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Abstract  Traditional Chinese Medicine (TCM) is a holistic approach to medicine 
which has been in use in China for thousands of years. The main treatment, Chinese 
Medicine Formulae is prescribed by combining sets of herbs to address the patient’s 
syndromes and symptoms based on clinical diagnosis. Although herbs are often 
combined based on various classical formulas, TCM practitioners personalize pre-
scriptions by making adjustments to the formula. However, the underlying princi-
ples for the choice of herbs are not well understood. In this chapter, we introduce a 
framework to explore the complex relationships amongst herbs in TCM clinical 
prescriptions using Boolean logic. By logically analyzing variations of a large num-
ber of TCM herbal prescriptions, we have found that our framework was able to 
show some herbs may have different pathways to affect effectiveness and such 
herbs have often been overlooked but can play a weak yet non-trivial role in enhanc-
ing the overall effectiveness of the TCM treatment. To achieve this goal, two com-
putational solutions are proposed. An efficient set-theoretic approach is first 
proposed to study the effectiveness of herbal formulations, and followed by com-
plex network analysis to study the role each herb plays in affecting the outcome.

1  �Introduction

TCM prescriptions depend on not just the herbs that make up a prescription, but the 
inter-relatedness between herbs. The interactions may strengthen the positive effects 
of a herb, reduce harmful effects, or produce a new effect not seen with only one of 
the components. Each prescription may contain as many as 20 components selected 
from a wide range of potential herbs. Quantitative assessment of the effect of 
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prescriptions depends on models that are capable of measuring the complex 
interactions that are part of the final treatment outcome (Poon et al. 2011a).

Traditionally, analysis of causality has relied on a correlational approach such as 
multivariate regression, however, it has been demonstrated by several researchers 
that such an approach cannot account for the phenomena of conjunctural causation, 
equifinality and causal asymmetry (Ragin 2000; Fiss 2007) which are critically rel-
evant to study causal complexities of TCM.

Conjunctural causation is derived by the fact that an outcome can be achieved 
from the interaction between multiple causal variables whereas interactions of more 
than two variables are difficult to interpret using correlational methods such as 
regression (Fiss 2007). The phenomenon of equifinality suggests that outcomes can 
be achieved by utilizing different combinations of variables (Katz and Kahn 1978), 
however, correlational methods such as multivariate regression analysis is unable to 
account for equifinality as the model produces only a single solution (Fiss 2007). 
Finally, causal asymmetry addresses the fact that causal relations are asymmetrical 
in nature (Ehring 1982) which cannot be addressed through correlational analysis as 
the correlational connections established are symmetrical in nature (Ragin 2008).

Motivated by the inefficiencies with the correlational approach, a new methodol-
ogy called Qualitative Comparative Analysis (QCA) was outlined in (Ragin 1987). 
QCA is described by Ragin as “an analytic technique designed specifically for the 
study of cases as configurations of aspects, conceived as combinations of set mem-
berships”. Unlike in correlational methods whereby variables are considered “ana-
lytically separable”, the set-theoretic approach combines variables into sets thus 
enabling its asymmetric nature (Ragin 2008). This is to address the fact that some 
factors may have asymmetrical effects on outcome. The set of factors that affect 
positively to effectiveness can be different from the set of factors hindering the 
effect, i.e. factors that positively affect project success do not necessarily have a 
reverse effect when they are reduced or removed. In view of the above, we apply an 
efficient method to analyze data such as prescription records for effective configura-
tions of herbs. The output of our framework is both a measure of the effectiveness 
of herbal configurations and the consistencies of the analysis.

2  �Background of QCA

The implementation of the original QCA that we will discuss here is called Crisp-
Set QCA, (or cs/QCA), which deals with cases that have membership scores that are 
binary in nature (Ragin 1987). For example, in our application to TCM prescrip-
tions, the membership score for a herb is either zero (0) if it is not used in the pre-
scription, or one (1) if there is a presence of the herb in that particular prescription. 
Note that the dosage information of herbs is ignored in this study to keep our focus 
on the logical selection of suitable herbs based on inclusion (or exclusion) of a herb 
in the TCM prescription. The underpinning procedure in cs/QCA is a process of 
logically eliminating the herbs in the prescription dataset until only the most 
important herbs remain – this process is termed Boolean minimization.
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In cs/QCA, the algorithm used to implement Boolean minimization is called the 
Quine-McCluskey algorithm first introduced in (Quine 1952, 1955) and later 
extended in (McCluskey 1956). The algorithm uses a two-level approach similar to 
solving a Karnaugh map.

The first stage of the Quine-McCluskey algorithm generates a set of prime impli-
cants from a given truth table. An implicant is defined as a covering of one or more 
minterms1 of a Boolean function, and a prime implicant is an implicant that cannot 
be covered by a more general implicant. The process of generating prime implicants 
is as follows:

	1.	 Rows in the dataset truth table are grouped based on the number columns with a 
1-membership score.

	2.	 Rows in the truth table are combined if they differ by a single variable and this 
produces an implicant. (e.g. 1,0,1,1,0,1 and 1,1,1,1,0,1 is combined to form the 
implicant 1,–,1,1,0,1).

	3.	 Repeat step 2 until no more merges are possible in the truth table.
	4.	 Terms which cannot be combined are termed the prime implicants.

Once the prime implicants are determined, a prime implicant chart is generated 
from the output of the first step of the algorithm and the final solution is generated 
by the second stage of the algorithm. The solution is achieved by removing essential 
prime implicants, and implicants with row and column dominance and repeating the 
process until no further reduction can be achieved (Jain et al. 2008).

While the Quine-McCluskey algorithm produces the exact minimal solution for 
the problem, there is a tradeoff for runtime. It is the problem that is NP-Complete 
with exponential runtime complexity proportional to the number of causal condi-
tions (Hong et al. 1974; Jain et al. 2008), which presents a major overhead for large-
scale analysis. Since the QCA framework was first applied to social and political 
sciences research, the number of causal conditions that QCA has been used to ana-
lyze have been relatively small in quantity and this limitation has gone largely 
unnoticed. However, in our research, the scale of data analysis that is required is 
immense as the dataset contains hundreds or even of remedies – for datasets of this 
magnitude, the Quine-McCluskey algorithm is unable to perform analysis within an 
adequate timeframe due to the vast number of logical comparisons that will have to 
be performed.

In order to overcome this issue, we use an alternative algorithm as substitute for 
the Quine-McCluskey algorithm called BOOM developed by (Fiser and Hlavicka 
2003). This algorithm originated from a field of research known as computer aided 
design and was motivated by the same inefficiencies discussed previously in exist-
ing Boolean minimization algorithms. The intended application for the BOOM 
algorithm was for programmable logic arrays (PLAs), which, similar to our applica-
tion in TCM prescription data, have vast numbers of variables. Unlike the Quine-
McCluskey algorithm which produces an exact solution using a two-level logic 

1 A minterm is a product term of n-variables whereby each variable appears only once. For example, 
given an input function with variables a, b and c, there are 23 = 8 minterms, abc, abc’, ab’c, ab’c’, 
a’bc, a’bc’, a’b’c, and a’b’c’ respectively.
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minimization process, the BOOM algorithm produces a near minimal solution using 
a three-level heuristic approach, which we found to be much more efficient in our 
testing than previous methodologies.

3  �Methodological Implementations

In this work we apply a two-step framework to analyze causal complexities from 
TCM patient data record for insomnia treatment. This approach integrates two tech-
niques to provide a holistic analysis of the complex structures of resource interde-
pendencies. It also helps to abstract complexities through the notions of synergistic 
bundle. The first step of this framework is to identify core herbal components from 
data using Network Analysis (NA). The second step is to analyze herbal prescrip-
tions using a more efficient QCA algorithm. The aim is to identify herbal combina-
tions that are likely to appear on configuration leading to effective herbal treatment, 
as hidden relationships amongst herbs in prescriptions.

3.1  �Network Analysis

A descriptive summary of a binary herb usage data can be visualised with a 
frequency network. A frequency network can be constructed by drawing an undi-
rected edge for every pair of herbs that is used in one prescription record. The 
thickness of the edge connecting two herbs increases proportionally to the fraction 
of the prescription records that contain the herbs together. Where an undirected 
edge appears in the next set of a prescription record, the edge will increase in 
weight and thickness. When all edges and weights have been established, the num-
ber of edges for each node is computed as a means to adjust the node size. This 
measure is known as degree centrality in Network Analysis. In a core herb network, 
a high degree centrality indicates the importance of a herb to working effectively 
with many other herbs in achieving a treatment. The calculation of the degree cen-
trality is essential in the purpose of breaking ties in next stage of the methodology, 
the BOOM algorithm.

Strong usage and correlated herbs can be summarised and visualised in a core 
herb framework. Introduced in the computation of centrality values, a core-herb 
network based on the frequency of herbs summarises the common herbal combina-
tion usage by TCM practitioners. This network is constructed by computing from 
the raw data, the number of records where Herb A and Herb B are used together. 
This is the support of the association rule, indicating the proportion of transactions 
which contain an edge itemset. An undirected edge is therefore constructed between 
Herb A and Herb B with edge weights determined by the support. For each edge, 
confidence calculations are also useful in order to determine if the edge itemset has 
a large percentage of transactions leading to a positive outcome. Confidence in 
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association rule determines the strength and reliability of the edge itemset. Herb A 
and Herb B are represented by nodes and the existence of non-zero support and 
confidence calculations between the two nodes is indicated by an undirected edge. 
A correlation-based network can similarly be constructed with strength and reli-
ability estimators of herbal combinations.

A core-herb network based on pairwise correlation summarises the association 
between two herbs as an effective pair. As the raw data is binary, the correlation 
between herbs is computed using the phi correlation coefficient defined in Eq. 1. 
The phi coefficient has a maximum value determined by the distribution of the two 
herb variables A and B. Assuming the data has an equal distribution of positive and 
negative combinations, the ϕ coefficient will range from −1 to +1. ϕ closer to ±1 
indicates strong association while a phi closer to zero indicates weak association.

	

f =
-
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(1)

where

n11, n00, n10, n01 are record counts of two herb usage; 1 indicates the presence of the 
herb and 0 indicates the absence of the herb

n is the total number of observations

Similar to the frequency-based core herb network, Herb A and Herb B is repre-
sented by nodes and the correlation between the two nodes is represented by an 
undirected edge. To estimate the reliability of each correlation coefficient, confi-
dence values are also calculated for each edge. Foundational frequency and correla-
tion networks can therefore be constructed with strength and reliability estimators 
on each herbal combination edge.

3.2  �BOOM Algorithm

The three stages of the BOOM algorithm are Coverage-Directed Search, Implicant 
Expansion and Covering Problem Solution, respectively. These will now be dis-
cussed in detail.

3.2.1  �Coverage-Directed Search

The coverage directed search (CD-Search), is named by (Fiser and Hlavicka 2003) 
as the most innovative part of the algorithm. The algorithm searches for suitable 
literals (or variables), which are added iteratively to construct an implicant. The 
strategy for the selection of the initial literal is to use the most frequent literal as it 
covers the (n − 1)-dimensional hypercube. If the (n − 1)-dimensional hypercube 
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found does not intersect with the off-set, it becomes an implicant, otherwise, another 
literal is added in the same manner described above (Fiser and Hlavicka 2003). One 
other advantage of the CD-Search is the use of immediate implicant checks when 
adding literals to a hypercube – when two or more literals have the same frequency, 
the only ones that will be combined to form a new hypercube is if the new hyper-
cube does not intersect with the off-set. This improves the runtime comparing to the 
Quine-McCluskey algorithm and generates a higher quality result.

Algorithm 1  CD_Search(F,R) (Fiser and Hlavicka 2003).

Input: F – the set of prescriptions with positive outcomes; R – the set of prescrip-
tions with negative outcomes.

Output: A set of implicants covering F.

CD_Search(F, R) {
H = Ø
do
F’ = F
t    = Ø
do
v = most_frequent_literal(F’)
t = t∙v
F’ = F’ – cubes_not_including(t)

while (t ∩ R ! = Ø)
H = H ∩ t
F = F – F’
until (F == Ø)
return H
}

In the Algorithm (1), F is the on-set, R is the off-set, and H is the set of 
implicants.

One modification that we have made to the original CD-Search algorithm is that 
we incorporate the use of domain knowledge in the form of centrality values 
obtained by analyzing the data using network analysis in part A of the methodology. 
The degree centrality values measure the amount of interaction that a particular herb 
may have with other herbs in the network. Essentially the centrality values are a 
measure to influence the selection algorithm when there exists a tie for the most 
frequent literal – instead of a randomized selection for the most frequent literal, we 
propose the use of the centrality value ranking as a tie breaker in order to produce a 
more meaningful result. This approach would favor herbs that have less direct effect 
on the outcome, but have strong interactions with other herbs, to higher probably to 
be selected.

S.K. Poon et al.
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Example
Given the data set in Fig. 1, we will follow the BOOM outlined algorithm to 
find an implicant.

In the first iteration, the most common literal in the on-set is x3’, but as this 
term intersects with the off-set, it cannot be an implicant, and as a result, 
another literal will have to be appended (Fig. 2).

Ignoring the previously discovered term x3’ and the row in the on-set which 
is not covered by the term, we continue to find the next literal. In this next

Fig. 1  Example dataset used to demonstrate the BOOM algorithm

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 o

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 o

0 0 0 0 0 0 0 0 1 0 1

1 0 0 0 1 1 1 0 1 1 1

0 0 0 0 0 1 1 0 0 1 1

1 1 1 1 0 0 0 1 0 0 1

0 0 1 0 1 1 1 1 0 0 1

1 1 1 0 1 1 1 0 0 0 1

0 3 4 3 5 3 2 2 4 4 4

1 3 2 3 2 4 3 3 2 2 2

0 0 0 0 0 0 0 0 1 0 1

1 0 0 0 1 1 1 0 1 1 1

0 0 0 0 0 1 1 0 0 1 1

1 1 1 1 0 1 1 0 0 0 0

1 0 1 1 0 0 1 1 0 0 0

1 1 1 1 0 0 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0 0

0 0 1 1 0 1 1 0 1 1 0

0 0 1 0 1 1 1 1 0 0 1

1 1 1 0 1 1 1 0 0 0 1

Fig. 2  Coverage-directed search algorithm demonstrating the intersection of x3 with the 
off-set
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step, there are four literals that have the same frequency, in this case, all four 
combinations with x3’ are tried, with the combinations that intersect with the 
off-set removed and the literal with the greatest centrality value is then chosen 
from the remaining literals (Fig. 3).

The only combination which intersects with the off-set is x3’x5 and thus 

x3’x1’, x3’x6, and x3’x7 form the three possible implicant candidates as these 
sum of products do not intersect with the off-set.

Suppose x6 has the highest centrality value rank out of the three remaining 
literals, we choose x3’x6 as an implicant, and then the next step would be to 
find another implicant which covers the remainder rows, shown in green in 
the diagram below (Fig. 4):

Fig. 3  Coverage-directed search algorithm demonstrating ties in literals

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 o

0 0 0 0 0 0 0 0 1 0 1

1 0 0 0 1 1 1 0 1 1 1

0 0 0 0 0 1 1 0 0 1 1

1 1 1 1 0 0 0 1 0 0 1

0 0 1 0 1 1 1 1 0 0 1

1 1 1 0 1 1 1 0 0 0 1

0 3 4 3 - 2 1 1 4 3 3

1 2 1 2 - 3 4 4 1 2 2

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 o

0 0 0 0 0 0 0 0 1 0 1

1 0 0 0 1 1 1 0 1 1 1

0 0 0 0 0 1 1 0 0 1 1

1 1 1 1 0 1 1 0 0 0 0

1 0 1 1 0 0 1 1 0 0 0

1 1 1 1 0 0 0 1 0 0 1

0 1 0 0 0 1 0 1 0 0 0

0 0 1 1 0 1 1 0 1 1 0

0 0 1 0 1 1 1 1 0 0 1

1 1 1 0 1 1 1 0 0 0 1

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 o

0 0 0 0 0 0 0 0 1 0 1

1 0 0 0 1 1 1 0 1 1 1

0 0 0 0 0 1 1 0 0 1 1

1 1 1 1 0 0 0 1 0 0 1

0 0 1 0 1 1 1 1 0 0 1

1 1 1 0 1 1 1 0 0 0 1

0 1 1 1 1 2 2 2 1 1 2

1 1 1 1 1 0 0 0 1 1 0

Fig. 4  Coverage-directed search algorithm demonstrating the next stage of finding 
implicants that cover the remaining rows
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3.2.2  �Implicant Expansion

With the set of implicants generated from the CD-search, the next stage of BOOM 
called implicant expansion is run in order to produce the prime implicants. The term 
expansion can be somewhat misleading, as the number of literals in the implicants 
is actually reduced. However, by removing literals from implicants, their coverage 
is expanded and thus the name.

Individual literals in each implicant are tried for removal and if the new expres-
sion does not intersect with the off-set, then the literal removal is made permanent 
(Fiser and Hlavicka 2003). There are three strategies for implicant expansion, which 
are exhaustive expansion, sequential expansion and multiple sequential expansion, 
respectively. In our testing it was found that the sequential expansion strategy’s 
performance was the most acceptable and the results produced were adequate.

The sequential expansion method simply tries to remove all literals from the 
implicants one by one and once no further removals are possible, then the newly 
reduced implicant becomes a prime implicant (Fiser and Hlavicka 2003). One minor 
downside of this expansion strategy is that it is a greedy algorithm, that is, for each 
original implicant; only one prime implicant is produced because it does not con-
sider the benefits and costs of removing one implicant as opposed to another. 
Nonetheless, as noted by the authors, the “simplest sequential expansion is better 
for very sparse functions” which is the case for our research due to the limited diver-
sity present in the dataset (Fiser and Hlavicka 2003).

3.2.3  �Covering Problem Solution

Once the prime implicants are obtained from the implicant expansion process, ide-
ally we would like to reduce the number of prime implicants so that a minimal num-
ber of them still cover the given dataset. This is an instance of an NP-hard problem 
called the Unate Covering Problem, i.e. the best known algorithms have exponential 

The previous steps are repeated until all rows of the on-set are covered and 
the resultant sum of products (or implicants) is the solution to the coverage-
directed search, in this case, a possible solution to the CD-search is 
x3’x6 + x5’x6’.

The original CD-search algorithm was non-deterministic in nature due to 
the randomized selection in the presence of multiple literals that are equally 
frequent. Our modification to the algorithm, which introduces the use of cen-
trality values, aims to eliminate the uncertainty by using a centrality value 
rank as the tie-break selection criteria.
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complexity. As noted in (Fiser and Hlavicka 2003), an exact solution to the covering 
problem is time consuming and that a heuristic approach is the only viable method.

The heuristic proposed in BOOM is called Least Covered, Most Covering 
(LCMC) whereby prime implicants covering minterms which are covered by the 
least number of other prime implicants are preferred and if there are more than one 
such prime implicant, then the one which covers the most number of minterms 
which are not yet covered is chosen (Fiser and Hlavicka 2003).

While the performance of this heuristic is efficient, we felt like the quality of the 
results could be improved. As a result, we introduce an alternative heuristic as a 
slight modification to BOOM called Literal Weights and Output Weights (WLWO) 
proposed in (Kagliwal and Balachandran 2012). The Unate Covering Problem can 
be transformed into a well-known Set Cover Problem. This heuristic, unlike the 
LCMC heuristic, is designed for the sole purpose of logic minimization and takes 
into account the relationship between implicants and minterms.

This heuristic defines several weights:

	1.	 Literal Weights (LW) – this is defined to be the number of prime implicants 
which contain such a literal

	2.	 Output Weights (IC) – this is defined to be the number of implicants in the on-set 
or don’t-care-set for each output. In our case with only a single output function, 
this is simply the cardinality of the on-set and don’t-care-set.

Along with the weights, the sub-section then goes on to define several weight 
functions:

	1.	 Weighted Literal Count (WL): WL LWi
x X

x

i

=
Î
å

	2.	 Weighted Output Count (WO): WO ICi
y Yi

y=
Î
å

Using these weight functions, the sub-section introduces a three-stage heuristic. 
Firstly, select prime implicants for inclusion into the final solution if they cover the 
most number of yet uncovered minterms. If there is a tie, then select the ‘shortest’ 
implicant, that is, the one with the lowest literal count. Finally, if there is another tie, 
then the prime implicant with the highest WLWO heuristic value is used whereby 
WLWOi = WLi × WOi. (Kagliwal and Balachandran 2012)

The final set of prime implicants produced by the solution to the covering prob-
lem forms our final causal configurations with each prime implicant forming a sin-
gle configuration that leads to the outcome.

3.3  �Integration of Results

The set of prime implicants can subsequently be super-imposed on the Herbal 
Network to verify and determine strong herb-herb interactions and other interesting 
patterns. Note that as analysing the prime implicant’s negative or NOT(herb) result 
is confounded by the ambiguous definitions of negative, therefore these negative 
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herbs will be ignored in visualisation. Two comparative core herb networks can 
therefore be generated and compared to observe interesting patterns; a herb 
frequency of usage network; and a pairwise herbal correlation network.

Atop either of the two foundational base networks, prime implicants can be 
super-imposed to visualise interesting results. For each prime implicant set, an undi-
rected edge is created between every pair of herbs in the set. This undirected edge 
will have a thick line if this edge exists in the base network and a dashed line other-
wise. When all edges and weights have been established, the number of edges for 
each node is computed based on the degrees centrality measures. Interesting factors 
can thus be inferred by super-imposing positive outcome prime implicants.

4  �Data

The described methodology was performed on the insomnia dataset described in 
(Zhou et al. 2010a). A clinical data warehouse was developed (Zhou et al. 2010b) to 
integrate and to manage large-scale real-world TCM clinical data. This data ware-
house consists of structured electronic medical record from all TCM clinical 
encounters, including both inpatient and outpatient encounters. There are about 
20,000 outpatient encounters of the TCM expert physicians. These encounters 
included clinical prescriptions for the treatment of various diseases, in which insom-
nia is a frequently treated disorder.

Total of 460 insomnia outpatient encounters were extracted. The outcome of 
each encounter was annotated by TCM clinical experts who went through the 
changes of the insomnia-related variables over consecutive consultation; these 
include the sleep time per day, sleep quality and difficulty in falling asleep. The 
outcomes are then classified into two categories: good and bad. When a treatment 
was effective, which means that if the patient recovered completely or partly from 
insomnia in the next encounter, then the prescription of the current encounter would 
be categorized as ‘good’; otherwise, the herb prescription would be categorized as 
‘bad’. After labelling these 460 outpatient encounters, there are 68 encounters with 
bad outcomes in this dataset; in other words, it is an imbalanced dataset to the 
advantage of the target class. The average good outcome rate (GOR) of the whole 
data set is 392/460 = 85.21 %. There are 261 distinct herbs in the dataset and there 
are on average 14 herbs in a formula.

5  �Results

5.1  �Analytical Results from Set-Theoretic

Another important modification to the BOOM algorithm was made such that when 
two prescriptions are present in the dataset but contributes to both a positive out-
come and a negative outcome. Instead of marking these as don’t-care terms (whereby 
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the outcome is marked by ‘-’ instead of 0 or 1), we calculate the ratio of the desirable 
outcome and the occurrence of this prescription. This is similar to calculating the 
odds ratios in a case-control study where effectiveness is compared between a set of 
herbs in a prescription and another prescription with one of more herbs removed. If 
this ratio were higher than a threshold value, the outcome for this prescription would 
be set to the desired outcome, otherwise, the undesired outcome. In our case, the 
threshold used was the overall ratio of desirable outcomes to the total number of 
prescriptions (Su et al. 2013).

5.1.1  �Results from Analysis of Positive Outcomes

We first analyze the causal configurations that lead to a positive outcome, in this 
case, the on-set of the dataset is set to where the outcome equals to 1. The results 
produced along with the frequency of these configurations in the prescriptions are 
shown in Table 1:

5.1.2  �Results from Analysis of Negative Results

Next we analyze the causal configurations that attribute to a negative outcome, in 
this case, the on-set of the dataset is where the outcome is equal to 0. The results 
produced along with the frequency of these configurations in the prescriptions are 
as follows (Table 2):

5.2  �Results from Network Analysis

Prior to analysis, it is possible to observe descriptive statistics summaries from the 
described core herbal network. A larger node size indicates a herb is core to a desired 
outcome. The edge weights between two nodes indicate a dependent association 
between two nodes. To visualise core herb summaries, both frequency and correla-
tion networks can be generated from the insomnia dataset. The insomnia frequency-
based network is shown in Fig. 5 with frequency and confidence of pairwise herb 
usage indicated on the edges. As the full graph is too dense to quickly extract any 
important information visually, a threshold of 46 frequency counts was used for 
visualisation purposes only. This 46 threshold is equivalent to a 10  % support 
threshold in association rules. The centrality values are derived from the frequency 
network, as used in the BOOM algorithm. The centrality values are tabulated in 
Table 3.

After converting the frequencies for each prime implicant (shown in Fig. 5) into 
pair-wise edge weights, the results generated by this approach are shown to be con-
sistent to the earlier work described in (Zhou et  al. 2010b). In regards to the 
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Table 2  Negative prime implicant results from insomnia dataset
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correlation network, in order to identify reasonably strong pairwise correlations, 
correlations greater than 0.2 threshold and less than −0.2 threshold of the insomnia 
dataset is shown in Fig. 6. The ±0.2 threshold is arbitrarily chosen to avoid a heavily 
dense network and thus to ensure a quick visual summary of core herbal combina-
tions. Negatively correlated combinations are indicated with a dashed line and 

Fig. 5  Energy layout of insomnia frequency-based core herb network with 46 frequency threshold 
(10 % support threshold). The node size represents frequency of interaction and the edge label 
highlights the pairwise interaction frequency. (Figure 5 in high resolution with colour can be 
accessed at http://www.sydney.edu.au/it/~itcm/book/images/figure2-5.jpg). The full color version 
of this image may be viewed in the eBook edition

Causal Complexities of TCM Prescriptions…
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positively correlated combinations with a solid line where phi correlation values are 
indicated on the edges. Foundational frequency and correlation networks can 
therefore be constructed with strength and reliability estimators on each herbal 
combination edge.

Table 3  Degree centrality values and frequency calculated for each herb, using the full insomnia 
frequency network

Herb Herb name Chinese name Centrality Frequency

VAR237 Stir-frying spine date seed 炒酸枣仁 2,419 257
VAR33 Indian bread 茯苓 2,249 253
VAR34 Golden thread 黄连 1,580 165
VAR238 Chinese thorowax root 柴胡 1,576 174
VAR235 Prepared thinleaf milkwort root 制远志 1,554 166
VAR200 Fresh liquorice root 生甘草 1,456 165
VAR203 White peony root 白芍 1,377 153
VAR236 Common anemarrhena rhizome 知母 1,362 151
VAR210 Prepared pinellia tuber 法半夏 1,358 148
VAR196 Chinese date 大枣 1,248 132
VAR174 Chinese angelica 当归 1,200 139
VAR40 Grassleaf sweetflag rhizome 石菖蒲 1,167 130
VAR113 Dried/fresh rehmannia [root] 生地黄 1,127 131
VAR241 Oyster shell 牡蛎 1,111 120
VAR121 Dragon bone 龙骨 1,028 105
VAR79 Cassia bark 肉桂 995 98
VAR117 Dried tangerine peel 陈皮 972 106
VAR46 Stir-frying immature orange fruit 炒枳实 969 106
VAR242 Szechwan lovage rhizome 川芎 958 112
VAR35 Baical skullcap root 黄芩 940 109
VAR76 Bamboo shavings 竹茹 858 87
VAR39 Lotus plumule 莲子心 754 79
VAR130 Dragon teeth 龙齿 750 77
VAR202 Stir-frying largehead atractylodes 

rhizome
炒白术 673 86

VAR5 Lily bulb 百合 640 72
VAR36 Dwarf lilyturf tuber 麦冬 617 84
VAR48 Tuber fleeceflower stem 夜交藤 594 74
VAR8 Tangshen 党参 565 64
VAR112 Light wheat 浮小麦 565 58
VAR201 Fresh ginger 生姜 557 58
VAR175 Common yam rhizome 山药 536 70
VAR84 Peppermint 薄荷 510 54
VAR198 Asiatic cornelian cherry fruit 山萸肉 455 58
VAR120 Chinese magnoliavine fruit 五味子 372 46
VAR178 Stir-frying orange fruit 炒枳壳 357 50
VAR3 Phyllanthus ussuriensis 蜜甘草 317 40
VAR43 Fermented soybean 淡豆豉 278 33
VAR151 Arabic cowry shell 煅紫贝齿 275 26
VAR1 Heterophylly falsestarwort root 太子参 121 14
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5.3  �Results from Interaction Analysis

Frequency and correlation networks can suggest possible interactions between 
herbs that are interesting to test for. As the reduced frequency network displayed the 
majority of threshold prime implicant sets, only the cycles will be analysed as pos-
sible pair-wise interactions. Mathematically, this is expressed in Eq. 2 and can be 
similarly expanded for higher dimensions (e.g. Poon et al. 2011b).

	
n n n n11 00 01 10+( ) > +( ) 	

(2)

where nij is the frequency of Herb i and Herb j where 1 indicates the presence of a 
herb and 0, absence.

Fig. 6  Energy layout of insomnia correlation-based core herb network with ±0.2 threshold and 
correlation weighted edge weights, dotted edges indicate negative correlation, and node size indi-
cate frequency of interaction for the given node. (Figure 6 in high resolution with colour can be 
accessed at http://www.sydney.edu.au/it/~itcm/book/images/figure2-6.jpg)
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Table 4 summarises results of pairwise interaction analysis. Interpretation of the 
interaction analysis results will not be described here as the purpose of this chapter 
is to introduce a cause and effect methodology between herbs. Common node and 
cycle analysis can therefore identify effective higher order combinations by taking 
advantage of low correlated or low frequently ignored herbs.

5.4  �Overall Results and Visualization

In order to visualise causal herb combinations, prime implicants are superimposed 
on the base frequency and correlation networks. The resulting frequency and 

Table 4  Interaction analysis of pairwise combinations derived from prime implicant connections 
in frequency and correlation networks

Combination Frequency Good outcomes Good outcome rate Additiveness

VAR241 11 + 00 35 + 122 31 + 102 84.71 Sub-additive
VAR33 01 + 10 218 + 85 190 + 69 85.48
VAR210 11 + 00 81 + 140 70 + 112 82.35 Sub-additive
VAR33 01 + 10 172 + 67 151 + 59 87.87
VAR210 11 + 00 46 + 238 41 + 204 86.27 Super-additive
VAR241 01 + 10 74 + 102 59 + 88 83.52
VAR175 11 + 00 46 + 179 46 + 142 83.56 Sub-additive
VAR237 01 + 10 211 + 24 191 + 13 86.81
VAR113 11 + 00 56 + 219 53 + 174 82.55 Super-additive
VAR235 01 + 10 110 + 75 99 + 66 89.19
VAR113 11 + 00 51 + 227 47 + 186 83.81 Super-additive
VAR203 01 + 10 102 + 80 87 + 72 87.36
VAR113 11 + 00 24 + 244 21 + 200 82.46 Super-additive
VAR35 01 + 10 85 + 107 73 + 98 89.06
VAR203 11 + 00 34 + 232 31 + 195 84.96 Super-additive
VAR35 01 + 10 75 + 119 63 + 103 85.57
VAR200 11 + 00 90 + 220 89 + 180 86.77 Super-additive
VAR34 01 + 10 75 + 75 60 + 63 82.00
VAR237 11 + 00 48 + 142 47 + 108 81.58 Sub-additive
VAR35 01 + 10 61 + 209 47 + 190 87.78
VAR235 11 + 00 143 + 180 132 + 135 82.66 Super-additive
VAR237 01 + 10 114 + 23 105 + 20 91.24
VAR203 11 + 00 46 + 247 43 + 214 87.71 Super-additive
VAR46 01 + 10 60 + 107 44 + 91 80.84
VAR113 11 + 00 34 + 293 34 + 248 86.24 Super-additive
VAR175 01 + 10 36 + 97 25 + 85 82.71
VAR203 11 + 00 100 + 150 93 + 114 82.80 Super-additive
VAR237 01 + 10 157 + 53 144 + 41 88.10
VAR238 11 + 00 37 + 211 34 + 169 81.85 Super-additive
VAR242 01 + 10 75 + 137 68 + 121 89.15
VAR33 11 + 00 32 + 175 32 + 144 85.02 Sub-additive
VAR8 01 + 10 32 + 221 27 + 189 85.38
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correlation graphs are shown in Figs. 7 and 8. An energy layout is similar to the 
Kamada-Kawai algorithm was used for both core herb networks in Pajek (Batagelj 
and Mrvar 2003). This layout positions the graph such that the edge weights repre-
sent the edge length between two nodes. Higher frequency and correlated edges are 
therefore positioned closer together, and outlier frequency and correlation are 
further away from the primary network.

Fig. 7  Insomnia frequency network with superimposed prime implicants; green edges represent 
base frequency network; red edges represent prime implicant edges whereby the node pair results 
in a sub-additive effect; blue edges represent prime implicant edges whereby the node pair results 
in a super-additive effect. The node size represents degree of interaction in the base graph. Blue 
nodes represent nodes in the base network whereas the red nodes are prime implicant nodes. The 
degree of redness indicates frequency of presence in prime implicants (Figure 7 in high resolution 
with colour can be accessed at http://www.sydney.edu.au/it/~itcm/book/images/figure2-7.jpg)
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6  �Discussion

The previous section describes the methodology and demonstrates its application on 
the insomnia dataset. Thus, general observations can be made from visualization of 
the results, though further analysis is necessary to conclude its validity.

Fig. 8  Insomnia correlation network with super-imposed prime implicants; green edges represent 
base frequency network; red edges represent prime implicant edges whereby the node pair results 
in a sub-additive effect; blue edges represent prime implicant edges whereby the node pair results 
in a super-additive effect. Edges with a dashed style represent correlation <−0.2, edges with a solid 
style represent correlation >0.2 and edges with a dotted style represent correlation between −0.2 
and 0.2. The node size represents degree of interaction in the base graph. Blue nodes represent 
nodes in the base network whereas the red nodes are prime implicant nodes. The degree of redness 
indicates frequency of presence in prime implicants (Figure 8 in high resolution with colour can be 
accessed at http://www.sydney.edu.au/it/~itcm/book/images/figure2-8.jpg) (The full color version 
of this image may be viewed in the eBook edition)
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Although two base visualisation and analysis methodologies, frequency and 
correlation, have been introduced the complexity of herb-herb interactions may 
affect the validity of these inferences. In the illustrated network construction, nega-
tive NOT(herb) results were ignored. These confounding factors remain to be 
addressed in future work. Confounding in statistics is where a factor that may exert 
an effect is not measured in the experiment; thus biasing any analysis performed. 
Herbal combinations that appear in both positive and negative frequency and cor-
relation networks indicate there may be possible confounding herbal or background 
factors that are affecting accurate analysis of core herbs. Confounding may arise 
through herb to herb interactions and extend to different and higher order herbal 
configurations, particularly when herbs are interacting amongst other herbs. 
Auxiliary herbs may also give rise to confounding due to their dependencies on 
other core herbs. While auxiliary herbs may not contribute to core therapeutic 
effects, their high frequency of usage may cumulate to significant effects. In com-
plex disease patterns, the use of auxiliary herbs may exceed those of principal herbs. 
Further, though confounding herbs may be observed, this does not necessitate the 
removal of those herbs, which may further bias and confound the analysis. 
Addressing confounding and the absence of an herb can therefore be useful to illu-
minating more significant core herbs and less useful herbs.

7  �Conclusion

Successful TCM prescriptions depend on not just the presence of chosen herbs 
that make up a prescription, but the absence of other herbs may be equally impor-
tant, especially for those herbs that are tightly connected to other herbs, as the 
later may impact negatively on the outcome. In this chapter, we have described 
and demonstrated an approach to discover the intertwining patterns of herbs in 
TCM prescriptions. Applying techniques in set-theoretic may distil the configura-
tion where necessary herbs are required for the successful treatment. In addition, 
a network tool based on frequency of usage and correlation aided the understand-
ing of domain knowledge choice of herbs as well as interesting factors that are 
worthwhile testing for. By further super-imposing positive outcome prime impli-
cant results, a map of strong herb combinations with large positive outcome cov-
erage can be inferred. This framework not only has validated results in consistence 
with earlier work performed by Zhou et al. (2011b), and also introduced a more 
efficient approach to reach configuration solutions form the causal complexity 
perspective.

Although this chapter introduces a computational approach for finding the use-
ful herb combinations in the context of clinical outcomes. Several key issues still 
exist to be addressed in the future work. Firstly, two important information compo-
nents, namely herb dosage and clinical manifestation (e.g. symptoms, co-morbid 
conditions), of the clinical data should be considered. Because it is widely recog-
nized in the medical field that the herb dosage has an important effect for treatment 
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and also performs a significant role for complex interactions amongst herbs. 
Secondly, by incorporating dosage information, the computing cost of moving 
crisp-set QCA to fuzzy-set QCA to find the optimal complex herbal formulations 
should be further studied.
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