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Abstract The chapter discuss a necessary condition for coherence of radial
implicative fuzzy systems. We present the general condition in an implicit form.
The condition is based on the value of the minima of a certain function. We show
that this function is convex. Further an explicit solution for Euclidean systems is
provided.
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1 Introduction

The property of coherence of a fuzzy system deals with the consistency of knowledge
stored in the rule base the system. For implicative fuzzy systems this consistency
means that for any input there always exists at least one output which is in degree 1
compatible with the given input. The notion of coherence point out the dynamical
character of consistency. That is, the rule base is consistent for any input, not only for
some special subset. The degree 1 compatibility is considered over the fuzzy relation
representing the rule base of the system. If there is no such output, then the rule base
is controversial and its rules should be revised. For example, if the system is used
as a controller, then under incoherence it could happen that we end with the empty
set of relevant actions. Thus the study of coherence represents a serious issue in the
area of fuzzy computing [1].

To decide whether a given system is coherent on the basis of the values of its
parameters is generally a difficult task. The introduction of radial fuzzy systems,
which are the systems which employ radial fuzzy sets, allows to tackle the coher-
ence question effectively for the class of combined systems called radial implicative
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fuzzy systems [2]. The formulation of conditions of coherence in the form of a suffi-
cient condition was presented in [3]. If this condition is satisfied, then the system is
coherent, i.e., safe in the above sense of the risk of obtaining the empty output.

In this chapter we ask for how to detect incoherent systems, i.e., we ask for a
necessary condition on coherence for radial implicative fuzzy systems. As a main
result we state this condition explicily for systems based on the Euclidean norm.
However, in the implicit way the condition is valid for other norms as well and due
to the convexity the condition can be stated also explicitly with the help of numerical
optimization algorithms.

2 Radial Implicative Fuzzy Systems

The class of radial implicative fuzzy systems (radial I-FSs in short) was introduced
in [2]. Let us give a brief review of the class. In radial I-FSs, IF-THEN rules are
considered in MISO (multiple-input single-output) configuration. Let a rule base
consist of m ∈ N IF-THEN rules. The j-th rule, j = 1, . . . , m, writes as

A j1(x1) � · · · � A jn(xn) → B j (y). (1)

In the formula, A ji , i = 1, . . . , n, represent one-dimensional fuzzy sets specified
on corresponding dimensions of n-dimensional input space X ⊆ Rn . B j denotes
a one-dimensional fuzzy set specified on a one-dimesional output space Y ⊆ R.
The � symbol denotes a fuzzy conjunction representing AND connective and →
corresponding residuated implication [4, 5] for THEN connective.

The product and minimum t-norms are typically used as fuzzy conjunctions.
Corresponding residuated implications are obtained by the operation of residua-
tion [4, 5]: x →� y = sup{z ∈ [0, 1] | z � x ≤ y} . The formula implies that
x →� y = 1, whenever x ≤ y. For product or minimum, we obtain the so-called
Goguen (x →P y = 1 for x ≤ y; x →P y = y/x for x > y) or Gödel implication
(x →M y = 1 for x ≤ y; x →M y = y for x > y), respectively.

Individual IF-THEN rule (1) represents a fuzzy relation R j (x, y) onRn+1 space.
In the short notation the rule writes as R j (x, y) = A j (x) → B j (y), where A j (x)

is the antecedent of the rule and B j (y) its consequent. The antecedent then read as
A j (x) = A j1(x1) � · · · � A jn(xn).

Individual rules are in implicative systems combined into the whole rule base by
a fuzzy conjunction. The most common choice for this operation is the minimum
t-norm. If the system consists of m ∈ N rules, then the whole rule base RB(x, y)

forms again a fuzzy relation on Rn+1 space, which is specified as

RB(x, y) =
m∧

j=1

R j (x, y) = min j {A j (x) → B j (y)}. (2)
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In radial systems, A ji and B j sets are represented by radialmembership functions.
Radial functions are well known from the theory of radial basis neural networks [6].
A radial function f : Rn → R is determined by its central point a ∈ Rn and by
a non-increasing shape function act : R → [0, 1] which satisfies act (0) = 1 and
limz→0 act (z) = 0. Finally, the application of a norm on the difference between the
function’s argument and its central point constitutes the final formula for a radial
function as f (x) = act (|x −a|) or f (x) = act (||x − a||) in the one-dimensional or
the multi-dimensional case, respectively. In the context of radial systems, the class
of scaled �p norms is relevant for parameter p ∈ [1,∞) (we do not consider here
the limit case p = ∞). The norms of this class are defined for u ∈ Rn and a vector
of scaling parameters b = (b1, . . . , bn), bi > 0 as

||u||b =
[

n∑

i=1

(|ui |/bi )
p

]1/p

. (3)

The employment of radial functions for representation ofmembership functions in
radial fuzzy systems is performed by the following specification of one-dimensional
fuzzy sets

A ji (x) = act (|x − a ji |/b ji ), B j (y) = act (max{0, |y − c j | − s j }/d j ) (4)

where a ji , c j ∈ R are central points, b ji , d j > 0 are scaling parameters and
s j > 0 is a kernel’s width controlling parameter. We see that the antecedent fuzzy
sets are strictly radial. The formula for consequent fuzzy set is enhanced by s pa-
rameter which yields its generally trapezoid-like shape. Remark that B j (y) falls
into the introduced framework of general radial functions as we can consider have
act (max{0, z − s j }/d j ) as another shape function.

The most prominent example of radial fuzzy sets are Gaussian fuzzy sets

A ji (x) = exp

[
− (x − a ji )

2

b2j i

]
, B j (y) = exp

[
−max{0, |y − c j | − s j }2

d2
j

]
. (5)

In Fig. 1 there are presented examples of these sets graphically.
In radial systems the combination of individual fuzzy sets by a t-norm retains the

shape. That is, the following equality called the radial property holds

act

( |xi − a ji |
b j1

)
� . . . � act

( |xn − a jn|
b jn

)
= act (||x − a j ||b j ). (6)

In the formula on the right hand side, there is a multi-dimensional radial fuzzy set
representing the antecedent of the rule A j (x). For Gaussian fuzzy sets the radial
property is exhibited when the product t-norm is used and the corresponding norm
is the scaled Euclidean norm (p = 2). Generally, shapes (act functions) cannot be
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(a) (b)

Fig. 1 Anexample ofGaussian radial fuzzy sets; (a) antecedent fuzzy set; (b) consequent trapezoid-
like fuzzy set

combined freely with t-norms � when the validity of the radial property is required.
In [7] there is proved the theorem stating the conditions on the t-norm � and the
shape function act such that the radial property holds.

3 Computational Model

Computational model of radial I-FSs is based on the radial property and the basic
property of residuated implications: x → y = 1 iff x ≤ y [5].

Consider an input x∗ ∈ Rn to the system. In degree 1 compatible outputs from
the j-th rule are those ys for which A j (x∗) → B j (y) = 1 holds. This is equivalent
to the validity of inequality A j (x∗) ≤ B j (y), and these ys are in degree 1 compatible
with the fuzzy relation R j (x∗, y) = A j (x∗) → B j (y). Due to the radial property
it can be shown that the set I j (x∗) of ys satisfiying A j (x∗) ≤ B j (y) can be stated
explicitly as

I j (x∗) = [c j − d j ||x∗ − a j ||b j − s j , c j + d j ||x∗ − a j ||b j + s j ]. (7)

That is, we obtain the set of ys of interest as the closed interval with limit points
specified on the basis of input x∗ and parameters of the j-th rule.

Concerning the output from the whole system on the basis of formula (2), we
obtain the set of compatible ys evaluating the whole rule base to degree 1 as the
intersection of individual intervals I j (x∗). Denoting the left and the right limit points
of I j (x∗) as L(I j (x∗)) and R(I j (x∗)), respectively, we have

I (x∗) =
m⋂

j=1

I j (x∗) = [max j {L(I j (x∗))},min j {R(I j (x∗))}], (8)

under the condition max j {L(I j (x∗))} ≤ min j {R(I j (x∗))}, otherwise I (x∗) = ∅.
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The formula (8) determines the set of in degree 1 compatible outputs of a radial
implicative fuzzy system for a given input x∗. We see that the output set is again a
closed interval. Practically, only one point y∗ ∈ I (x∗) is released as the output of
the system. Typically, the middle point of the interval is selected.

Coherence of the systems means that for any x∗ ∈ Rn we have I (x∗) 	= ∅.
Note that if for some x∗ it happens that there exists a pair of rules j, k such that
L(I j (x∗)) > R(Ik(x∗)), then I j (x∗) ∩ Ik(x∗) = ∅ and therefore I (x∗) = ∅ and the
system is incoherent.

4 A Necessary Condition on Coherence of Euclidean Systems

In this section we state the necessary condition on coherence of Euclidean systems,
i.e., for systems using p = 2 in the specification of the scaled �p norm (3). The norm
occurs in the antecedents’ representation formula under the validity of the radial
property (6).

We start by the lemma which enables explicit computations in the main theorem.
To start define for pairs of rules j, k ∈ {1, . . . , m} and corresponding scaled �p norms
the following entities

J jk(x) = d j ||x − a j ||b j + dk ||x − ak ||bk ,

J (p)
jk (x) = d p

j ||x − a j ||p
b j

+ d p
k ||x − ak ||p

bk
, (9)

x∗(p)
jk = argminx{J (p)

jk (x)}.

The value of p is not restricted here, i.e., p ∈ [1,∞). However, for both norms
composing J jk and J (p)

jk , the value of p is the same as the norms are related to the
rules of the same fuzzy system.

Lemma 1. For any p ∈ [1,∞),

minx{J jk(x)} ≤ 2[minx{J (p)
jk (x)}]1/p = 2[J (p)

jk (x∗(p)
jk )]1/p. (10)

If p = 2, then x∗(2)
jk = (x∗(2)

jk1 , . . . , x∗(2)
jki , . . . , x∗(2)

jkn ) and

x∗(2)
jki = d2

j b2ki a ji + d2
k b2j i aki

d2
j b2ki + d2

k b2j i
. (11)

Proof. The first assertion is the corollarly of the following inequality for u, v ∈ R.

|u + v|p ≤ (|u| + |v|)p ≤ 2p max{|u|p, |v|p} ≤ 2p(|u|p + |v|p),

|u + v| ≤ 2(|u|p + |v|p)1/p. (12)
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Denoting u(x) = d j ||x − a j ||b j , v(x) = dk ||x − ak ||bk and taking into account that

both u(x), v(x) ≥ 0 we have J jk(x) = |u(x) + v(x)| and J (p)
jk (x) = |u(x)|p +

|v(x)|p. Applying (12) we immediately get J jk(x) ≤ 2[J (p)
jk (x)]1/p. Since the p-th

root is an increasing function the application of minimum (norms are continuous)
writes as minx{J jk(x)} ≤ 2[minx{J (p)

jk (x)}]1/p.
For the Euclidean norm the localization of the point of minima is based on the

standard procedure of computation of partial derivatives and setting them to zero.
For p = 2 we have

J (2)
jk (x) = d2

j

∑

i

(xi − a ji )
2

b2j i
+ d2

k

∑

i

(xi − aki )
2

b2ki

.

Computing partial derivatives ∂ J (2)
jk (x)/∂xi and setting them to zero we obtain

2d2
j (xi − a ji )

b2j i
+ 2d2

k (xi − aki )

b2ki

= 0,

d2
j b2ki (xi − a ji ) + d2

k b2j i (xi − aki ) = 0,

xi (d
2
j b2ki + d2

k b2j i ) − (d2
j b2ki a ji + d2

k b2j i aki ) = 0,

d2
j b2ki a ji + d2

k b2j i aki

d2
j b2ki + d2

k b2j i
= xi .

Using notation x∗(2)
jki instead of plain xi we get the second assertion of the lemma. �

Theorem 1. Let a radial I-FS use the Euclidean scaled norm in the specification
of its rules. If the system is coherent, then the following set of inequalities holds for
j, k ∈ {1, . . . , m}

|c j − ck | − (s j + sk) ≤ 2
[
d2

j ||x∗(2)
jk − a j ||2b j

+ d2
k ||x∗(2)

jk − ak ||2bk

]1/2
(13)

where x∗(2)
jk = (x∗(2)

jk1 , . . . , x∗(2)
jkn ) is given by (11).

Proof. We prove the inverse implication, i.e., “if some of the above inequalities is
violated, then the system is incoherent”.

Suppose that for some pair of rules j, k the corresponding inequality (13) is vio-
lated, i.e.,

|c j − ck | − (s j + sk) > 2
[
d2

j ||x∗(2)
jk − a j ||2b j

+ d2
k ||x∗(2)

jk − ak ||2bk

]1/2
.

Employing notation (9) and Lemma 1 this writes as
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|c j − ck | − (s j + sk) > 2[J (2)
jk (x∗(2)

jk )]1/2 ≥ minx{J jk(x)},
|c j − ck | − (s j + sk) > d j ||x∗ − a j ||b j + dk ||x∗ − ak ||bk ,

where x∗ is the point at which the minimum of J jk(x) over Rn is reached.
Let c j − ck ≥ 0, otherwise switch the labeling of rules. The above then writes

c j − ck − (s j + sk) > d j ||x∗ − a j ||b j + dk ||x∗ − ak ||bk ,

c j − d j ||x∗ − a j ||b j − s j > ck + dk ||x∗ − ak ||bk + sk,

L(I j (x∗)) > R(Ik(x∗));

and therefore I j (x∗)∩ Ik(x∗) = ∅, i.e., there exists an input x∗ for which the system
is incoherent. �

5 Convexity

By inspection of Lemma 1 and Theorem 1 we see that the core object the necessary
condition is based on is the value of the minima of J jk(x) function. In the Euclidean
systems we are able to state the upper bound on this minimum by stating the explict
value of minima of J (2)

jk (x) which is reached at the point specified by formula (11).
Concerning the very value of minima of J jk overRn , we can found it numerically

by for example the Levenberg-Marquardt algorithm [8]. It helps significantly to know
that J jk is convex and therefore any local minimum is also the global minimum [9].

Lemma 2. For any p ∈ [1,∞) the function J jk of (9) is convex, i.e., for any
x1, x2 ∈ Rn, α ∈ [0, 1], β = 1−α we have J jk(αx1+βx2) ≤ J jk(αx1)+J jk(βx2).

Proof. J jk is specified as the sum of two different scaled norms. The value of p
is the same but the scaling parameters b j , bk generally differ. However, for each
of the scaled norms the basic norm’s properties hold (a scaled �p norm is the norm
in the standard sense) and we have

J jk(αx1 + βx2) = ||αx1 + βx2 − a j ||b j + ||αx1 + βx2 − ak ||bk

= ||α(x1−a j ) + β(x2 − a j )||b j + ||α(x1 − ak) + β(x2−ak)||bk

≤ α||(x1 − a j )||b j + β||(x2 − a j )||b j +
+ α||(x1 − ak)||bk +β||(x2 − ak)||bk

≤ α J jk(x1) + β J jk(x2). �

Due to the convexity of J jk it is reasonable to use some procedure of numerical
optimization to search for approximation of J ∗

jk = minx{J jk(x)}. For any pair of
rules j, k ∈ {1, . . . , m} denote by J ∗n

jk the value of minima found by numerical
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optimization and by x∗n
j the point where J ∗n

jk is reached. Then the following lemma
applies.

Lemma 3. If the radial I-FS is coherent, then |c j − ck | − (s j + sk) ≤ J n∗
jk holds for

any pair of rules j, k ∈ {1, . . . , m}.
Proof. The proof follows the proof of Theorem 1 with the minx{J jk(x)} replaced
by J ∗n

jk and x∗ by xn∗. �

6 Conclusions

In the paper we have stated an explicit necessary condition for an Euclidean radial
implicative system to be coherent. In fact, in implicit form the condition can be
extended for non-Euclidean systems, i.e., for other p ∈ [1,∞) than p = 2. In this
case it reads as

|c j − ck | − (s j + sk) ≤ J ∗
jk = min

x
{J jk(x)}. (14)

However, here we do not have an explicit formula for computing the value of minima
of J jk(x) overRn or at least its reasonable upper bound as in the Euclidean case. On
the other hand, due to the convexity of J jk we can rely on numerical optimization
procedures and replace J ∗

jk by its numerical approximation.
In the future research we aim at the further inspection of convexity of J jk function

in order to get more insight whether or not we are able to state the value of J ∗
jk in

some explicit form.
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