Chapter 2
Biodiesel and Fatty Esters

Abstract This chapter provides an overview of biodiesel (basically a mixture of
fatty esters) as renewable fuel, covering the market developments and trends,
chemical composition and characteristics, properties and performance, comple-
mentary use as diesel fuel, main synthesis routes (e.g. esterification or trans-
esterification), various catalysts used for manufacturing (e.g. homogeneous, solid
acids and solid base catalysts) and industrial production processes (e.g. batch,
continuous, supercritical, enzymatic, multi-step, reactive separations).

Fatty esters are key products of the chemical process industry, involved in various
specialty chemicals with applications in the food industry, cosmetics, pharma-
ceuticals, plasticizers, bio-detergents and biodiesel. However, the main interest has
shifted nowadays to the larger scale production of biodiesel—a mixture of fatty
acid alkyl esters—hence the current strong market drive for more innovative and
efficient processes (Kralova and Sjoblom 2010).

The increasing worldwide interest in biodiesel is illustrated by the tremendous
increase of the production, mostly in Western Europe, North America and Asia—
as shown in Fig. 2.1 (Blagoev et al. 2008; Kiss 2009). The market potential for
biodiesel is actually defined and limited by the market size of the petroleum diesel.
Remarkable, there is no major technical limitation on replacing fossil diesel with
biodiesel, although a limitation on the feedstock—and the required arable farm-
land—availability does exist in practice.

The biodiesel market share suffered some changes during the recent decade,
being now rather stabilized—as shown in Fig. 2.1 (bottom). An interesting
development over the past years is the shift in global biodiesel market share.
Europe had over 80 % capacity in 2000, but it is no longer the dominant player of
the biodiesel industry, its global share accounting presently about 40 % of global
capacity. Other key players emerged—such as Asia, North America, Central and
South America—and they have leveled out the global biodiesel market shares. For
a complete picture of the current status, Fig. 2.2 shows the biodiesel consumption
worldwide and in EU (Kiss 2009). The biodiesel consumption worldwide is
actually expected to grow at an average annual rate of over 5 % during 2011-2016
(Blagoev et al. 2008).
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Biodiesel is an alternative renewable and biodegradable fuel with properties
similar to petroleum diesel (Bowman et al. 2006; Balat et al. 2008; Knothe 2010).
Actually it has several advantages over petroleum diesel: it is safe, renewable,
non-toxic and biodegradable; it contains no sulfur and is a better lubricant. Despite
the chemical differences these two fuels have similar properties and performance
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Table 2.1 Properties of petroleum diesel versus biodiesel

Fuel property Diesel Biodiesel
Fuel standard ASTM D975 ASTM D6751
Fuel composition C,0-C,; HC? C;,-C», FAME?
Kinetic viscosity, mm?/s (at 40 °C) 1.34.1 1.9-6.0
Specific gravity, kg/l 0.85 0.88

Boiling point, °C 188-343 182-338
Flash point, °C 60-80 100-170
Cloud point, °C -15t0 5 -3to 12
Pour point, °C -35to -15 -15to 10
Cetane number (ignition quality) 40-55 48-65
Stoichiometric Air/Fuel Ratio (AFR) 15 13.8
Life-cycle energy balance (energy units produced 0.83/1 3.2/1

per unit energy consumed)

# HC hydrocarbons, FAME fatty acid methyl esters

parameters—as shown in Table 2.1 (Kiss et al. 2008). Along with its technical
advantages over petroleum diesel, biodiesel brings several additional benefits to
the society: rural revitalization, creation of new jobs, and less global warming.

An important characteristic of diesel fuels is the ability to auto-ignite, quanti-
fied by the cetane number (cetane index). Biodiesel not only has a higher cetane
number than petroleum diesel, but also a higher flash point meaning better and
safer performance. Blends of biodiesel and petroleum diesel are designated by a
‘B’ followed by the vol. % of biodiesel. BS and B20—the most common blends—
can be used in unmodified diesel engines. The presence of oxygen in biodiesel
(~10 %) improves combustion and reduces CO, soot and hydrocarbon emissions,
while slightly increasing the NOx emissions. Figure 2.3 shows the biodiesel versus
petroleum diesel emissions, as well as the amount of CO, per distance produced by
various fuels (Kiss et al. 2008). Remarkable, using B20 in trucks and buses would
completely eliminate the black smoke released during acceleration and thus
contribute to a cleaner air in urban areas.

2.1 Biodiesel Production Routes

Biodiesel is a mixture of fatty acid alkyl esters, produced mainly from green
sources such as vegetable oils, animal fat or even waste cooking-oils from the food
industry (Encinar et al. 2005; Kulkarni and Dalai 2006; Kulkarni et al. 2006;
Knothe 2010; Lam et al. 2010; Maddikeri et al. 2012;). Remarkable, waste
cooking-oils are much less expensive than virgin vegetable oil, and a total of over
25 million tons of waste cooking oil is generated annually, mainly in United
States, China, Europe, Malaysia, Japan, Canada (Maddikeri et al. 2012). More-
over, the controversial ‘food versus fuel’ competition (Knothe 2010) can be
completely avoided when the raw materials used are waste vegetable oils (wvo)
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with high free fatty acids (FFA) content, non-food crops such as Jatropha (Kumar
and Sharma 2005; de Oliveira et al. 2009; Kaul et al. 2010) and Mahua (Puhan
et al. 2005; Kapilan and Reddy 2008; Jena et al. 2010), or even castor oil (da Silva
et al. 2009; Canoira et al. 2010).

At present, employing waste and non-edible raw materials is mandatory to
comply with the ecological and ethical requirements for biofuels (Feofilova et al.
2010; Nigam and Singh 2011). However, waste raw materials can contain a
substantial amount of free fatty acids (Demirbas 2009; Maddikeri et al. 2012).
Accordingly, the development of very efficient processes (e.g. based on reactive
separation technologies) is required for the fatty esters manufacturing, in which the
use of a solid catalyst is especially wanted in order to suppress the costly chemical
processing steps and waste treatment (Sharma et al. 2011a, b).

As a non-petroleum-based diesel fuel, biodiesel consists of fatty acid methyl
esters (FAME), currently produced by the trans-esterification of tri-alkyl glyce-
rides (TAG) with methanol leading to glycerol by-product, or the esterification of
free fatty acids (FFA) with methanol leading to water by-product. The main
equilibrium reactions can be summarized as follows:

TAG + 3 MeOH <« 3 FAME + Glycerol (trans-esterification) (2.1)
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Fig. 2.4 Trans-esterification reaction of triglycerides with methanol

FFA + MeOH < FAME + H,0 (esterification) (2.2)

The esterification reaction is typically acid catalyzed and it is rather simple.
However, the trans-esterification reaction is actually more complex, proceeding
with the formation of di-glycerides and mono-glycerides as intermediates, as
illustrated in Fig. 2.4 (Abdullah et al. 2007). Glycerol is obtained as a by-product
of the trans-esterification, typically about 10 %wt of the total amount of FAME.
An excess of glycerol is therefore available on the market and it is urgent to find
new convenient uses for glycerol, thus reducing also the cost of biodiesel pro-
duction. Several options can be used to consume the large amount of glycerol
deriving from biodiesel (Santacesaria et al. 2012), such as the use of glycerol for
making commodities (e.g. glycerol hydrochlorination to chlorohydrins, or glycerol
dehydration to acrolein) and for producing oxygenated additives for fuels (e.g.
ethers, esters, acetals, and ketals).

In general, the trans-esterification is base catalyzed while the esterification is
catalyzed by acids—although alternative acid/base catalysts could be used but at
prohibitive reaction rates. The reaction time can be dramatically shortened by
increasing the liquid-liquid interfacial area by various process intensification
techniques (e.g. static mixers, micro-channels reactors, microwaves assisted
reactors, ultrasound assisted reactors, rotating/spinning tube reactors and centrif-
ugal contactors) or by integrating the reaction and separations steps to pull the
equilibrium to full conversions (e.g. catalytic reactive distillation). After the
FAME synthesis stage, there are several down-stream processing steps required for
catalysts neutralization and salt removal, alcohol recovery and recycle, as well as
glycerol and biodiesel purification (Hanna et al. 2005; Meher et al. 2006; Nara-
simharao et al. 2007; Santacesaria et al. 2012).

2.2 Catalysts for Fatty Esters Synthesis

The conventional biodiesel production is still dominated by the use of homoge-
neous alkaline catalysts (e.g. NaOH, KOH, K/NaOMe), leading to severe eco-
nomical and environmental penalties due to the problems associated with their use
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(Shahid and Jamal 2011; Atadashi et al. 2013). Development of heterogeneous
catalyst such as solid and enzymes catalysts could overcome most of the problems
associated with homogeneous catalysts. Presently, there is a tremendous interest in
using solid (heterogeneous) catalysts instead of the conventional homogeneous
ones for biodiesel production. A solid catalyst can be used in a (rotating) packed
bed continuous reactors having better performance as compared to CSTRs (Chen
et al. 2010). Moreover, the costly catalyst separation operations can be greatly
reduced. Solid catalysts are also essential to the development of reactive-separa-
tion units for biodiesel production. Lotero et al. (2005), Helwani et al. (2009), Lee
and Saka (2010), Singh and Sarma (2011), Sharma et al. (2011a, b), published
recently specialized reviews about using solid catalysts in the biodiesel synthesis,
while Refaat (2011) focused on using solid metal oxide catalysts such as: alkali
earth metal oxides, transition metal oxides, mixed metal oxides and supported
metal oxides. Clearly, these solid catalysts create new opportunities for the bio-
diesel production by reactive separation processes, such as catalytic reactive
distillation.

The trans-esterification of tri-alkyl glycerides could be carried on in the pres-
ence of aluminosilicates as showed by Mittelbach et al. (1995) who compared the
activity of layered aluminosilicates with sulfuric acid. However, the activity of the
solid catalysts was lower and dependent on the operating conditions. The
impregnation with sulfuric acid increased the performance of the catalysts, com-
plete tryglicerides conversion being achieved after 4 h, at 220 °C and 52 bar.
Nonetheless, leaching compromised the reusability of these catalysts. Kaita et al.
(2002) used aluminium phosphate with various ratios of metal to phosphoric acid.
The authors claim good activity and selectivity, while the catalyst appears to be
stable. However, high temperatures (200 °C) and a large excess of methanol were
still necessary.

The literature concerning the use of solid catalyst for esterification of fatty acids
is much more abundant. Ion exchange resins such as Amberlyst and Nafion were
proved to be effective (Chen et al. 1999; Heidekum et al. 1999), but swelling was
the main problem associated with use of organic resins because it controls the
accessibility of the acidic sites and therefore the reactivity. Moreover, most ion-
exchange resins are not thermally-stable at high temperatures (Steinigeweg and
Gmehling 2003; Kiss et al. 20064, b), providing only limited reaction rates. Zeolites
allow tailoring the catalytic properties by choosing the appropriate crystal structure,
pore size, Si/Al ratio and acidic strength (Kiss et al. 2006a, b). Nevertheless, the
mass transfer might impose limitations on the overall rate of the process. As a
consequence, only the large-pore zeolites proved to be successful (Corma et al.
1994). Heteropoly acids supported on silica molecular sieves such as MCM41, were
effective for gas-phase esterification (Verhoef et al. 1999; Mbaraka et al. 2003)
under mild operating conditions (110 °C) leading to 95 % alcohol conversion.
Recently, sulfated zirconia proved its activity for several acid-catalysed reactions
(Yadav and Nair 1999; Omota et al. 2003a, b; Kiss et al. 2006a, b, 2008).

Table 2.2 presents an overview of the available solid acid and base catalysts for
the fatty esters production by (trans-)esterification (Kiss 2010). These solid
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Fig. 2.5 Conversion profiles for the esterification of dodecanoic acid with 2-ethylhexanol, using
various acid catalysts (left), and catalyzed by SZ (right)

catalysts are described at large in several reviews and research papers (Kiss et al.
2006a, b; Narasimharao et al. 2007; Di Serio et al. 2008; Helwani et al. 2009;
Jothiramalingam and Wang 2009; Melero et al. 2009; Lee et al. 2009; Lee and
Saka 2010; Refaat 2011; Semwal et al. 2011; Sharma et al. 2011a, b; Endalew
et al. 2011; Singh and Sarma 2011; Santacesaria et al. 2012; Atadashi et al. 2013).

Figure 2.5 (left) provides the conversion profiles for several acid catalysts
tested for the fatty esters production by esterification, such as: tungstophosphoric
acid (H3PW,040) and its cesium salt (Cs2.5), Amberlyst-15, a styrene-based
sulfonic acid, Nafion-NR50, a copolymer of tetrafluoroethene and perfluoro-2-
(fluorosulfonylethoxy)-propyl vinyl ether, sulfated carbon-based catalysts (carbon
fiber, mesoporous carbon), sulfated zirconia and other metal oxides (Kiss et al.
20064, b, 2008). Sulfated zirconia (SZ) is well known for its industrial applications
in a variety of processes and it can be modified with sulfate ions to form a
superacidic catalyst, depending on the treatment conditions. By increasing the
amount of SZ catalyst used the reaction rate, hence conversion after a certain time,
can be further increased—as shown by Fig. 2.5, right (Kiss et al. 2006a, b)—
making this catalyst suitable for reactive separations applications where high
activity is required in a rather short time. Moreover, SZ is also very selective,
thermally stable, and the re-calcination of the used catalyst can restore its original
activity (Kiss et al. 2006a, b, 2008).

Although the reaction mechanism for the heterogeneous acid-catalysed esteri-
fication was shown to be in principle similar to the homogeneously catalysed one,
there is an important difference that concerns the relationship between the surface
hydrophobicity and the catalysts activity. This is especially true when both reac-
tants (fatty acid and alcohol) are very lipophilic compounds. Three cases are
possible, as illustrated in Fig. 2.6 (Kiss et al. 2006a, b). First, in case of one
isolated Brgnsted acid site surrounded by a hydrophobic environment, it is likely
that the hydrophobic tail of the fatty acid would be adsorbed parallel to the
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Fig. 2.6 Cartoon of the influence of the surface hydrophobicity on the catalytic activity

hydrophobic surface. Second, if there are a few acid sites in the vicinity, the fatty
acid molecules could adsorb perpendicular to the surface, with the tails forming a
local hydrophobic environment. Finally, in the case of a very acidic and/or
hydrophilic material (many adjacent acid sites and/or hydroxy groups), the by-
product water from the esterification would adsorb on the surface, and the catalyst
would lose its activity since the water layer would prevent the access of fatty acid
and alcohol to the catalyst (Kiss et al. 2006a, b).

Recently, Patel et al. (2013) reported the synthesis of sulfated zirconia and its
characterization by various physico-chemical techniques such as energy-dispersive
X-ray spectroscopy (EDS), thermal analysis using thermo-gravimetric analysis
(TGA) and derivative thermo-gravimetry (DTG), Fourier transform infrared
spectroscopy (FT-IR), X-ray diffraction analysis (XRD), Brunauer-Emmett-Teller
(BET) surface area measurement, scanning electron microscope (SEM) and n-
butyl amine acidity determination. The use of SZ catalyst was explored for the
biodiesel production by esterification of oleic acid with methanol. Moreover, the
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influence of various reaction parameters—such as catalyst concentration, acid/
alcohol molar ratio, catalyst amount, reaction temperature and reaction time—on
the catalytic performance was studied to optimize the conditions for maximum
yield of 90 % methyl oleate. Remarkable, it was also possible to regenerate and
reuse the catalyst.

Based on the brief literature review, it can be concluded that many solid acids
and solid base catalysts are available for the biodiesel production by esterification
and trans-esterification.

2.3 Industrial Biodiesel Processes

As vegetable oil is currently still too expensive, the current trend is to use less
expensive raw materials. However, the use of new feedstock containing large
amounts of fatty acids requires novel or improved processes for obtaining FAME
through esterification of FFA and trans-esterification of tri-glycerides. At present,
the most common biodiesel technologies employ homogeneous catalysts (Vicente
et al. 2004; Narasimharao et al. 2007), in either batch or continuous processes
where both the reaction and separation steps can create bottlenecks.

The literature overview reveals several key biodiesel processes, currently in use
either at pilot and/or industrial scale (Kiss 2010, 2011; Santacesaria et al. 2012).
For convenience, we provide here a brief summary of these processes, based on the
catalyst type (such as homogeneous, heterogeneous, dual function, enzymatic
catalysts, and catalyst-free) and the biodiesel production process type (e.g. batch,
continuous, integrated):

1. Batch processes are conventionally used for the trans-esterification of triglyc-
erides, using an acid or base catalyst. High quality virgin oil is required as raw
material (<1 % FFA), otherwise a pre-treatment step is compulsory to remove
the free fatty acids (Santacesaria et al. 2012). A key advantage of the batch
processes is the good flexibility with respect to composition of the feedstock,
but the equipment productivity is rather low and the operating costs are quite
high (Hanna et al. 2005; Lotero et al. 2005). While rather simple and useful,
requiring mild operating conditions (ambient pressure and temperatures lower
than 100 °C), these batch processes are practically not suitable for the large-
scale production of biodiesel.

2. Continuous processes combine both esterification and trans-esterification steps,
allowing higher productivity. Nonetheless, most of these processes are still
plagued by the drawbacks of using homogeneous catalysts although solid
catalysts emerged in the last decade (Dale 2003; Kiss et al. 2006a, b; Yan et al.
2010; Sharma et al. 2011a, b). Several reactive distillation processes were also
reported (He et al. 2005, 2006; Kiss et al. 2006a, b, 2008; Dimian et al. 2009)—
as clearly illustrated in Fig. 2.7 (www.yellowdiesel.com). A commercial
alternative is the ESTERFIP-H process developed by the French Institute of
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Fig. 2.7 Biodiesel production process combining esterification and trans-esterification

5.

Petroleum (Bournay et al. 2005). This is a gas-phase process that uses a solid
catalyst based on Zn and Al oxides, requiring temperatures of 210-250 °C and
high pressures of 30-50 bar. As major drawbacks, the ESTERFIP-H process
requires high quality refined oil and high reaction temperatures.

. Supercritical processes were developed to solve the problem of oil-alcohol

miscibility that hinders the kinetics of trans-esterification, as well as to take
advantage of not using a catalyst at all. The operating conditions are quite
severe (T > 240 °C, p > 80 bar) and therefore require special equipment (He
et al. 2007; Gomez-Castro et al. 2011). However, at high temperatures, the
esterification and trans-esterification reactions occur together without any
problems, and the reaction rate is not affected by the presence of water by-
product. The recent study of Lee and Saka (2010) emphasized the potential of
non-catalytic supercritical processes and review the current status and chal-
lenging issues. Future process developments could further reduce the reaction
time, by operating in the presence of a catalyst, at lower temperature and
pressure—in order to render this technology more economically attractive.

Enzymatic processes have low energy requirements, as the reaction is carried
out at mild conditions—ambient pressure and temperatures of 50-55 °C (Lai
et al. 2005; Su et al. 2007, 2009; Chen et al. 2008; Dussan et al. 2010).
However, due to the lower yields and long reaction times the enzymatic pro-
cesses can not compete yet with other industrial processes (van Gerpen 2005;
Demirbas 2008). In addition, research efforts are also carried out on using algae
or microbial mass as raw materials (Liu and Zao 2007; Francisco et al. 2010).
Multi-step processes are somewhat simpler, as the tri-glycerides are hydrolyzed
first to fatty acids that are subsequently esterified to their corresponding fatty
esters in a second step (Kusdiana and Saka 2004; Minami and Saka 2006):
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TAG + 3 H,O < 3 FAA + Glycerol (hydrolysis) (2.3)
FFA + MeOH < FAME + H,0 (esterification) (2.4)

These processes are now very attractive and gain market share due to obvious
advantages: high purity glycerol is obtained as by-product of the hydrolysis step,
and the esterification step can be performed in conventional reactors or using solid
acid catalysts in various integrated reactive-separation units (Kiss et al. 2008; Kiss
2009, 2011). Also, the use of solid catalysts avoids the neutralization and washing
steps, leading to an overall simpler and more efficient process. Note that in the case
when the raw materials consist mainly of FFA, only the esterification step is
actually required.

6. Reactive-separation processes are based on esterification or trans-esterification
reactions, carried out in the presence of liquid or solid catalysts, in integrated
units such as: reactive distillation, reactive absorption, reactive extraction,
membrane reactors or centrifugal contact separators (Kiss 2011, 2013a, b; Kiss
and Bildea 2012). These integrated processes offer high conversion and
selectivity, as well as increased energy efficiency. Reactive separations are the
main object of this work, and therefore described in details over the next
chapters.

7. Hydro-pyrolysis processes employ a fundamentally different chemical route as
compared to the previously described manufacturing methods. Tri-glycerides
are converted to fuel by hydrogenation followed by pyrolysis. The key differ-
ence is that the fuel product (second-generation biodiesel) is a mixture of long-
chain hydrocarbons instead of the conventional fatty esters (Snare et al. 2009).
Considering this difference of chemical composition, the correct name for this
fuel product should be green-diesel and not biodiesel. The process is known as
NExBTL (biomass to liquid) and it was invented by the Finnish company Neste
Oil (Maki-Arvela et al. 2008; Snare et al. 2009). While it has clear advantages,
this process requires more complex equipment and implies the availability of a
low-cost hydrogen source.
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