems sharing given calculation
or communication resources. The recent works of Tabuada [225], Seyboth [210],
Donkers and Heemels [75], Mazo and Cao [171]. Wang and Lemmon [251], de Per-
sis [70] go in this direction with the objective to coordinate the subsystems’ local
decision.

2.2.2 Allocation of Communication Resources: The “Per Symbol”
Paradigm

In this paradigm, the information exchange is modeled at the symbol level. The
quantization of measurements and control commands is thus implicitly taken into
account. The general model is given in Fig. 2.4.

In this model, the communication channel can transmit at most R bits per time
unit. Because of these resource limitations, measurements and control commands
must be encoded (as a flow of symbols) before their transmission and decoded at
their reception. Various coding techniques may be employed. A fundamental ques-
tion is to determine the necessary and/or sufficient data-rate allowing the existence
of a coder, a decoder and a controller that achieve the stabilization of the system.
Many contributions have tried to bring more insight into this fundamental question,
by treating various models of resource limitations.

20 2 Resource Allocation in Distributed Control and Embedded Systems

For instance, in [72], Delchamps has shown that it is impossible to asymptoti-
cally stabilize a discrete-time unstable linear time invariant (LTI) system, whose
output passes through a quantizer having a finite number of quantization levels. In
this setting, it is necessary to introduce and use other stability concepts, like, for
example, practical stability.

The problem of state estimation, in the presence of state and measurement noise,
was studied in Wong and Brockett [253]. In the considered model, the state observer
is situated at the same location as the plant. However, the controller is located at a
distant place. Consequently, the observations must be sent to the controller through
a finite bandwidth communication channel. It was shown that this problem is quite
different from the classic estimation and vector quantization problems. The concept
of finitely recursive coder-estimator sequence was then introduced. Necessary con-
ditions as well as sufficient conditions, which are related to the stability and the
convergence of various coding and estimation algorithms, were stated. These con-
ditions relate the network data-rate to the dynamical characteristics of the plant.

Next, in [254], Wong and Brockett introduced the concept of containability, as a
weaker stability condition, to tackle the problem of the stabilization of networked
systems through limited capacity communication networks, where the values of the
measurements (which are received by the controller) and the controls (which are sent
to the plant) belong to a finite set of values J (because of the quantization which is
induced by the limited data-rate communication channel). Considering continuous-
time LTI systems, which are impulsively controlled, they proved that a necessary

condition to ensure the containability is e
2
R

tr(Ac) ≤ |J | where |J | is the size of
the alphabet, 1

R
is the transmission duration of one bit and Ac is the state matrix.

They also proved that if the initial condition of the system lies in a bounded set, then
a memoryless coding and control is sufficient to ensure the containability, if some
conditions affecting the data-rate are met.

In [182], Nair and Evens considered a class of discrete-time, linear, time-varying
and infinite-dimensional plants. No process or measurement noise affects the con-
sidered plants. The initial state is the realization of a random variable. Communica-
tions constraints only affect the sensors-to-controller link. The controller is directly
connected to the actuators. The considered problem is the synthesis of a coder (on
the sensors-to-controller link) and of a controller that minimize a cost function of
the state over finite and infinite horizons. The cost function over the finite horizon is
the mth output moment. A coder/controller scheme was proposed. Under some tech-
nical assumptions, which are related to the probability density function of the initial
state, to some conditions depending on the size of the alphabet, to the data-rate and
to the plant dynamics, a necessary and sufficient optimality condition of the pro-
posed coder/controller was established. A necessary and sufficient condition for the
existence of a coder/controller that asymptotically stabilizes the system (in the sense
that the mth output moment converges to zero over an infinite horizon) was stated.
In the special case where the plant is invariant, unstable and finite-dimensional, this
last condition simplifies to R > log2 |λ| where λ is the unstable open-loop pole with
the largest magnitude.

2.2 Integrated Approaches for Control and Resource Allocation 21

Next, in [42], Brockett and Liberzon proposed the idea of “zooming” as a means
for ensuring the asymptotic stability of continuous-time and discrete time system
whose control loops are closed through a finite bandwidth communication network.
The zooming technique consists on changing the sensitivity of the quantizer over
the time, based on the available quantized measurements. The relationship between
performance and complexity of the quantized stabilization using the zooming tech-
nique was further studied by Fagnani in [82].

In [80], Elia and Mitter addressed the problem of the stabilization of single-
input linear systems whose measurements and control commands are quantized. By
first considering quantizers with a countable number of levels, and supposing the
exact knowledge of the state, they proved that the coarsest quantizer allowing the
quadratic stabilization of a discrete-time single-input LTI system, is logarithmic,
and may be computed by solving a special linear quadratic regulator (LQR) prob-
lem. The state-feedback control problem as well as the state observation problem
were solved within this theoretical framework. These results were thereafter ex-
tended to the continuous-time single-input and periodically sampled linear systems.
The expression of the optimal sampling period (for the suggested quantizers) was
established. It only depends on the sum of the unstable eigenvalues of the continu-
ous system. This approach was finally extended to address quantizers with a finite
number of levels.

Next, in [227], Tatikonda and Mitter considered discrete-time LTI systems. The
control loop is closed through a limited capacity communication channel. Conse-
quently, before their transmission, the measurements are quantized and encoded in
symbols by a coder. At their reception, a decoder reconstructs a state estimate that
will be used by the controller, which is directly connected to the plant. Two types of
coders were studied:

• class 1 coders, which know past measurements, past controls and past transmitted
symbols that were sent over the channel,

• class 2 coders, which only know past measurements.

Stabilization and asymptotic observability properties were particularly studied.
It was shown that a necessary conditions for the existence of coders and de-
coders making it possible to guarantee these two properties is given by R >∑

λ(A) max{0, log |λ(A)|}, the sum is over the eigenvalues of the state matrix A.
This necessary condition is independent from coder classes and becomes sufficient
if the whole state is measured and if class 1 coders are used.

2.2.3 Allocation of Communication Resources:
The “Per Message” Paradigm

The different approaches that may be related to the “per message” paradigm are
motivated by the fact that in all communication networks, protocol frames contain
fields with fixed and incompressible length. These fields include, for example, the

22 2 Resource Allocation in Distributed Control and Embedded Systems

identifier field, the CRC (Cyclic Redundancy Check) field, which is used by error
detection algorithms. For example, in CAN networks, the minimal length of the
fixed protocol fields is 47 bits (the length can be more important because of the
bit-stuffing mechanism as given in Rachid and Collet [196]). A measure that is
encoded in 12 bits and sent in a CAN message only represents 20 % of the size of
the message. In Bluetooth networks, the minimal size of the data field is 368 bits. If
an information whose size is less than 368 bits is to be transmitted, then padding by
‘0’ bits must be carried out.

The various approaches, which are related to the “per message” paradigm, may
be classified into two categories:

• The decentralized minimization of the network bandwidth usage. The basic idea
is that each node tries to locally minimize its bandwidth consumption.

• The scheduling of the concurrent access to the network. In these approaches,
a more global view of the application, of its distribution and of the network ac-
cess mechanism is considered. The information transmission over the network is
managed by taking into account static characteristics (the model) or instantaneous
information (the state) of the controlled dynamic system.

2.2.3.1 Minimization of the Network Bandwidth Usage

A research direction related to the “per message” paradigm is the model based con-
trol, which was studied in Yook et al. [259], Montestruque and Antsaklis [177, 178],
Hespanha and Xu [117, 118], Li et al. in [149, 150]. The basic idea of this approach
is to use local open-loop observers in order to reduce the required communications
between the sensors and the controller.

In [259], a method allowing the minimization of the required communications
in some particular distributed control applications was proposed. This method ad-
dresses multivariable discrete-time LTI systems that are implemented according to a
specific distributed architecture and controlled by using output-feedback. The global
distributed system has n states, m inputs and m outputs, such that the ith input ui(k)

and the ith output yi(k) are co-located at the same network node, which is also
equipped with a computer (Fig. 2.5). The measurements, which are provided by the
m sensors, are corrupted by a measurement noise ν(k). The m nodes are connected
through a perfect network (without delays, nor losses of information). Each node
contains an estimator that estimates at the same time its own output as well as the
outputs of the other nodes. The estimated outputs ŷj (k), j �= i are then used by the
ith node, for the computation of the control ui(k), instead of the measured outputs
yj (k)+νj (k), j �= i, whose use would require a transmission of their values over the
network. By this way, an important communication saving is achieved, at the price
of a more important computational load at the computer nodes. This approach relies
on the fact that all the estimators compute identical values of the estimated outputs
ŷj (k). If the estimator of the ith node realizes that |yi(k) + νi(k) − ŷi (k)| ≥ gi ,
where gi is a fixed threshold, then it broadcasts to the other nodes the value of its
measurement yi(k) + νi(k), enabling them to update the state of their estimators.

2.2 Integrated Approaches for Control and Resource Allocation 23

Fig. 2.5 Global architecture and model of the ith node according to the approach of [259]

By this way, |y(k) + ν(k) − ŷ(k)| is limited by g = [g1, . . . , gm]T . Finally, a result
allowing the choice of H to guarantee a maximum degradation of ε % compared to
the ideal system (without networked communication) was stated. The experimental
validation of the method was carried out on a two axis contouring system. The ex-
perimental results have shown that only 12 % of the communication is necessary in
order to guarantee a maximum degradation of 1 %, assuming a model uncertainty
of 20 %.

A similar approach was studied in Montestruque and Antsaklis [177]. In the con-
sidered architecture, the controller is directly connected to the plant. A perfect net-
work connects the sensors to the controller. The sensors periodically transmit (each
Ts time instants) the measurements to the controller, which is provided with an
open-loop state-observer. The estimated state is then used for the computation of
the control commands. At the reception of a message from the sensors, the state of
the open-loop observer is updated. The necessary and sufficient stability conditions
of this particular model of networked control systems were stated, and generalized
to take into account output feedback. Sufficient stability conditions when the sam-
pling period, Ts , is time-varying but bounded were presented in Montestruque and
Antsaklis [178] and Li et al. in [149, 150].

Next, in Hespanha and Xu [117], a similar architecture was studied. In the con-
sidered model, the plant is disturbed by a zero-mean Gaussian white noise. Instead
of sending the measurements (of the full state) when the prediction error exceeds
a threshold [259] or periodically [177], the transmission of measurements is per-
formed using predefined communication logics. The study and the evaluation of

24 2 Resource Allocation in Distributed Control and Embedded Systems

different communications logics (stochastic and deterministic) was also performed.
By modeling the problem as an appropriate jump-diffusion process, sufficient con-
ditions for the boundedness of the finite moments of the estimation error were estab-
lished for the considered logics. Considering a long term average cost, penalizing at
the same time the estimation error and the transmission rate, the expression of the
optimal communication logics was explicitly given in Hespanha and Xu [118].

In Gommans et al. [97, 98] the main rationale behind the novel dropout compen-
sators remains the same. They act as model-based, closed-loop observers if infor-
mation is received and as open-loop predictors if a dropout occurs. These compen-
sators were considered for two dropout models, using either worst-case bounds on
the number of subsequent dropouts or stochastic information on the dropout prob-
abilities. For the worst-case bound dropout model, sufficient conditions for global
asymptotic stability of the closed-loop networked control systems (NCS) with the
compensation based strategy are derived. For the stochastic dropout models, neces-
sary and sufficient conditions for (exponential) mean square stability of the closed-
loop NCS are given. In addition, for both dropout models they developed linear ma-
trix inequality (LMI) based conditions for the synthesis of the compensator gains.

In Chap. 12 of this book, we propose a design methodology combining zero and
hold strategies in order to optimize the system performance as well as to increase its
stability domain in presence of packets dropouts. This static switching strategy may
be adapted to operate state dependent one.

2.2.3.2 Medium Access Scheduling

The experimental study of communication networks characteristics was performed
in Nilsson [187] and Lian in [153]. Studying the main characteristic of ControlNet,
DeviceNet and EtherNet networks, Lian et al. [153] have shown that the transmis-
sion time of a message (i.e., the time the message spends on the physical link from
the source to the destination) in the most used networks may be neglected. The de-
lays occurring in networked control loops are mainly due to the contention between
the different messages which are sent by the nodes of the network. The most effi-
cient way of reduction of these delays is the design and use of appropriate message
scheduling strategies.

These results show the practical importance of the study of the medium access
control as well as scheduling algorithms. The problems of the concurrent access to
shared communication resources were studied these last years within various theo-
retical frameworks and with various modeling assumptions. We present thereafter a
brief summary of the approaches taking into account explicitly the concurrent access
to the communication network. These contributions were classified into three cate-
gories, according to the class of the used scheduling algorithms: off-line scheduling,
on-line scheduling of the sensors-to-controller link and the on-line scheduling of the
controller-to-actuators link.

• Off-line scheduling: The problem of optimal control and off-line scheduling of
the controller-to-actuators link was studied in Rehbinder and Sanfridson [200].

2.2 Integrated Approaches for Control and Resource Allocation 25

In the proposed model, the control commands are sent to the actuators through a
shared TDMA bus. At each slot, only one control command can be sent, the re-
maining commands for the other actuators are held constant. The choice of which
actuator to update at each slot was handled using the notion of communication
sequence introduced by Brockett [43]. Only periodic communication sequences
were considered. A quadratic cost function is associated to each communication
sequence, corresponding to the worst-case initial condition and worst-case se-
quence permutation. Control commands and periodic communication sequences
are obtained through the solving of a complex combinatorial optimization prob-
lem. The problem of the optimal control and scheduling in the sense of LQG
was introduced and developed in Lincoln and Bernhardsson [155]. The relaxed
dynamic programming method was applied for its resolution leading to a more
efficient search heuristics. A heuristic approach for the problem of the optimal
control and off-line scheduling of the sensors-to-controller link in the sense of
the H∞ performance index was proposed in Lu [161]. The application of branch
and bound algorithm to this problem was performed in Ben Gaid et al. in [22].
The application of genetic algorithms and particle swarm optimization to this
problem was undertaken by Longo et al. in [159]. A generalization of this ap-
proach to tackle uncertainties of the plant model was undertaken by Al-Areqi et
al. in [2], and to cope with nonlinearities in Su et al. [221].

• On-line scheduling of the sensors-to-controller link: The scheduling of sensor
measures was studied in Walsh and Ye [244]. The addressed configuration con-
sists in a continuous-time plant where the controller is directly connected to the
actuators. The network only connects the sensors to the controller. The notion of
MATI (maximum allowable transfer interval) was introduced, and represents the
upper bound on the time between two consecutive sensor messages transmissions
that guaranties the stability of the plant. The MATI is defined for a given schedul-
ing algorithm. A new on-line scheduling algorithm, called MEF-TOD (maximum
error first—try once discard), was introduced. In this dynamic priority on-line
scheduling algorithm, the priority of a sensor message depends on the error of the
measure that it carries; smaller the error is, lower is the assigned priority. The er-
ror is defined as the weighted absolute value of the difference between the value
of the current measure and the value of the last transmitted measure. If a node
fails to send a message, then this message is discarded (dropped from the queue).
The authors stated sufficient stability conditions, involving the value of the MATI,
which ensure the stability of the system, when the MEF-TOD algorithm and a
round robin like static scheduling algorithm are used. These results are based on
the perturbation theory and are very conservative. This approach was generalized
to nonlinear systems in Walsh et al. [245]. The practical implementation of the
MEF-TOD algorithm was considered in [243]. This implementation, which was
performed on CAN networks, is mainly based on the nondestructive bitwise ar-
bitration of CAN technology to dynamically encode the dynamic priorities. The
effects of the quantization of priorities were experimentally studied. Sufficient
input/output Lp-stability results for a class of network scheduling protocols, in-
cluding MEF-TOD and static scheduling algorithms were stated and illustrated

26 2 Resource Allocation in Distributed Control and Embedded Systems

in Nesic and Teel [185]. These results considerably reduces the conservativeness
of the results that were initially stated in Walsh et al. [244]. The application of
the Rate Monotonic scheduling algorithm to the networked control systems was
investigated in Branicky et al. [41].

• On-line scheduling of the controller-to-actuators link: On-line scheduling of con-
trol commands to the actuators was studied in Palopoli et al. [191]. In the pro-
posed model, it is assumed that every slot, only one command vector can be sent
to an actuator group, the other control vectors are set to zero. The stabilization
is achieved using a model predictive controller, which calculates on-line the ap-
propriate control law and the allocation of the shared bus. The cost function used
by the Model Predictive Control (MPC) calculates a weighted sum of the infin-
ity norms of the states and the control commands over a specified horizon. The
optimization problem solved at each step by the MPC algorithm was proven to
be equivalent to the generalized linear complementarity problem (GLCP) [258].
The same architecture is considered in Goodwin et al. [99]. The considered model
assumes that it is possible to send only one message during one sampling period.
The actuators, which do not receive their control inputs, maintain constant the last
received ones. The control commands are quantized with a fixed precision. The
expression of the optimal model predictive controller, in the sense of a quadratic
cost function, was established. The optimal solution as well as computationally
efficient approach (OPP) to the problem of joint control and network scheduling
was proposed in Ben Gaid et al. [27]. A solution expressed as piecewise linear
feedback law was proposed in Görges et al. [101]. Robustness issues were inves-
tigated in Al-Areqi et al. [2], using the OPP algorithm for complexity reduction.
The impact of network induced delays and packet dropouts to this problem were
investigated in Guo and Jin [107].

2.2.4 Allocation of Computational Resources

2.2.4.1 Optimal Control and Mono-Processor Scheduling

The problem of the optimal selection of control tasks periods subject to schedula-
bility constraints was addressed in Seto et al. [208]. Assuming that the discrete-time
control laws are designed in the continuous-time domain and then discretized, the
notion of performance index was introduced. The performance index quantifies the
performance of the digitalized control law at a given sampling frequency. In most
control applications, the performance index is minimal when the continuous-time
control law is used and increases (i.e., degrades) as the sampling frequency is de-
creased (note that for some control systems this relationship is more complicated,
as illustrated in Eker [79]). Considering this important class of control applications,
the problem of the optimal sampling frequency assignment for a set of control tasks
consists on minimizing a weighted sum of the performance indices of the consid-
ered control tasks subject to schedulability constraints. In Rehbinder et al. [199],

2.2 Integrated Approaches for Control and Resource Allocation 27

Fig. 2.6 General model of a feedback scheduler

the optimal off-line scheduling of control tasks in the sense of LQG was consid-
ered, assuming that all the control tasks have the same constant execution time.
The resolution of this problem was performed using the exhaustive search method,
which limits the application of this approach to applications with a limited number
of tasks. Similarly, the problem of the optimal mono processor scheduling of control
tasks in order to optimize a robustness metric (i.e., the stability radius) was treated
in Palopoli et al. [192, 193].

2.2.4.2 Scheduling of Control Tasks in Environments with Variable
Computing Workload

It is well known that worst-case analysis techniques given in Sha et al. [211] may be
used in order to guarantee the deadlines of tasks with variable but bounded execution
times. However, when the average execution time is smaller than the worst-case
execution time (WCET), these techniques lead to an oversized design. Recently, new
approaches were proposed in order to handle variations in tasks execution times
and system overload more efficiently than worst-case analysis techniques, among
them the feedback scheduling given in Lu et al. [160], Cervin et al. [55], Robert et
al. [203], Xia and Sun [255] and the elastic task model given in Buttazzo et al. [49].

Feedback scheduling (FSB) is a control theoretical approach to real-time schedul-
ing of systems with variable workload. The feedback scheduler whose general
model is schematically given in Fig. 2.6, may be seen as a “scheduling controller”
that receives filtered measures of tasks execution times and acts on tasks periods in
order to minimize deadline misses. The application of feedback scheduling to robot
control was experimentally evaluated in Simon [212].

In the elastic task model given in Buttazzo et al. [49], a periodic task set con-
taining N tasks may be seen as a sequence of N linear springs. In this model, the
utilization factor of a task is analogous to the spring’s length. Tasks may change
their utilization rate in order to handle overload conditions, which may occur, for
example, if a new task is admitted to the computing system. In order to ensure
the schedulability of the task set, tasks are compressed or decompressed. In Liu
et al. [158], the elastic task model was applied to the scheduling of control tasks
with variable execution times. The use of this method allows the application of the
approach of Seto et al. [208] in order to find the optimal tasks periods based on
tasks average execution times (instead of their worst-case execution times), lead-
ing to an improvement of the control performance. Buttazzo et al. [47] generalized

28 2 Resource Allocation in Distributed Control and Embedded Systems

this approach to take into account the degradations that may occur to the control
system if its control task that was designed to work at a given rate runs at another
rate. The analytical expressions of the performance degradations were given and a
compensation method was proposed. This method allows to trade-off the perfor-
mance degradations and the required memory space (which is needed to store the
parameters of the pre-computed control laws that will be used by the compensation
algorithm).

However, all these described approaches are mainly based on the assumption
that control performance is a convex function of the sampling period. In reality, as
illustrated in Martì [167] (and further in the forthcoming Chap. 4), the quality of
control is also dependent on the dynamical state of the controlled system.

The work of Bini and Cervin [34], Samii et al. [205, 206], although different
in the formulation of the optimization problem in terms of objective functions and
constraints, can be included in a subset of works that share in common an off-line
approach where sampling periods are derived before run-time and kept constant
during execution.

Inside the class of FBS methods, in our opinion, there are two main trends. The
first one concerns those methods relaying on the instantaneous plant state informa-
tion and metric in order to adapt the sampling period. In this class, we may classify
the work of Martì et al. [169]. The second class includes those methods calculating
the future sampling periods based on finite or infinite horizon metric as, for example,
the methods developed in Henriksson and Cervin [114], Castane et al. [52], Cervin
et al. [57]. This type of approach was also adopted in Ben Gaid et al. [28, 29] where
the sampling period is calculated as a function of the states of the controlled plants,
a given static scheduling and a quadratic metric over an periodic infinite horizon.

2.3 Notes and Comments

This chapter introduced the basic concepts, the terminology as well as the state of
the art of communication and computation resource allocation approaches in Dis-
tributed Control and Embedded Systems (DCES). To this end, the basic concepts
of the real-time scheduling theory are outlined, focusing primarily on the hard real-
time scheduling of tasks on processors and messages on deterministic networks. An
outline of the state of the art of the approaches for the integrated control and com-
munication/computation resource allocation was given, providing an overview of
the tackled problems and the provided solutions.

This particular interest on the hard real-time systems is motivated by their indus-
trial realism and utility. Proposing simple and relevant integrated model of DCESs
are of prime importance for their design as well as for their wide spread in indus-
trial applications. We have clearly seen that different problems posed and treated in
literature are related to their stability and performance robustness which are, practi-
cally, of different nature. The stability analysis of DCES is related to methods and
tools used in the field of control and information sciences (Mitter et al. [80, 227])

2.3 Notes and Comments 29

whereas their performance optimization calls for methods and approaches related
traditionally to control system domain and in parallel to those of computer science.
The necessity of double-breasted view of the DCES design problem not only facili-
tates its analysis but allows optimizing its performances. Application of simple and
consistent scheduling policy given respectively in Yook et al. [259], Hristu [123],
Longo et al. [159], Ben Gaid et al. [27, 28] allows reducing their model complexity
by inducing structure properties such as periodicity of control and/or sensing sig-
nals/messages. This fact, as it will be seen in the forthcoming chapters of Part II,
simplify substantially the design of DCESs projecting it in a class of well-known
problems in the area of control systems.

Naturally, the DCES area encompasses a larger class of applications including
those for which a predefined or fixed scheduling policy is impossible. This is mainly
due to non-determinism induced by the computation model related to the network
nodes as well as to the model of communication related to the network. In this case,
we observe variable induced delays on signals/messages sending and reception as
well as modification of their reception order. This fact faced us with the problem
of system information reduction in general and particularly the way to handle re-
lated variable induced delays. As it will be seen in the forthcoming Chaps. 10, 11,
12, 13 and from the literature review done in Sect. 2.2.1, two main trends are ob-
served. The first one concerns the techniques related to system state information
enhancement based on the system model as a complementary information source.
The second one proposes methods and approaches whose objectives are to use the
communication and calculation resources offered by DCES with respect to the sys-
tem state or system performances. These two main trends have the same objective
that is injecting complementary information in the system in order to overcome the
lack of resources and/or to reduce the resources reserving them in priority to sub-
systems needing more. The topological structure and the size of DCES are different
and function of the considered application. The decisions taken at the level of each
subsystem composing it are effective if they are coordinated between them. The
different approaches and techniques originally borrowed from the computer science
such as synchronization help to increase the system performances. In the same time,
they induce new models of communication between sub-systems that have to be
considered and merged with the dynamic model of DCES. In fine, the main problem
to handle is related to the structure and the quantity of information communicated
between sub-systems in order to reduce the information delay of the critical system.
Mastering this delay represents one of the main challenges in the design of DCES.

http://www.springer.com/978-3-319-02728-9

	Chapter 2: Resource Allocation in Distributed Control and Embedded Systems
	2.1 Real-Time Scheduling Theory
	2.1.1 Real-Time Single-Processor Scheduling
	2.1.1.1 Events Characterizing the Lifetime of a Job
	2.1.1.2 Task Model
	2.1.1.3 Scheduling Algorithms Classiﬁcation
	2.1.1.4 Schedulability Analysis

	2.1.2 Real-Time Medium Access Control in Communication Networks
	2.1.2.1 Time Division Multiple Accesses (TDMA)
	2.1.2.2 Token-Bus
	2.1.2.3 Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

	2.1.3 Real-Time Scheduling of Distributed Systems

	2.2 Integrated Approaches for Control and Resource Allocation
	2.2.1 Adaptive Sampling of Control Systems
	2.2.2 Allocation of Communication Resources: The "Per Symbol" Paradigm
	2.2.3 Allocation of Communication Resources: The "Per Message" Paradigm
	2.2.3.1 Minimization of the Network Bandwidth Usage
	2.2.3.2 Medium Access Scheduling

	2.2.4 Allocation of Computational Resources
	2.2.4.1 Optimal Control and Mono-Processor Scheduling
	2.2.4.2 Scheduling of Control Tasks in Environments with Variable Computing Workload

	2.3 Notes and Comments

