Chapter 2
Evolution Strategies

2.1 Introduction

Many real-world problems are multimodal, which renders an optimization problem
difficult to solve. Local search methods, i.e., methods that greedily improve solutions
based on search in the neighborhood of a solution, often only find an arbitrary local
optimum that is not guaranteed to be the global one. The most successful methods
in global optimization are based on stochastic components, as they allow to escape
from local optima and overcome premature stagnation. A famous class of global
optimization methods are evolution strategies that are successful in real-valued solu-
tion spaces. Evolution strategies belong to the most famous evolutionary methods
for black box optimization, i.e., for optimization scenarios, where no functional
expressions are explicitly given and no derivatives can be computed. In the course
of this work, evolution strategies will play an important role. They are oriented to
the biological principle of evolution [1] and can serve as an excellent starting point
to methods in learning and optimization. They are based on three main mechanisms
that are translated into evolutionary operators:

1. recombination,
2. mutation, and
3. selection.

First, we define an optimization problem formally. Let f : § — R be the fitness
function to be minimized in the space of solutions S. The problems we consider in
this work are minimization problems unless explicitly stated. High fitness means low
fitness values. The task is to find an element x* € § such that f(x*) < f(x) for
all x € S. A desirable property of an optimization method is to find the optimum x*
with fitness f* within a finite and preferably low number of function evaluations.
In most parts of this work, we consider continuous optimization problems, i.e., the
solution space S = RV. Problem f can be an arbitrary optimization problem, e.g.,
a civil engineering system like a simulation or a mathematical model.
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2.2 Evolutionary Algorithms

If derivatives are available, Newton methods and variants are recommendable
algorithmic choices. From this class of methods, the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm belongs to the state-of-the-art techniques [2]. This work
concentrates on black box optimization problems. In black box optimization, the
problem does not have to fulfill any assumptions or limiting properties. For such
general optimization scenarios, evolutionary methods are a good choice. Evolution-
ary algorithms (EAs) belong to the class of stochastic derivative-free optimization
methods. Their biological motivation has made them very popular. After decades of
research, a long history of applications and theoretical investigations have proven
their success.

In Germany, the history of evolutionary computation began with evolution strate-
gies, which were developed by Rechenberg and Schwefel in the sixties and seventies
of the last century in Berlin [3—5]. At the same time, John Holland introduced the evo-
lutionary computation concept in the United States known as genetic algorithms [6].
Today, advanced mutation operators, step size mechanisms, and methods to adapt the
covariance matrix like the CMA-ES [7] have made them one of the most successful
optimizers in derivative-free global optimization.

Many methods have been presented in evolutionary continuous optimization like
the work by Deb et al. [8], who developed a generic parent-centric crossover oper-
ator, and a steady-state, elite-preserving population-alteration model. Herrera et al.
[9, 10] proposed to apply a two-loop EA with adaptive control of mutation sizes.
The algorithm adjusts the step size of an inner EA and a restart control of a mutation
operator in the outer loop. Differential evolution (DE) is another branch of evolu-
tionary methods for continuous optimization. Price et al. [11] give an introductory
survey to DE. Qin et al. [12] proposed an adaptive DE that learns operator selection
and associated control parameter values. The learning process is based on previ-
ously generated successful solutions. Particle swarm optimization (PSO) is a famous
methodology that concentrates on continuous global optimization [13, 14]. PSO is
inspired by the movement of swarms in nature, e.g., fish schools or flocks of birds.
It simulates the movement of candidate solutions using flocking-like equations with
locations and velocities. A learning strategy variant has been proposed by Liang et
al. [15], who uses all particles’ past best information to update the particle history.
A PSO-like algorithm will be employed in Chap. 8.

Evolutionary search is based on a set P = {xi,...,x,} of parental and a
set P' = {xq, ..., x)} of offspring candidate solutions, also called individuals. The
individuals are iteratively subject to random changes and selection of the best solu-
tions. Algorithm 1 shows the pseudocode of a general evolutionary algorithm. The
optimization process consists of three main steps:

1. The recombination operator selects p parents and combines their parts to A\ new
solutions.

2. The mutation operator adds random changes (e.g. noise) to the preliminary candi-
date solution. The quality of the individuals in solving the optimization problem
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Algorithm 1 Evolutionary Algorithm

1: initialize solutions X1, ..., X, € P
2: repeat
fori =1to \do
select p parents from P
create X; by recombination
mutate X;
evaluate x; — f(X;)
add x; to P’
end for
10:  select p parents from P’ — P
11: until termination condition
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is called fitness. The fitness of the new offspring solution is evaluated on fitness
function f. All individuals of a generation are put into offspring population P’.

3. Then, u individuals are selected and constitute the novel parental population P
of the following generation.

The process is repeated until a termination condition is reached. Typical termination
conditions are defined via fitness values or via an upper bound on the number of
generations.

In the following, we will give a short survey of evolutionary operators and go
deeper into evolution strategies that have proven well in practical optimization
scenarios. The evolution strategy operators intermediate and dominant recombina-
tion as well as Gaussian mutation are introduced.

2.3 Recombination

In biological systems, recombination, also known as crossover, mixes the genetic
material of two parents. Most evolutionary algorithms also make use of a recombi-
nation operator and combine the information of two or more individuals x1, ..., X,
to a new offspring solution. Hence, the offspring carries parts of the genetic mate-
rial of its parents. Many recombination operators are restricted to two parents, but
also multi-parent recombination variants have been proposed in the past that combine
information of p parents. The use of recombination is discussed controversially within
the building block hypothesis by Goldberg [16, 17]. The building block hypothesis
assumes that good substrings of the solutions called building blocks of different par-
ents are combined, and their number increases. The good genes are spread over the
population in the course of the evolutionary process.

Typical recombination operators for continuous representations are dominant and
intermediate recombination. Dominant recombination randomly combines the genes
of all parents. Dominant recombination with p parents (x)1, ..., (X), € RY creates
the offspring vector x' = (x/, ..., x) by randomly choosing the i-th component

x! = (x))k, k €random{l,...,p}. 2.1



18 2 Evolution Strategies

Intermediate recombination is appropriate for numerical solution spaces. Given p
parents Xp, . .., X, each component of the offspring vector X is the arithmetic mean
of the components of all p parents

‘l p
xj=- Z(xi)k~ (2.2)
p k=1

The characteristics of offspring solutions lie between their parents. Integer represen-
tations may require rounding procedures for generating valid solutions.

2.4 Mutation

Mutation is the second main source of evolutionary changes. According to Beyer
and Schwefel [3], a mutation operator is supposed to fulfill three conditions. First,
from each point in the solution space each other point must be reachable. Second, in
unconstrained solution spaces a bias is disadvantageous, because the direction to the
optimum is unknown, and third, the mutation strength should be adjustable, in order
to adapt exploration and exploitation to local solution space conditions.

In the following, we concentrate on the famous Gaussian mutation operator for
optimization in RY. Solutions are vectors of real values x = (1, ..., xn)T € RV,
Random numbers based on the Gaussian distribution A/ (0, 1) fulfill these conditions
in continuous domains.! With the Gaussian distribution, many natural and artifi-
cial processes can be described. The idea is to mutate each individual applying the
mutation operator

X =X+ 1z, (2.3)

with a mutation vector z € RY based on sampling from the Gaussian distribution
z~ N, 5T = (N, 5), ..., N, *)T ~ aN(0,1) (2.4)

with identity matrix I. The standard deviation o plays the role of the mutation strength
and is also known as step size. The isotropic Gaussian mutation with only one step
size uses the same standard deviation for each component x;. Of course, the step
size o can be kept constant, but the convergence to the optimum can be improved by
adapting o according to local solution space characteristics. In case of high success
rates, i.e., a large number of offspring solutions being better than their parents, big
step sizes are advantageous, in order to explore the solution space as fast as possible.
This is often reasonable at the beginning of the search. In case of low success rates,
smaller step sizes are appropriate. This is often adequate in later phases of the search
during convergence to the optimum, i.e., when approximating solutions should not

U N (m, 0?) represents a randomly drawn Gaussian distributed number with expectation value m
and standard deviation o.
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(a) (b) 4

Fig. 2.1 Gaussian mutation: a isotropic Gaussian mutation employs one step size o for each
dimension, b multivariate Gaussian mutation allows independent step sizes in each dimension, and
¢ correlated mutation allows a rotation of the mutation ellipsoid, (a) isotropic, (b) multivariate, (c)
correlated

be destroyed. An example for an adaptive control of step sizes is the 1/5-th success
rule by Rechenberg [4] that increases the step sizes, if the success rate is over 1/5-th,
and decreases it, if the success rate is lower.

Isotropic Gaussian mutation can be extended to multivariate Gaussian mutation
by allowing independent scalings of the components

N(©0,D%) = (N(0,09), ..., N, o) ~DN(,D). (2.5)
This multivariate mutation employs N degrees of freedom that are saved in a diagonal
matrix D = diag(oy, . .., o) corresponding to a step size vector for the independent
scalings.

Figure 2.1 illustrates the differences between (a) isotropic Gaussian mutation and
(b) multivariate Gaussian mutation. The multivariate variant allows the development
of a Gaussian ellipsoid that flexibly adapts to local solution space characteristics.
Even more flexibility, i.e., N(N — 1)/2 degrees of freedom, allows the correlated
mutation presented by Schwefel [18]

N, C) = VCN(0, 1) (2.6)

with covariance matrix C, which contains the covariances describing the multivariate
normal distribution. The components are correlated, see Fig.2.1c. The square root,
or Cholesky decomposition, +/C of the covariance matrix C corresponds to a rota-
tion matrix for the mutation ellipsoid axes. The question arises, how to control the
mutation ellipsoid rotation. Instead of a rotation matrix N(N — 1)/2 angles can be
used. In practical optimization, these angles are often controlled self-adaptively [19].
Also the CMA-ES and variants [7, 20] are based on an automatic alignment of the
coordinate system (cf. Sect.2.7).

A step towards the acceleration of the step size control is o-self-adaptation. Before
the application of the mutation operator (cf. Eqs.2.3 and 2.4), the log-normal muta-
tion operator for step sizes o and step size vectors (o7, ..., oy)" is applied. The
log-normal mutation operator has been proposed by Schwefel [18] and has become
famous for self-adaptation in continuous solution spaces. It is defined as
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o' =g.eTNOD, 2.7)
The problem-dependent learning rate 7 has to be chosen adequately. For the muta-
tion strengths of evolution strategies on the continuous Sphere model, theoretical
investigations [3] lead to the optimal setting

- 2.8
TTUN 5

which may not be optimal for other problems, and further parameter tuning is recom-
mended. Strategy parameter o cannot become negative and scales logarithmically
between values close to 0 and infinity.> A more flexible approach is to mutate each
of the N dimensions independently

o = eMNO.D) (ale(T'N(O'”, L UNe(n/\/(o,l)) ’ (2.9)
with B
T0 = , (2.10)
V2N
and
C
T = —— (2.11)

V2JN

Setting parameter ¢ = 1 is a recommendable choice. Kursawe [21] analyzed para-
meters 79 and 71 using a nested evolution strategy on various test problems. His
analysis shows that the choice of mutation parameters is problem-depended, and
general recommendations are difficult to give.

The EA performs the search in two spaces: the objective and the strategy parameter
space. Strategy parameters influence the genetic operators of the objective variable
space, in this case the step sizes of the Gaussian mutation. The optimal settings may
vary depending on the location of the solution in the fitness landscape. Only the
objective variables define the solution and have an impact on the fitness. Strategy
parameters have to take part in the evolutionary process to evolve them dynamically
during the optimization process.

2.5 Selection

The counterpart of the variation operators mutation and recombination is selection.
Selection gives the evolutionary search a direction. Based on their fitness, a subset of
the population is selected, while the worst individuals are rejected. In the evolution-
ary framework, the selection operator can be employed at two steps. Mating selection

2 i.e., high values w.r.t. the data structure.
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selects individuals for the recombination operator. In nature, the attraction of sexual
partners as well as cultural aspects influence the mating selection process. The second
famous selection operator is survivor selection corresponding to the Darwinian prin-
ciple of survival of the fittest. Only the individuals selected by survivor selection are
allowed to inherit their genetic material to the following generation. The probability
of a solution to be selected is also known as selection pressure.

Evolution strategies usually do not employ a competitive selection operator for
mating selection. Instead, parental solutions are randomly drawn from the set of
candidate solutions. But for survivor selection, the elitist selection strategies comma
and plus selection are used. They choose the p-best solutions as basis for the parental
population of the following generation. Both operators, plus and comma selection,
can easily be implemented by sorting the population w.r.t. the individuals’ fitness.
Plus selection selects the p-best solutions from the union P U P’ of the last parental
population P and the current offspring population P’, and is denoted by (1 + A)-ES.
In contrast, comma selection in a (u, A\)-ES selects exclusively from the offspring
population, neglecting the parental population, even if the parents have a superior
fitness. Forgetting superior solutions may seem to be disadvantageous. But potentially
good solutions may turn out to be local optima, and the evolutionary process may
fail to leave them without the ability to forget.

2.6 Particle Swarm Optimization

Similar to evolutionary algorithms, PSO is a population approach with stochastic
components. Introduced by Kennedy and Eberhart [13], it is inspired by the move-
ment of natural swarms and flocks. The algorithm utilizes particles with a position
x that corresponds to the optimization variables and a velocity v, which is similar to
the mutation strengths in evolutionary computation. The principle of PSO is based
on the idea that the particles move in solution space influencing each other with
stochastic changes, while previous successful solutions act as attractors. Figure 2.2
illustrates the PSO conceptin N = 2 dimensions, while Algorithm 2 shows the PSO
algorithm in pseudocode.
In each iteration the position of particle x is updated by adding a velocity v

Fig. 2.2 Tllustration of PSO
concept
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Algorithm 2 Particle Swarm Optimization Algorithm

1: initialize parameters, and particles
2: repeat

3: fori=1toxdo

4 compute x;’;, and x}

5 update velocity ¥

6: update position X
7

8

9:

compute fitness f(X)
end for
until termination condition

X=x+V, (2.12)
which is updated as follows
\A’:V—i—clrl(x;‘; —X) + cara (X} — x), (2.13)

where x;';, and x} denote the best previous positions of the particle, and of the swarm,
respectively. The weights cq, ¢ € [0, 1] are acceleration coefficients that determine
the bias of the particle towards its own, and the swarm history. The recommendation
given by Kennedy and Eberhart is to set both parameters to ¢y = ¢ = 0.5 [13]. The
random components 71, and r; are uniformly drawn from the interval [0, 1], and can

be used to control exploitation and exploration of the solution space.

2.7 Covariance Matrix Adaptation Evolution Strategies

In the following, we introduce an algorithm from the family of covariance matrix
adaptation evolution strategies (CMA-ES). The covariance matrix self-adaptation
evolution strategy (CMSA-ES) by Beyer and Sendhoff [20] is the historically latest
covariance matrix adaptation-based strategy, but is a variant that reflects well the main
idea of the family of CMA-ES. The basic idea is to align the coordinate system for
the mutation operator to the distribution of the selected solutions in each generation.
The aligned coordinate system guarantees that mutations in the following generation
are similar to the best of the previous generation. The CMSA-ES is a variant of the
famous CMA-ES by Hansen and Ostermeier [7] with an emphasis on self-adaptation.

The CMSA-ES is based on a self-adaptive step control of step sizes, similar to
the (u T A)-ES introduced in the previous section. After initialization, A candi-
date solutions xi, ..., Xx) are generated. With the help of the global self-adaptive,
N-dimensional step size 6 = ,l, Z’/‘: | 0j:\» Which is the arithmetic mean of the step

sizes from the p-best solutions of \ offspring solutions® of the previous generation,
each individual gets a log-normally mutated step size

3 The index j denotes the index of the j-th ranked individual of the X offspring individuals w.r.t.
an increasing sorting based on fitness f(x;).
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oj=6-e"NOD, (2.14)

The main idea of the approach is to align the coordinate system by changing the
coordinates x; with the help of the current mean X of the population and a covariance
matrix C based on the best solutions and the past optimization process. From C the
correlated random directions s; are generated by multiplication of the Cholesky
decomposition +/C with the standard normal vector A/ (0, I)

sj ~ VCN(,1). (2.15)
This random direction is scaled in length w.r.t. the self-adaptive step size o
zj = 0jS;. (2.16)
The resulting vector z; is added to the global parent X, i.e.
X; =X+1z;. (2.17)

Finally, fitness f; = f(x;) of solution X; is evaluated. When A offspring solu-
tions have been generated, the p-best solutions are selected and their components z;
and o; are recombined. Beyer and Sendhoff [20] apply global recombination, i.e.,
the arithmetic mean of each parameter is computed. The outer product ss’ of the
search directions is an estimation of the covariance matrix of the best mutations and
is computed for each of the p-best solutions and averaged afterwards

1 &
S= —Zsj:As’jT:A. (2.18)
e

Last, the covariance matrix C is updated based on the current covariance matrix and
the new estimation S. The covariance matrix update

C= (l—l)C~|—lS (2.19)

Te Tc

is a composition of the last covariance matrix C and the outer product of the search
direction of the p-best solutions balanced by learning parameter 7.. Adapted in such
a kind of way, sampling from a Gaussian distribution based on C increases the
likelihood of successful steps. Beyer and Sendhoff recommend to set

_ N(N+1)

o (2.20)

Te

for the learning parameter. All steps are repeated until a termination condition is
satisfied. The CMSA-ES combines the self-adaptive step size control with a simul-
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Algorithm 3 CMSA-ES

1: initialize solution X

2: repeat

3: fori=1to\do

4: oj~ & eNOD

50 s;~~/CN(, D)

6:  z;=0;s;

7: X; =X+1z;

8 fi=rx))

9: end for

10:  sort population w.r.t. fitness f;.)
AP |

11: Z—ﬁ27:] Zj.)
AN

12: o= m l;:lUj:A
. 1 T

13: §= ’;:1 SjASTy

14: x=%x+12

15: C=(1-1)cC+1s
16: until termination condition

taneous update of the covariance matrix. Algorithm3 shows the pseudocode of the
CMSA-ES. Initially, the covariance matrix C is chosen as the identity matrix C = L.
The learning parameter 7, defines the mutation strength of the step sizes o ;. For the
Sphere problem, the optimal learning parameter is 7, = 2;1\/ [3].

In the following, we present an experimental analysis of the CMSA-ES concen-
trating on typical test problems known in literature [22] (cf. Appendix A). We use the
following performance measure. The experimental results show the number of fit-
ness function evaluations until the optimum is reached with accuracy fsop, i.€., if the
difference between the best achieved fitness f (x") of the algorithm and fitness f (x*)
of the known optimum x* is smaller than fyp, i.e.,

Lf(X) = fFXH)] < ftop- (2.21)

This performance measure is focused on the convergence abilities of the approach.
The figures of Table2.1 show the best, median, worst, and mean (with standard
deviation) number of generations until the termination condition has been reached.
The termination condition is set to fsop = 10710,

The results confirm that the CMSA-ES is a strong method for derivative-free
multimodal optimization. It is able to find the optima of all test problems. In case of
the unimodal problems Sphere and Doublesum, no restarts have been necessary. The
performance comparison in the later chapters will allow a detailed interpretation.
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Table 2.1 Experimental analysis of CMSA-ES with restarts

Best Median Worst Mean Dev
N=10
Ssp 2,120 2,195 2,350 2,204.5 7.0el
JfDou 2,280 2,355 2,490 2,358.3 6.2el
SRos 7,060 10,550 18,080 11,292.0 4.1e3
fRas 36,360 90,540 203,120 103,456.0 5.7e4
SGri 2,150 4,375 13,090 5,579.7 4.1e3
Sxur 10,780 21,960 81,370 29,670.9 22.0e3
N =30
fsp 5,684 5,880 6,118 5,896.8 1.4e2
SDou 7,770 8,092 8,302 8,075.2 1.6e2
JfRos 45,976 51,681 109,984 58,595.6 1.9¢4
JRas 360,990 699,846 721,224 576,511.6 1.7e5
fGri 6,370 6,755 17,374 8,764 4.4e3
SKur 55,244 89,138 138,670 93,518.6 37.4e3

2.8 Conclusions

Evolution strategies, in particular the covariance matrix adaptation variants, belong to
the most successful evolutionary optimization algorithms for solving black box opti-
mization problems. If no derivatives are given and no assumptions about the fitness
function are available, the application of evolutionary algorithms is a recommendable
undertaking. Theoretical results and a huge variety of applications have proven their
success in the past. But the success of evolutionary search also depends on proper
parameter settings before and during the search. We will concentrate on the parame-
ter control problem in the next chapter. We have already introduced o-self-adaptation
as parameter control techniques for steps sizes in evolution strategies, which is based
on evolutionary search in the space of step sizes. This mechanism has significantly
contributed to the success of evolutionary optimization methods.
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