
Chapter 2
Unknown Input Observers and Filters

As can be observed in the literature, observers (or filters in a stochastic framework)
are commonly used in both control and fault diagnosis schemes of non-linear sys-
tems (see, e.g., [1–6] and the references therein). Undoubtedly, the most common
approach is to use robust observers, such as theUnknown InputObserver (UIO) [2, 7],
which can tolerate a degree of model uncertainty and hence increase the reliability
of fault diagnosis. Although the origins of UIOs can be traced back to the early 1970s
(cf. the seminal work of Ref. [8]), the problem of designing such observers is still of
paramount importance both from the theoretical and practical viewpoints. A large
amount of knowledge on using these techniques for model-based fault diagnosis has
been accumulated through the literature for the last three decades (see Ref. [2] and
the references therein). A large number of approaches to non-linear fault diagnosis
and fault-tolerant control was published during the last two decades. For example,
in Ref. [9] the high gain observer for Lipschitz systems was applied for the purpose
of fault diagnosis. One of the standard methods of observer design consists in using
a non-linear change of coordinates to turn the original system into a linear one (or
a pseudo linear one). As indicated in the literature, such approaches can be applied
for fault diagnosis and FTC [10, 11]. It should also be noted that when the feasi-
bility condition regarding the non-linear change of coordinates is not matched, then
the celebrated Extended Kalman Filter (EKF) can be applied in both stochastic and
deterministic context (see, e.g., [2]).

Generally, design problems regarding the UIOs for non-linear systems can be
divided into three distinct categories:

• Non-linear state transformation-based techniques: Apart from a relatively large
class of systems forwhich they canbe applied, even if the non-linear transformation
is possible it leads to another non-linear system and hence the observer design
problem remains open (see Ref. [7] and the references therein).

• Linearisation-based techniques: Such approaches are based on a similar strategy
like that for the EKF [1]. In Ref. [2] the author proposed an extended unknown
input observer for non-linear systems. He also proved that the proposed observer
is convergent under certain conditions.
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• Observers for particular classes of non-linear systems: For example UIOs for
polynomial and bilinear systems or for Lipschitz systems [2, 12–14].

In the light of the above discussion, it is clear that accurate state estimation is
extremely important for fault detection and control applications.However, estimation
under noise and unknown inputs is very difficult.

In order to face the above-mentioned challenges, the design problems regarding
UIOs (undertakenwithin the framework of this chapter) are divided into three distinct
categories:

1. How to determine the unknown input distributionmatrix, which will not decouple
the effect of faults from the residual?

2. How to develop a possibly simple and reliable design procedure of UIO for both
non-linear stochastic and deterministic systems?

3. How to extend the approach developed for the constant unknown input distribution
matrix into a set of predefined unknown input distribution matrices?

Concerning the first question, a partial answer can be found in Ref. [15]. Indeed, the
authors concentrate on the determination of the unknown input distribution matrix
for linear systems but they do not answer the question when this matrix will cause the
fault decoupling effect. Apart from the fact that there are approaches that can be used
for designing UIOs for non-linear systems (listed above), the problem of determining
the unknown input distributionmatrix for this class of systems remains untouched. In
otherwords, the authors assume that thismatrix is known,which apart from relatively
simple cases is never the truth. It should also be mentioned that it is usually assumed
that disturbance decoupling will not cause a decrease in fault diagnosis sensitivity or
fault decoupling in the worst scenario. To tackle this problem within the framework
of this chapter, a numerical optimisation-based approach is proposed that can be
used to estimate the unknown input distribution matrix which does not cause the
fault decoupling effect. As an answer to the second question, this work presents an
alternative Unknown Input Filter (UIF) for non-linear systems, which is based on the
general idea of the Unscented Kalman Filter (UKF) [16, 17]. This approach is based
on an idea similar to that proposed in Refs. [2, 18], but the structure of the scheme is
different and instead of the EKF the UKF is employed. To tackle the third problem,
it is shown that the Interacting Multiple Model (IMM) algorithm can be employed
for selecting an appropriate unknown input distribution matrix from a predefined set.
The proposed solutions can be perceived as an alternative to the Takagi–Sugeno-
based approach presented, e.g., in Ref. [19], which will be the subject of Chap. 6.
Finally, it should be mentioned that some of the results portrayed in this chapter were
originally presented in Refs. [18, 20, 21].
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2.1 Unknown Input Decoupling

Let us consider a non-linear stochastic system given by the following equations:

xk+1 = g (xk) + h(uk) + Edk + Lf k + wk, (2.1)

yk+1 = Cxk+1 + vk+1. (2.2)

Note that the unknown input and fault distribution matrices, denoted by E and L,
are assumed (for the sake of simplicity) constant in this section. Such an assumption
will be relaxed in Sect. 2.6, where a set of predefined matrices will be used instead.
Moreover, it should bementioned that this chapter focuses on faults that can influence
the state equation (2.1), such as actuator faults. The case of sensor faults is beyond
the scope of this section and will be investigated in the subsequent part of the book.

The main problem is to design a filter which is insensitive to the influence of the
unknown input (external disturbances and modeling errors) while being sensitive to
faults. The necessary condition for the existence of a solution to the unknown input
decoupling problem is as follows:

rank(CE) = rank(E) = q (2.3)

(see Ref. [2] for a comprehensive explanation). If the condition (2.3) is satisfied, then

it is possible to calculate H = (CE)+ = [
(CE)T CE

]−1
(CE)T . Thus, by inserting

(2.1) into (2.2) and then multiplying (2.2) by H it is straightforward to show that

dk = H
[

yk+1 − C
[
g (xk) + h(uk) + Lf k + wk

] − vk+1

]
. (2.4)

Substituting (2.4) into (2.1) for dk gives

xk+1 = ḡ (xk) + h̄(uk) + Ēyk+1 + L̄f k + w̄k, (2.5)

where

ḡ (·) = Gg (·) , h̄(·) = Gh(·),
Ē = EH, w̄k = Gwk − EHvk+1,

and

G = I − EHC.

Consequently, the general observer structure is

x̂k+1 = ḡ
(
x̂k

) + h̄(·) + Ēyk+1 + K(·), (2.6)
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where K(·) is the state correction term. In order to make further deliberations more
general, no particular form of K(·) is assumed in the present and subsequent section.

Let us define a residual as a difference between the output of the system and its
estimate:

zk+1 = yk+1 − Cx̂k+1

= C(ḡ (xk) − ḡ
(
x̂k

) − K(·)) + f̄ k + Cw̄k + vk+1, (2.7)

where

f̄ k = CL̄f k = C
[

In − E
[
(CE)T CE

]−1
(CE)T C

]
Lf k . (2.8)

A natural question arises: Is it possible that the fault will be decoupled from the
residual? If so the proposed strategy seems to be useless as it will lead to undetected
faults,whichmayhave serious consequences regarding the performanceof the system
being diagnosed. An answer is provided in the subsequent section.

2.2 Preventing Fault Decoupling

It is usually assumed that a disturbance decoupling will not cause a decrease in
fault diagnosis sensitivity or a fault decoupling in the worst scenario. But such an
assumption is a rather unpractical tool in serious applications. Thus, to overcome such
a challenging problem, the following theorem provides a simple rule for checking
if the proposed unknown input observer will not decouple the effect of a fault from
the residual. It relates the fault and unknown input distribution matrices denoted by
L and E, respectively. Moreover, let us assume that the following rank condition is
satisfied:

rank(CL) = rank(L) = s. (2.9)

Theorem 2.1 The fault f k will not be decoupled from the residual (2.7) if and only
if the matrix

[CE CL] (2.10)

is a full-rank one.

Proof Let us suppose (theoretically) that rank(CL̄) = s. Then it can be shown that

f k = (CL̄)+f̄ k, (2.11)

which means that there exists a unique relationship between f k and f̄ k and hence the
fault will not be decoupled from the residual. Unfortunately, the subsequent part of
the proof shows that this is not always possible to attain. Indeed, (2.8) can be written
into an equivalent form



2.2 Preventing Fault Decoupling 23

f̄ k =
[

Im − CE
[
(CE)T CE

]−1
(CE)T

]
CLf k . (2.12)

Moreover, it can be observed that

[
Im − CE

[
(CE)T CE

]−1
(CE)T

]2

= Im − CE
[
(CE)T CE

]−1
(CE)T , (2.13)

which means that Im − CE
[
(CE)T CE

]−1
(CE)T is an idempotent matrix. One of

the fundamental properties of an idempotent matrix is that its rank is equal to the
trace, i.e.,

rank

(
Im − CE

[
(CE)T CE

]−1
(CE)T

)

= trace

(
Im − CE

[
(CE)T CE

]−1
(CE)T

)

= trace (Im) − trace

(
CE

[
(CE)T CE

]−1
(CE)T

)

= m − trace

([
(CE)T CE

]−1
(CE)T CE

)
= m − q. (2.14)

Thus, from (2.9) it is clear that

rank

([
Im − CE

[
(CE)T CE

]−1
(CE)T

]
CL

)

≤ min(m − q, s). (2.15)

On the other hand,

rank

([
Im − CE

[
(CE)T CE

]−1
(CE)T

]
CL

)

≥ rank

(
Im − CE

[
(CE)T CE

]−1
(CE)T

)
+ rank (CL) − m

= s − q. (2.16)

Finally,

max(s − q, 0) ≤ rank

([
Im − CE

[
(CE)T CE

]−1
(CE)T

]
CL

)

≤ min(m − q, s). (2.17)
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Thus, it is necessary to find an alternative condition under which

f̄ k = CLf k − CE
[
(CE)T CE

]−1
(CE)T CLf k

= CLf k − CLf k = 0. (2.18)

Indeed, any vector CLf k ∈ col(CE), where

col(CE) = {
α ∈ R

m : α = CEβ for some β ∈ R
q} , (2.19)

can be written as
CLf k = CEf̃ k, (2.20)

for some non-zero vector f̃ k . As a consequence,

CE
[
(CE)T CE

]−1
(CE)T CLf k

= CE
[
(CE)T CE

]−1
(CE)T CEf̃ k = CEf̃ k = CLf k . (2.21)

From the above discussion, it is clear that the proposed unknown input observer
will not decouple the fault effect from the residual iff CLf k /∈ col(CE), which is
equivalent to

rank
([

CE CLf k

]) = q + 1 (2.22)

for all fi,k �= 0, i = 1, . . . , s. It is clear that (2.22) is equivalent to the fact that the
only solution to (for all fi,k �= 0, i = 1, . . . , s)

α1(CE)1 + α2(CE)2 + · · · + αq(CE)q + αq+1CLf k = 0, (2.23)

is for αi = 0, i = 1, . . . , q + 1. By further expansion of (2.23) to

α1(CE)1 + · · · + αq(CE)q + αq+1f1,k(CL)1 + · · · + αq+1fs,k(CL)s = 0, (2.24)

it can be seen that the zero-valued solution to (2.24) is equivalent to the existence of
a full-rank matrix (2.10), which completes the proof.

Since the fault decoupling prevention problem is solved, then it is possible to provide
a set of approaches for designing unknown input observers and filters.



2.3 First- and Second-order Extended Unknown Input Observers 25

2.3 First- and Second-order Extended Unknown
Input Observers

The approach presented in this section is dedicated for deterministic systems. The
proposed strategy is based on the general framework of the second-order EKF. In
particular, the section will show the design of both first- and second-order EUIO.
Moreover, to make the presentation more general, the unknown input distribution
matrix is assumed to be a time-varying one. Let us consider a non-linear discrete-
time system described by (the fault free-case will be considered for the convergence
analysis purposes)

xk+1 = g (xk) + h(uk) + Ekdk, (2.25)

yk+1 = Ck+1xk+1. (2.26)

The problem is to design an observer that is insensitive to the influence of an unknown
input. The necessary condition for the existence of a solution to the unknown input
decoupling problem is

rank(Ck+1Ek) = rank(Ek) = q (2.27)

(see [15, p. 72, Lemma 3.1] for a comprehensive explanation). If the condition (2.27)
is satisfied, then it is possible to calculate Hk+1 = (Ck+1Ek)

+, where (·)+ stands for
the pseudo-inverse of its argument. Thus, by multiplying (2.26) by Hk+1 and then
inserting (2.25), it is straightforward to show that

dk = Hk+1
[
yk+1 − Ck+1

[
g (xk) + h(uk)

]]
. (2.28)

Substituting (2.28) into (2.25) gives

xk+1 = ḡ (xk) + h̄ (uk) + Ēkyk+1, (2.29)

where

ḡ (·) = Ḡkg (·) , h̄ (·) = Ḡkh(·)
Ḡk = I − EkHk+1Ck+1, Ēk = EkHk+1. (2.30)

Thus, the unknown input observer for (2.25) and (2.26) is given as follows:

x̂k+1 = x̂k+1/k + Kk+1(yk+1 − Ck+1x̂k+1/k),

where
x̂k+1/k = ḡ

(
x̂k

) + h̄ (uk) + Ēkyk+1. (2.31)
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As a consequence, the second-order extended Kalman filter algorithm used for the
state estimation of (2.25) and (2.26) can be given as follows:

x̂k+1/k = ḡ
(
x̂k

) + h̄ (uk) + Ēkyk+1 + sk, (2.32)

Pk+1/k = ĀkPkĀk
T + Qk, (2.33)

Kk+1 = Pk+1/kCT
k+1

·
(

Ck+1Pk+1/kCT
k+1 + Rk+1

)−1
, (2.34)

x̂k+1 = x̂k+1/k + Kk+1(yk+1 − Ck+1x̂k+1/k), (2.35)

Pk+1 = [
I − Kk+1Ck+1

]
Pk+1/k, (2.36)

where

Āk = ∂ḡ (xk)

∂xk

∣∣∣∣
xk=x̂k

= Ḡk
∂g (xk)

∂xk

∣∣∣∣
xk=x̂k

= ḠkAk, (2.37)

and

si,k = 1

2
trace

⎡

⎣Pk
∂ḡi (xk)

2

∂x2k

∣∣
∣∣∣
xk=x̂k

⎤

⎦ , i = 1, . . . , n. (2.38)

The algorithm (2.32)–(2.36) can be perceived as the second-order EKF for non-linear
systems with an unknown input. It should also be pointed out that when sk = 0 then
the algorithm (2.32)–(2.36) reduces to the first-order EUIO.

2.3.1 Convergence Analysis

An important property is the fact that the proposed algorithm is used for the deter-
ministic systems (2.25) and (2.26), and hence there exists a design freedom regarding
matrices Qk and Rk that can be exploited for increasing the convergence rate of the
EUIO. To tackle this challenging problem, the convergence conditions of the EUIO
related to the matrices Qk and Rk are developed and carefully analysed.

Using (2.35), the state estimation error can be given as:

ek+1 = xk+1 − x̂k+1 = [
I − Kk+1Ck+1

]
ek+1/k, (2.39)

where

ek+1/k = xk+1 − x̂k+1/k ≈ Ākek − sk . (2.40)
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Assuming that ek �= 0 and defining an unknown diagonal matrix:

βk = diag(β1,k, . . . ,βn,k) (2.41)

such that

−βkek = sk, (2.42)

it is possible to write

ek+1/k = xk+1 − x̂k+1/k

= αk
[
Āk + βk

]
ek = αkZkek, (2.43)

whereαk = diag(α1,k, . . . ,αn,k) is an unknown diagonalmatrix. Thus, using (2.43),
the Eq. (2.39) becomes:

ek+1 = [
I − Kk+1Ck+1

]
αkZkek . (2.44)

It is clear from (2.43) that αk represents the lineariztion error. This means that the
convergence of the proposed observer is strongly related to the admissible bounds of
the diagonal elements of αk . Thus, the main objective of further deliberations is to
show that these bounds can be controlled with the use of the instrumental matrices
Qk and Rk .

First let us start with the convergence conditions, which require the following
assumptions:
Assumption 1 Following Ref. [22], it is assumed that the system given by (2.26) and
(2.29) is locally uniformly rank observable. This guaranties that (see Ref. [22] and
the references therein) that the matrix Pk is bounded, i.e., there exist positive scalars
θ̄ > 0 and θ > 0 such that

θI � P−1
k � θ̄I. (2.45)

Assumption 2 The matrix Ak is uniformly bounded and there exists A−1
k .

Moreover, let us define

ᾱk = max
j=1,...,n

|αj,k |, αk = min
j=1,...,n

|αj,k|. (2.46)

where σ (·) and σ̄ (·) denote the minimum and the maximum singular value of their
arguments, respectively.

Theorem 2.2 If

ᾱk ≤
[
α2

k

σ (Zk)
2 σ (Ck+1)

2 σ
(
ZkPkZT

k + Qk

)

σ̄
(
Ck+1Pk+1/kCT

k+1 + Rk+1
)
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+ (1 − ζ)σ
(
ZkPkZT

k + Qk

)

σ̄ (Zk)
2 σ̄ (Pk)

] 1
2

, (2.47)

where 0 < ζ < 1, then the proposed extended unknown input observer is locally
asymptotically convergent.

Proof The main objective of further deliberations is to determine conditions for
which the sequence {Vk}∞k=1, defined by the Lyapunov candidate function

Vk+1 = eT
k+1P−1

k+1ek+1, (2.48)

is a decreasing one. Substituting (2.44) into (2.48) gives

Vk+1 = eT
k ZT

k αk

[
I − CT

k+1KT
k+1

]
P−1

k+1

× [
I − Kk+1Ck+1

]
αkZkek . (2.49)

Using (2.36), it can be shown that

[
I − CT

k+1KT
k+1

]
= P−1

k+1/kPk+1. (2.50)

Inserting (2.34) into
[
I − Kk+1Ck+1

]
yields

[
I − Kk+1Ck+1

] = Pk+1/k

[
P−1

k+1/k − CT
k+1

×
(

Ck+1Pk+1/kCT
k+1 + Rk+1

)−1
Ck+1

]
. (2.51)

Substituting (2.50) and (2.51) into (2.49) gives

Vk+1 = eT
k ZT

k αk

[
P−1

k+1/k − CT
k+1

×
(

Ck+1Pk+1/kCT
k+1 + Rk+1

)−1
Ck+1

]
αkZkek . (2.52)

The sequence {Vk}∞k=1 is decreasing when there exists a scalar ζ, 0 < ζ < 1, such
that

Vk+1 − (1 − ζ)Vk ≤ 0. (2.53)

Using (2.48) and (2.52), the inequality (2.53) can be written as

eT
k

[
ZT

k αk

[
P−1

k+1/k − CT
k+1

·
(

Ck+1Pk+1/kCT
k+1 + Rk+1

)−1
Ck+1

]
αkZk
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−(1 − ζ)P−1
k

]
ek ≤ 0. (2.54)

Using the bounds of the Rayleigh quotient for X 	 0, i.e., σ (X) ≤ eT
k Xek

eT
k ek

≤ σ̄ (X),

the inequality (2.54) can be transformed into the following form:

σ̄
(

ZT
k αkP−1

k+1/kαkZk

)

− σ

(
ZT

k αkCT
k+1

(
Ck+1Pk+1/kCT

k+1 + Rk+1

)−1

×Ck+1αkZk) − (1 − ζ)σ
(

P−1
k

)
≤ 0. (2.55)

It is straightforward to show that

σ̄
(

ZT
k αkP−1

k+1/kαkZk

)

≤ σ̄ (αk)
2 σ̄ (Zk)

2 σ̄
(

P−1
k+1/k

)
, (2.56)

and

σ

(
ZT

k αkCT
k+1

(
Ck+1Pk+1/kCT

k+1 + Rk+1

)−1 × Ck+1αkZk

)

≥ σ (αk)
2 σ (Zk)

2 σ
( ¯Ck+1

)2

× σ

((
Ck+1Pk+1/kCT

k+1 + Rk+1

)−1
)

= σ (αk)
2 σ (Zk)

2 σ
( ¯Ck+1

)2

σ̄
(
Ck+1Pk+1/kCT

k+1 + Rk+1
) . (2.57)

Applying (2.56) and (2.57) to (2.55) and then using (2.33), one can obtain (2.47).
Thus, if the condition (2.47) is satisfied, then {Vk}∞k=1 is a decreasing sequence

and hence, under the local uniform rank observability condition [22], the proposed
observer is locally asymptotically convergent.

2.3.2 Design Principles

First-order Case

When first-order expansion is employed, then sk in (2.32) should be sk = 0. This
means that βk = 0 and hence Zk = Āk .
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Remark 1 As can be observed by a straightforward comparison of (2.47) and (2.58),
the convergence condition (2.47) is less restrictive than the solution obtained with
the approach proposed in Ref. [22], which can be written as

ᾱk ≤
⎛

⎝
(1 − ζ)σ

(
ĀkPkĀk

T + Qk

)

σ̄
(
Āk

)2
σ̄ (Pk)

⎞

⎠

1
2

. (2.58)

However, (2.47) and (2.58) become equivalent when Ek �= 0, i.e., in all cases when
unknown input is considered. This is because of the fact that the matrix Āk is singular
when Ek �= 0, which implies that σ

(
Āk

) = 0. Indeed, from (2.37),

Āk = ḠkAk =
[

I − Ek

[
(Ck+1Ek)

T Ck+1Ek

]−1

(Ck+1Ek)
T Ck+1

]
Ak, (2.59)

and under Assumption 2, it is evident that Āk is singular when

Ek

[
(Ck+1Ek)

T Ck+1Ek

]−1
(Ck+1Ek)

T Ck+1

is singular. The singularity of the above matrix can be easily shown with the use of
(2.27), i.e.,

rank

(
Ek

[
(Ck+1Ek)

T Ck+1Ek

]−1
(Ck+1Ek)

T Ck+1

)

≤ min
[
rank(Ek), rank(Ck+1)

] = q. (2.60)

Taking into account the fact that q < n, the singularity of Āk becomes evident.
Remark 2 It is clear from (2.47) that the bound of ᾱk can be maximised by suitable
settings of the instrumental matrices Qk and Rk . Indeed, Qk should be selected in
such a way as to maximise

σ
(

ĀkPkĀk
T + Qk

)
. (2.61)

To tackle this problem, let us start with a similar solution to the one proposed in
Ref. [23], i.e.,

Qk = γĀkPkĀk
T + δ1I, (2.62)

where γ ≥ 0 and δ1 > 0. Substituting, (2.62) into (2.61) and taking into account that
σ

(
Āk

) = 0, it can be shown that,
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(1 + γ)σ
(

ĀkPkĀk
T
)

+ δ1I = δ1I. (2.63)

Indeed, singularity of Āk , causes σ
(

ĀkPkĀk
T
)

= 0, which implies the final result

of (2.63). Thus, this solution boils down to the classical approach with constant
Qk = δ1I. It is, of course, possible to set Qk = δ1I with δ1 large enough. As has
been mentioned, the more accurate (near “true” values) the covariance matrices, the
better the convergence rate. This means that, in the deterministic case, both matrices
should be zero ones. On the other hand, such a solution may lead to the divergence
of the observer. To tackle this problem, a compromise between the convergence and
the convergence rate should be established. This can be easily done by setting Qk as

Qk = (γεT
k εk + δ1)I, εk = yk − Ck x̂k, (2.64)

with γ > 0 and δ1 > 0 large and small enough, respectively. Since the form of Qk is
established, then it is possible to obtain Rk in such a way as to minimise

σ̄
(

Ck+1Pk+1/kCT
k+1 + Rk+1

)
. (2.65)

To tackle this problem, let us start with the solution proposed in Refs. [22, 23]:

Rk+1 = β1Ck+1Pk+1/kCT
k+1 + δ2I, (2.66)

with β1 ≥ 0 and δ2 > 0. Substituting (2.66) into (2.65) gives

(1 + β1)σ̄
(

Ck+1Pk+1/kCT
k+1

)
+ δ2I. (2.67)

Thus, β1 in (2.66) should be set so as to minimise (2.67), which implies (β1 = 0)

Rk+1 = δ2I, (2.68)

with δ2 small enough.

Second-order Case

From Remark 2 it is clear that the matrix Rk should be set according to (2.68) both
in the first- and the second-order case. Indeed, it can be easily observed that its
derivation does not depend on the form of Zk . A significantly different situation
takes place in the case of Qk . Indeed, when (2.64) is employed to set Qk , then from
(2.33) and (2.36) it is evident that Pk is large in the sense of its singular values as
well as in the trace. Thus, from (2.38) and (2.42) it is clear that the diagonal entries
of βk should be relatively large. On the other hand, by observing (2.47) it can be
concluded that the upper bound of αk strongly depends on Zk while
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σ̄ (Zk) ≤ σ̄
(
Āk

) + σ̄
(
βk

)

= σ̄
(
Āk

) + max
i=1,...,n

|βi,k |. (2.69)

The above-described situation results in the fact that the upper bound of αk can be
very small (while using (2.64)), which may lead to the divergence of the observer.
Thus, the only solution is to set Qk in a conventional way, i.e.,

Qk+1 = δ3I, (2.70)

with δ3 > 0 small enough.

2.4 Unscented Kalman Filter

The main objective of this section is to provide a general framework for designing
the UIF for non-linear stochastic systems, which is based on the UKF.

As has already been mentioned, state estimation for non-linear stochastic systems
is a difficult and important problem for modern fault diagnosis and control systems
(see the recent books in the subject area for a complete survey and explanations
[2, 3, 24–27]). As can be observed in the literature, themost frequently used approach
to state estimation of non-linear stochastic systems is to use the celebrated EKF.
However, the linearised non-linear transformations of the state and/or output are
reliable only if there is no excessive difference between the local behaviour compared
to the original non-linear transformation. If this is not the case, then the EKF will
suffer from divergence. However, in the preceding part of this chapter the process and
measurement noise matrices are used as instrumental matrices that can significantly
improve the convergence performance (seeRefs. [2, 18] for a comprehensive survey).
Unfortunately, in the stochastic case, Q and R have to play their primary role as
covariance matrices.

As indicated in Ref. [16], it is easier to approximate a probability distribution
than it is to approximate an arbitrary non-linear function or transformation.

Bearing in mind this sentence, the idea of an Unscented Transform (UT) was
applied alongwith the celebratedKalman filter in order to form theUKF. Tomake the
chapter self-contained, the subsequent points will describe the UT and the algorithm
of the UKF.

Finally, it should be underlined that the reader is referred to Ref. [16] (and the
references therein) for a large number of practical examples showing the superiority
of the UKF over the conventional EKF. Thus, the subsequent part of the chapter is
focused on developing a new UKF-based scheme rather than showing its superiority
over the EKF.
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2.4.1 Unscented Transform

The unscented transform boils down to approximating the mean and covariance of
the so-called sigma points after the non-linear transformation h(·). The mean and
covariance of sigma points are given as x̄ and P, while the UT procedure is Ref. [16]

1. Generate k sigma points,

Xi, i = 1, . . . , k, (2.71)

with the mean x̄ and covariance P.
2. Obtain a non-linear transformation of each sigma point (cf. Fig. 2.1),

Xt
i = h(Xi), i = 1, . . . , k. (2.72)

3. Calculate the weighted mean of the transformed points,

x̄t =
k∑

i=1

WiXt
i . (2.73)

4. Calculate the covariance of the transformed points,

Pt =
k∑

i=1

Wi [Xt
i − x̄t] · [

Xt
i − x̄t]T

. (2.74)

Note that the sigma points can be generated with various scenarios [16, 17], and one
of them will be described in the subsequent point. It should also be mentioned that,
in order to provide an unbiased estimate [16], the weights should satisfy

Fig. 2.1 Unscented transform
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k∑

i=1

Wi = 1. (2.75)

2.4.2 Principle of the UKF-based UIF

Let us consider a non-linear, discrete-time fault-free system, i.e., (2.1) and (2.2) for
f k = 0:

xk+1 = g (xk) + h(uk) + Edk + wk, (2.76)

yk+1 = Cxk+1 + vk+1. (2.77)

The UKF [17] can be perceived a derivative-free alternative to the extended Kalman
filter in the framework of state estimation. The UKF calculates the mean and co-
variance of a random variable, which undergoes a non-linear transformation by
utilising a deterministic “sampling” approach. Generally, 2n + 1, sigma points are
chosen based on a square-root decomposition of the prior covariance. These sigma
points are propagated through true nonlinearity, without any approximation, and then
a weighted mean and covariance are taken, as described in Sect. 2.4.1.

The presented form of the UKF is based on the general structure of the unknown
input observer (2.6) and by taking into account the fact that the output equation (2.77)
is linear.

The UKF involves a recursive application of these sigma points to state-space
equations. The standard UKF implementation for state estimation uses the following
variable definitions:

• λ = 2n(α2 − 1),
• Wm

0 = λ
n+λ ,

• Wc
0 = λ

n+λ + 1 − α2 + β,

• Wm
i = Wc

i = 1
2(n+λ)

,

• η = √
n + λ,

where Wm
i is a set of scalar weights, and λ and η are scaling parameters. The con-

stant α determines the spread of the sigma points around x̂ and is usually set to
10−4 ≤ α ≤ 1. The constant β is used to incorporate prior knowledge of the distrib-
ution (for the Gaussian distribution, β = 2 is an optimal choice). The UKF algorithm
is as follows:

Initialise with

x̂0 = E[x0], P0 = E[(x0 − x̂0)(x0 − x̂0)T ], (2.78)

For k ∈ {1, . . . ,∞}
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Calculate 2n + 1 sigma points:

X̂k−1 = [x̂k−1 x̂k−1 + ηS(1), . . . , x̂k−1 + ηS(n),

x̂k−1 − ηS(1), . . . , x̂k−1 − ηS(n)], (2.79)

where S = √
Pk−1 and S(j) stands for the jth column of S.

Time update equations:

X̂i,k|k−1 = ḡ
(

X̂i,k−1

)
+ h̄(uk) + Ēyk+1, i = 0, . . . , 2n, (2.80)

x̂k,k−1 =
2n∑

i=0

W (m)
i X̂i,k|k−1, (2.81)

Pk,k−1 =
2n∑

i=0

W (c)
i [X̂i,k|k−1

− x̂k,k−1][X̂i,k|k−1 − x̂k,k−1]T + Q. (2.82)

Measurement update equations:

Pykyk = CPk,k−1CT + R,

Kk = Pk,k−1CT P−1
ykyk

, (2.83)

ŷk,k−1 = Cx̂k,k−1, (2.84)

x̂k = x̂k,k−1 + Kk(yk − ŷk,k−1), (2.85)

Pk = [In − KkC]Pk,k−1. (2.86)

2.5 Determination of an Unknown Input
Distribution Matrix

As a result of the deliberations presented in the preceding sections, the matrix E
should satisfy the following conditions:

rank(CE) = rank(E) = q, (2.87)

where
[CE CL] (2.88)

should be a full rank one, which means that

rank ([CE CL]) = min(m, s + q). (2.89)
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Thus, the set of matrices E satisfying (2.87) and (2.89) is given by

E = {
E ∈ R

n×q : rank(CE) = q ∧ rank(E) = q ∧ rank ([CE CL])
= min(m, s + q)} . (2.90)

It should be strongly underlined thatE is not convex, which significantly complicates
the problem and limits the spectrum of possible approaches that can be used for
settling the determination of the unknown input distribution matrix.

The subsequent part of this section presents a numerical algorithm that can be used
for estimating the unknown input distributionmatrixE based on a set of input–output
measurements {(uk, yk)}nt

k=1.
To settle the problem of numerical estimation of E, the following optimisation

criterion is selected:

Ê = argmin
E∈E

J(E) (2.91)

with

J(E) = 1

mnt

nt∑

k=1

zT
k zk, (2.92)

where zk stands for the residual defined by (2.7) and Ê is an estimate of E.
It is important to underline that the computation of (2.92) requires the run of

the proposed UIF for a given instance of the unknown input distribution matrix E.
The computation of the cost function (2.92) is definitely the most time-consuming
part of the proposed algorithm. On the other hand, the computation time and the
resulting computational burden are not of paramount importance since the proposed
algorithm performs off-line. Indeed, only the result of the proposed algorithm, being
an estimate of the unknown input distribution matrix E, is utilised on-line for the
unknown input decoupling.

The outline of the proposed algorithm is as follows:

Step 1: Obtain the fault-free input–output data set from the system
{(uk, yk)}nt

k=1.
Step 2: Initialise the algorithm with some initial value of E satisfying (2.87) and

(2.88).
Step 3: Use an optimisation strategy to find an estimate of E for which (2.92)

reaches its minimum and conditions (2.87) and (2.90) are satisfied.

Similarly as in the case of (2.8), i.e., by following with d̃k in a similar way as with
f̄ k in (2.8), it can be shown that the fault-free residual is

zk+1 = yk+1 − Cx̂k+1

= C
(
ḡ (xk) − ḡ

(
x̂k

) − K(·)) + d̃k + Cw̄k + vk+1, (2.93)
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where

d̃k = C
[

In − Ê
[
(CÊ)T CÊ

]−1
(CÊ)T C

]
d̄k . (2.94)

Alternatively, assuming d̄k = Edk , it can be expressed by

d̃k = C
[

In − Ê
[
(CÊ)T CÊ

]−1
(CÊ)T C

]
Edk . (2.95)

Following the same line of reasoning as in the proof of Theorem 2.1, it can be shown
that for any vector CEdk ∈ col(CÊ), the effect of an unknown input d̃k will be
decoupled from the residual, i.e., d̃k = 0.

Based on the above deliberations, it seems that an alternative approach is:

Step 0: Obtain the fault-free input–output data set from the system
{(uk, yk)}nt

k=1.
Step 1: Estimate d̄k for k = 1, . . . , nt with, e.g., an augmented UKF.
Step 2: Find a basis of [d̄1, . . . , d̄nt ] (e.g. an orthonormal basis), which will con-

stitute an estimate of E.

Apart from the unquestionable appeal of the above algorithm, it does not take into
account that the conditions (2.87) and (2.90) must be satisfied. On the other hand,
it was empirically proven that, due to the process and measurement noise, accurate
estimation of d̄k (for k = 1, . . . , nt) is impossible, and hence Step 2 of the above
algorithm cannot be realised with expected results.

Thus, the only fruitful conclusion is that an optimal estimate of E is not unique,
which will undoubtedly facilitate the performance of the optimisation-based ap-
proach presented in the subsequent part of this section.

Taking into account all the above-mentioned difficulties, it is proposed to use the
adaptive random search algorithm [2, 28] to solve (2.91). The algorithm has proven
to be very reliable in various global optimisation problems, which also justifies its
application for this particular task.

The search process of the ARS can be split into two phases. The first phase
(variance-selection phase) consists in selecting an element from the sequence

{σ(i)}, i = 1, . . . , imax, (2.96)

where σ(1) stands for an initial standard deviation selected by the designer (forming
the covariance matrix � = σIn×q, where n × q is the number of elements of E), and

σ(i) = 10(−i+1)σ(1). (2.97)

In this way, the range of σ ensures both proper exploration properties over the search
space and sufficient accuracy of optimum localisation. Larger values of σ decrease
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the possibility of getting stuck in a local minimum. The second phase (variance-
exploration phase) is dedicated to exploring the search space with the use of σ
obtained from the first phase and consists in repetitive random perturbation of the
best point obtained in the first phase. The scheme of the ARS algorithm is as follows:
0. Input data

• σ(1): The initial standard deviation,
• jmax: The number of iterations in each phase,
• imax: The number of standard deviations (σi) changes,
• kmax: The global number of algorithm runs,
• E(0): The initial value of the unknown input distribution matrix.

1. Initialise

(1.1) Generate Ebest → E0, satisfying (2.87) and (2.90), k → 1, i → 1.

2. Variance-selection phase

(2.1) j → 1, E(j) → E(0) and σ(i) → 10(−i+1)σ(1).
(2.2) Perturb E(j) to get a new trial point E(j)

+ satisfying (2.87) and (2.90).

(2.3) If J(E(j)
+ ) ≤ J(E(j)) then E(j+1) → E(j)

+
else E(j+1) → E(j).

(2.4) If J(E(j)
+ ) ≤ J(Ebest) then

Ebest → E(j)
+ , ibest → i.

(2.5) If (j ≤ jmax/i) then j → j + 1 and go to (2.2).
(2.6) If (i < imax) then set i → i + 1 and go to (2.1).

3. Variance-exploration phase

(3.1) j → 1, E(j) → Ebest, i → ibest
and σ(i) → 10(−i+1)σ(1).

(3.2) Perturb E(j) to get a new trial point E(j)
+ satisfying (2.87) and (2.90).

(3.3) If J(E(j)
+ ) ≤ J(E(j)) then E(j+1) → E(j)

+
else E(j+1) → E(j).

(3.4) If J(E(j)
+ ) ≤ J(Ebest) then Ebest → E(j)

+ .
(3.5) If (j ≤ jmax) then j → j + 1 and go to Step 3.2.
(3.6) If (k → kmax) then STOP.
(3.7) k → k + 1, E(0) → Ebest and resume from (2.1).

The perturbation phase (the points (2.2) and (3.2) of the algorithm) is realised ac-
cording to

E(j)
+ = E(j) + Z, (2.98)

where each element of Z is generated according to N (0,σiI). When a newly gen-
erated E(j) does not satisfy (2.87) and (2.90), then the perturbation phase (2.98) is
repeated.
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It should also be noted that for some E(j) the proposed UIF may diverge, e.g.,
due to the loss of observability or a large mismatch with the real system. A simple
remedy is to impose a bound (possibly large) ζ on J(E(j)), which means that when
this bound is exceeded then the UIF is terminated and J(E(j)) = ζ.

2.6 Design of the UIF with Varying Unknown Input
Distribution Matrices

TheUIF proposed in this section is designed in such away that it will be able to tackle
the problem of automatically changing (or mixing) the influence of unknown input
distribution matrices according to system behaviour. In other words, the user can
design a number of such matrices in order to cover different operating conditions.
Thus, having such a set of matrices, it is possible to design a bank of UIFs and
the algorithm should use them to obtain the best unknown input decoupling and
state estimation. In order to realise this task, the Interacting Multiple-Model (IMM)
approach [29] is used. The subsequent part of this section shows a comprehensive
description of the UIF and the IMM.

The IMM solution consists of a filter for each disturbance matrix (corresponding
to a particular model of the system), an estimate mixer at the input of the filters,
and an estimate combiner at the output of the filters. The IMM works as a recursive
estimator. In each recursion it has four steps:

1. Interacting or mixing of model-conditional estimates, in which the input to the
filter matched to a certain mode is obtained by mixing the estimates of all filters
from the previous time instant under the assumption that this particular mode is
in effect at the present time;

2. Model-conditional filtering, performed in parallel for each mode;
3. Model probability update, based onmodel-conditional innovations and likelihood

functions;
4. Estimate combination, which yields the overall state estimate according to the

probabilistically weighted sum of updated state estimates of all the filters.

The probability of a mode plays a crucial role in determining the weights in the
combination of the state estimates and covariances for the overall state estimate.
Figure 2.2 shows the block diagram of the classic IMM algorithm [29], where

• x̂k+1|k+1 is the state estimate for time k using measurements through time (k +
1|k + 1) based on N models;

• x̂j
k+1|k+1 is the state estimate for time k using measurements through time (k +

1|k + 1) based on model j;
• �

j
k is the model likelihood at time k based on model j;

• μk is the vector of model probabilities at time k when all the likelihoods �
j
k have

been considered during model probability update.
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Fig. 2.2 IMM algorithm

With the assumption that model switching is governed by an underlyingMarkov [29]
chain, an interacting mixer at the input of the N filters uses the model probabilities
μk and the model switching probabilities pij to compute a mixed (initial or a priori)

estimate X̂
0j
k|k for N filters. The interacting mixer blends the previous state estimates

based on N models to obtain new state estimates. The mixing gains μ
i|j
k−1|k−1 are

computed from the preceding model probabilities μi
k−1 and the model switching

probabilities pij in the model probability update.
At the beginning of a filtering cycle, all filters use an a priori mixed estimate

X̂
0j
k−1|k−1 and the current measurement yk to compute a new estimate X̂

j
k|k and the

likelihood �
j
k for the jth model filter. The likelihoods, prior model probabilities,

and model switching probabilities are then used by the model probability update to
compute the newmodel probabilities. Theoverall state estimate X̂k|k is then computed
by an estimate combiner with the new state estimates and their probabilities.

The algorithm presented below is a combination of the UIF and the IMM and
constitutes a solution to the challenging problem of designing the UIF for a set of
predefined unknown input distribution matrices {Ej}N

j=1.

Step 1: Mixing state estimates

The filtering process starts with “a priori” state estimates X̂
j
k−1|k−1, state error

covariances Pk−1|k−1 and the associated probabilities μ
j
k−1 for each jth filter

model corresponding to the jth unknown input distribution matrix. The initial or
mixed state estimate and covariance for the jth model at time k is computed as
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c̄j =
N∑

i=1

pijμ
i
k−1, (2.99)

μ
i|j
k−1|k−1 = 1

c̄j
pijμ

i
k−1, (2.100)

X̂
0j
k−1|k−1 =

N∑

i=1

X̂
i
k−1|k−1μ

i|j
k−1|k−1, (2.101)

P0j
k−1|k−1 =

N∑

i=1

[
Pi

k−1|k−1

+ (
X̂

i
k−1|k−1 − X̂

0j
k−1|k−1

)

· (
X̂

i
k−1|k−1 − X̂

0j
k−1|k−1

)T ]
μ

i|j
k−1|k−1. (2.102)

pij is the assumed transition probability for switching from model i to model j,

and c̄j is a normalisation constant. For every state estimate X̂
i
k|k and X̂

i
k−1|k−1,

there is a corresponding covariance Pi
k|k and Pi

k−1|k−1.
Step 2: Model-conditioned update

Calculate sigma points (for each jth model):

X̂
j
k−1 = [

X̂
0j
k−1|k−1 X̂

0j
k−1|k−1 + η

√
P0j

k−1|k−1

X̂
0j
k−1|k−1 − η

√
P0j

k−1|k−1

]
. (2.103)

Time update (for each jth model):

X̂
j
i,k|k−1 = ḡ

(
X̂

j
i,k−1

)
+ h̄(uk) + Ēyk+1, i = 0, . . . , 2n, (2.104)

x̂j
k,k−1 =

2n∑

i=0

W (m)
i X̂

j
i,k|k−1, (2.105)

Pj
k,k−1 =

2n∑

i=0

W (c)
i

[
X̂

j
i,k|k−1

− x̂j
k,k−1

][
X̂

j
i,k|k−1 − x̂j

k,k−1

]T + Q. (2.106)

Measurement update equations:

Pj
ykyk

= CPj
k,k−1CT + R,

K j
k = Pj

k,k−1CT P−1 (j)
ykyk

, (2.107)

ŷj
k,k−1 = Cx̂j

k,k−1, (2.108)
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zj
k = yk − ŷj

k,k−1, (2.109)

x̂j
k|k = x̂j

k,k−1 + K j
kzj

k (2.110)

Pj
k|k = [In − KkC]Pj

k|k−1. (2.111)

Step 3: Model likelihood computations
The likelihood of the jth model is computed with the filter residuals zj

k , the co-

variance of the filter residuals Pj
ykyk and the assumption of the Gaussian statistics.

The likelihood of the jth model and model probabilities update are as follows:

�
j
k = 1

√
|2πPj

ykyk |
exp

[ − 0.5(zj
k)

T (Pj
ykyk

)−1zj
k

]
,

c =
N∑

i=1

�i
k c̄i,

μ
j
k = 1

c
�

j
k c̄j.

Step 4: Combination of state estimates
The state estimate x̂k|k and the covariance Pk|k for the IMM filter are obtained from
a probabilistic sum of the individual filter outputs,

x̂k|k =
N∑

i=1

x̂i
k|kμi

k,

Pk|k =
N∑

i=1

μi
k

[
Pi

k|k + (x̂i
k|k − x̂k|k

)(
x̂i

k|k − x̂k|k
)T ]

.

2.7 Illustrative Examples

The objective of the subsequent part of this section is to examine the proposed
approaches with two sample systems, i.e., an induction motor and a two-tank system.
In particular, the way of determining unknown input distribution matrix and the
“switching” of these matrices will be illustrated with an induction motor. The two-
tank system will be employed to show the performance of the proposed approach
with respect to fault detection and isolation. The final part of this section shows
a comparisonbetween thefirst- and the second-orderEUIO.Anempirical comparison
is realised with the model of an induction motor.
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2.7.1 Estimation of E for an Induction Motor

The purpose of this section is to show the reliability and effectiveness of the proposed
EUIO. The numerical example considered here is a fifth-order two-phase non-linear
model of an induction motor, which has already been the subject of a large number
of various control design applications (see Ref. [22] and the references therein).The
complete discrete-time model in a stator-fixed (a, b) reference frame is

x1,k+1 = x1,k + h

(
−γx1k + K

Tr
x3k + Kpx5kx4k + 1

σLs
u1k

)
, (2.112)

x2,k+1 = x2,k + h

(
−γx2k − Kpx5kx3k + K

Tr
x4k + 1

σLs
u2k

)
, (2.113)

x3,k+1 = x3,k + h

(
M

Tr
x1k − 1

Tr
x3k − px5kx4k

)
, (2.114)

x4,k+1 = x4,k + h

(
M

Tr
x2k + px5kx3k − 1

Tr
x4k

)
, (2.115)

x5,k+1 = x5,k + h

(
pM

JLr
(x3kx2k − x4kx1k) − TL

J

)
, (2.116)

y1,k+1 = x1,k+1, y2,k+1 = x2,k+1, (2.117)

where xk = [x1,k, . . . , xn,k]T = [isak, isbk,ψrak,ψrbk,ωk]T represents the cur-
rents, the rotor fluxes, and the angular speed, respectively, while uk = [usak,
usbk]T is the stator voltage control vector, p is the number of the pairs of poles,
and TL is the load torque. The rotor time constant Tr and the remaining parameters
are defined as

Tr = Lr

Rr
, σ = 1 − M2

LsLr
, K = M

σLsLr
, γ = Rs

σLs
+ RrM2

σLsL2
r
, (2.118)

where Rs, Rr and Ls, Lr are stator and rotor per-phase resistances and inductances,
respectively, and J is the rotor moment inertia.
The numerical values of the above parameters are as follows: Rs = 0.18 �, Rr =
0.15 �, M = 0.068 H, Ls = 0.0699 H, Lr = 0.0699 H, J = 0.0586 kgm2, TL =
10 Nm, p = 1, and h = 0.1 ms. The input signals are

u1,k = 350 cos(0.03k), u2,k = 300 sin(0.03k). (2.119)

Let us assume that the unknown input and its distribution matrix have the following
form:

E = [1.2, 0.2, 2.4, 1, 1.6]T , (2.120)

dk = 0.3 sin(0.5πk) cos(0.03πk), (2.121)
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Fig. 2.3 Residuals for a randomly selected E

while the noise covariance matrices are Q = 10−5I and R = 10−5I. Note that the
small values of the process and measurement noise are selected in order to clearly
portray the effect of an unknown input. Figure 2.3 shows the residual zk for randomly
selected E. From these results, it is evident that the estimation quality is very low and
hence the residual is significantly different from zero, which may lead to a decrease
in the fault detection abilities.

In order to prevent such a situation, the algorithm presented in Sect. 2.5 was
utilised with the following settings:

• σ(1): The initial standard deviation,
• jmax = 20: The number of iterations in each phase,
• imax = 5: The number of standard deviations (σi) changes,
• kmax = 50,
• E(0): Randomly selected.

The performance of the algorithmwas tested for a set of σ(1), i.e., {1, 2, 3, 4, 5}. Note
that kmax = 50, which means that each run of the algorithm was performed 50 times.
As a result, the mean and the standard deviation of the resulting J(E) (cf. (2.92)) for
each setting of σ(1) was calculated. The mean of J(E) is presented in Fig. 2.4, while
its standard deviation is portrayed in Fig. 2.5.

From these results, it is evident that the smallest mean and standard deviation are
obtained for σ(1) = 3. This, of course, does not mean that this is a particular value
σ(1) = 3, which should be the best one for each example. However, it can be easily
observed that, for other σ(1), i.e., {1, 2, 4, 5}, the mean and standard deviation are
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Fig. 2.4 Mean of J(E) for
σ(1) = 1, . . . , 5
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Fig. 2.5 Standard deviation
of J(E) for σ(1) = 1, . . . , 5

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−6

σ

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 J

also very small. Numerous numerical experiments confirm this property, i.e., this
means that the proposed algorithm is not extremely sensitive to the initial value of
σ(1).

As mentioned in the preceding part of the chapter, the matrix E, which is able
to decouple the unknown input, is not unique. Indeed, the estimate of E, for which
J(E) reaches its minimum, is

Ê = [0.3651, 0.0609, 0.7303, 0.3043, 0.4869]T . (2.122)

Figure 2.6 presents the residual for the obtained estimate. A direct comparison of
Figs. 2.3 and 2.6 clearly shows the profits that can be gainedwhile using the proposed
algorithm.
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Fig. 2.6 Residuals for the estimated E

2.7.2 Varying E Case

Let us reconsider an example presented in the previous section. The unknown input
is defined, as previously, by (2.121), but three different settings of the unknown input
distribution matrix Ej were employed during system simulation (the simulation time
was 10,000 samples):

E1 =[1.2, 0.2, 2.4, 1, 1.6]T for 0 ≤ k < 2, 500,

E2 =[0.2, 1.2, 2.4, 1, 1.6]T for 2, 500 ≤ k < 5, 000

and 7, 500 ≤ k < 10, 000,

E3 =[2.1, 2.1, 2.1, 2.1, 2.1]T for 5, 000 ≤ k < 7, 500.

Contrary to the above-described simulation scenario, it was assumed that the set of
unknown input distribution matrices for the UIF is composed of

E1 = [0.2, 1.2, 2.4, 1, 1.6]T ,

E2 = [0, 0.2, 2.4, 1, 0]T ,

E3 = [2.1, 2.1, 2.1, 2.1, 2.1]T ,

E4 = [1, 2, 3, 1, 0]T ,

E5 = [1.2, 0.2, 2.4, 1, 1.6]T .
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Fig. 2.7 Model probabilities

This means that E2 and E4 should not be used by the UIF, while E1, E3 and E5

should be appropriately switched.
Figure 2.7 shows model probabilities corresponding to the five unknown input

distribution matrices. From these results, it is evident that the instrumental matrices
E1, E3 and E5 were switched correctly. Moreover, probabilities corresponding to
E2 and E4 are very low.

2.7.3 Fault Detection and Isolation of a Two-Tank System

The main objective of this section is to show that the UIF can also be effectively
applied for fault detection and isolation. In this case, the unknown input is suitably
used for designing the required fault isolation performance. The system considered
consists of two cylindrical tanks of the same diameter. They are linked to each
other through a connecting cylindrical pipe (Fig. 2.8). The two-tank system can be
perceived as a Single-Input Multi-Output (SIMO) system, where the input u is the
water flow through the pump, while the outputs y1 and y2 are water levels in the first
and the second tank, respectively.

It is assumed that the system considered can be affected by the following set of
faults:

actuator fault: f1 pump lost-of-effectiveness or leakage from the pump pipe,
process faults: f2 clogged connecting cylindrical pipe,
sensor faults: f3 water level sensor fault of the first tank, f4 water level sensor fault

of the second tank.
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Fig. 2.8 Schematic diagram
of a two-tank system

Once the fault description is provided, then a complete system description can be
given as follows:

xk+1 = g (xk) + h(uk) + L1f a,k + wk, (2.123)

yk+1 = Cxk+1 + L2f s,k+1 + vk+1, (2.124)

where

g (xk) =
[

−h K1
A1

√
x1,k − x2,k + x1,k

h K1
A2

√
x1,k − x2,k − h K2

A2

√
x2,k + x2,k

]

, (2.125)

h(uk) =
[

h
1

A1
uk, 0

]T

, (2.126)

L1 =
[

− h
A1

h
A1

0 −h
A2

]

, (2.127)

L2 =
[
1 0
0 1

]
, C = I, (2.128)

f a,k = [
f1,k,

√
x1,k − x2,kf2,k

]T
, f s,k = [

f3,k, f4,k
]T

,

where x1,k and x2,k are water levels in the first and the second tank, respectively,
A1, A2 stand for the cross-sections of the tanks, K1 denotes the cross-section of the
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connecting pipe, K2 is the cross-section of the outflow pipe from the second tank,
and h is the sampling time.

The objective of the subsequent part of this section is to design UIF-based diag-
nostic filter which will make it possible to detect and isolate the above mentioned
faults.

Filter 1: In order to make the residual insensitive to f1, it is proposed to use the
developed UIF with the following settings:

E = L1
1, dk = f1,k, L = L2

1, f k = f2,k, Ck = [1, 0], (2.129)

where Li
1 stands for the ith column of L1. It is straightforward to examine that the

conditions (2.87) and (2.90) are satisfied, which means that the observer while
remaining insensitive to f1,k while it will remain sensitive to f2,k .

Filter 2: Similarly as in the Filter 1 case, the residual generated by the Filter 2
should be insensitive to f2,k ,

E = L2
1, dk = f2,k, L = L1

1, f k = f1,k, Ck = [1, 0]. (2.130)

It is straightforward to examine that conditions (2.87) and (2.90) are satisfied,
which means that the observer will be insensitive to f2,k while while remaining
sensitive to f1,k .

Filter 3: The filter should be insensitive to f3,k while sensitive to f4,k . This can be
realised using the conventional UKF with

C = [0, 1]. (2.131)

Filter 4: The filter should be insensitive to f4,k while it should be sensitive to f3,k .
This can be realised using the conventional UKF with

C = [1, 0], (2.132)

The main objective of this section is to show the testing results obtained with the
proposed approach. To tackle this problem, a Matlab-based simulator of a two-tank
system was implemented. The simulator is able to generate the data for normal as
well as for all faulty conditions (f1, . . . , f4) being considered. The filter-based fault
diagnosis schemewas also implemented usingMatlab.As a result, a complete scheme
that is able to validate the performance of the proposed fault diagnosis strategy was
developed. It should be also pointed out that the simulations were carried out using
the following numerical parameters: uk = 2.56, h = 0.1, A1 = 4.2929, A2 =
4.2929, K1 = 0.3646, K2 = 0.2524.

All fault scenarios where generated according to the following rule:

fi,k =
{ �= 0 k = 300, . . . , 400
0 otherwise

i = 1, . . . , 4.
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Fig. 2.9 Residuals for the fault-free case

Moreover, y1 and y2 were corrupted by measurement noise generated according to
the normal distribution, i.e.,N (0, diag(0.01, 0.01)). Thus, the following settings of
the instrumental matrices were employed: R = 0.1I and Q = 0.1I.

Figure 2.9 portrays the residual obtained with the four filters for the fault-free
case. As can be observed, all of them are very close to zero.

Figures 2.10, 2.11, 2.12 and 2.13 present the residuals for the faults f1 to f4 obtained
with the four filters.

The results are summarised in the formof a diagnostic table presented as Table 2.1.
It should be noticed that the residuals generated by Filter 3 and Filter 4 are

insensitive to f1 and f2. Such a situation is caused by the fact that observers use
feedback from the system output and hence some damping effects may arise. This is
the case in the presented situation. On the other hand, it was observed that the results
of experiments can be consistent with the theoretical expectations when there is no
measurement noise, but this is a rather unreal situation. Irrespective of the presented
results, the faults can still be isolated because they have unique signatures.
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Fig. 2.10 Residuals for the fault f1

Fig. 2.11 Residuals for the fault f2
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Fig. 2.12 Residuals for the fault f3

Fig. 2.13 Residuals for the fault f4
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Table 2.1 Diagnostic table Filter f1 f2 f3 f4

Filter 1 0 1 1 1
Filter 2 1 0 1 1
Filter 3 0 0 0 1
Filter 4 0 0 1 0

2.7.4 First- Versus Second-order EUIO

The main objective of this section is to perform a comprehensive study regarding the
first- and the second-order EUIO.

Let us reconsider the induction motor described by (2.112)–(2.117). Let X be a
bounded set denoting the space of the possible variations of the initial condition x0:

X = {[−276, 279] × [−243, 369] × S(2)
15 (0)

× [−11, 56]} ⊂ R
5, (2.133)

where S(n)
r (c) = {x ∈ R

n : ‖x − c‖2 ≤ r}, r = 15. Let us assume that each initial
condition of the system x0 is equally probable, i.e.

pr(x0) =
{ 1

m(X)
for x0 ∈ X,

0 otherwise,

where m(A) is the Lebesgue measure of the set A. Moreover, the following three
observer configurations were considered:

Case 1: First-order EUIO with:

Rk = 0.1I2,

Qk = 0.1I5.

Case 2: First-order EUIO with:

Rk = 0.1I2,

Qk = 103εT
k εkI5 + 0.001I5.

Case 3: Second-order EUIO with:

Rk = 0.1I2,

Qk = 0.1I5.

In order to validate the performance of the observers, each of them was run for
N = 1000 randomly selected initial conditions x0 ∈ X and then the following quality
index was calculated:
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Fig. 2.14 Average norm of
the state estimation error
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where nt = 1000. This quality index describes an average ration between the norm
of the initial state estimation error e0 and the norm of the state estimation estimation
error achieved after nt iterations. The following results were obtained:

Case 1: Q = 0.0023,
Case 2: Q = 9.6935 · 10−17,
Case 3: Q = 0.0385.

It is clear that the observer of Case 2 provides the best results. This can also be
observed in Fig. 2.14, which presents the evolution of an average norm of the state
estimation error. Themain reasonwhy the second-order EUIO does not provide good
results is that it is very sensitive to the initial state estimation error and to the initial
value of Pk . This follows from the fact that sk is calculated using the approximation
(2.38) instead of an exact form:

si,k = 1

2

⎡

⎣eT
k

∂ḡi (xk)
2

∂x2k

∣∣∣∣∣
xk=x̂k

ek

⎤

⎦ , i = 1, . . . , n.

2.8 Concluding Remarks

The main objective of this chapter was to present three different approaches that can
be used for designing unknown input observers and filters for non-linear discrete-
time systems. In particular, a system description was provided, which covers a large
class of non-linear systems, and a general rule for decoupling the unknown input
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was portrayed. The chapter provides a rule for checking if the observer/filter will not
decouple the effect of a fault. This unappealing phenomenon may lead to undetected
faults, which may have a serious impact on the performance of the system being
controlled and diagnosed. Subsequently, an approach for designing the so-called
first- and second-order extended unknown input observer was provided. The pro-
posed approach is based on a general extended Kalman filter framework and can be
applied for non-linear deterministic systems. It was shown, with the help of the Lya-
punov method, that such a linearisation-based technique is convergent under certain
conditions. To tackle this task, a novel structure and design procedure of the EUIO
were proposed.Another approachwas proposed for non-linear stochastic framework,
bearing in mind that Ref. [16] it is easier to approximate a probability distribution
than it is to approximate an arbitrary non-linear function or transformation. The
unscented Kalman filter formed a base for the development of an unknown input fil-
ter. Based on the UIF, an algorithm for estimating unknown input distribution matrix
was proposed. Another important contribution of this chapter was the development
of the UIF that is able to switch the unknown input distribution matrices accord-
ing to the working conditions. This task was realised with the interacting multiple
model algorithm. The final part of the chapter presented comprehensive case studies
regarding practical application of the proposed approaches. These examples are an
induction motor and a two-tank systems. In particular, based on the example with the
induction motor, the strategies for determining the unknown input distribution ma-
trix and the case with a set of predefined unknown input distribution matrices were
examined. The same example (within a deterministic framework) was utilised to
perform a comparison between the first- and second-order extended unknown input
observer. The abilities regarding fault detection and isolation were illustrated with
the two-tank system. In all the cases, the proposed approaches exhibit their practical
usefulness.
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