
Chapter 2
Statistical Model Checking of Membrane
Systems with Peripheral Proteins: Quantifying
the Role of Estrogen in Cellular Mitosis
and DNA Damage

Matteo Cavaliere, Tommaso Mazza and Sean Sedwards

Abstract Systems biology is a natural application of membrane systems, allowing
the analysis of biological systems using the formal technique of model checking. To
overcome the intractable model size of typical biological systems, statistical model
checking may be used to efficiently estimate the probability of properties of interest
with arbitrary levels of confidence. In this chapter we analyse a biological system
linked to breast cancer, using statistical model checking (SMC) applied to membrane
systems. To do this, we have constructed a computational platform that integrates
an SMC library with a stochastic simulator of membrane systems with peripheral
proteins. We present the methodology to investigate the role of estrogen in cellular
mitosis and DNA damage and we use our statistical model checker to find the most
appropriate time-dependent dosage of antagonist that should be used to minimize
the uncontrolled replication of abnormal cells.

2.1 Membrane Systems with Peripheral Proteins

Membrane systems are models of computation inspired by the structure and function
of biological cells. The model was introduced in 1998 by Gh. Păun and since then
many classes of membrane systems have been introduced and studied, with mathe-
matical, computer science and biological motivations. An introductory guide to the
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field can be found in the recent handbook [1], while a review of applications of
membrane computing to biology can be found in [2].

According to the original definition [3], membrane systems comprise an hierar-
chical nesting of membranes that enclose regions (representing the the cellular struc-
ture), in which free-floating objects (representing molecules) exist. Each region can
have associated rules, called evolution rules, for evolving the free-floating objects
and modelling the biochemical reactions present in cellular compartments. Rules
also exist for moving objects in a synchronized manner across membranes, symport
and antiport rules, modelling cellular transport and more general communication
rules [1].

In brane calculi, presented in [4], several operations (pino, exo, phago, mate, drip,
bud) explicitly involvingmembranes with embedded proteins are considered and for-
malised in the framework of process calculi. An important difference between brane
calculi andmembrane computing is thatwith brane calculi the evolution of the system
takes place on the membranes and not inside the compartments delimited by them.
In [5] the operations of brane calculi are represented in the membrane computing
framework and then studied by using tools from formal language theory. In [6] some
of the membrane operations (pinocytosis and dripping) are considered in combina-
tion with the presence of free-floating objects and objects attached to themembranes,
while in [7] objects (peripheral proteins) are attached to either side of a membrane,
explicitly considering the inner and outer membrane surfaces. Themotivation for this
last model is to represent the cellular processes that are controlled by the presence of
specific proteins on the appropriate side of and integral to the membrane: there is a
constant interaction between floating chemicals and embedded proteins and between
peripheral and integral proteins [8]. Essential receptor-mediated processes, such as
endocytosis and signalling, are crucial to cell function and by definition are critically
dependent on the presence of peripheral and integral membrane proteins.

The key features of the model considered in [7] are that in each region of the
system there are floating objects (the floating chemicals) and, in addition, objects can
be associated to each side of a membrane or integral to the membrane (the peripheral
and integral membrane proteins). Systems constructed using this model can perform
the following operations: (i) the floating objects can be processed/changed inside
the regions of the system (emulating biochemical reactions) and (ii) the floating
and attached objects can be processed/changed when they interact (modelling the
interactions of the floating molecules with membrane proteins). A possible use of
the model to study biological processes is shown in [7, 9], while related models are
discussed in [10] and [11], where also the computational aspects are presented.

The use of a formal computational model such as membrane systems can be help-
ful for two reasons: to facilitate the implementation of an executable specification
and allows the use of automatic methods to analyse and to discover features concern-
ing the dynamics of the complex cellular systems, providing in this way algorithms
that can mimic biological phenomena, [12].

In this book chapter we approach this second possibility by presenting model
checking, an algorithmic technique to formally verify the performance of a system
with respect to a property. The system is represented in a language with formal
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semantics (in our case, multiset rewriting) and the property is expressed in temporal
logics (e.g., linear temporal logic, LTL, and computation tree logic, CTL). The
output of standard model checking algorithms for these logics is Boolean: the model
either satisfies the property or it does not. Such algorithms have polynomial time
complexity with respect to the size of the model, but this is generally exponentially
related to the description of the model (i.e., the number of interacting components).
See [13] for a recent historical overview of standard model checking techniques and
[14] for comprehensive coverage.

Many real systems are modelled using some form of non-determinism to account
for unknown interactions and environments. In particular, chemical systems are often
modelled with the implicit assumption that molecules move randomly, with proba-
bilities of interaction proportional to the total number of molecules (so-called mass
action [15]). When non-determinism is expressed with probabilities, it is possible
to quantify the probability of a property using probabilistic model checking [16],
which uses probabilistic or stochastic temporal logics (e.g. probabilistic computaion
tree logic, PCTL, and continuous stochastic logic, CSL) and numerical techniques to
calculate the probability of a property. Probabilistic model-checking algorithms use
the standard model checking algorithms to evaluate whether a formula is satisfied
in a particular state, but incur additional computational cost (polynomial w.r.t. the
model) to calculate the probability of being in the state. Although techniques and
data structures exist to minimise the model [13, 14, 16], in the majority of real appli-
cations (especially biological applications) the model remains intractable. Notable
successes of standard and probabilistic model checking applied to simplified biolog-
ical systems include [12, 17–19]. In particular, in [17] the authors have shown the
use of probabilistic model checking for the analysis of the cell cycle in eukaryotes,
using a modelling language based on membrane systems and process algebra. Plat-
forms based on membrane systems including model checking have been previously
implemented, [20]. A review of the probabilistic models in membrane systems can
be found in [1].

To overcome the state space explosion problem that afflicts most biological mod-
els, in this chapter we employ statistical model checking (SMC), which is an effi-
cient, approximative, variety of probabilistic model checking. SMC has been applied
to biology before (e.g., [21]), but here we present the first SMC investigation of a
biological system using a membrane systems model that explicitly considers the role
of membrane proteins. To achieve this, we present the first self-contained statistical
model checker dedicated to membrane systems with peripheral and integral proteins.

There are important differences between probabilistic and statisticalmodel check-
ing. The characteristic feature of a statistical model checker is that it estimates the
probability of a property by verifying the property against multiple independent exe-
cutions (simulations) of the system. The confidence of the estimate can be guaranteed
to arbitrary levels of confidence by standard statistical bounds (e.g. the Chernoff
bound [22]) and in this way SMC trades certainty for tractability. In comparison
to standard and probabilistic model checking, SMC does not require a finite state
space, does not require decidable logics and is less strict about how the system is
defined. Importantly, SMC is often significantly more efficient than probabilistic
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Fig. 2.1 Typical performance
of probabilistic and statistical
model checking applied to
models of the probabilistic
dining philosophers protocol

model checking for a given level of precision. Figure 2.1 compares the performance
of probabilistic with statistical model checking applied to increasing size models
of the probabilistic dining philosophers protocol, considering the property that if a
philosopher is hungry, he will eventually be fed. The figure shows that the numerical
model checker [23] scales exponentially with increasing numbers of philosophers
(i.e., polynomially w.r.t. a model that increases exponentially), while the statistical
model checker [24] scales linearly (proportional to the length of the property).

Further details of our SMC methodology are given in Sect. 2.2.1.

2.1.1 Formal Language Preliminaries

Membrane systems are based on formal language theory and multiset rewriting [25].
In this sectionwe recall the theoretical notions and notations necessary in this chapter.

Given the set A we denote by |A| its cardinality and by ∅ the empty set. We denote
by N and by R the set of natural and real numbers, respectively.

As usual, an alphabet V is a finite set of symbols. By V ∗ we denote the set of all
strings over V . By V + we denote the set of all strings over V excluding the empty
string. The empty string is denoted by λ. The length of a string v is denoted by |v|.
The concatenation of two strings u, v ∈ V ∗ is written uv.

The number of occurrences of the symbol a in the string w is denoted by |w|a .
Amultiset is a setwhere each elementmay have amultiplicity. Formally, amultiset

over a set V is amap M : V → N, where M(a) denotes themultiplicity of the symbol
a ∈ V in the multiset M .

For multisets M and M ′ over V , we say that M is included in M ′ if M(a) ≤ M ′(a)

for all a ∈ V . Every multiset includes the empty multiset, defined as M where
M(a) = 0 for all a ∈ V .
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The sum ofmultisets M and M ′ over V is written as themultiset (M+M ′), defined
by (M + M ′)(a) = M(a) + M ′(a) for all a ∈ V . The difference between M and
M ′ is written as (M − M ′) and defined by (M − M ′)(a) = max{0, M(a) − M ′(a)}
for all a ∈ V . We also say that (M + M ′) is obtained by adding M to M ′ (or vice
versa) while (M − M ′) is obtained by removing M ′ from M . For example, given the
multisets M = {a, b, b, b} and M ′ = {b, b}, we can say that M ′ is included in M ,
that (M + M ′) = {a, b, b, b, b, b} and that (M − M ′) = {a, b}.

If the set V is finite, e.g. V = {a1, . . . , an}, then the multiset M can be explicitly
described as {(a1, M(a1)), (a2, M(a2)), . . . , (an, M(an))}. The support of amultiset
M is defined as the set supp(M) = {a ∈ V | M(a) > 0}. A multiset is empty (hence
finite) when its support is empty (also finite).

A compact string notation can be used for finite multisets: if M = {(a1, M(a1)),
(a2, M(a2)), . . . , (an, M(an))} is a multiset of finite support, then the string w =
aM(a1)
1 aM(a2)

2 . . . aM(an)
n (and all its permutations) precisely identify the symbols in

M and their multiplicities. Hence, given a string w ∈ V ∗, we can say that it identifies
a finite multiset over V , written as M(w), where M(w) = {a ∈ V | (a, |w|a)}. For
instance, the string bab represents the multiset M(w) = {(a, 1), (b, 2)}, that is the
multiset {a, b, b}. The empty multiset is represented by the empty string λ.

2.1.2 Membrane Systems with Peripheral and Integral Proteins

Formal language theory can be used to provide a mathematical abstraction for the
bidirectional interactions of floating molecules with cell membranes: biochemical
rules and interactions between peripheral proteins and membranes can be formalised
in terms of multiset rewriting rules.

In this section we introduce the main notions for membrane systems with periph-
eral and integral proteins.

As it is usual in themembrane systemsfield, amembrane is represented by a pair of
square brackets, [ ]. A membrane structure is an hierarchical nesting of membranes
enclosed by a main membrane called the root membrane. A label is associated to
each membrane and it is written as a superscript of the membrane, e.g. [ ]1. If a
membrane has the label i we call it membrane i . Each membrane is identified by a
unique label in an unique manner (there are no membranes with the same label).

A membrane structure is essentially that of a tree data structure, where the nodes
are the membranes and the arcs represent the containment relation. Being a tree, a
membrane structure can be represented by a string of matching square brackets, e.g.,
[ [ [ ]2 ]1 [ ]3 ]0.

To eachmembrane there are associated three multisets, u, v and x over V , denoted
by [ ]u|v|x , where V denotes a finite alphabet of objects (the symbol | is not part of
the alphabet V ).
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Following the terminology used in [9] we say that the membrane is marked by u,
v and x ; x is called the external marking, u the internal marking and v the integral
marking of themembrane. In general, we refer to them asmarkings of themembrane.

The internal, external and integral markings of a membrane model the proteins
attached to the internal surface, to the external surface and integral to the membrane,
respectively.

In a membrane structure, the region between membrane i and any enclosed mem-
branes is called region i . To each region is associated amultiset of objectsw called the
free objects of the region. The free objects are written between the brackets enclosing
the regions, e.g., [ aa [ bb ]1 ]0. The free objects of a membrane model the floating
chemicals within the regions of a cell.

Wedenote by int (i), ext (i) and i tgl(i) the internal, external and integralmarkings
of membrane i , respectively. By f ree(i) we denote the free objects of region i . For
any membrane i , distinct from a root membrane, we denote by out (i) the label of
the membrane enclosing membrane i . The finite set of all possible labels is denoted
by Lab.

The string
[ ab [ cc ]2a| | [ abb ]1bba|ab|c ]0

represents, for instance, a membrane structure, where to each membrane are associ-
atedmarkings and to each region are associated free objects.Membrane 1 is internally
marked by bba (i.e., int (1) = bba), has integral marking ab (i.e., i tgl(1) = ab)
and is externally marked by c (i.e., ext (1) = c). To region 1 are associated the free
objects abb (i.e., f ree(1) = abb). To region 0 are associated the free objects ab.
Finally, out (1) = out (2) = 0. Membrane 0 is the root membrane. The string can
also be depicted diagrammatically, as in Fig. 2.2.

As in [9] we consider the rules attachin , attachout , de-attachin and
de-attachout , defined in the following manner:

Fig. 2.2 Graphical representation of [ ab [ cc ]2a| | [ abb ]1bba|ab|c ]0
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attachin : [α]i
u|v| → [ ]i

u′|v′|, α ∈ V +, u, v, u′, v′ ∈ V ∗, i ∈ Lab

attachout : [ ]i|v|x α → [ ]i
|v′|x ′ , α ∈ V +, v, x, v′, x ′ ∈ V ∗, i ∈ Lab

de−attachin : [ ]i
u|v| → [ α ]i

u′|v′| , α, u′, v′, u, v ∈ V ∗, |uv| > 0, i ∈ Lab

de−attachout : [ ]i|v|x → [ ]i
|v′|x ′α, α, v′, x ′, v, x ∈ V ∗, |vx | > 0, i ∈ Lab

Using the notion of multiset presented earlier, we describe the formal semantics of
the rules.

The attachin rule is applicable to membrane i if f ree(i) includes α, int (i)
includes u and i tgl(i) includes v. When the rule is applied to membrane i , α is
removed from f ree(i), u is removed from int (i), v is removed from i tgl(i), u′ is
added to int (i) and v′ is added to i tgl(i). The objects not involved in the application
of the rule are left unchanged in their original positions.

The attachout rule is applicable tomembrane i if f ree(out (i)) includesα, i tgl(i)
includes v, ext (i) includes x . When the rule is applied to membrane i , α is removed
from f ree(out (i)), v is removed from i tgl(i), x is removed from ext (i), v′ is added
to i tgl(i) and x ′ is added to ext (i). The objects not involved in the application of
the rule are left unchanged in their original positions.

The de-attachin rule is applicable to membrane i if int (i) includes u and i tgl(i)
includes v. When the rule is applied to membrane i , u is removed from int (i), v is
removed from i tgl(i), u′ is added to int (i), v′ is added to i tgl(i) and α is added to
f ree(i). The objects not involved in the application of the rule are left unchanged
in their original positions.

The de-attachout rule is applicable to membrane i if i tgl(i) includes v and ext (i)
includes x . When the rule is applied to membrane i , v is removed from i tgl(i), x
is removed from ext (i), v′ is added to i tgl(i), x ′ is added to ext (i) and α is added
to f ree(out (i)). The objects not involved in the application of the rule are left
unchanged in their original positions.

Instances ofattachin ,attachout ,de-attachin andde-attachout rules are depicted
in Fig. 2.3.

Extending the model in [9], we also consider rules that model the shuttling and
translocation of proteins across membranes, as those considered in [10, 11]. In this
case, floating objects can cross membranes depending on the proteins present on the
membrane (proteins may also change during the translocation) Fig. 2.4.

shuttleout : [ α ]i
u|v| → [ ]i

u′|v′| α, α ∈ V +, u, v, u′, v′ ∈ V ∗, i ∈ Lab

shuttlein : [ ]i|v|x α → [ α]i
|v′|x ′ , α ∈ V +, v, x, v′, x ′ ∈ V ∗, i ∈ Lab

The operation of translocation and shuttling can be envisaged as an instantaneous
combination of attach and de-attach rules described above. The shuttlein rule is
applicable to membrane i if i tgl(i) includes v, ext (i) includes x and f ree(out (i))
includes α. When the rule is applied to membrane i , v is removed from i tgl(i), x is
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Fig. 2.3 Examples of attachin , attachout , de-attachin and de-attachout rules, showing how
free and attached objects may be rewritten. For example, in the attachin rule one of the two free
instances of b is rewritten to d and added to the membrane’s internal marking

Fig. 2.4 Examples of shuttlein and shuttleout rules, showing how free objects can cross mem-
branes with the help of peripheral and integral proteins

removed from ext (i), v′ is added to i tgl(i), x ′ is added to ext (i) and α is added to
f ree(i). The objects not involved in the application of the rule are left unchanged
in their original positions.

The shuttleout rule is applicable to membrane i if i tgl(i) includes v, int (i)
includes u and f ree(i) includes α. When the rule is applied to membrane i , v is
removed from i tgl(i), u is removed from int (i), v′ is added to i tgl(i), u′ is added
to int (i) and α is added to f ree(out (i)). The objects not involved in the application
of the rule are left unchanged in their original positions.

We denote byRatt
V,Lab the set of all possible attach, de-attach and shuttle rules

over the alphabet V and set of labels Lab.
As in [9], we also consider evolution rules that replace the free objects contained

in a region conditional on the markings of the enclosing membrane. These rules
represent the biochemical reactions that take place within the cytoplasm of a cell.
An evolution rule has the following syntax:

evol : [ α → β ]i
u|v|
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where u, v, β ∈ V ∗, α ∈ V +, and i ∈ Lab.
The semantics of the rule is as follows. The rule is applicable to region i if f ree(i)

includesα, int (i) includes u and i tgl(i) includes v.When the rule is applied to region
i , α is removed from f ree(i) and β is added to f ree(i). The membrane markings
and the objects not involved in the application of the rule are left unchanged in their
original positions.

We denote byRev
V,Lab the set of all evolution rules over the alphabet V and set of

labels Lab. An instance of an evolution rule is represented in Fig. 2.5.
In general, when a rule has label i we say that a rule is associated to membrane i

(in the case of attach and de-attach rules) or is associated to region i (in the case
of evol rules). For instance, in Fig. 2.3 the attachin is associated to membrane i .

The objects of α, u and v for attachin /evol rules, of α, v and x for attachout

rules, of u and v for de-attachin rules and of v and x for de-attachout rules are the
reactants of the corresponding rules. E.g., in the attach rule [ b ]a|c| → [ ]d|c| , the
reactants are a, b and c.

Amembrane systemwith peripheral and integral proteins is amathematicalmodel
that considers membranes to which can be associated peripheral proteins, integral
proteins, free objects and using the operations described above. The rules presented
here can be implemented in the computational tool using the appropriate syntax
[26], and present redundancies whose purpose is to allow flexibility during the mod-
elling processes. Several specific restricted variants of the proposed rules have been
investigated and a review can be found in [10].

Here, following [9], we consider the stochastic extension of the model.

Definition 1 A stochastic membrane system with peripheral and integral proteins
and n membranes is a construct

Π = (VΠ,μΠ , (u0 , v0 , x0)Π , . . . , (un−1, vn−1, xn−1)Π , w0,Π , . . . , wn−1,Π , RΠ,

tin,Π
, t f in,Π

, rateΠ )

• VΠ is a non-empty alphabet of objects.
• μΠ is a membrane structure with n ≥ 1 membranes injectively labelled by labels
in LabΠ = {0, 1, . . . , n − 1}, where 0 is the label of the root membrane.

• (u0, v0, x0)Π = (λ, λ, λ), (u1 , v1 , x1)Π , . . . , (un−1, vn−1, xn−1)Π ∈ V ∗ × V ∗ ×
V ∗ are called initial markings of the membranes.

Fig. 2.5 evol rule [ a → b ]i
b|c|. Free objects can be rewritten inside the region and the rewriting

can depend on the integral and internal markings of the enclosing membrane
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• w0,Π , w1,Π , . . . , wn−1,Π ∈ V ∗ are called initial free objects of the regions.
• RΠ ⊆ Ratt

V,Lab
Π

−{0} ∪ Rev
V,Lab

Π
is a finite set of evolution rules, attach/de-attach

and shuttle rules.
• tin,Π

, t f in,Π
∈ R are called the initial time and the final time, respectively.

• rateΠ : RΠ �−→ R is the rate mapping. It associates to each rule a reaction rate.

An instantaneous description I ofΠ consists of the membrane structureμΠ with
markings associated to the membranes and free objects associated to the regions. We
denote by I(Π) the set of all instantaneous descriptions of Π . We say membrane
(region) i of I to denote the membrane (region, respectively) i present in I .

Let I be an arbitrary instantaneous description from I(Π) and r an arbitrary rule
from RΠ . Suppose that r is associated to membrane i ∈ LabΠ if r ∈ Ratt

V,LabΠ−{0}
(or to region i ∈ LabΠ if r ∈ Rev

V,LabΠ
).

If r is applicable to membrane i (or to region i , accordingly) of I , then we say
that r is applicable to I . We denote by r(I ) ∈ I(Π) the instantaneous description of
Π obtained when the rule r is applied to membrane i (or to region i , accordingly) of
I (in short, we say r is applied to I ).

The initial instantaneous description of Π , Iin,Π ∈ I(Π), consists of the mem-
brane structure μΠ with membrane i marked by (ui , vi , xi )Π for all i ∈ LabΠ −{0}
and free objects wi,Π associated to region i for all i ∈ LabΠ .

A configuration of Π is a pair (I, t) where I ∈ I(Π) and t ∈ R; t is called the
time of the configuration. We denote by C (Π) the set of all configurations ofΠ . The
initial configuration of Π is Cin,Π = (Iin,Π , tin,Π ).

Suppose that RΠ = {rule1, rule2, . . . , rulem} and let S be an arbitrary sequence
of configurations 〈C0, C1, . . . , C j , C j+1, . . . , Ch〉, where C j = (I j , t j ) ∈ C (Π)

for 0 ≤ j ≤ h. Let a j =
m∑

i=1
pi

j , 0 ≤ j ≤ h, where pi
j is the product of rate(rulei )

and the mass action combinatorial factor [27] for rulei and I j .
The sequence S is an evolution of Π if

• for j = 0, C j = Cin,Π

• for 0 ≤ j ≤ h − 1, a j > 0, C j+1 = (r j (I j ), t j + dt j ) with r j , dt j as in [27]:

– r j = rulek , k ∈ {1, . . . , m} and k satisfies
k−1∑

i=1
pi

j < ran
′
j · a j ≤

k∑

i=1
pi

j

– dt j = (−1/a j )ln(ran
′′
j )

where ran
′
j , ran

′′
j are two randomvariables over the sample space (0, 1], uniformly

distributed.
• for j = h, a j = 0 or t j ≥ t f in,Π

.

In otherwords, an evolution ofΠ is a sequence of configurations 〈C0, C1, . . . , C j ,

C j+1, . . . , Ch〉, starting from the initial configuration of Π , where, given the current
configuration C j = (I j , t j ), the next one C j+1 = (I j+1, t j+1), is obtained by
applying the rule r j to the current instantaneous description I j and adding dt j to the
current time t j . The rule r j and the associateddt j are determined byGillespie’s theory
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of chemically reacting systems [15] applied to the current instantaneous description
I j (i.e., effectively, the rule with the shortest waiting time is selected to be executed).
The evolution of the system halts when all rules have probability zero to be executed
(following from the fact that a j = 0) or when the current time is greater or equal
to the specified final time. The detailed explanation of the application of Gillespie’s
stochastic simulation algorithm [15] to a membrane system with peripheral proteins
can be found in [9] and [28]. Similar implementations of the Gillespie algorithm have
been already proposed in different models of membrane systemswhere the algorithm
has been specifically adapted and optimized to run in multiple compartments and,
for these reasons, referred to as multi-compartment in [17] and [20].

2.2 Statistical Model Checking for Membrane Systems
with Peripheral Proteins

A stochastic membrane system with peripheral proteins can capture the essential
dynamics of a cellular system. It may be used to address questions concerning the
interplay between the biochemical processes present in the various compartments
and the proteins associated to the cellular membranes. Sometimes, these questions
can be resolved in an analyticalmanner [29] or by executing themodel on a computer,
[9, 28, 30]. In this chapter we use this latter approach (for an analytical approach
see the review [10]). As defined in Sect. 2.1.2, a single evolution of the system
produces an outcome that represents the quantities of the involved entities, floating
molecules, peripheral proteins and compartments.However, because of the stochastic
applications of the rules, each evolution of the system may lead to (a possibly very
large number of) different outcomes.

In what follows, we describe the use of statistical model checking to investigate
biological systems, where properties of interest are specified using temporal logic.

2.2.1 Temporal Logic as a Query Language

Many useful properties of systems can be expressed in terms of maxima, minima or
averages of system variables. With more complex reactive systems, such as biolog-
ical systems, it is often desirable to investigate properties that comprise sequences
of events and events dependent on time. Temporal logic provides a formal means to
express these properties and remains reasonably intuitive for moderately complex
properties. In this chapter we use temporal logic as a query language to investi-
gate temporal properties of a biological system. We have developed a statistical
model checker based on the logic of PLASMA [24]. This logic is also similar to the
bounded linear temporal logic (BLTL) of [21]. Specifically, we have constructed a
tool using PLASMA-lab [31, 32], a statisticalmodel checking library that workswith
an external simulator. We have thus created a simulator that implements a language
of stochastic membrane systems with peripheral and integral proteins [33].
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For the purposes of exposition, a logical property φ of our model checker is
constructed using the following abstract syntax:

φ = φ ∨ φ | φ ∧ φ | ¬φ | F≤bφ | G≤bφ | φ U≤bφ | Xφ | α

α = numeric (> | ≥ |= |≤ | <) numeric

∨,∧ and ¬ are the standard logical connectives or, and and not. α is an atomic
proposition constructed from numeric expressions of constants and system variables
using the standard relational operators. X is the next temporal operator (Xφ is true
iff φ is true on the next step). F, G and U are temporal operators bounded by a closed
interval [0, b], where b may refer to steps or time. We use the notation φt and ψt

to denote the value of the propositions φ and ψ at step or time t . F is the finally or
eventually operator (F≤bφ is true iff ∃t ∈ [0, b] : φt is true). G is the globally or
always operator (G≤bφ is true iff ∀t ∈ [0, b] : φt is true). U is the until operator
(ψU≤bφ is true iff ∃t ∈ [0, b] : φt is true ∧(t = 0 ∨ ∀t ′ ∈ [0, t[: ψt ′ is true). In the
case of nested temporal operators, the time bound of an inner temporal operator is
relative to the time bound of its directly enclosing operator. Hence, e.g., F≤3G≤4φ

is true iff ∃t ∈ [0, 3],∀t ′ ∈ [t, t + 4] : φt ′ is true.
Statistical model checking works by verifying a property φ against N ∈ N inde-

pendent simulation runs. Each simulation run evaluates to true or false and the prob-
ability that φ is true on an arbitrary execution of the system is estimated by the
standard Monte Carlo estimator 1

N

∑N
i=1 1(φ), where 1(·) is an indicator function

that returns one if its argument is true and 0 otherwise. To quantify the confidence of
the estimate, in this chapter we use a Chernoff bound [22] that guarantees, for given
N , that the absolute error of the estimate is less than ε with probability δ, where
2εN = ln(2/δ).

2.3 A Case Study: The Role of Estrogen in Cellular Mitosis
and DNA Damage

At a cellular level, life is punctuated by the recurrence of four major phases: Gap 1
(G1), S, Gap 2 (G2), and M. G1 is in-between mitosis and DNA replication and
is responsible for cell growth. The transition occurring at the restriction point (called
R) during the G1 phase commits a cell to the proliferative cycle. If the conditions
that enforce this transition are not present, the cell exits the cell cycle and enters
a non-proliferative phase (called G0) during which cell growth, segregation and
apoptosis occur. Replication of DNA takes place during the synthesis phase (called
S). It is followed by a second gap phase responsible for cell growth and preparation
for division. Mitosis and production of two daughter cells occur in the M phase.
Switches from one phase to another are canonically regulated by a family of Cyclins
that act as regulatory subunits for the Cyclin-Dependent Kinases (CDKs). According
to the actual phase of the cell cycle, a disparate number of chemicals interact with
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the Cyclin-CDKs complexes to prevent or favour their move into the nucleus and,
consequently, to block or promote the next phase transition [34].

Herewe focus on the pre-mitotisG2 phase andmodel the contention on theMitosis
Promoting Factor (MPF) (i.e., the Cyclin B1/2-CDKs complex), after the occurrence
of DNA damage, by two key contributors: p53, the “guardian of the genome” [35],
and the estrogens. The predominance of one’s function over the other results in a
proliferative rather than in a quiescent state of the cell.

It is known that p53 is a crucial protein in multicellular organisms, where it regu-
lates the cell cycle and functions as a tumour suppressor. p53 hasmanymechanisms of
anticancer function. It can (i) activate DNA repair proteins when DNA has sustained
damage; (ii) induce growth arrest by holding the cell cycle at the G1/S regula-
tion point on DNA damage recognition; (iii) initiate apoptosis, the programmed cell
death, if DNA damage proves to be irreparable. In G2 phase and after DNA damage,
activated p53 binds DNA and induces expression of 14-3-3-σ (a.k.a. Stratifin) [36].
Stratifin mRNA exits the nucleus and, after translation, obstructs cell cycle entry by
sequestering MPF, thereby preventing its shuttling to the nucleus [37].

Conversely, estrogens, the primary female sex hormones, promote cell cycle pro-
gression. They are intracellular proteins present both on the cell surface membrane
and in the cytosol. Their actions are assumed to be mediated by estrogen receptors
(ERs) which are found in different ratios in the different tissues of the body:

• ERα: endometrium, breast cancer cells, ovarian stroma cells and hypothalamus.
• ERβ : kidney, brain, bone, heart, lungs, intestinal mucosa, prostate and endothelial
cells.

ERs actions can be selectively enhanced or disabled by some estrogen receptor
modulators, in accordance with the binding affinity level of each estrogenic com-
pound. In the classic model, the estrogen 17 beta estradiol binds to the ER, causing
displacement of chaperone proteins. Dimers of the estrogen-ER complexes can then
act as transcription factors by binding to specific estrogen response element (ERE)
sequences in the promoters of target genes, evoking a wide range of transcriptional
responses.

Efp, a RING-finger-dependent ubiquitin ligase, is a relevant target gene product
of ERα . It is predominantly expressed in various female organs and is responsible
for the proteolysis of 14-3-3-σ and then it is essential for estrogen-dependent cell
proliferation. Its transcription ismediated by the estrogen-ERα complexwhich enters
the nucleus and binds to its ERE. The Efp mRNA can exit the nucleus, translate and
eventually bind to the complex stratifin-MPF, floating in the cytoplasm in an inactive
form. The newly formed complex dissociates into a macromolecule of ubiquitinated
stratifin and one active MPF complex. While the former is targeted for death by
proteolysis, the latter can enter the nucleus and promote mitosis progression.

The described pathway is collected from the Biocarta Pathway Database and
redrawn using Systems Biology Graphical Notation (SBGN) glyphs in Fig. 2.6.

The cell cycle pathway is crucial to the understanding of cancer because one of
the hallmarks of cancer is the uncontrolled proliferation of abnormal or damaged
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Fig. 2.6 SBGN model

cells. The focus of many treatments is therefore to prevent cell division (mitosis) of
such cells. Estrogen is implicated in certain important types of breast cancer (e.g.,
estrogen receptor positive cancer), so in this chapter we present the methodology to
study the role of estrogen in cellular mitosis, analysing the scenario in which DNA
damage occurs. Sources of damage are not discussed in depth here, although they are
commonly ascribed to a prolonged exposure to ionizing or ultraviolet irradiation, or
to sporadic mistakes made by the mitotis machinery. In view of this, we investigate
the relationship between damage, estrogen, its receptor, and a typical antagonist that
acts to prevent mitosis.
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There are many synthetic molecules on the market that play the role of antagonist
to cancer. Tamoxifen, Raloxifene and Anastrozole are some of the most represen-
tative. Their antagonism makes sense when coupled with true agonists, which are
molecules that typically bind to receptors of a cell and trigger a response by that
cell. Agonists often mimic the action of a naturally occurring substance, whereas
antagonists block the action of the agonists or cause an action opposite to that of
the agonists. The current accepted definition of receptor antagonist is based on the
receptor occupancy model: agonists are thought to turn on a single cellular response
by binding to the receptor, thus initiating a biochemical mechanism for changewithin
a cell. Antagonists are thought to turn off that response by blocking the receptor from
the agonist. Whenever the action of the antagonist results to be irreversible, that is
its effect lasts throughout the lifetime of the antagonist itself, its dynamics can be
described as a key broken off in the lock that prevents any other key from being
inserted.

These antagonists are essentially prodrugs, and we have added them, in an appro-
priate way, to the described pathway (see Fig. 2.6). In particular, Tamoxifen, an
estrogen blocker that belongs to the class of non-steroidal anti-estrogens, causes
cells to remain in the G0 and G1 phases of the cell cycle. In particular, it fights breast
cancer by competing with estrogen for space on the receptors of the tumour tissue.
Each molecule of Tamoxifen that binds to a receptor prevents an estrogen molecule
from engaging at the same place. This can facilitate the treatment of cancer because
without a continuous supply of estrogen, cancer cells do not develop and the ability
of the tumour to spread is reduced.

Recent experimental work has recognised that drug therapies may be more effec-
tive when linked to specific phases of the cell cycle [38] —so-called chronoparma-
ceuticals used in chronotherapy —so we specifically consider the time (delay) of the
damage with respect to availability of cyclins (the molecules that control mitosis).
In this chapter we propose a preliminary study on the interplay between the time of
the DNA damage, the amount of the damage and the presence of antagonists.

2.4 Methodology and Results

Using PLASMA-lab [32], we have implemented a statistical model checker that
allows us to analyse the evolutions of a stochastic membrane systems with peripheral
proteins (defined in Sect. 2.1.2), specified in an appropriate syntax and using queries
expressed in temporal logic (defined in Sect. 2.2.1). The integrated computational
platform can be found at the web-page [26].

The biological model used in our investigation (discussed in Sect. 2.3) is described
in terms of a membrane system in Fig. 2.7, where the corresponding simulator script
can also be found. In our study, we explicitly consider as parameters the amount
of damage, the delay time of the damage and the amount of antagonist. We model
the existence of damage by the production of p53, a well known indicator, that
results from a damage signal that is instantiated as a quantity of molecules denoted
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Fig. 2.7 A stochastic membrane systems with peripheral and integral proteins that presents the
P53-independent G2/M cell cycle arrest pathway, with data collected from the Biocarta Pathways
Database, described in Fig. 2.6 and ranges of proportionality between the coefficients obtained using
preliminary western-blotting experiments. On the left side we present the formal language model
following the formal syntax presented in Sect. 2.1.2 (the membrane labels cyto and nucleopl stands
for cytoplasm and nucleoplasm, respectively); on the right side the equivalent simulator script using
the appropriate syntax. The complete description of the simulator syntax can be found in [9, 28]
and at the platform webpage [26]

as damage. Our modelling language allows us to inject an amount of damage at a
specific time, using the syntax amount damage@delay, where “amount” is a number
of damage molecules and “delay” is the value of the time delay from the start of
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the simulation. As an indicator of mitosis, we define a molecular species denoted
MITOSIS, that is produced by the cyclins in the nucleus. For the purposes of our
investigation, we set an ar bitrary minimum of 300molecules of MITOSIS to indicate
that mitosis will proceed. Our results remain qualitatively similar if this value is
changed.

To estimate the probability of mitosis we consider the following temporal logic
property:

F≤delay damage = 0∧(X damage = amount ∧(F≤20 M I T O SI S > 300)) (2.1)

This property states that in the interval [0, delay] there will be a time when
damage = 0 and in the next state damage = amount and within 20 time units
M I T O SI S > 300. In our experiments, the value of delay is set to the time at which
we inject damage and amount to the amount of damage injected. Hence, the first part
of the property is guaranteed to be satisfied and is used to detect the precise step that
damage occurs.1 This allows the remainder of the property to be timed relative to the
damage event. The value of 20 time units is chosen to be sufficiently long to capture
all interesting behaviour following the damage.

We performed statistical model checking on the model with our model checking
tool using the property (2.1). Figure 2.8 illustrates the results of considering amounts
of damage in the range [300, 1000] with increments of 25 and delays in the range
[0, 5] with increments of 0.2. Each point is the result of 37 simulations, which is
sufficient (according to theChernoff bound defined in Sect. 2.2.1) to give a confidence
of ±0.1 with probability 0.95. 0.95 (95%) is a standard high level of confidence,
while ±0.1 is sufficiently precise to resolve the detail in the figure. Figure 2.9 is
the result of the same experiments, but with 1,000 antagonist. The results for each
figure were generated on a single machine (Intel Core i7 2.8Ghz, 4GB RAM) in less

Fig. 2.8 The effect of amount
and delay of damage on
mitosis: the probability of
M I T O SI S > 300 for vari-
ous amounts and time delay
of damage. The figure illus-
trates the general trend that
the probability of mitosis
increases with increasing
delay and decreasing damage
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1 For zero delay we use the simpler property damage = amount ∧ (F≤20 M I T O SI S > 300)
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Fig. 2.9 The effect of
antagonist on the response
to damage: the probability
of M I T O SI S > 300 for
various amounts and delay
of damage in the presence of
1,000 antagonist. In compar-
ison with Fig. 2.8, the figure
demonstrates that antagonist
increases the sensitivity of the
system to damage

0

1

2

3

4

5

 300  400  500  600  700  800  900  1000

D
el

ay
 ti

m
e 

of
 d

am
ag

e

Amount of damage

0

 0.2

 0.4

 0.6

 0.8

1

P
ro

ba
bi

lit
y 

of
 M

IT
O

S
IS

 >
 3

00

than an hour. The general trends are clear in both figures: the probability of mitosis
increases with increasing delay and decreases with increasing damage; above a delay
of about four time units, mitosis is guaranteed, independent of amount of damage.
This confirms our expectation that cell damage causes cell cycle arrest and that if
the damage occurs after mitosis has begun, it will be too late to have an effect.
Comparing Figs. 2.8 and 2.9, we see that the addition of antagonist increases the
region of the figure where the cell cycle is arrested. In particular, the system is more
sensitive to lower amounts of damage, confirming our understanding of the effect of
an antagonist. We also note that the addition of antagonist has much less effect with
respect to delay.

Having observed that the presence of antagonist increases the sensitivity of the
system to damage, we investigated the amount of antagonist required to cause cell
cycle arrest. The results are plotted in Fig. 2.10 and were achieved in the following
way.We estimated the probability ofmitosis, as defined by the property (2.1), consid-
ering three parameters: amount of damage in the range [300, 900]with increments of
25, delay of damage in the range [0, 4] with increments of 0.2, and amount of antag-
onist in the range [0, 2100] with increments of 100. Thus, for each combination of
amount and delay of damage, we constructed a sequence of probabilities correspond-
ing to the amounts of antagonist, each estimated with the same level of confidence
used for Figs. 2.8 and 2.9. The results were generated on a single machine (Intel Core
i7 2.8Ghz, 4 GB RAM) in less than 14h. Three qualitatively distinct sequences of
probabilities emerged: (i) probabilities consistently below 0.5 for all considered val-
ues of antagonist (black area in Fig. 2.10); (ii) probabilities consistently above 0.5 for
all considered values of antagonist (yellow area marked with ‘+’ symbols) and (iii)
probabilities decreasing from values above 0.5 to values below 0.5 with increasing
antagonist. Sequences of type (i) correspond to a range of parameters where cell
cycle arrest is inevitable, regardless of antagonist. Sequences of type (ii) correspond
to a range of parameters where either mitosis is inevitable or more than the maxi-
mum amount of antagonist that we tried is required to cause cell cycle arrest. From
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Fig. 2.10 The required
dosage of antagonist to prevent
mitosis: the amount of antago-
nist required to make the prob-
ability of M I T O SI S > 300
less than 0.5 when previously
it was greater than 0.5. In
the black areas the probabil-
ity of M I T O SI S > 300 is
less than 0.5, independent of
antagonist. The ‘+’ symbol
indicates that at least 2,100
antagonist would be required
to prevent mitosis 0
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sequences of type (iii) we were able to estimate the amount of antagonist correspond-
ing to the transition value of 0.5, by interpolating between two adjacent points or
from a single point if, by chance, its value was exactly 0.5.

2.5 Conclusions

Even though the life cycle of cells is not generally synchronized, we recall here that
replication is subject to the presence of cyclins, that are released in a timely way. Our
results then show that it is possible to target cells on time, that is, to occupy estrogen
receptors (ERs) at time points that are maximally effective. This would convey a
double advantage: minimizing the necessary quantity of antagonist and making its
effect optimal. The definition of the most effective dosage curve is indeed not a
simple task, especially in cases where antagonists cannot be specific for particular
cells. For example, in the case of ER+ breast cancer, Tamoxifen is currently taken
once or twice a day and it is usually prescribed at 20mg for 5 years. This dosage is
due to the unavoidable ineffectiveness of the drug when reaching cells in unfavorable
time points, as well as to the fact that Tamoxifen does not specifically target breast
cancer cells; its molecules circulate within the body and target any cell that contains
an available ER. The consequence of this is that while Tamoxifen works as an anti-
estrogen for the breast, it acts as estrogen (i.e., agonist) in the uterus and, to a lesser
extent, in the heart, blood vessels and bones. In cases like this, a tuned chronotherapy
cannot eliminate the risk of side effects, but can drastically reduce it. The presented
results show that the use of statistical model checking in membrane systems could
be helpful to individuate the appropriate time-dependent dosage of antagonists in
cancer treatments [39].
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5. L. Cardelli, Gh Păun, An universality result for a (mem)brane calculus based on mate/drip

operations. Int. J. Found. Comput. Sci. 17(1), 49–68 (2006)
6. R. Brijder, M. Cavaliere, A. Riscos-Núnez, G. Rozenberg, and D. Sburlan. Membrane sys-

tems with marked membranes. Electronic Notes in Theoretical Computer Science, 171(2),
25–36, (2007), in Proceedings of the First Workshop on Membrane Computing and Biologi-
cally Inspired Process Calculi (MeCBIC 2006).

7. M. Cavaliere, S. Sedwards, Membrane systems with peripheral proteins: transport and evolu-
tion. Electronic Notes in Theoretical Computer Science, 171(2), 37–53 (2007). Proceedings
of the First Workshop on Membrane Computing and Biologically Inspired Process Calculi
(MeCBIC 2006)

8. D. Bray, A. Johnson, J. Lewis,M. Raff, K. Robert, P.Walter, B. Alberts, Essential Cell Biology:
An Introduction to the Molecular Biology of the Cell, vol. 1 (Garland Publishing, Inc., New
York, 1998)

9. M. Cavaliere, S. Sedwards, Modelling Cellular Processes Using Membrane Systems with
Peripheral and Integral Proteins, in Proceedings of the 2006 International Conference on Com-
putational Methods in Systems Biology, CMSB’06. (Springer, Berlin, 2006) pp. 108–126
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(Oxford University Press, New York, 2010) pp. 363–388
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