
Chapter 2
PGD Solution of the Poisson Equation

Abstract This chapter describes the main features of the PGD technique, in partic-
ular the one related to the construction of a separated representation of the unknown
field involved in a partial differential equation. For this purpose, we consider the
solution of the two-dimensional Poisson equation in a square domain. The solu-
tion is sought as a finite sum of terms, each one involving the product of functions
of each coordinate. The solution is then calculated by means of a sequence of one-
dimensional problems. The chapter starts with the simplest case, that is later extended
to cover more complex problems: non-constant source terms, non-homogeneous
Dirichlet and Neumann boundary conditions, and high-dimensional problems. Care-
fully solved numerical examples are discussed to illustrate the theoretical develop-
ments.

Keywords Multidimensional model · Poisson’s problem · Proper Generalized
Decomposition

It is now time to detail the inner workings of the PGD. We begin with a simple but
illustrative case study, which we shall progressively make more complex.

Consider the solution of the Poisson equation

�u(x, y) = f (x, y), (2.1)

in a two-dimensional rectangular domain � = �x ×�y = (0, L)× (0, H).
We specify homogeneous Dirichlet boundary conditions for the unknown field

u(x, y), i.e. u(x, y) vanishes at the domain boundary �. Furthermore, we assume
that the source term f is constant over the domain �.

For all suitable test functions u∗, the weighted residual form of (2.1) reads

∫
�x×�y

u∗ · (�u − f ) dx · dy = 0, (2.2)
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or more explicitly

∫
�x×�y

u∗ ·
(

∂2u

∂x2 +
∂2u

∂y2 − f

)
dx · dy = 0. (2.3)

Our goal is to obtain a PGD approximate solution to (2.1) in the separated form

u(x, y) =
N∑

i=1

Xi (x) · Yi (y). (2.4)

We shall do so by computing each term of the expansion one at a time, thus
enriching the PGD approximation until a suitable convergence criterion is satisfied.

2.1 Progressive Construction of the Separated Representation

At each enrichment step n (n ≥ 1), we have already computed the n − 1 first terms
of the PGD approximation (2.4):

un−1(x, y) =
n−1∑
i = 1

Xi (x) · Yi (y). (2.5)

We now wish to compute the next term Xn(x) ·Yn(y) to obtain the enriched PGD
solution

un(x, y) = un−1(x, y)+ Xn(x) ·Yn(y) =
n−1∑
i = 1

Xi (x) ·Yi (y)+ Xn(x) ·Yn(y). (2.6)

Both functions Xn(x) and Yn(y) are unknown at the current enrichment step n,
and they appear in the form of a product. The resulting problem is thus non-linear
and a suitable iterative scheme is required. We shall use the index p to denote a
particular iteration.

At enrichment step n, the PGD approximation un,p obtained at iteration p thus
reads

un,p(x, y) = un−1(x, y)+ X p
n (x) · Y p

n (y). (2.7)

The simplest iterative scheme is an alternating direction strategy that computes
X p

n (x) from Y p−1
n (y), and then Y p

n (x) from X p
n (x). An arbitrary initial guess Y 0

n (y) is
specified to start the iterative process. The non-linear iterations proceed until reaching
a fixed point within a user-specified tolerance ε, i.e.
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‖X p
n (x) · Y p

n (y)− X p−1
n (x) · Y p−1

n (y)‖
‖X p−1

n (x) · Y p−1
n (y)‖

< ε, (2.8)

where ‖ · ‖ is a suitable norm.
The enrichment step n thus ends with the assignments Xn(x) ← X p

n (x) and
Yn(y)← Y p

n (y).
The enrichment process itself stops when an appropriate measure of error E(n)

becomes small enough, i.e E(n) < ε̃. Several stopping criteria are available, as we
shall discuss later. We now describe in more detail one particular alternating direction
iteration at a given enrichment step.

2.1.1 Alternating Direction Strategy

Each iteration of the alternating direction scheme consists in the following two steps:

• Calculating X p
n (x) from Y p−1

n (y)

In this case, the approximation reads

un,p(x, y) =
n−1∑
i = 1

Xi (x) · Yi (y)+ X p
n (x) · Y p−1

n (y), (2.9)

where all functions are known except X p
n (x).

The simplest choice for the weight function u∗ in the weighted residual formulation
(2.3) is

u∗(x, y) = X∗n(x) · Y p−1
n (y), (2.10)

which amounts to select the Galerkin weighted residual form of the Poisson equa-
tion.

Injecting (2.9) and (2.10) into (2.3), we obtain

∫
�x×�y

X∗n · Y p−1
n ·

(
d2 X p

n

dx2 · Y
p−1

n + X p
n · d2Y p−1

n

dy2

)
dx · dy

= −
∫

�x×�y

X∗n · Y p−1
n ·

n−1∑
i=1

(
d2 Xi

dx2 · Yi + Xi · d2Yi

dy2

)
dx · dy

+
∫

�x×�y

X∗n · Y p−1
n · f dx · dy. (2.11)
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Here comes a crucial point: since all functions of y are known in the above
expression, we can compute the following one-dimensional integrals over �y:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αx = ∫
�y

(
Y p−1

n (y)
)2

dy

βx = ∫
�y

Y p−1
n (y) · d2Y p−1

n (y)

dy2 dy

γx
i =

∫
�y

Y p−1
n (y) · Yi (y) dy

δx
i =

∫
�y

Y p−1
n (y) · d2Yi (y)

dy2 dy

ξx = ∫
�y

Y p−1
n (y) · f dy

. (2.12)

Equation (2.11) becomes∫
�x

X∗n ·
(

αx · d2 X p
n

dx2 + βx · X p
n

)
dx

= −
∫

�x

X∗n ·
n−1∑
i=1

(
γx

i ·
d2 Xi

dx2 + δx
i · Xi

)
dx +

∫
�x

X∗n · ξx dx. (2.13)

We have thus obtained the weighted residual form of a one-dimensional problem
defined over �x that can be solved (e.g. by the finite element method) to obtain the
function X p

n we are looking for. Alternatively, we can return to the corresponding
strong formulation

αx · d2 X p
n

dx2 + βx · X p
n = −

n−1∑
i = 1

(
γx

i ·
d2 Xi

dx2 + δx
i · Xi

)
+ ξx, (2.14)

and solve it numerically by means of any suitable numerical method (e.g. finite
differences, pseudo-spectral techniques, …). The strong form (2.14) is a second-
order ordinary differential equation for X p

n . This is due to the fact that the original
Poisson equation involves a second-order x-derivative of the unknown field u.

With either the weighted residual or strong formulations, the homogeneous Dirich-
let boundary conditions X p

n (x = 0) = X p
n (x = L) = 0 are readily specified.

Having thus computed X p
n (x), we are now ready to proceed with the second step

of iteration p.

• Calculating Y p
n (y) from the just-computed X p

n (x)

The procedure exactly mirrors what we have done above. Indeed, we simply
exchange the roles played by all relevant functions of x and y.
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The current PGD approximation reads

un,p(x, y) =
n−1∑
i = 1

Xi (x) · Yi (y)+ X p
n (x) · Y p

n (y), (2.15)

where all functions are known except Y p
n (y) .

The Galerkin formulation of (2.3) is obtained with the particular choice

u∗(x, y) = X p
n (x) · Y ∗n (y). (2.16)

Then, by introducing (2.15) and (2.16) into (2.3), we get

∫
�x×�y

X p
n · Y ∗n ·

(
d2 X p

n

dx2 · Y
p

n + X p
n · d2Y p

n

dy2

)
dx · dy

= −
∫

�x×�y

X p
n · Y ∗n ·

n−1∑
i=1

(
d2 Xi

dx2 · Yi + Xi · d2Yi

dy2

)
dx · dy

+
∫

�x×�y

X p
n · Y ∗n · f dx · dy. (2.17)

As all functions of x are known, the integrals over �x can be computed to obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

αy = ∫
�x

(
X p

n (x)
)2

dx

βy = ∫
�x

X p
n (x) · d2 X p

n (x)

dx2 dx

γ
y
i =

∫
�x

X p
n (x) · Xi (x) dx

δ
y
i =

∫
�x

X p
n (x) · d2 Xi (x)

dx2 dx

ξy = ∫
�x

X p
n (x) · f dx

. (2.18)

Equation (2.17) becomes

∫
�y

Y ∗n ·
(

αy · d2Y p
n

dy2 + βy · Y p
n

)
dy

= −
∫

�y

Y ∗n ·
n−1∑
i=1

(
γ

y
i ·

d2Yi

dy2 + δ
y
i · Yi

)
dy +

∫
�y

Y ∗n · ξy dy. (2.19)

As before, we have thus obtained the weighted residual form of an elliptic problem
defined over �y whose solution is the function Y p

n (y). Alternatively, the corre-
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sponding strong formulation of this one-dimensional problem reads

αy · d2Y p
n

dy2 + βy · Y p
n = −

n−1∑
i = 1

(
γ

y
i ·

d2Yi

dy2 + δ
y
i · Yi

)
+ ξy. (2.20)

This again is an ordinary differential equation of the second order, due to the
fact that the original Poisson equation involves second-order derivatives of the
unknown field with respect to y. With both the weighted residual and strong for-
mulations, the homogeneous Dirichlet boundary conditions Y p

n (y = 0) = Y p
n (y =

L) = 0 are readily specified.

We have thus completed iteration p at enrichment step n.
It is important to realize that the original two-dimensional Poisson equation

defined over � = �x ×�y has been transformed within the PGD framework into a
series of decoupled one-dimensional problems formulated in �x and �y .

As we shall detail later, should we consider the Poisson equation defined over a
domain of dimension D, i.e. �1 × �2 × · · · × �D , then its PGD solution would
similarly involve a series of decoupled one-dimensional problems formulated in each
�i . This of course explains why the PGD solution of high-dimensional problems is
feasible at all.

2.1.2 Stopping Criterion for the Enrichment Process

The enrichment process itself ends when an appropriate measure of error E(n)

becomes small enough, i.e E(n) < ε̃. Several stopping criteria are suitable.
A first stopping criterion is associated with the relative weight of the newly-

computed term within the PGD expansion. Thus, E(n) is given by

E(n) = ‖Xn(x) · Yn(y)‖
‖un(x, y)‖ = ‖Xn(x) · Yn(y)‖∥∥∥∥

n∑
i=1

Xi (x) · Yi (y)

∥∥∥∥
. (2.21)

Selecting for example the L2-norm, we have

‖Xn(x) · Yn(y)‖2 =
(∫

�x×�y

(Xn(x))2 · (Yn(y))2 dx · dy

) 1
2

=
(∫

�x

(Xn(x))2 dx

) 1
2 ·

(∫
�y

(Yn(y))2 dy

) 1
2

. (2.22)
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Since un(x, y) is expressed in a separated form, its square will be also expressed in
a separated form having n·(n+1)

2 terms:

(un)2 =
n·(n+1)

2∑
i=1

Sx
i (x) · Sy

i (y). (2.23)

The corresponding L2-norm is then readily evaluated as follows

‖un‖2 =
⎛
⎜⎝

∫
�x×�y

n·(n+1)
2∑

i=1

Sx
i (x) · Sy

i (y) dx · dy

⎞
⎟⎠

1
2

(2.24)

=
⎛
⎜⎝

n·(n+1)
2∑

i=1

(∫
�x

Sx
i (x) dx ·

∫
�y

Sy
i (y) dy

)⎞
⎟⎠

1
2

. (2.25)

The above stopping criterion involves the evaluation of 2 + n · (n + 1) one-
dimensional integrals. A similar but less expensive criterion is based on the norm of
mode n with respect to the norm of the first mode, i.e.

E(n) = ‖Xn(x) · Yn(y)‖
‖X1(x) · Y1(y)‖ . (2.26)

This second criterion requires the computation of only two one-dimensional inte-
grals.

More appropriate error estimators can be associated to the residual R(n) obtained
by inserting the PGD approximation un(x, y) into the Poisson equation:

R(n) =
n∑

i = 1

(
∂2 Xi

∂x2 · Yi (y)+ Xi (x) · ∂
2Yi

∂y2

)
− f. (2.27)

Selecting E(n) = ‖R(n)‖2 as error estimator again leads to the computation of
one-dimensional integrals as with the previous criteria.

Other error estimators based on quantities of interest in the study of a particular
problem are proposed in [1, 2].
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2.1.3 Numerical Example

Let us consider the Poisson Eq. (2.1) on a two-dimensional rectangular domain � =
�x × �y = (0, 2) × (0, 1) for which we seek a solution using the procedure
described above. The source term f is set to f = 1, in which case we obtain
analytically the following exact solution for u(x, y):

uex(x, y) =
∑

m,n odd

64

π4
(
4n2 + m2

) · sin
(mπx

2

)
· sin (nπy) . (2.28)

The unknown functions Xi (x) and Yi (y) are sought on a uniform grid with M
points. All one-dimensional differential problems arising in the solution procedure
are solved using second-order finite differences, while the integrals are evaluated
numerically using the trapezoidal rule. The chosen stopping criteria for the fixed
point iterations and the enrichment process are those described by (2.8) and (2.26),
respectively.

In Figs. 2.1 and 2.2 the normalized functions Xi (x) and Yi (y) are illustrated for
i = 1, . . . , 4 and M = 101. One can observe that, as i increases, Xi (x) and Yi (y)

both account for a higher frequency content of the numerical solution.
In Fig. 2.3, we show the 2D reconstructed PGD solution together with the nor-

malized functions Xi (x) and Yi (y). For clarity reasons the 2D solution is shown on
a coarser grid.

In the sequel we illustrate the convergence of the PGD solution towards the
analytical solution as a function of both the discretization and the number of
enrichment steps. For this purpose we define the following quadratic error between
the analytical solution uex(x, y) and a numerical PGD solution uN

M (x, y) with N
enrichment steps and M discretization points for each coordinate:

Fig. 2.1 Normalized func-
tions Xi (x) for i = 1, . . . , 4
produced by the PGD solution
of (2.1)
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Fig. 2.2 Normalized func-
tions Yi (y) for i = 1, . . . , 4
produced by the PGD solution
of (2.1)

Fig. 2.3 Reconstructed 2D
PGD solution of (2.1) and
normalized functions Xi (x)

and Yi (y). The 2D solution is
shown on a coarser grid

EM (uN
M ) =

˜∫ 1

0

˜∫ 2

0

(
uex(x, y)− uN

M (x, y)
)2

dx · dy. (2.29)

Here, the symbol
∫̃

refers to a numerical integration carried out with the trapezoidal
rule on the nodal values. We first illustrate the pointwise convergence of the PGD
solution towards the exact solution in Fig. 2.4 where we plot uex − uN

M for M = 41
and different values of N . For clarity reasons the 2D error is shown on a coarser grid.

We further illustrate the convergence of the PGD solution by showing EM (uN
M )

as a function of N and as a function of M in Figs. 2.5 and 2.6 respectively. One can
immediately notice that, for this problem, only a few enrichment steps are necessary
for the PGD to converge to the analytical solution.

In the next example, we compute the first 10 enrichment steps on a coarse mesh
(M = 21). We then interpolate the computed functions Xi (x) and Yi (y) on a finer
mesh (M = 41) using a natural spline interpolation, before computing another 10
enrichment steps on the fine mesh. The error EM (uN

M ) is shown in Fig. 2.7. This
illustrates that after a few enrichment steps the error is mostly a discretization error.
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Fig. 2.4 uex − uN
M for M = 41 and different values of N

Fig. 2.5 PGD error EM (uN
M )

as a function of the number
of enrichment steps N for
different numbers M of dis-
cretization points

2.2 Taking into Account Neumann Boundary Conditions

In the sequel, we still consider the Poisson equation (2.1) with a constant source
term defined in the domain � = �x ×�y . The boundary conditions are somewhat
different, however. We indeed specify a flux or Neumann condition along part of the
domain boundary:
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Fig. 2.6 PGD error EM (uN
M )

as a function of the number
of grid points M for different
numbers N of enrichment
steps

Fig. 2.7 PGD error EM (uN
M )

as a function of the number of
enrichment steps. The first 10
enrichment steps have been
computed on a coarse mesh
with M = 21. The following
enrichment steps have been
computed on a finer mesh with
M = 41

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x = 0, y) = 0
u(x = L , y) = 0
u(x, y = 0) = 0
∂u

∂y
|x,y=H = q

. (2.30)

The classical way of accounting for Neumann conditions is to integrate by parts
the weighted residual form (2.3) and implement the flux condition as a so-called
natural boundary condition:
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−
∫

�x×�y

∇u∗ · ∇u dx · dy =
∫

�x×�y

u∗ · f dx · dy−
∫

�x

u∗(x, y = H) · q dx,

(2.31)
or more explicitly

∫
�x×�y

(
∂u∗

∂x
· ∂u

∂x
+ ∂u∗

∂y
· ∂u

∂y

)
dx · dy

= −
∫

�x×�y

u∗ · f dx · dy +
∫

�x

u∗(x, y = H) · q dx. (2.32)

This is the starting point from which a PGD solution can be sought in the separated
form

u(x, y) =
N∑

i = 1

Xi (x) · Yi (y). (2.33)

The PGD solution procedure then readily follows as described in the first case
study. At enrichment step n, one iteration p of the alternating direction strategy
amounts to the following computations:

• Calculating X p
n (x) from Y p−1

n (y)

At this stage, the PGD approximation is given by

un,p(x, y) =
n−1∑
i = 1

Xi (x) · Yi (y)+ X p
n (x) · Y p−1

n (y), (2.34)

where X p
n (x) is the only unknown function.

Using Galerkin’s method, we select the following weight function

u∗(x, y) = X∗n(x) · Y p−1
n (y). (2.35)

Inserting (2.34) and (2.35) into (2.32), we obtain

∫
�x×�y

⎛
⎝d X∗n

dx
· d X p

n

dx
·
(

Y p−1
n

)2 + X∗n · X p
n ·

(
dY p−1

n

dy

)2
⎞
⎠ dx · dy

= −
∫

�x×�y

n−1∑
i=1

(
d X∗n
dx
· d Xi

dx
· Y p−1

n · Yi + X∗n · Xi · dY p−1
n

dy
· dYi

dy

)
dx · dy
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−
∫

�x×�y

X∗n · Y p−1
n · f dx · dy +

∫
�x

X∗n · Y p−1
n (y = H) · q dx. (2.36)

In the above expression, all functions of the coordinate y are known, and we can
evaluate the corresponding one-dimensional integrals:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αx = ∫
�y

(
Y p−1

n (y)
)2

dy

βx = ∫
�y

(
dY p−1

n (y)

dy

)2

dy

γx
i =

∫
�y

Y p−1
n (y) · Yi (y) dy

δx
i =

∫
�y

dY p−1
n (y)

dy
· dYi (y)

dy
dy

ξx = ∫
�y

Y p−1
n (y) · f dy

μx = Y p−1
n (y = H) · q

. (2.37)

We thus obtain the weighted residual form of an elliptic problem for X p
n (x) defined

over �x:

∫
�x

(
d X∗n
dx
· d X p

n

dx
· αx + X∗n · X p

n · βx

)
dx

= −
∫

�x

n−1∑
i=1

(
d X∗n
dx
· d Xi

dx
· γx

i + X∗n · Xi · δx
i

)
dx

−
∫

�x

X∗n · ξx dx+
∫

�x

X∗n · μx dx. (2.38)

The finite element method, for example, can then be used to discretize this one-
dimensional problem, with the remaining Dirichlet condition X p

n (x = 0) =
X p

n (x = L) = 0.
• Calculating Y p

n (y) from the just computed X p
n (x)

Here again, the second step of iteration p simply mirrors the first one with an
exchange of role between x and y coordinates.

The current PGD approximation reads

un,p(x, y) =
n−1∑
i = 1

Xi (x) · Yi (y)+ X p
n (x) · Y p

n (y), (2.39)

where Y p
n (y) is the only unknown function.
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Selecting the Galerkin method, i.e.

u∗(x, y) = X p
n (x) · Y ∗n (y), (2.40)

we introduce (2.39) and (2.40) into (2.32) to obtain

∫
�x×�y

((
d X p

n

dx

)2

· Y ∗n · Y p
n +

(
X p

n
)2 · dY ∗n

dy
· dY p

n

dy

)
dx · dy

= −
∫

�x×�y

n−1∑
i=1

(
d X p

n

dx
· d Xi

dx
· Y ∗n · Yi + X p

n · Xi · dY ∗n
dy
· dYi

dy

)
dx · dy

−
∫

�x×�y

X p
n · Y ∗n · f dx · dy +

∫
�x

X p
n · Y ∗n (y = H) · q dx. (2.41)

Now, all functions of x are known, and we can compute the integrals

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αy = ∫
�x

(
X p

n (x)
)2

dx

βy = ∫
�x

(
d X p

n (x)

dx

)2

dx

γ
y
i =

∫
�x

X p
n (x) · Xi (x) dx

δ
y
i =

∫
�x

d X p
n (x)

dx
· d Xi (x)

dx
dx

ξy = ∫
�x

X p
n (x) · f dx

μy = ∫
�x

X p
n (x) · q dx

. (2.42)

We thus obtain the weighted residual form of an elliptic problem for Y p
n (y) defined

over �y:

∫
�y

(
βy · Y ∗n · Y p

n + αy · dY ∗n
dy
· dY p

n

dy

)
dy

= −
∫

�y

n−1∑
i=1

(
δ
y
i · Y ∗n · Yi + γ

y
i ·

dY ∗n
dy
· dYi

dy

)
dy

−
∫

�y

ξy · Y ∗n dy + Y ∗n (y = H) · μy. (2.43)

Here again, we can use the finite element method to discretize this one-dimensional
problem, with the remaining Dirichlet conditions Y p

n (y = 0) = 0.
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2.3 Increasing the Complexity of the Case Study

2.3.1 Non-Constant Source Term

We have assumed so far a constant source term f . We now extend the PGD strategy
to the case of a non-uniform source f (x, y). We shall see in Sect. 3.2 how to obtain
a separated representation of f in the form

f (x, y) =
F∑

j = 1

Fx
j (x) · Fy

j (y). (2.44)

With the following notation,

ξx
j =

∫
�y

Y p−1
n (y) · Fy

j (y) dy, (2.45)

it is then easy to verify that (2.13) and (2.38) become respectively

∫
�x

X∗n ·
(

αx · d2 X p
n

dx2 + βx · X p
n

)
dx

= −
∫

�x

X∗n ·
n−1∑
i=1

(
γx

i ·
d2 Xi

dx2 + δx
i · Xi

)
dx +

∫
�x

X∗n ·
⎛
⎝ F∑

j=1

ξx
j · Fx

j (x)

⎞
⎠ dx,

(2.46)
and

∫
�x

(
d X∗n
dx
· d X p

n

dx
· αx + X∗n · X p

n · βx

)
dx

= −
∫

�x

n−1∑
i=1

(
d X∗n
dx
· d Xi

dx
· γx

i + X∗n · Xi · δx
i

)
dx

−
∫

�x

X∗n ·
⎛
⎝ F∑

j=1

ξx
j · Fx

j (x)

⎞
⎠ dx+

∫
�x

X∗n · μx dx. (2.47)

Similarly, with the definition

ξ
y
j =

∫
�x

X p
n (x) · Fx

j (x) dx, (2.48)

http://dx.doi.org/10.1007/978-3-319-02865-1_3
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Equations (2.19) and (2.43) become respectively

∫
�y

Y ∗n ·
(

αy · d2Y p
n

dy2 + βy · Y p
n

)
dy

= −
∫

�y

Y ∗n ·
n−1∑
i=1

(
γ

y
i ·

d2Yi

dy2 + δ
y
i · Yi

)
dy +

∫
�y

Y ∗n ·
⎛
⎝

j=F∑
j=1

ξ
y
j · Fy

j (y)

⎞
⎠ dy

(2.49)
and

∫
�y

(
βy · Y ∗n · Y p

n + αy · dY ∗n
dy
· dY p

n

dy

)
dy

= −
∫

�y

n−1∑
i=1

(
δ
y
i · Y ∗n · Yi + γ

y
i ·

dY ∗n
dy
· dYi

dy

)
dy

−
∫

�y

Y ∗n ·
⎛
⎝

j=F∑
j=1

ξ
y
j · Fy

j (y)

⎞
⎠ dy + Y ∗n (y = H) · μy. (2.50)

The same procedure is used when the problem to be solved has non-constant
coefficients.

2.3.2 Non-Homogeneous Dirichlet Boundary Conditions

Let us now specify non-homogeneous Dirichlet conditions along a part �D of the
domain boundary �: u(x, y) = u(x, y) �= 0 for (x, y) ∈ �D .

In order to apply the PGD strategy, we simply consider a function g(x, y) regular
enough that satisfies the same Dirichlet conditions, i.e. g(x, y) = u(x, y) for (x, y) ∈
�D , but is otherwise arbitrary [3].

Then again, as explained in Sect. 3.2, we compute a priori the separated repre-
sentation of the function g(x, y)

g(x, y) =
G∑

j = 1

Gx
j (x) · Gy

j (y). (2.51)

This expansion can be seen as a (very) approximate solution that satisfies the
Dirichlet boundary conditions but does not verify neither the partial differential
equation nor the natural boundary conditions. In order to enforce both, it suffices to
enrich this approximation to obtain

http://dx.doi.org/10.1007/978-3-319-02865-1_3
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u(x, y) =
N∑

j = 1

Xi (x) · Yi (y), (2.52)

where Xi (x) = Gx
i (x) and Yi (y) = Gy

i (y), for i = 1, . . . ,G. The remaining
functions Xi (x) and Yi (y), for i > G, are calculated by using the PGD procedure
described previously for homogeneous Dirichlet conditions.

2.3.3 Higher Dimensions and Separability of the Computational
Domain

The PGD procedure described in this chapter can easily be generalized to models
defined in D dimensions as long as the computational domain is separable. By this
we mean that the domain is the Cartesian product of one-dimensional intervals:

� = �1 ×�2 × · · · ×�D. (2.53)

Thus, the unknown field u(x1, . . . ,xD) is sought in the separated form

u(x1, . . . ,xD) =
N∑

i = 1

X1
i (x1)× · · · × X D

i (xD). (2.54)

For example, should we consider the Poisson equation, then its PGD solution in
� would involve a series of decoupled one-dimensional problems (second-order
ordinary differential equations) formulated in each �i .

For a non-separable domain, one possible approach consists in embedding � into
a separable domain � = �1 ×�2 × · · · ×�D such that � ⊂ �. One then applies
the PGD strategy in � together with an appropriate penalty formulation in �\� [3].

In many applications, the computational domain is not strictly separable according
to our definition, but it is the Cartesian product of multi-dimensional sets. One can
then easily apply a PGD strategy by separating the coordinates into the several groups
that correspond to these sets. For example, consider a three-dimensional extruded
domain � = �(x,y) ×�z . Here, the domain � is the extrusion of the non-separable
two-dimensional domain �(x,y) along the z axis. In this case, the PGD decomposition
reads most naturally

u(x, y, z) =
N∑

i = 1

Xi (x, y) · Zi (z). (2.55)

This approach is particularly well suited to problems involving plates, shells
or profiled geometries. The PGD calculations thus involve a series of decou-
pled two-dimensional problems in �(x,y) to compute the functions Xi (x, y), and
one-dimensional problems in �z to compute the functions Zi (z). As a result, the
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fully-three dimensional PGD simulation has a numerical complexity typical of two-
dimensional analyses.

2.4 Numerical Examples

2.4.1 2D Heat Transfer Problem

In this section, we illustrate the developments of the previous sections by comparing
the PGD and the finite element solutions of the following problem:

�u(x, y) = f (x, y), (2.56)

defined in a two-dimensional rectangular domain � = �x × �y = (0, 2)× (0, 1).
The boundary conditions are specified as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x = 0, y) = y · (1− y)

u(x = 2, y) = 0
u(x, y = 0) = 0
∂u

∂y
|x,y= 1 = −1

. (2.57)

Thus, we can write (2.51) as:

g(x, y) = Gx
1(x) · Gy

1(y) = 2− x

2
· y · (1− y). (2.58)

Finally, we consider the following separated representation for the source term
f (x, y):

f (x, y) = Fx
1 (x) · Fy

1 (y) = −5e−10·(x−1)2 · e−10·(y−0.5)2
. (2.59)

The unknown functions Xi (x) and Yi (y) are sought on a uniform grid with M = 41
points. All one-dimensional differential problems and integrals arising in the solution
procedure are solved or computed using linear one-dimensional finite elements. The
stopping criteria for the fixed point iterations and the enrichment process are those
described by (2.8) and (2.26), respectively. Error levels are computed using the
following expression:

EM (uN
M ) =

∫ 1

0

∫ 2

0

(
uFE,M (x, y)− uN

M (x, y)
)2

dx · dy, (2.60)

where uFE,M (x, y) is the corresponding 2D finite element solution on an equivalent
mesh.
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Fig. 2.8 Normalized func-
tions Gx

1 (x) and Xi (x) for
i = 1, . . . , 4

Fig. 2.9 Normalized func-
tions Gy

1(y) and Yi (y) for
i = 1, . . . , 4

In Figs. 2.8 and 2.9, we show the normalized functions Gx
1(x), Xi (x), Gy

1(y) and
Yi (y) for i = 1, . . . , 4. In Fig. 2.8 one can observe that only Gx

1(x) is non-zero for
x = 0 since all the Xi (x) have to preserve the non-zero Dirichlet condition imposed
through Gx

1(x) and Gy
1(y).

We first illustrate the pointwise convergence of the PGD solution towards the
reference solution in Fig. 2.10 where we plot uFE,M − uN

M for M = 41 and different
values of N . For N = 0, the solution reduces to u(x, y) = g(x, y). We further
illustrate the convergence of the PGD solution in Fig. 2.11 by showing EM (uN

M ) as
a function of N .
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Fig. 2.10 uFE,M − uN
M for M = 41 and different values of N

Fig. 2.11 PGD error
EM (uN

M ) as a function of
the number N of enrichment
steps for M = 41

2.4.2 High-Dimensional Problem

We now focus on the solution of the following high-dimensional problem:

�u(x1, . . . ,xD) = f (x1, . . . ,xD), (2.61)
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in a D-dimensional hypercube � = �1× · · ·×�D = (−1, 1)× · · ·× (−1, 1). The
boundary conditions are homogeneous on the whole boundary of � . The source term
f (x1, . . . ,xD) is taken such that we have the following 2-term separated solution:

u D
ex =

D∏
d = 1

xd · sin (d · π · xd)+
D∏

d = 1

x2
d · sin ((D + 1− d) · π · xd) . (2.62)

Similarly to the previous examples, we seek a N -term PGD solution of the form:

u D
M,N =

N∑
i = 1

D∏
d = 1

Xd
i (xd), (2.63)

where M is the number of finite element nodal values along each dimension.
Remember that, using standard grid-based methods, the solution would involve M D

degrees of freedom. Again, the one-dimensional integrals and BVP arising in the
PGD solution procedure are computed using linear finite elements. Error levels are
computed using the following expression:

E D
M (u D

M,N ) = ˜∫
�1

. . .
˜∫
�D

(
u D

ex − u D
M,N

)2
dx1 · · · dxD, (2.64)

where
∫̃

refers to the numerical integration on the finite element mesh. We show
in Fig. 2.12, for M = 101, the decrease of the normalized error levels for different
values of D as we increase the number of terms in the PGD solution. In this particular
case, the PGD solution is optimal in the sense that after only two enrichment steps,
the relative error is about 10−15 and does not decrease upon further enrichment.

Fig. 2.12 PGD error
E D

M (u D
M,N ) as a function

of the number N of enrich-
ment steps for different values
of D and M = 101
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For D = 10, the PGD solution is computed in a few seconds on a laptop computer.
Traditional grid-based methods with the same level of discretization would require
more than 1020 degrees of freedom, which is far beyond the capabilities of today’s
computers.
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