
Chapter 2
Constitutive Relations, Off Shell Duality
Rotations and the Hypergeometric Form
of Born-Infeld Theory

Paolo Aschieri, Sergio Ferrara and Stefan Theisen

We review equivalent formulations of nonlinear and higher derivatives theories of
electromagnetism exhibiting electric-magnetic duality rotations symmetry. We study
in particular on shell and off shell formulations of this symmetry, at the level of action
funcitonals as well as of equations of motion. We prove the conjecture that the action
functional leading to Born-Infeld nonlinear electromagnetism, that is duality rotation
invariant off shell and that is known to be a root of an algebraic equation of fourth
order, is a hypergeometric function.

2.1 Introduction

Electric-magnetic duality is a symmetry of Maxwell electromagnetism and also, as
remarked by Schrödinger [1], of the nonlinear theory of electromagnetism proposed
by Born and Infeld [2]. This symmetry does not leave the Lagrangians invariant, only
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the equations of motion, and therefore it is not immediately detectable. This sym-
metry was subsequently discovered to be present in extended supergravity theories
[3–6]. In [4] the first example of a noncompact duality rotation group was consid-
ered, it is due to scalar fields transforming nonlinearly under duality rotations. These
results triggered further investigations in the general structure of self-dual theories.
In particular the symplectic formalism for nonlinear electromagnetism coupled to
scalar and fermion fields was initiated in [7], there the duality groups were shown to
be subgroups of noncompact symplectic groups (compact groups being recovered in
the absence of scalar fields). Also nonlinear theories admit noncompact duality sym-
metry, a most studied example is Born-Infeld electrodynamics coupled to axion and
dilaton fields [8]. A relevant aspect of Born-Infeld theory [9] is that the spontaneous
breaking of N = 2 rigid supersymmetry to N = 1 can lead to a Goldstone vec-
tor multiplet whose action is the supersymmetric and self-dual Born-Infeld action
[10, 11]. Higher supersymmetric Born-Infeld type actions are also self-dual and
related to spontaneous supersymmetry breakings in field theory [12–15] and in string
theory [16, 17].

Another recent motivation for the renewed study of duality symmetry is due to
its relevance for investigating the structure of possible counterterms in extended
supergravity. After the explicit computations that showed the 3-loop UV finiteness
of N = 8 supergravity [18], an explanation based on E7(7) duality symmetry was
provided [19–22]. Furthermore duality symmetry arguments have also been used
to suggest all loop finiteness of N = 8 supergravity [23, 24]. Related to these
developments, in [25] a proposal on how to implement duality rotation invariant
counterterms in a corrected action S[F] leading to a self-dual theory was put for-
ward under the name of “deformed twisted self-duality conditions”. The proposal
(renamed “nonlinear twisted self-duality conditions”) was further elaborated in
[26] and [27]; see also [28], and [29–31], for the supersymmetric extensions and
examples. The proposal encompasses theories that depend nonlinearly on the field
strength F and also on the partial derivative terms ∂F, ∂∂F, ... . That is why we
speak of nonlinear and higher derivatives theories.

The proposal is equivalent to a formulation of self-dual theories using auxiliary
fields studied in [32] and [33] in case of nonlinear electromagnetism without higher
derivatives of the field strength. This coincidence has been brought to light in a recent
paper [34]. In [35] two of us presented a systematic and general study of the different
formulations of U (1) gauge theories and of self-dual ones. This lead to a closed form
expression of the duality invariant action functional describing Born-Infeld theory.

Before outlining the content of the present work let us recall the notion of constitu-
tive relations. A nonlinear and higher derivative electromagnetic theory is determined
by defining, eventually implicitly, the relation between the electric field strength
F (given by the electric field

−→
E and the magnetic induction

−→
B ) and the magnetic

field strength G (given by the magnetic field
−→
H and the electric displacement

−→
D ).

We call constitutive relations the relations defining G in terms of F or vice versa.
Different constitutive relations determine different U (1) gauge theories.
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In this paper we first review and clarify the relations between constitutive relations
and action functionals in nonlinear and higher derivative electromagnetism. Then we
provide a pedagogical analysis of the “deformed twisted self duality conditions” and
introduce the action functional I[T −, T −] obtained via a Legendre transformation
from the usual S[F] action functional in the field strength F . All theories defined
via an action functional S[F] and having duality symmetry have a formulation via
an action functional I[T −, T −] that is off shell invariant under duality rotations.

We then further study the different formulations of the constitutive relations of
nonlinear and higher derivatives electromagnetism and then of self-dual theories.
These different formulations are all equivalent on shell. Finally we prove the con-
jecture formulated in [35] concerning the hypergeometric function expression of
the functional I of Born-Infeld theory. The proof uses Cauchy residue theorem
in order to show that the hypergeometric function satisfies the algebraic quartic
equation characterizing the functional I.

2.2 U(1) Duality Rotations in Nonlinear and Higher
Derivatives Electromagnetism

2.2.1 Action Functionals from Equations of Motion

Nonlinear and higher derivatives electromagnetism is described by the equations of
motion

∂μ ˜Fμν = 0, (2.1)

∂μ˜Gμν = 0, (2.2)
˜Gμν = hμν[F,λ]. (2.3)

The first two simply state that the 2-forms F and G are closed, d F = dG = 0,
indeed ˜Fμν ≡ 1

2εμνρσ Fρσ , ˜Gμν ≡ 1
2εμνρσGρσ (with ε0123 = 1). The last set ˜Gμν =

hμν[F,λ], where λ is the dimensionful parameter typically present in a nonlinear
theory,1 are the constitutive relations. They specify the dynamics and determine the
magnetic field strength G as a functional in terms of the electric field strength F ,
and, vice versa, determine F in term of G, indeed F and G should be treated on
equal footing in (2.1)–(2.3). The square bracket notation hμν[F,λ] stems from the
possible dependence of hμν on derivatives of F .

Since in general we consider curved background metrics gμν , it is convenient
to introduce the ∗-Hodge operator; on an arbitrary antisymmetric tensor Fμν it is
defined by

F∗ μν = 1

2
√

g
gμαgνβ εαβρσ Fρσ = 1√

g
˜Fμν, (2.4)

1 Nonlinear and higher derivatives theories of electromagnetism admit one (or more) dimensionful
coupling constant(s) λ.
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where g = − det(gμν), and it squares to minus the identity. The constitutive relations
(2.3) implicitly include also a dependence on the background metric gμν and for
example in case of usual electromagnetism they read Gμν = F∗ μν = 1√

g
˜Fμν , while

for Born-Infeld theory,

SB I = 1

λ

∫

d4x
√

g
(

1 −
√

1 + 1

2
λF2 − 1

16
λ2(F F∗ )2

)

, (2.5)

where F2 = F F = Fμν Fμν and F F∗ = Fμν F∗ μν , they read

Gμν = F∗ μν + 1
4λ(F F∗ ) Fμν

√

1 + 1
2λF2 − 1

16λ2(F F∗ )2
. (2.6)

The constitutive relations (2.3) define a nonlinear and higher derivatives extension
of electromagnetism because we require that setting λ = 0 in (2.3) we recover usual
electromagnetism: Gμν = F∗ μν .

We now recall [35] that in the general nonlinear case (where the constitutive
relations do not involve derivatives of F) the equations of motion (2.1)–(2.3) can
always be obtained from a variational principle provided they satisfy the integrability
conditions

∂hμν

∂Fρσ
= ∂hρσ

∂Fμν
. (2.7)

These conditions are necessary in order to obtain (2.3) from an action S[F] =
∫

d4xL(F). Indeed if2 hμν = 2 ∂L
∂Fμν

then (2.7) trivially holds.
In order to show that (2.7) is also a sufficient condition we recall that the field

strength Fμν(x) locally is a map from spacetime to R
6 (with coordinates Fμν , μ < ν).

We assume hμν(F,λ) to be well defined functions on R
6 or more generally on an

open submanifold M ⊂ R
6 that includes the origin (Fμν = 0) and that is a star shaped

region w.r.t. the origin (e.g. a 6-dimensional ball or cube centered in the origin).
Then condition (2.7) states that the 1-form , is closed, and hence,

by Poincaré lemma, exact on M ; we write We have
for any curve γ(c) of coordinates γμν(c) such that γμν(0) = 0 and γμν(1) = Fμν .
In particular, choosing the straight line from the origin to the point with coordinates
Fμν , and setting S = ∫

d4x L(F), we immediately conclude:
Under the integrability conditions (2.7) locally the equations of motion of

nonlinear electromagnetism (2.1)–(2.3) can be obtained from the action

S = 1

2

∫

d4x
∫ 1

0
dc cF ˜Gc, (2.8)

2 The factor 2 is due to the convention ∂Fρσ

∂Fμν
= δ

μ
ρ δν

σ adopted in [7] and in the review [37]. It will
be used throughout the paper.
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where ˜Gc = 1
c h(cF,λ).

One can also consider the more general case of nonlinear and higher derivatives
electromagnetism. Here too if the theory is obtained from an action functional S[F]
then we have

S[F] = 1

2

∫

d4x
∫ 1

0
dc F h[cF,λ], (2.9)

that we simply rewrite S = 1
2

∫

d4x
∫ 1

0 dc cF ˜Gc.

Proof Consider the one parameter family of actions Sc[F] = 1
c2 S[cF]. Deriving

with respect to c we obtain

− c
∂Sc

∂c
= 2Sc −

∫

d4x F
δSc[F]

δF
, (2.10)

i.e. −c ∂Sc
∂c = 2Sc − 1

2

∫

d4x F ˜Gc. It is easy to see that Sc = 1
2c2

∫

d4x
∫ c

0 dc′ c′F ˜Gc′
is the primitive with the correct behaviour under rescaling of c and F . We conclude
that 1

c2 S[cF] = 1
2c2

∫

d4x
∫ c

0 dc′ c′F ˜Gc′ , and setting c = 1 we complete the proof.

An equivalent form of the expression S = 1
2

∫

d4x
∫ 1

0 dc cF ˜Gc has been consid-
ered, for self-dual theories, in [27] and called reconstruction identity. It has been used
to reconstruct the action S from equations of motion with duality rotation symmetry
in examples with higher derivatives of F .

2.2.2 Conditions for U(1) Duality Rotation Symmetry
of the Equations of Motion

Nonlinear and higher derivatives electromagnetism admits U (1) duality rotation
symmetry if given a field configuration F, G that satisfies (2.1)–(2.3) then the rotated
configuration

(

F ′
G ′

)

=
(

cos α − sin α
sin α cos α

)(

F
G

)

, (2.11)

that is trivially a solution of ∂μ ˜Fμν = 0 , ∂μ˜Gμν = 0 , satisfies also ˜G ′
μν = hμν

[F ′,λ], so that F ′, G ′ is again a solution of the equations of motion. If we consider
an infinitesimal duality rotation, F → F + ΔF , G → G + ΔG then condition
˜G ′

μν = hμν[F ′,λ] reads Δ˜Gμν = ∫

d4x
δhμν

δFρσ
ΔFρσ , i.e., ˜Fμν = − ∫

d4x
δhμν

δFρσ
Gρσ ,

that we simply rewrite

˜Fμν = −
∫

d4x
δ˜Gμν

δFρσ
Gρσ. (2.12)

It is straightforward to check that electromagnetism and Born-Infeld theory satisfy
(2.12).

If the theory is obtained from an action functional S[F] (in the field strength F
and its derivatives) then (2.3) is given by
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˜Gμν = 2
δS[F]
δFμν

. (2.13)

In particular it follows that

δ˜Gμν

δFρσ
= δ˜Gρσ

δFμν
, (2.14)

hence the duality symmetry condition (or self-duality condition) (2.12) equivalently

reads ˜Fμν = − ∫

d4x δ˜Gρσ

δFμν
Gρσ. Now writing ˜Fμν = δ

δFμν

1
2

∫

d4x Fρσ ˜Fρσ we equiv-
alently have

δ

δFμν

∫

d4x (F ˜F + G ˜G) = 0, (2.15)

where F ˜F = Fρσ ˜Fρσ and similarly for G ˜G. We require this condition to hold
for any field configuration F (i.e. off shell of (2.1), (2.2)) and hence we obtain the
Noether-Gaillard-Zumino (NGZ) self-duality condition3

∫

d4x (F ˜F + G ˜G) = 0. (2.16)

The vanishing of the integration constant is determined for example by the condition
G = F∗ for weak and slowly varying fields, i.e. by the condition that in this regime
the theory is approximated by usual electromagnetism.

We also observe that the NGZ self-duality condition (2.16) is equivalent to the
invariance of Sinv = S − 1

4

∫

d4x F ˜G, indeed under a rotation (2.11) with infinites-
imal parameter α we have Sinv[F ′] − Sinv[F] = −α

4

∫

d4x (F ˜F + G ˜G) = 0.
From this relation it follows that the action S[F] is not invariant under duality

rotations and that under a finite transformation (2.11) we have

S[F ′] = S[F] + 1

8

∫

d4x
(

sin(2α)(F ˜F − G ˜G) − 4 sin2(α)F ˜G
)

. (2.17)

Thus the action changes by the integral of the four-forms F ∧ F − G ∧ G and
F ∧ G, that, on the equations of motion d F = dG = 0 ((2.1) and (2.2)), are locally
total derivatives. This is a sufficient condition for the transformation (2.11) with
˜Gμν = 2 δS[F]

δFμν
to be a symmetry.

We summarize the results thus far obtained: The self-duality condition (2.16) is
off shell of (2.1) and (2.2) but on shell of (2.3). The action functional S[F] provides

3 Note that (2.16) (the integrated form of the more restrictive self-duality condition F ˜F + G ˜G)
also follows in a straightforward manner by repeating the passages in [7] but with G the functional
derivatives of the action rather than the partial derivatives of the lagrangian [13, 37]. This makes a
difference for nonlinear theories which also contain terms with derivatives of F .
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a variational principle for the equation (2.3) and under duality rotations changes by
a term that on shell of (2.1) and (2.2) is a total derivative.

2.2.3 Off Shell Formulation of Duality Symmetry

We here provide an off shell formulation of duality symmetry by considering a
Legendre transformation to new variables. The new action functional, off shell of the
equations of motion (2.1)–(2.3), is invariant under duality rotations. This formulation
allows for a classification of duality rotation symmetric theories (an ackward task
using the action functional S[F]).

An example of functional invariant under duality rotations is provided by the
Hamiltonian action functional. Indeed the Hamiltonian itself (and more generally the
energy-momentum tensor) of duality symmetric theories is invariant under duality
rotations [7].4 The problem with the Hamiltonian formulation is however the lack of
explicit Lorentz covariance.

These observations lead to consider a Legendre transformation of S[F] to an
action functional in new variables that transform linearly under duality rotations and
that are Lorentz tensors.

The action S[F] determines the submanifold of equations ˜G = 2 ∂S[F]
∂F in the plane

of coordinates F and G. Equivalently, defining the complex self-dual combinations

F− = 1

2
(F − i F∗ ), (2.18)

G− = 1

2
(G − i G∗ ), (2.19)

and their complex conjugates F− = F+ = 1
2 (F + i F∗ ), G− = G+ = 1

2 (G + i G∗ ),

the action S[F−, F−] = S[F] determines the submanifold of equations G− =
−2i ∂S

∂F− in the plane of coordinates F−, G−.
We want to retrieve this submanifold using the new variables

T − = F− − iG−, (2.20)

T + = F− + iG− = 2F− − T −, (2.21)

and their complex conjugates T − = F+ + iG+, T + = F+ − iG+ = 2F+ − T −.
These variables transform simply with a phase under duality rotations, T − ′ =

4 In a general nonlinear theory the Hamiltonian depends on the magnetic field
−→
B and on the

electric displacement
−→
D = δS[F]

δ
−→
E

, that rotate into each other under the duality (2.11),
( −→

B
′

−−→
D

′
)

=
(

cos α − sin α
sin α cos α

)

( −→
B−D

)

. Since the composite fields
−→
B

2 +−→
D

2
and (

−→
B ×−→

D )2 are duality invariant,

Hamiltonians that depend upon these combinations and their derivatives are trivially duality invariant
and lead to duality symmetric theories.
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eiαT −, T + ′ = e−iαT +; hence the formulation of a theory symmetric under du-
ality rotations should be facilitated in these variables. The change of variables
(F−, G−) → (T −, T +) is achieved by first changing from G− to T −, then
by a Legendre transformation so that T − become the independent variables and
F− the dependent ones, and finally changing further the dependent variables from
F− to T + = 2F− − iT −. Schematically we undergo the following chain of change
of variables

(F−, G−) −→ (F−, T −) −→ (T −, F−) −→ (T −, T +). (2.22)

More explicitly the equation in the (F−, G−)-plane

G− = −2i
∂S

∂F− (2.23)

is equivalent to the equation in the (F−, T −)-plane

T − = ∂U

∂F− (2.24)

where U [F−, F+] = −2S[F−, F+] + 1
2

∫

d4x
√

g
(

F−2 + F+2). Furthermore, via
Legendre transform, this last equation is equivalent to the equation in the (T −, F−)-
plane

F− = δV

δT − (2.25)

where V [T −, T −] = −U [F−, F+] + ∫

d4x
√

g (T −F− + T −F+). Finally we
rewite this equation in the (T −, T +)-plane as

T + = δI
δT − (2.26)

where

I[T −, T −] = 2V [T −, T −] − 1

2

∫

d4x
√

g
(

T −2 + T −2)
. (2.27)

In conclusion, as pioneered in [33] (in the case of no derivatives of F in the action),
we have that I[T −, T −] and S[F] are related by

1

4
I[T −,T −] = S[F] +

∫

d4x
√

g
(1

2
T −F− − 1

8
T −2

− 1

4
F−2 + 1

2
T −F+ − 1

8
T −2 − 1

4
F+2

)

. (2.28)
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The equations of motion (2.26) were studied in [25], where a nontrivial example of
a self-dual action with an infinite number of derivatives of the field strength F is
considered (see also the generalizations in the appendix of [35]).

Let’s now study duality rotations. We consider F to be the elementary fields and
let S[F] be the action functional of a self-dual theory. Under infinitesimal duality
rotations (2.11), F → F + ΔF = F − αG, G → G + ΔG = G + αF we have
(since T − = F− − 2√

g
δS

δF− ) that T − → T − + ΔT − = T − − iαT −. We calculate
the variation of (2.28) under duality rotations. After a little algebra we see that

ΔI = I[T − + ΔT −, T − + ΔT −] − I[T −, T −]
= S[F + ΔF] − S[F] + α

4

∫

d4x
√

g
(

G ˜G − F ˜F
)

= −α

4

∫

d4x
√

g
(

G ˜G + F ˜F
) = 0 (2.29)

where we used that S[F + ΔF] − S[F] = ∫

d4x δS
δF ΔF = −α

2

∫

d4x ˜GG, and the
self-duality conditions (2.16). Hence I is invariant under duality rotations.

Vice versa, we can consider T −, T − to be the elementary fields and assume

I[T −, T −] to be duality invariant. Then from 2F− − T − = 1√
g

δI[T −,T −]
δT −

μν
, and

F−−iG− = T −, it follows that under the infinitesimal rotation T − → T −+ΔT − =
T − − iαT − we have F → F + ΔF = F − αG, G → G + ΔG = G + αF , and
from (2.29) we recover the self-duality conditions (2.16) for the action S[F].

This shows the equivalence betweeen the S[F] and the I[T −, T −] formulations
of self-dual constitutive relations. Hence the deformed twisted self-duality condition
proposal originated in the context of supergravity counterterms is actually the general
framework needed to discuss self-dual theories starting from a variational principle.

We stress that while we needed to use the equations of motion in order to verify
that the action S[F] leads to a duality rotation symmetric theory, we do not need to
use the equations of motion in order to verify that the action I[T −, T −] is duality
invariant. In the formulation with the I[T −, T −] action functional duality rotations
are an off shell symmetry provided that I[T −, T −] is invariant under T − → eiαT −
and T − → e−iαT −.

2.3 Constitutive Relations without Self-Duality

2.3.1 The N and M Matrices

More insights in the constitutive relations (2.3) can be obtained if we restrict our
study to the wide subclass that can be written as

G∗ μν = N2 Fμν + N1 F∗ μν, (2.30)
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where N2 is a real scalar field, while N1 is a real pseudo-scalar field (i.e., it is not
invariant under parity, or, if we are in curved spacetime, it is not invariant under an
orientation reversing coordinate transformation). As usual in the literature we set

N = N1 + iN2. (2.31)

In nonlinear theories N depends on the field strength F , and in higher derivatives
theories also on derivatives of F , we have therefore in general a functional depen-
dence N = N [F,λ]. Furthermore N is required to satisfy N → −i in the limit
λ → 0 so that we recover classical electromagnetism when the coupling constant(s)
λ → 0, or otherwise stated, in the weak and slowly varying field limit, i.e., when we
discard higher powers of F and derivatives of F . Since N2 → −1 for λ → 0, N2,
at least for sufficiently weak and slowly varying fields, is invertible. It follows that
the constitutive relation (2.30) is equivalent to the more duality symmetric one

(

F∗
G∗

)

=
(

0 −1
1 0

)

M
(

F
G

)

(2.32)

where the matrix M is given by

M(N ) =
(

1 −N1
0 1

)(N2 0
0 N−1

2

)(

1 0
−N1 1

)

=
(

N2 + N1 N−1
2 N1 − N1 N−1

2
−N−1

2 N1 N−1
2

)

. (2.33)

The matrix M is symmetric and sympletic and M → −1 for λ → 0. Actually any
such matrix is of the kind (2.33) with N1 real and N2 real and negative.

Finally, in order to really treat on equal footing the electric and magnetic field
strengths F and G, we should consider functionals N1[F, G,λ] and N2[F, G,λ] such
that the constitutive relations G∗ = N2[F, G,λ] F + N1[F, G,λ] F∗ are equivalent
to (2.30), i.e., such that on shell of these relations, N1[F, G,λ] = N1[F,λ] and
N2[F, G,λ] = N2[F,λ]. Henceforth, with slight abuse of notation, from now on
the N , N1, N2 fields in (2.30)–(2.33) will in general be functionals of both F and G.

We now reverse the argument that led from (2.30) to (2.32). We consider consti-
tutive relations of the form

(

F∗
G∗

)

=
(

0 −1
1 0

)

M[F, G,λ]
(

F
G

)

(2.34)

that treat on equal footing F and G, and whereM = M[F, G,λ] is now an arbitrary
real 2×2 matrix (with scalar entries Mi j ). We require M → −1 for λ → 0, so that
we recover classical electromagnetism when the coupling constant λ → 0. A priory
(2.34) is a set of 12 real equations, twice as much as those present in the constitutive
relations (2.30). We want only 6 of these 12 relations to be independent in order to
be able to determine G in terms of independent fields F (or equivalently F in terms
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of independent fields G). Only in this case the constitutive relations are well given.
In [35] we show,

Proposition 1 The constitutive relations (2.34) with M[F, G,λ]|λ=0 = −1 are
well given if and only if on shell of (2.34) the matrix M[F, G,λ] is symmetric and
symplectic. They are equivalent to the constitutive relations (2.30) provided that on
shell the relation between the M and N matrices is as in (2.33).

Notice that off shell of (2.34) the matrix M does not need to be symmetric and
symplectic. This is what happens with Schrödinger’s formulation of Born-Infeld
theory (see (2.50) and comments thereafter).

2.3.2 Schrödinger’s Variables

Following Schrödinger [1, 36] it is fruitful to consider the complex variables

T = F − iG, T = F + iG. (2.35)

The transition from the real to the complex variables is given by the symplectic and
unitary matrix At where

A = 1√
2

(

1 1
−i i

)

, A−1 = A†. (2.36)

The equation of motions in these variables read dT = 0, with constitutive relations
obtained applying the matrix At to (2.34):

(

T∗
T

∗
)

= −i

(

1 0
0 −1

)

AtMA
(

T
T

)

, (2.37)

where AtMA, on shell of (2.37), is complex symplectic and pseudounitary w.r.t the
metric

(

1
0

0−1

)

, i.e. it belongs to Sp(2,C) ∩ U (1, 1) = SU (1, 1). It is also Hermitian

and negative definite. These properties uniquely characterize the matrices AtMA
as the matrices

(−√
1 + ττ −iτ
iτ −√

1 + ττ

)

(2.38)

where τ = τ [T, T ] is a complex field that depends on T , T and possibly also their
derivatives. We then see that the constitutive relations (2.37) are equivalent to the
equations

T∗
μν = i

√
1 + ττ Tμν − τ Tμν . (2.39)
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In conclusion the most general set of equations in the T variables that is well defined
in the sense that it allows to express G = i

2 (T + T ) in terms of F = 1
2 (T + T ) as in

(2.30) (equivalently F in terms of G) is equivalent, on shell, to the equations (2.39)
for a given τ = τ [T, T ]. In this sense equations (2.39) are the most general way of
defining constitutive relations of electromagnetism. The constitutive relations (2.30)
are determined by the complex function N (depending on F, G and their derivatives
N = N [F, G]) the equivalent constitutive relations (2.39) are determined by the
complex function τ (depending on T, T and their derivatives τ = τ [T, T ]).

2.4 Schrödinger’s Approach to Self-Duality Conditions

In the previous section we have clarified the structure of the constitutive relations
for an arbitrary nonlinear theory of electromagnetism. The theory can also be with
higher derivatives of the field strength because the complex field N , or equivalently
the matrix M in (2.34) of (pseudo)scalar entries, can depend also on derivatives of
the electric and magnetic field strengths F and G.

We now further examine the constitutive relations for theories that satisfy the
NGZ self-duality condition

F ˜F + G ˜G = 0, (2.40)

i.e., T ˜T = 0, or equivalently,

T T∗ = 0. (2.41)

We multiply (2.39) by T∗ and obtain

− T 2 = i
√

1 + ττ T T∗ (2.42)

It is convenient to consider modulus and argument of these complex scalar
expressions. Setting

T 2 = |T 2|eiα (2.43)

from (2.42) we have

T T∗ = |T T∗ |ieiϕ (2.44)

We also contract (2.39) with ∗T μν and obtain −T T = −τT T∗ that implies

|τ | = T T

|T T∗ | . (2.45)
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Use of (2.42) then gives the moduli relations

|T 2|2 = |T T∗ |2 + (T T )2. (2.46)

The constitutive relations (2.39) can also be rewritten using the chiral variables
T ± = T ± i T∗ , they read

T +
μν = teiϕT −

μν (2.47)

where t = T T
|T 2|+|T T∗ | . In order to obtain the explicit relation between the ratio

|τ | = T T /|T T∗ | and t we calculate

|T −2|(1 − t2) = 1

2
(|T 2| + |T T∗ |)(1 − t2) = |T T∗ |, (2.48)

multiply this last equality by |τ | and obtain

(1 − t2)|τ | = 2t. (2.49)

Example 1 Linear electromagnetism (G = F∗ ) corresponds to |τ | = 0. Born-Infeld
nonlinear theory satisfies the relations

T∗
μν = − T 2

T T∗ Tμν − λ

8
(T T∗ ) T μν (2.50)

as remarked by Schrödinger [1], see [36] for a clear account in nowadays notations.
Comparison with (2.39) shows that, on shell of (2.50) and (2.41), i.e. using (2.42) and
(2.45), T 2

T T∗ = i
√

1 + ττ and τ = λ
8 T T∗ . Hence Born-Infeld theory is determined

by

|τ | = λ

8
|T T∗ |. (2.51)

Schrödinger’s formulation of Born-Infeld theory uses the freedom, dicussed in
Proposition 1, of considering a matrix M that off shell of (2.34) is not symmetric
and symplectic. Indeed the term T 2

T T∗ is not pure imaginary off shell. Schrödinger’s
elegant variational principle formulation of Born-Infeld constitutive relations is also
due to this freedom. Defining the “Lagrangian” ϒ(T ) = 4 T 2

T T∗ we have that (2.50) is

equivalent to

λ T
∗ μν = ∂

∂Tμν
ϒ(T ). (2.52)
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2.5 Nonlinear Theories without Higher Derivatives

We now consider theories (possibly in curved spacetime) that depend only on

the (pseudo) scalars F2 and F F∗ , or T −2 and T − 2
. Since the action functional

I[T −, T −] studied in Sect. 2.2.3 and the scalar field t defined in (2.47) are
duality invariant, and under a duality of angle α we have the phase rotation
T −2 → e2iαT −2, we conclude that I and t depend only on the modulus of T −2,
hence I = I[T −, T −] and t = t[T −, T −] simplify to

I = 1

λ

∫

d4x
√

g I (u), t = t (u), (2.53)

where I (u) is an adimensional scalar function, and the variable u is defined by

u ≡ 2λ|T −2| = λ(|T 2| + |T T∗ |). (2.54)

Similarly, the constitutive relations (2.26) simplify to

T +μν = 1

λ

∂ I

∂T −
μν

= 1

λ

d I

du

∂u

∂T −
μν

, (2.55)

and comparison with (2.47) leads to

t = 2
d I

du
. (2.56)

(Hint: calculate ∂u2

∂T −
μν

and use T −2 = |T −2|eiϕ ).

2.5.1 Born-Infeld Nonlinear Theory

We determine the scalar field t = t (u) = 2 d I
du in case of Born-Infeld theory. This

is doable thanks to Schrödinger’s formulation (2.50) of Born-Infeld theory, that
explicitly gives |τ | = λ

8 |T T∗ |, see (2.51). Then from (2.48) we have

|τ | = 1

16
u(1 − t2), (2.57)

and recalling (2.49) we obtain [34, 35]

(1 − t2)2u = 32t. (2.58)
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Now in the limit u → 0, i.e., λ → 0, we see from the definition of t that t → 0. The
function t = t (u) defining Born-Infeld theory is then given by the unique positive
root of the fourth order polynomial equation (2.58) that has the limit t → 0 for
λ → 0. Explicitly,

t = 1√
3

(
√

1 + s + s−1 −
√

2 − s − s−1 + 24
√

3

u
√

1 + s + s−1

)

, (2.59)

where

s = 1

u

(

216 u + 12
√

3
√

108 + u2 u + u3
)

1
3
. (2.60)

2.5.2 The Hypergeometric Function and its Hidden Identity

In [26] the action functional I and the function t (u) corresponding to the Born-Infeld
action were found via an iterative procedure order by order in λ (or equivalently
in u). The first coefficients of the power series expansion of t (u) were recognized
to be those of a generalized hypergeometric function, leading to the conclusion

t (u) = u

32
3 F2

(1

2
,

3

4
,

5

4
; 4

3
,

5

3
; − u2

33 · 22

)

,

= 2u

32

∞
∑

k=0

(4k + 1)!
(3k + 2)!k!

(

− u2

45

)k
(2.61)

and, integrating (2.56),

I (u) = 6

(

1 − 3 F2

(

− 1

2
,−1

4
,

1

4
,

1

3
,

2

3
; − u2

33 · 22

)

)

. (2.62)

In [35] we conjectured, and checked up to order O(u1000), that the expansion in
power series of u of the closed form expression of t (u) derived in (2.59), (2.60)
coincides with the power series expansion in (2.61).

We here present a proof by showing that the power series in (2.61) satisfies the
quartic equation (2.58). We consider the generic power series

t =
∞
∑

m=1

amum (2.63)
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with the initial condition t = O(u) for u → 0, and determine the coefficients am so
as to satisfy the quartic equation (2.58). The initial condition t = O(u) for u → 0 is
compatible with (2.58), indeed from (2.58) we see that for u → 0 we have t = u

32 .
We extend the variables t and u to the complex plane so that use of Cauchy’s

residue theorem gives

am = 1

2πi

∮

C0

tu−m−1du (2.64)

We next calculate from (2.58) the differential

du = 32d
t

(1 − t2)2 = 32
1 + 3t2

(1 − t2)3 dt, (2.65)

and observe that, since for u → 0, t = O(u), infinitesimal closed paths surrounding
the origin of the complex u-plane are mapped to infinitesimal ones surrounding the
origin of the complex t-plane (that we still denote C0). We hence obtain

am = 32

2πi

∮

C0

t + 3t3

(1 − t2)3

(1 − t2)2m+2

(32t)m+1 dt

= 1

32m 2πi

∮

C0

(t−m + 3t2−m)(1 − t2)2m−1dt

= 1

32m 2πi

∮

C0

(t−m + 3t2−m)

2m−1
∑

n=0

(−1)nt2n
( 2m − 1

n

)

dt

= 1

32m

2m−1
∑

n=0

(−1)n
( 2m − 1

n

)

(δ2n−m+1,0 + 3δ2n−m+3,0). (2.66)

We see that only the coefficients am with m odd are nonvanishing, setting m = 2k +1
we have

a2k+1 = (−1)k

322k+1

[( 4k + 1
k

)

− 3
( 4k + 1

k − 1

)]

= (−1)k 2

322k+1

(4k + 1)!
(3k + 2)!k! (2.67)

that proves the conjecture.
As a corollary we have that the hypergeometric function in (2.61)

F(u2) ≡ 3 F2

(1

2
,

3

4
,

5

4
; 4

3
,

5

3
; − u2

33 · 22

)

= 2
∞
∑

k=0

(4k + 1)!
(3k + 2)!k!

(

− u2

45

)k
(2.68)
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has the closed form expression F(u2) = 32
u t (u) where t (u) is given in (2.59), (2.60),

and, because of (2.58), that it satisfies the “hidden” identity

F(u2) =
(

1 − u2

45
F(u2)

2
)2

. (2.69)

2.5.3 General Nonlinear Theory

Since Born-Infeld theory is singled out by setting |τ | = λ
8 |T T∗ |, and Maxwell theory

by setting |τ | = 0 (Example 1), it is convenient to describe a general nonlinear theory
without higher derivatives by setting

|τ | = λ

8
|T T∗ | f (u)/u (2.70)

where f (u) is a positive function of u. We require the theory to reduce to electro-
magnetism in the weak field limit, i.e., G∗ μν = −F +o(F) for F → 0. Then we have

T − = O(F), T + = o(F), u = O(F2). Hence from (2.47) we obtain limu→0 t = 0.
Moreover from (2.49), r = O(t) and from r = 1

16 f (u)(1 − t2) (that follows from
(2.70) and (2.48)) f = O(t). Hence the theory reduces to electromagnetism in the
weak field limit if and only if limu→0 f (u) = 0.

From r = 1
16 f (u)(1 − t2) (that follows from (2.70) and (2.48)) and (2.49) we

obtain that the composite function t ( f (u)) satisfies the fourth order polynomial
equation

(1 − t2)2 f (u) = 32t, (2.71)

so that t ( f (u)) is obtained with the substitution u → f (u) in (2.59) and (2.60), or
in (2.61).

More explicitly, generalizing the results of Example 1, we conclude, as in [35],
that the constitutive relations à la Schrödinger

T∗
μν = − T 2

T T∗ Tμν − λ

8

f (u)

u
(T T∗ ) T μν, (2.72)

are (on shell) equivalent to the constitutive relations (deformed twisted self-duality
conditions)

T +μν = 1

2λ
t ( f (u))

∂u

∂T −
μν

, (2.73)

where t ( f (u)) satisfies the quartic equation (2.71), and we recall that u = 2λ|T −2| =
λ(|T 2| + |T T∗ |).



40 P. Aschieri et al.

In other words the appearence of the quartic equation (2.71) is a general feature
of the relation between the constitutive relations (2.72) and (2.73), it appears for any
self-dual theory and it is not only a feature of the Born-Infeld theory.
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