The Big Night Out: Experiences from Tracking
Flying Foxes with Delay-Tolerant Wireless
Networking

Philipp Sommer, Branislav Kusy, Adam McKeown
and Raja Jurdak

Abstract Long-term tracking of small-size animals with wireless sensor networks
remains a challenge as only limited energy harvesting and storage is possible due to
stringent size and weight constraints for animal collars. We present first experiences
towards a perpetual monitoring system for free-living flying foxes. The high mobility
of flying foxes requires a delay tolerant wireless network for data gathering: GPS
positions and sensor data have to be stored locally until a wireless gateway deployed
in bat congregation areas, so called roosting camps, comes within radio range. In
this chapter, we present the system architecture and discuss our design decisions
towards sustainable and reliable monitoring of flying foxes with a limited energy
budget for sensing, storage and communication. Using empirical data from three
free-living flying foxes, we characterize the overall system performance in terms of
energy consumption and latency.

1 Introduction

The ongoing technological innovation, driven by the explosion of interest in mobile
phone technology, has led to ever smaller, less energy demanding, and more accurate
sensors and computation devices available on the market. Modern smart phones can

P. Sommer (X)) - B. Kusy - R. Jurdak

Autonomous Systems Lab, CSIRO Computational Informatics,
Brisbane, QLD, Australia

e-mail: philipp.sommer @csiro.au

B. Kusy
e-mail: brano.kusy @csiro.au

A. McKeown
CSIRO Ecosystem Sciences, Cairns, QLD, Australia
e-mail: adam.mckeown@csiro.au

R. Jurdak
e-mail: raja.jurdak @csiro.au

K. Langendoen et al. (eds.), Real-World Wireless Sensor Networks, 15
Lecture Notes in Electrical Engineering 281, DOI: 10.1007/978-3-319-03071-5_2,
© Springer International Publishing Switzerland 2014

16 P. Sommer et al.

localize users with an accuracy of a few meters, thus enabling novel applications that
would not have been possible a few years ago. Decreasing form factor, weight, cost
and energy consumption have made GPS receivers a versatile research tool enabling
novel applications across several domains.

Wireless sensor networks (WSNs) are well suited for wildlife habitat monitoring
applications. Sensor nodes, also called motes, combine sensing, processing, storage,
communication, and energy harvesting capabilities in a small and light-weight pack-
age powered by batteries. Researchers typically place motes at specific locations
to deliver non-intrusive long-term observation of natural habitats. However, many
research questions require tracking the movements of individual animals within a
population at high spatial and temporal resolution [3, 5, 9]. Recently, GPS-enabled
collars weighting just above 100 g have been used for long-term tracking of Whoop-
ing Crane migration in North America [1]. As maximum weight of a collar is usually
limited to 5 % of the body weight of the animal, tracking small-size animals remains
a challenge.

Application context Flying foxes are mammals that belong to the family of fruit
bats (Pteropididae). They are common in the tropic and subtropic areas of Asia,
Australia and Pacific Islands. They congregate in large numbers of up to several
thousands individuals to roost during daytime in so called camps. Flying foxes are
nocturnally active and leave the camps for foraging from fruit trees. During the
nightly foraging, they are able to cover distances up to 100 km over more than 10h.
Monitoring mobility and behavior of individual flying foxes is motivated by the need
to better understand this threatened species. Furthermore, flying foxes are attributed
to carry diseases, such as the Hendra or Lyssa viruses, which can be transmitted to
other animals or humans.

Challenges Developing a hardware and software system to track flying foxes is
challenging due to several constraints. First of all, animal ethics requires that the
collar accounts for less than 5 % of the animal’s body weight. Depending on the type
of animal and differences in body weight between male and female individuals, this
results in a total weight limit of 30 to 50 g for all electronic components, small solar
panels and batteries. Consequently, we are severely limited in terms of available
energy resources required to perform sensing, processing, storage and communi-
cation tasks. Second, our goal is to track free-living animals, so we will have no
physical contact with the collar after the deployment time. Finally, flying foxes leave
the camp for a period of more than 10h every night and can be away for multiple
days. Collars need to collect data in a delay-tolerant way and operate for long periods
of time during which they cannot communicate with the base station.

Contributions In this work, we present the system architecture and discuss our
design decisions to achieve perpetual low-power operation of a tracking device
(Sect. 2). First, we have developed BatMac, a simple scheduling algorithm for low-
power wireless communication tailored to our particular application domain. Specifi-
cally, a large number of animals congregate within the relatively small area of a camp
during daytime, which allows for offloading previously gathered sensor data to a base
station. We use a slotted schedule based on GPS time to desynchronize transmissions

The Big Night Out: Experiences from Tracking Flying Foxes 17

Base station 1 Base station 2 —
Server|

Fig. 1 The network architecture of the Bat Monitoring Project

of individual collars and use a simple radio duty-cycling approach that assumes an
always-on base station (Sect. 3). Second, profiling and debugging of wireless sensor
nodes on free-living animals paired with the intermittent radio connectivity is a chal-
lenging task. We have implemented a scheduler that guards execution of individual
sensing tasks and use several mechanisms to improve software and hardware reli-
ability. We also implemented an over-the-air reconfiguration protocol that helps to
mitigate the lack of physical access to the device after the deployment time (Sect. 4).
Finally, we use empirical data from three flying foxes to demonstrate performance
of individual system components in real-world deployments.

2 System Architecture

In this section, we give a brief overview of the system architecture, shown in Fig. 1.
Our wireless sensor network consists of three layers: (1) the mobile sensing nodes
integrated into an animal collar deployed on flying foxes, (2) the base station layer
which consists of several spatially distributed units, and (3) the central database
server.

2.1 Mobile Sensing Layer

The purpose of the mobile sensing device is to gather sensor data from an individual
collared animal using a variety of sensors (e.g., GPS, accelerometer, pressure sensor).
The mobile sensor device is housed inside a collar, which can be attached around the
animal’s neck by experts trained in handling flying foxes.

In order to meet the stringent constraints in terms of weight, size and power
consumption, we decided to build our own printed circuit board (PCB). A detailed
description of this board is available in [8]. The software on the mobile sensor node
is running a modified version of the Contiki operating system that adds custom
extensions for logging and remote procedure calls (RPC) (see Sects.3 and 4).

18 P. Sommer et al.

2.2 Base Station Layer

Batroosting camps provide an ideal opportunity for the placement of static infrastruc-
ture, so called base stations, as thousands of animals congregate within a relatively
small area during daytime. The base station is responsible for downloading sensor
data from nearby mobile nodes by using short-range wireless connectivity. We use a
gateway node with a TI CC1101 radio connected to an embedded Linux system for
control and monitoring of the download operations. In addition, a 2G/3G wireless
modem connects the base station to our central server for data uploads. We employ
solar panels and batteries to allow autonomous operation in bat camps. Solar energy
harvesting is usually a reliable source of power in tropical or subtropical locations
with plenty of sunshine, but consecutive days with cloud cover or dense vegetation
can limit the amount of solar energy harvested. Consequently, we might only be able
to operate the base station during a limited time and have to batch downloading data
from animals and uploading to the database.

2.3 Backend Storage and Control Layer

Sensor readings from different mobile nodes are downloaded by spatially separated
base stations and transferred to a central database for permanent storage and offline
analysis. The database is further responsible to keep a synchronized view of which
pages have been already downloaded from nodes. This information is required to
avoid duplicate downloads of the same page when the animal is roaming between
different camps. Network health data such as battery voltage and number of packets
received from different base stations are periodically reported to the database to assist
in continuous monitoring and network management.

3 Delay Tolerant Networking for Animal Tracking

Flying foxes are known to cover large distances during nightly foraging and seasonal
migrations between different camps. Satellite-based communication systems allow
data upload at global scale but pose a significant burden in terms of their cost, size and
power consumption. The large spatial coverage of cellular communication networks
(e.g., 2G and 3G systems) offers a flexible and cost effective alternative to satellite
based systems. However, size and power hinders the integration into collars for small
mammals and birds with more stringent constraints. Therefore, we have opted for a
low-power, short-range wireless transceiver (TT CC1101) that allows energy efficient
operation within unlicensed bands of the frequency spectrum. The disadvantage of
our approach is the need to maintain the infrastructure of base stations in flying-fox
congregation areas.

The Big Night Out: Experiences from Tracking Flying Foxes 19

Protocols for data collection During the last decade, several data collection pro-
tocols for wireless sensor networks have evolved for different application scenarios.
Data collection protocols such as CTP [7] and Dozer [2], maintain a routing tree along
which packets are forwarded towards the sink node. While both protocols are able
to duty-cycle the radio transceivers to save energy, maintaining the network state
requires periodic radio beacons. Recently, several communication protocols have
been proposed that not need to keep topology-dependent state, such as the Low-
Power Wireless Bus [6], which are resilient to high node mobility, but require the
nodes to maintain accurate synchronization.

3.1 The BatMac Protocol

Given the uncontrolled mobility patterns of free-living animals and limited energy
resources for wireless communication, we decided to implement a novel protocol
called BatMac. BatMac is a time-synchronized medium access protocol, which is
tailored to the intermittent connectivity between mobile nodes and the base station.
BatMac is a sender-initiated single-hop protocol implemented on top of Contiki’s
RIME network stack. It is based on the observation that, unlike homogeneous sensor
networks, the distribution of power budgets is highly asymmetric in our network.
Mobile nodes can aggressively duty-cycle their radios while the base station operates
its radio continuously. Therefore, we do not to use multi-hop communication for
packet forwarding, which allows mobile receivers to put their radio in sleep mode
for long periods of time.

Slotted communication We use a combination of time-based communication
slots and a request-response protocol to avoid interference when multiple mobile
nodes are present within communication range of a single base station. Medium
access is scheduled using a concept of communication rounds that each consist
of several sub-slots. Nodes can access the radio channel exactly once during each
communication round, in a sub-slot that is determined by their node ID. For example,
for a system with 10 nodes, we might define a communication round to take 5 min
and consist of 10 sub-slots. Each of the 10 nodes will then transmit once every 5 min
for up to 30s.

Timings of rounds and sub-slots are determined based on UTC time tracked by the
real-time clock of mobile nodes. The real-time clock is periodically re-synchronized
on every GPS lock. The mapping between nodes and their corresponding sub-slot
is based on their unique identifier. Selection of the round length and the number of
sub-slots is a tradeoff between data transmission latency and the maximum number
of nodes that we support. As our deployment needs to scale up to 1000 nodes or
more, we can assign multiple nodes to the same slot through a modulo operation on
their node IDs. We synchronize the real-time clock to within a second to the GPS
time, which has the effect of randomizing transmission of beacons within the same
sub-slot.

20 P. Sommer et al.

Announcement beacon Each mobile node periodically broadcasts a radio packet
containing an announcement beacon at the beginning of its designated communica-
tion slot. The announcement contains the node’s identifier, application version, and
the current flash page number. After sending the radio packet, the node keeps its
radio on until a predefined timeout (e.g., 1 s) expires. If the timeout expires, the radio
is switched off until the next announcement.

Node selection The base station is continuously listening for incoming announce-
ment beacons from mobile nodes. Upon reception of an announcement, the base
station determines if further communication with the node is required, e.g., if new
data needs to be downloaded from the flash or the node’s configuration should be
updated. If further communication is needed, the base station keeps the node’s radio
awake, by sending a radio_on(timeout) command, which will set a new timeout
to switch off the radio at the node.

3.2 Data Storage

We are interested in collecting sensor readings from different sensors while the collar
is on the animals for several weeks, months or years. Mobility patterns of free-living
animals make it very difficult to predict when the animal will be nearby a camp
where a base station is deployed. Thus, our software is required to provide persistent
storage of sensor data for several hours, days or even weeks. We implemented a first-
in first-out data store using the external flash as a circular buffer. Our AT25DF641
flash chip is divided in 32768 pages of 256 bytes each.

The variety of sensors on the mobile device requires a data storage system that
is able to handle readings of different payload sizes and at different data rates. For
example, a single GPS reading includes values for the timestamp, latitude, longitude,
height, speed and an estimation of position accuracy, which results in a total of
15 bytes every second. On the other hand, the combined 3-axis accelerometer and
magnetometer sensor generates 12 bytes per reading and can operate at sampling
rates up to 100 Hz.

Tagged data format We adapt the Tagged Data Format (TDF) from [4] to pack
sensor readings into a byte stream. TDF adds metadata such as the sensor type and
timestamp in front of each reading (see Fig.2). The ID of the sensor type and flags
indicating the type of timestamp (relative or absolute) are encoded into a 2-byte
header field. Sensor readings associated with an absolute timestamp need 6 bytes to
encode the seconds (4 bytes) and millisecond fraction (2 bytes) of the timestamp. If
the timestamp of the current reading can be encoded using an offset to the previous
timestamp, it is only necessary to store a 2-byte offset. Each sensor type has a specific
length for sensor readings, which is fixed and needs to be known to both the encoder
and decoder of a TDF stream. To enable decoding of each flash page individually,
the first sensor reading always uses an absolute timestamp.

The Big Night Out: Experiences from Tracking Flying Foxes 21

Sensor Type 1 Timestamp | Sensor Data [Sensor Type : Timestamp | Sensor Data |Sensor Type : Timestamp | Sensor Data
+Flags + (global) +Flags ' (offset) +Flags + (offset)
2 bytes ' 6bytes + 1.nbytes 2 bytes + 2bytes 1+ 1.nbytes 2 bytes + 2bytes + 1.nbytes

Fig. 2 Storage of sensor readings in flash using the tagged data format (TDF)

Evaluation TDF is a flexible format that provides a compact representation of
heterogeneous sensor readings in flash storage. However, the TDF encoder has to
jump to the next page if not enough bytes are available in the remainder of the flash
page. This fragmentation leads to empty bytes at the end of a page. We characterize
the overhead of encoding sensor readings using TDF on sensor data from a collar
attached to a free-living flying fox. We downloaded 1147 pages from the flash storage
of the node and analyzed 17730 sensor readings encoded in the TDF stream. Our
results indicate that the actual sensor data accounts for 65 % of the flash page size
of 256 bytes, while headers account for 12 % (sensor type) and 19 % (timestamp).
Finally, the overhead due to empty bytes at the end of a flash page accounts for only
4 % of the flash size, which is acceptable given the flexibility that TDF offers for
storing heterogeneous sensor data into a continuous flash buffer.

3.3 Data Retrieval

Data downloads are initiated by the base station as a response to an announcement
beacon, based on the node’s current flash page number contained in the beacon.
The download handler runs as a Python script on the embedded Linux machine. We
implemented a greedy approach to scheduling downloads from nodes within radio
range of a base station. If the current page number in the beacon is higher than
the last downloaded page, the base station requests missing pages from the node in
sequential order.

Since a full page of 256 bytes would not fit into a single radio packet, we use
RPC calls to request chunks of bytes within a specific page from the base. Each
RPC command is retransmitted up to 5 times if not acknowledged by the node. If a
complete page has been transferred, the base reassembles it and decodes its content
using the TDF parser. If the page contains no errors, the base will upload the sensor
data to the central database server and mark the corresponding page as complete. If
no Internet connection is available at the base station, data will be buffered locally
at the base until it can be uploaded to the database.

Data consistency The request/response approach requires the base station to know
the latest information from each node that is stored in the database. Since our system
architecture includes multiple spatially distributed base nodes, we use a centralized
approach to coordinate data downloads across the base stations. Base stations keep
track of the most recently downloaded flash page for every mobile node, which
allows mobile nodes not to keep track of the download process. Mobile nodes need
to simply announce their most recent flash page number and then respond to a base

22 P. Sommer et al.

el [THNE 1 T BN DT /T B

1400 T
1200
1000
800
600
400
200
0

T
— Data acquisition
— Data download

Pages

|

T ! ! !
0 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00
! Day 1 ! Day 2 ! Day 3 ! Day 4 ! Day 5 ! Day 6 ! Day 7 !

=}

Fig.3 Timeline of received radio announcement packets at the base station from a single bat (fop)
and the number of generated versus downloaded flash pages (bottom)

station’s RPC to transmit a specific flash page. Each page will only be downloaded
exactly once as long as the state information is synchronized across all base stations.
However, this needs to be done only every couple of hours as animals are unlikely
to move between the spatially separated base nodes within that time window.

Evaluation We present experimental results using data downloaded from a single
wild bat during a 7-day period. Figure 3 shows received announcement packets and
number of pages written to flash. In general, we are able to receive announcement
beacons from the mobile node just before 6 am in the morning until just after 6 pm
in the evening. In the morning, the earliest received beacon was at 5.34am on the
second day while no beacons were received until 6.14 am on Day 4. The last beacon
from the animal was received between 5.09 (Day 1) and 6:19 pm (Day 5, 6 and 7). We
calculate the packet reception rate (PRR) for announcement beacons as the fraction
between received beacons and the number of expected beacons between the first and
last received beacon for every day. The range of the observed PRR is between 0.35
(Day 5) and 0.78 (Day 2).

By analyzing the timestamps embedded in the downloaded pages, we are able to
track the flash storage consumption over time. Flash pages are written at a lower rate
during daytime, as we are mainly logging node health information and a few GPS
positions. The data rate increases between 6 pm and 6 am when high-frequency GPS
sampling is activated. The latency between data acquisition and download is low
during the day since the base station is able to download new pages continuously.
Clearly, the latency is higher for data gathered during the night as we have up to
12 h without contact to the base station. Depending on the quality of the radio link in
the camp, it might take several hours until the nightly backlog is downloaded (e.g.,
Day 5).

4 Configuration and Debugging

Development of hardware and software for animal tracking is challenging due to
the mobility of the animals. While it is relatively easy to follow the path of col-
lared livestock, catching and collaring of free-living animals such as flying foxes is
labor intensive and notoriously difficult. Large nets mounted between high poles are
required to catch animals while they are flying back in or out of the camp during

The Big Night Out: Experiences from Tracking Flying Foxes 23

the night. Catching a collared animal a second time is almost impossible given the
large number of individuals populating a camp. Therefore, our development approach
assumes that it is not possible to gain physical access to the mobile node ever again
after the initial deployment.

4.1 Remote Task Configuration

Several mechanisms for over-the-air code distribution in wireless sensor networks
have been proposed in the literature. However, supporting wireless reprogramming
increases the complexity of the code running on the node and requires dedicated
storage for new and fallback images. Furthermore, any failure during the reprogram-
ming process might leave the node in a defective state. Therefore, we decided not to
implement over-the-air reprogramming for our mobile nodes. Instead, we integrated
methods to support wireless reconfiguration for a set of well-tested tasks within our
application. Each task is associated with a Contiki process that implements a specific
sensing task (e.g., getting several GPS fixes, or measuring the battery voltage). Tasks
can be limited to a specific time interval (start, stop), periodicity within that time
interval, and minimum battery voltage. Tasks can also have additional arguments
which are specific to a sensor (e.g., number of samples). The task scheduler is exe-
cuted once every second to start or stop tasks according to the current configuration.

Reconfiguration Task configurations use a dedicated part of the flash for persis-
tent storage. We provide remote procedure calls (RPC) sent over the radio to view,
update and delete a task on the sensor node.

4.2 Remote Debugging

We implemented two methods for debugging mobile nodes deployed on animals:
Node inspection by remote procedure calls sent over the radio, and logging of debug
output to the flash storage as part of TDF data. In addition, we use a combination of
hardware and software based mechanisms to recover from error conditions. In the
remainder of this section, we describe the debugging capabilities integrated with our
application and highlight how their usefulness for debugging in practice.

Node inspection We implemented several helper methods for debugging and
inspection of the current node state. Thereby, we do not want to halt code execution
on the node, but rather acquire a snapshot of the node’s status, e.g., the current value
of a variable in RAM. Furthermore, custom RPC methods allow us to reboot the node,
sample the battery voltage, read data from the external flash, and read/modify/delete
tasks.

Debug instrumentation While RPC methods are useful to inspect the node status
when radio connectivity is available, little information is available during periods

24 P. Sommer et al.

with no radio connectivity. Therefore, we implemented two additional sensing tasks
useful to aid the process of debugging. The POWER task will periodically sample the
battery voltage, solar panel voltage, and charge current and write the ADC readings
to the flash storage using the TDF logging abstraction. In addition, the DEBUG task
periodically logs the reason for the last microcontroller reset and the current uptime in
seconds, allowing us to track node reboots and determine their cause retrospectively.

Watchdog and Grenade timers We combine a hardware watchdog and a software
timer to recover from potential problems that could cause the software running on
the microcontroller to get stuck. The hardware watchdog of the MSP430 will trigger
areboot if the watchdog timer is not being reset within 2 s. Therefore, we instrument
Contiki’s main scheduler loop to reset the watchdog periodically. This mechanism
will protect us from possible software errors within the implementation of our Contiki
processes such as infinite loops. A so called grenade timer is used as an additional
layer of protection against hardware and software problems. Thereby, we force a
graceful node reboot when the uptime counter reaches a predefined value (e.g., once
a day). Grenade reboots can easily be distinguished from uncontrolled reboots by
looking both at the reset reason and the value of the uptime counter logged to flash.

5 Experimental Data: A Day in the Life of a Flying Fox

We present preliminary experimental results from two mobile nodes attached to
free-living flying foxes. Both animals left the camp during the night and returned
at dawn. We configured two different tasks for GPS sampling to gather the position
of the mobile node depending on the current time of day. The low-frequency GPS
task will log the current location every 3h during the day. During the night, the
high-frequency GPS task logs locations every 10 min.

5.1 GPS Tracking

The interval between startup of the GPS receiver until the first GPS position is
available is commonly denoted as the Time to First Fix (TTFF). During a coldstart,
the GPS receiver has to search for a signal from several GPS satellites to determine its
current position. After the first valid position has been calculated, the receiver keeps
tracking the existing satellites in order to periodically update its estimation of the
current location. We use the sleep mode of the u-blox MAX6 module, which retains
real-time clock and satellite orbit information while the main part of the receiver is
put into a low-power mode. A GPS hotstart is possible if the receiver wakes up from
sleep mode and has up-to-date satellite information to calculate the current position,
otherwise, it has to go through a coldstart phase again. We collected TTFF values of
1103 successful GPS location requests from two nodes. Reported values for TTFF

The Big Night Out: Experiences from Tracking Flying Foxes 25

0.35
.. 030 R
g o025 1 .
2 020 B T
g 0.15 E
T 0.10 R

0.05 R

0.00 L= ! L L L W 4 .

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Time to First Fix [s] Time to First Fix [s]

time

GPS off

Fig. 4 Distribution of the time to first GPS fix (left) and the relation between the preceding GPS
off interval and the time to first fix (right)

are between 1 and 67 s while it takes 4.17 s to get the first valid position on average
(see Fig.4). We further observe that it takes longer to get the first fix when the GPS
was inactive for a longer period of time.

5.2 Power Management

The amount of remaining energy stored in the rechargeable battery depends on sev-
eral factors, such as the amount of solar energy harvested and the current draw during
recent days. We periodically measure the battery voltage, the solar panel voltage and
the charge current into the battery using the on-board ADC on the sensor node. While
we aim to derive an accurate estimation for the remaining energy based on measure-
ments in future versions, the task scheduler currently only uses the battery voltage
when deciding whether to execute a task. Power measurements and corresponding
GPS task execution times are reported in Fig. 5. We measure similar values for the
charge current for both nodes. We see considerable differences between the two
mobile devices, although the animals are roosting in the same camp. Node A main-
tains a relatively stable battery voltage across the whole measurement period while
the battery voltage of Node B decreases rapidly during the night time. As a result
of the low voltage, Node B stops gathering GPS samples as its battery drops below
the threshold voltage. We can also see a significant difference between rainy weather
(Day 1) and sunny weather (Days 2 to 5). Furthermore, we continually increase the
duty-cycle of the GPS task during the night. Starting from fixes every 10 min between
6 pm and 6am (Day 1/2), we extended the window from 5.30 pm to 6 am to capture
the departure of the animals from the camp (Day 3/4). Finally, we reconfigured the
GPS task to gather continuous GPS fixes at a frequency of 1 Hz between 5.35 and
6 pm on the evening of Day 5. Figure 6 shows the positions of the animals on a map.

26 P. Sommer et al.

cPs [T T T T NN T T T 1 AT | [T OO [[| \QOE
> 39l Battery Voltage 153 —_
> 37| 0o E
@ GPS threshold o &
£ 35\ Charge Current ULl s s
m 33 LT L L h { 00
00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00
' Day 1 ' Day 2 ' Day 3 ' Day 4 ' Day 5 '
Time
S HEN | INEEL T TRNN] RN IEEE v B
>, 3.9 | Battery Voltage 1 fg a3 =
2 371 GPS threshold 1w &E
% 35 Charge Current J}UL R L VO | — Y5 &
m 3.3 F e bt L L 00
00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00
Day 1 Day 2 _IIZ_)_ay 3 Day 4 Day 5
ime

Fig. 5 Battery voltage, charge current and activation of the GPS task for Node A (fop)
and B (bottom)

S s
Camp Location—" Camp Location /K'-" <~— Node B: 17:43
Node A: 17:38 /}

» e Node B: 17:45 J "

Node A: 17:45—"

| Node A: 05:55— | J/

| Node A: 17:50 _ 7
Node B: 17:50 |

_ | § Node B: 17:57 -\

Node B: 19:00 | f

. Node A: 05:50 =7 /

Node B: 17:55-18:55 — 4 /
19:35-00:55 |

_.—Node A: 17:55 B=

Node B: 18:00-19:10

| _—Node A: 05:45 [y
1
\ - NodeA:17:56-:05:50

A Node A: 18:00-05:40 \

Fig. 6 GPS waypoints of two mobile nodes: The GPS was configured to get fixes every 10min
during night time on Day 4 (/eft). Continuous sampling allows to track the accurate flight path when
animals leave the camp on Day 5 (right)

6 Lessons Learned

In this chapter, we have presented our first experience with a novel hardware and soft-
ware architecture for monitoring flying foxes using mobile sensor nodes. Although
this project is only at an early stage and deployment of several hundred animal

The Big Night Out: Experiences from Tracking Flying Foxes 27

collars is planned over the next months, we have gathered a large set of empirical
data, which allows us to verify the correctness of system operations and provides
invaluable information for fine-tuning our system in future deployments.

We believe that staggered releases of new software features to a small number
of nodes can mitigate the impact of possible software problems instead of rolling
out several hundred nodes simultaneously. However, this requires co-existence of
different software versions, as collars with older software versions still remain active.
Thus, we assign a software version to each node which is also included as part of
the announcement beacon, enabling to identify the capabilities of different nodes.
Furthermore, diagnostic tools built on top of remote procedure calls enable flexible
inspection of nodes within range.

Logging state information to persistent storage is vital for debugging a system with
intermittent network connectivity. The over-the-air reconfiguration of tasks provides
control over the amount of debug output during different stages of the deployment,
thus providing code instrumentation only when needed.

Acknowledgments We would like to thank Ben Mackey, Philip Valencia, Chris Crossman, Luke
Hovington, Les Overs and Stephen Brosnan for their contributions to this project.

References

1. Anthony, D., Bennett, W., Vuran, M., Dwyer, M., Elbaum, S., Lacy, A., Engels, M., Wehtje,
W.: Sensing through the continent. In: ACM/IEEE IPSN (2012)

2. Burri, N., von Rickenbach, P., Wattenhofer, R.: Dozer: Ultra-low power data gathering in sensor
networks. In: ACM/IEEE IPSN (2007)

3. Butler, Z.: From robots to animals: virtual fences for controlling cattle. J. Robot. Res. 25, 5-6
(2006)

4. Corke, P., Wark, T., Jurdak, R., Moore, D., Valencia, P.: Environmental wireless sensor net-
works. Proc. IEEE, 98(11), (2010)

5. Dyo, V., et al.: WILDSENSING: design and deployment of a sustainable sensor network for
wildlife monitoring. ACM Trans. Sens. Netw.8(4), (2012)

6. Ferrari, F., Zimmerling, M., Mottola, L., Thiele, L.: Low-power wireless bus. In: ACM SenSys,
(2012)

7. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection Tree Protocol. In: ACM
SenSys, (2009)

8. Jurdak, R., Sommer, P., Kusy, B., Kottege, N., Crossman, C., Mckeown, A., Westcott, D.:
Camazotz: multimodal activity-based GPS sampling. In: ACM/IEEE IPSN, (2013)

9. Zhang, P,, Sadler, C.M., Lyon, S.A., Martonosi, M.: Hardware design experiences in ZebraNet.
In: ACM SenSys (2004)

2 Springer
http://www.springer.com/978-3-319-03070-8

Real-World Wireless Sensor Networks

Proceedings of the S5th International Workshop,
REALWSMN 2013, Como (ltaly), September 19-20, 2013
Langendoen, K.; Hu, W.; Ferrari, F.; Zimmerling, M.;
Mottola, L. (Eds.)

2014, XIl, 261 p. 126 illus., Hardcover

ISBM: 978-3-319-03070-8

	2 The Big Night Out: Experiences from Tracking Flying Foxes with Delay-Tolerant Wireless Networking
	1 Introduction
	2 System Architecture
	2.1 Mobile Sensing Layer
	2.2 Base Station Layer
	2.3 Backend Storage and Control Layer

	3 Delay Tolerant Networking for Animal Tracking
	3.1 The BatMac Protocol
	3.2 Data Storage
	3.3 Data Retrieval

	4 Configuration and Debugging
	4.1 Remote Task Configuration
	4.2 Remote Debugging

	5 Experimental Data: A Day in the Life of a Flying Fox
	5.1 GPS Tracking
	5.2 Power Management

	6 Lessons Learned
	References

