
Lectures on Computing Cohomology
of Arithmetic Groups

Paul E. Gunnells

Abstract Let G be the reductive Q-group RF/QGLn, where F/Q is a number field.
Let Γ ⊂ G be an arithmetic group. We discuss some techniques to compute explic-
itly the cohomology of Γ and the action of the Hecke operators on the cohomology.

1 Introduction

This is a writeup of five lectures given at the summer school Computations with
modular forms, Heidelberg, Germany, in August 2011. The course covered essen-
tially all the material here, although I have made some corrections and modifications
with the benefit of hindsight, and have taken the opportunity to elaborate the pre-
sentation. I’ve tried to preserve the informal nature of the lectures.

I thank the organizers for the opportunity to speak, and the participants of the
summer school for a stimulating environment. I thank my collaborators Avner Ash,
Mark McConnell, and Dan Yasaki, for many years of fun projects, and for all that
they’ve taught me about this material. Thanks are also due to an anonymous referee,
who carefully read the lectures and made many valuable suggestions. Finally, I thank
the NSF for supporting the research described in these lectures.

2 Cohomology and Holomorphic Modular Forms

The goal of our lectures is to explain how to explicitly compute some automorphic
forms via cohomology of arithmetic groups. Thus we begin by reviewing modular
symbols and how they can be used to compute with holomorphic modular forms.
For more details we refer to [Cre97, Ste07]. This material should be compared with
that in Rob Pollack’s lectures [Pol], which contains a different perspective on similar
material.
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Let N ≥ 1 be an integer, and let Γ0(N) ⊂ SL2(Z) be the subgroup of matrices
that are upper-triangular mod N . Let H ⊂ C be the upper halfplane of all z with
positive imaginary part. The group Γ0(N) acts on H by fractional linear transforma-
tions: (

a b

c d

)
· z = az + b

cz + d
. (2.1)

We let Y0(N) be the quotient Γ0(N)\H. Then Y0(N) is a smooth algebraic curve
defined over Q, called an (open) modular curve.

The curve Y0(N) is not compact, and there is a standard way to compactify it.
Let H∗ = H∪ P1(Q), where we think of P1(Q) as being Q∪ {∞} with Q ⊂ R ⊂ C

and ∞ lying infinitely far up the imaginary axis. The points ∂H∗ = H∗ � H are
called cusps. The action of Γ0(N) extends to the cusps, and after endowing H∗ with
an appropriate topology, the quotient X0(N) = Γ0(N)\H∗ has the structure of a
smooth projective curve over Q. This is what most people call the modular curve.

By work of Eichler, Haberland, and Shimura, the cohomology of the spaces
Y0(N) and X0(N) has connections with modular forms. These are holomorphic
functions f : H →C satisfying the transformation law

f

(
az + b

cz + d

)
= (cz + d)kf (z),

(
a b

c d

)
∈ Γ0(N),

where k ≥ 1 is a fixed integer; f is also required to satisfy a growth condition as
z approaches any cusp. The space of such functions Mk(N) is a finite-dimensional
complex vector space with a subspace Sk(N) of cusp forms: these are the f that
undergo exponential decay as z approaches any cusp. There is a natural complement
Eisk(N) to Sk(N), called the space of Eisenstein series. Then we have

H 1(Y0(N);C) ∼−→ S2(N) ⊕ S2(N) ⊕ Eis2(N), (2.2)

H 1(X0(N);C) ∼−→ S2(N) ⊕ S2(N). (2.3)

For example, let N = 11. Then it is known that dimM2(11) = 2 and
dimS2(11) = 1. The curve X0(11) has genus 1, which is consistent with (2.3).
The complement of Y0(11) in X0(11) consists of two points. Thus Y0(11) de-
formation retracts onto a graph with one vertex and three loops. This implies
H 1(Y0(11);C) � C3, again consistent with (2.2).
We can say even more about (2.2)–(2.3):

• We don’t have to limit ourselves to quotients by Γ0(N). Indeed, we can use other
finite-index subgroups, such as the subgroup Γ1(N) of matrices congruent to( 1 ∗

0 1

)
modulo N , or the principal congruence subgroup Γ (N) of matrices con-

gruent to the identity modulo N .1 We could also work with cocompact subgroups

1Throughout these lectures we only work with congruence subgroups. For SL2(Z) this means any
group containing Γ (N) for some N .



Lectures on Computing Cohomology of Arithmetic Groups 5

of SL2(R), such as arithmetic groups coming from orders in quaternion algebras,
and (2.3) still holds (if we suitably modify our definitions).

• We can work with modular forms of higher weight k > 2 by taking cohomology
with twisted coefficients [Brow94, Vic94, Ste43]. More precisely, SL2(Z) acts on
the complex vector space of homogeneous polynomials of degree k by

(
a b

c d

)
· P(x, y) = P(ax + cy, bx + dy).

This induces a local system Mk on the quotients X0(N), Y0(N), and we have

H 1(Y0(N);Mk−2
) ∼−→ Sk(N) ⊕ Sk(N) ⊕ Eisk(N), (2.4)

H 1(X0(N);Mk−2
) ∼−→ Sk(N) ⊕ Sk(N). (2.5)

• Let p be a prime. Then there are Hecke operators

Tp, (p,N) = 1,

Up, (p,N) > 1

that generate an algebra of operators acting on Mk(N). The action preserves the
decomposition Mk(N) = Sk(N) ⊕ Eisk(N). There are corresponding operators
acting on the cohomology spaces, and the isomorphisms (2.2)–(2.5) are isomor-
phisms of Hecke modules.

Together these facts imply that we can use topological tools to study modular forms
and the action of the Hecke operators on them, and brings us to the main point of
our lectures:

One can explicitly compute with certain automorphic forms of arithmetic interest by
generalizing the left-hand sides of (2.2)–(2.5).

How this can be done will be explained in Sect. 4 onward. In the next section, we
continue to discuss the classical case and modular symbols.

3 Modular Symbols

Modular symbols provide an extremely convenient way to use topology to compute
with modular forms. They form the main inspiration for the higher-dimensional
computations we discuss later. We review modular symbols here. For simplicity we
stick to weight k = 2, to avoid the notational complexity of twisted coefficients. For
more details we refer to [Ste07] or to R. Pollack’s lectures.

Let Γ ⊂ SL2(Z) be a torsionfree subgroup. For instance, one could take Γ =
Γ (N) for N ≥ 3. Put YΓ = Γ \H and XΓ = Γ \H∗ as before. We want to study the
cohomology spaces H 1(YΓ ;C) and H 1(XΓ ;C).
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Fig. 1 The Farey tessellation

By Lefschetz duality [Vic94, Chap. 6], we have an isomorphism

H 1(YΓ ;C) ∼−→ H1(XΓ , ∂XΓ ;C), (3.1)

where the right hand side is the homology of XΓ relative to the cusps. This differs
from the usual homology in that we allow not only 1-cycles, whose boundaries
vanish, but also 1-chains that have boundary supported on the cusps.

According to basic algebraic topology, we can compute H1(XΓ ; ∂XΓ ;C) by
taking a triangulation of XΓ with vertices at the cusps. We then get a chain complex
C∗(XΓ ) with a subcomplex C∗(∂XΓ ), and the relative homology groups are by
definition those of the quotient complex C∗(XΓ )/C∗(∂XΓ ).

A quick way to construct the chain complexes C∗(XΓ ), C∗(∂XΓ ) is via the Farey
tessellation T of H∗. This is the ideal triangulation of H given by the SL2(Z)-
translates of the ideal triangle � with vertices at {0,1,∞} (Fig. 1). It’s easy to
describe the edges of T . Denote the cusps P1(Q) = Q∪ {∞} by column vectors of
relatively prime integers, with ∞ corresponding to (1,0)t . Thus the cusp α ∈ Q cor-
responds to the column vector (a, b)t if α = a/b; we think of ∞ as corresponding
to the “fraction” 1/0. Then two cusps are joined by an edge in the triangulation if
and only if the corresponding column vectors form a matrix with determinant ±1:

a/b joined to c/d in T ⇐⇒ det

(
a b

c d

)
∈ {±1}. (3.2)

Note that � is not a fundamental domain for SL2(Z), but rather a union of three
fundamental domains. This suffices for our purposes, since one can easily see that
a fundamental domain for any torsionfree Γ can be assembled from finitely many
copies of �. Thus T endows our quotient XΓ with a finite triangulation, and by
construction the vertices of this triangulation are exactly ∂XΓ .

For example, if Γ = Γ (N) then the quotient X(N) := XΓ equipped with this
triangulation is beautifully symmetric: it has an action of PSL2(Z/NZ) induced
by the isomorphism SL2(Z)/Γ (N) � SL2(Z/NZ). (Don’t forget that the center of
SL2(Z) acts trivially on H.) This finite group acts transitively on the cells in the
triangulation. For N = 3,4,5 the surfaces X(N) have genus 0, and the induced
triangulations are familiar to anyone who inhabits three dimensions (cf. [Pla]). For
N = 6 the quotient is a torus with a triangulation consisting of 24 triangles, 36
edges, and 12 vertices. For N = 7 we have |PSL2(Z/7Z)| = 168, and the Riemann
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surface X(7) realizes Hurwitz’s upper bound for the size of the automorphism group
of a surface of genus three. It is a pleasant exercise to draw the triangulations for
N ≤ 7. The tessellated Riemann surfaces X(N),N > 1 are called Platonic surfaces
[Bro99].

Thus we can compute the right hand side of (3.1) if we can understand (1) a
generating set for the relative homology group, and (2) all the relations between
our generating set. We will only sketch what happens, since we don’t need more
precision for our discussion.

The first is easy. The images of the Farey edges become edges in the triangula-
tion, and so their classes will span H1(XΓ , ∂XΓ ;C). Each such edge corresponds to
a pair of cusps of determinant ±1, as in (3.2). We only need to work with represen-
tatives of these pairs modulo Γ , since these will give all edges in the triangulation.

The relations are also not hard to understand. They come from the finite sub-
groups of SL2(Z). For instance, the subgroup generated by

( 0 1
−1 0

)
stabilizes the

edge in T from 0 to ∞, and this tells us how to find the boundary of this edge. The
subgroup generated by

( 0 1
−1 1

)
stabilizes �. This tells us how to find the boundary

of �, and thus to compute a relation between three elements of H1(XΓ , ∂XΓ ;C).
The upshot: we can compute the relative homology H1(XΓ , ∂XΓ ;C) as the C-

vector space generated by certain pairs of cusps modulo Γ , divided out by certain
relations imposed by the finite subgroups of SL2(Z). For full details, including the
extension to Γ with torsion, we refer to [Man72, Ste07]. Later (Sect. 9) we will see
how to define an action of the Hecke operators on this model.

4 Algebraic Groups and Symmetric Spaces

The first step in generalizing (2.2)–(2.3) is understanding exactly how the spaces
arise from group theory. In fact they are examples of locally symmetric spaces.

Let G be the Lie group SL2(R). The subgroup K = SO(2) of matrices satisfying
ggt = Id is maximal compact, and is the unique subgroup with this property up to
G-conjugacy. The group G acts on H, again by fractional linear transformations
(2.1), and the action is transitive. Indeed, the subgroup of upper-triangular matrices
already acts transitively, since

(√
y x/

√
y

0 1/
√

y

)
· i = x + iy.

The stabilizer in G of i is K , and so we have a diffeomorphism G/K
∼→ H.

This exhibits H as a Riemannian globally symmetric space [Hel01]. We recall
that such a space is an analytic Riemannian manifold D with a family of involutive
isometries σp : D → D, one for each p ∈ D, such that p is the unique fixed point of
σp . It is known that any such space D can be written as a quotient G/K , where G

is the connected component of the group of isometries of D and K ⊂ G is a com-
pact subgroup stabilizing a chosen point p0 ∈ D. If Γ is any finite index subgroup
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of SL2(Z), then the quotient Γ \H = Γ \G/K inherits this structure locally. Such
double quotients are known as locally symmetric spaces. These spaces, and their
compactifications, will be the replacements for Y0(N), X0(N).

So how do we build locally symmetric spaces? The first step is to build globally
symmetric spaces, and that is the focus of this section. We begin with a linear al-
gebraic group G. This is a group that also has the structure of an affine algebraic
variety, with the group operations being morphisms. For instance, the group GLn of
n × n invertible matrices can be realized as a closed subgroup of affine (n2 + 1)-
space. We take the ring

C[x11, x12, . . . , x1n, x21, . . . , xnn, δ] (4.1)

with variables xij corresponding to the entries of an indeterminate n×n matrix. The
group GLn is then the zero set of the polynomial δ det(xij ) = 1. The group opera-
tions can be written as polynomials in these variables, so GLn is a linear algebraic
group.

More generally, G is a linear algebraic group if it is a subgroup of GLn defined
by polynomial equations. If the coordinate ring of G can be defined by an ideal
generated by polynomials in a subfield F ⊂ C, then we say G is defined over F .

Basic examples are the classical groups: SLn, the subgroup of GLn of matrices
of determinant 1; SOn, the subgroup of SLn preserving a fixed nondegenerate sym-
metric bilinear form; and Spn, the subgroup of SL2n preserving a nondegenerate
alternating bilinear form.

Other examples are provided by tori. By definition G is a torus if G � (GL1)
d

for some d , called the rank of G. We note that this isomorphism need not be defined
over F , even if G is defined over F . If it is, we say that G is F -split. The integer
d is then called the F -rank of G and is denoted rF (G). More generally, the F -rank
rF (G) of any algebraic group G is defined to be the F -rank of the maximal F -split
torus in G.

The most important linear algebraic groups for us, which are also the most fa-
miliar, are the reductive and semisimple groups. By definition, the radical R(G)

is the maximal connected solvable normal subgroup of G, where connected means
irreducible as an algebraic variety. The unipotent radical Ru(G) is the maximal
connected unipotent normal subgroup of G, where unipotent means all eigenvalues
are 1. A group is called reductive if Ru(G) is trivial, and semisimple if R(G) is
trivial. We have Ru(G) ⊂ R(G), so semisimple is a special case of reductive. Any
connected group contains a reductive and semisimple quotient: if G is connected,
then G/Ru(G) is reductive and G/R(G) is semisimple.

For example, the classical groups SLn, SOn, Spn are semisimple. The group GLn

is reductive and is not semisimple. For an example of a group that is neither reduc-
tive nor semisimple, one can take the Borel subgroup B ⊂ GL2 of upper-triangular
matrices. The unipotent radical Ru(B) is the subgroup of B with 1s on the diago-
nal. This example generalizes to the subgroups P ⊂ GLn of block upper-triangular
matrices; these are examples of parabolic subgroups. In general, even if one is ulti-
mately interested in phenomena involving reductive groups, one must consider non-
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reductive groups, since they often provide an inductive tool to understand structures
on reductive groups (cf. (5.3)).2

As we said above, semisimple is a special case of reductive. In fact being re-
ductive is not that far from being semisimple. Let G be reductive and let S be the
connected component of the center of G. Then S is a torus. If we put H = [G,G]
(the derived subgroup, which is semisimple), then

G = H · S,

an almost direct product; this means H ∩ S is finite, not necessarily {1}.
Hence a reductive group looks like a semisimple one, up to a central torus factor.

For instance, for GLn the group S is the subgroup of scalar matrices a · Id and the
derived subgroup H is SLn. Certainly GLn = S · SLn: the intersection S ∩ SLn is the
group of nth roots of unity.

Now that we’ve identified our groups of interest, let’s explain how to find our
spaces. Let G = G(R), the group of real points of G. This has the structure of a
Lie group, although not all Lie groups arise this way. Let K ⊂ G be a maximal
compact subgroup. We now have exactly the objects we needed to define H, and
indeed we’re done if G is semisimple: the relevant symmetric space is G/K . But if
G is reductive we need to go further and divide by a bit more. Thus we introduce
the split component AG of G. By definition AG is the connected component of the
identity of the group of real points of the maximal Q-split torus in the center of G.
That’s quite a mouthful, but it’s easy to understand in examples, as we shall see. In
any event, we define our symmetric space to be

D = G/AGK. (4.2)

One should think of this quotient as being the Lie group (G/AG) divided by its
maximal compact subgroup K .

For a first example let G = SLn. Then G = G(R) = SLn(R) and K = SO(n).
The split component AG is trivial, and our symmetric space is

D = SLn(R)/SO(n). (4.3)

If n = 2, then (4.3) becomes H. The dimension of D is n(n+ 1)/2 − 1. In particular
note that dimD can be odd, and thus in general D does not have a complex structure.
This is quite different from H.

Now let G = GLn, so that G = GLn(R). The maximal compact subgroup is
K = O(n), which is only a little bigger than SO(n) (it has the same dimension
as SO(n), just an extra component). The split component AG consists of the real
scalar matrices {a Id | a ∈ R>0}. Our symmetric space is G/AGK , and in fact is
isomorphic to (4.3). Hence by dividing out by the split component we kill exactly
the extra dimension we introduced by using GLn instead of SLn.

2This is Harish-Chandra’s “Philosophy of cusp forms” [Har70]; see also [Bum04, Chap. 49].
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We now come to examples that will be our main focus, namely general linear
groups over number fields. Before we can explain how they work, we need the
important notion of restriction of scalars. This is a useful construction that allows us
to focus our attention on groups defined over Q, even if our group is most naturally
written in terms of a bigger number field.

So suppose G is a linear algebraic group defined over a number field F . Then
there is a group RF/QG, called the restriction of scalars of G from F to Q, such
that (i) RF/QG is defined over Q and (ii):

(RF/QG)(Q) = G(F ).

This is something that is already familiar to you, even if you didn’t realize it.3

Consider the standard representation of the complex numbers as 2×2 real matrices:

a + bi �−→
(

a −b

b a

)
. (4.4)

This is an example of restriction of scalars, after we pass to nonzero elements. In-
deed, in that case the left hand side of (4.4) is the group of complex points of G =
GL1, thought of as a group defined over C; the right hand side is the group of real
points of RC/RG, a group clearly defined over R. Note that (RC/RG)(R) = G(C).

For a more complicated example, suppose we take the group G = SL2, again
defined over C, and build RC/RSL2. We can do this using GL4/R: simply use (4.4)
to take the four complex entries of SL2(C) to four 2 × 2 blocks A,B,C,D of a
matrix in GL4(R). The image will be determined by certain polynomial equations
with real coefficients. Some of the equations encode the fact that the blocks arose
via (4.4), whereas other equations come from the condition AD − BC = Id that
defines SL2. The general definition of restriction of scalars is no harder than this,
although it’s a bit messy to write out in these terms (cf. [PR94, §2.1.2]).

Let’s build some symmetric spaces starting from number fields. As a first ex-
ample, we take F/Q to be real quadratic and G = RF/QSL2. Then G = G(R) �
SL2(R) × SL2(R), since F ⊗Q R � R × R, corresponding to the two distinct em-
beddings of F into R. One should think of G(Q) = SL2(F ) as mapping into G(R)

via these embeddings, where we use a different one for each factor. The maximal
compact subgroup K is SO(2)×SO(2), the split component is trivial (G is semisim-
ple), and the symmetric space is

G/K = H×H, (4.5)

the product of upper halfplanes familiar from Hilbert modular forms [Fre90].
Now let’s try the reductive version. Put G = RF/QGL2. We have G � GL2(R)×

GL2(R) and K � SO(2) × SO(2). This time the split component AG isn’t trivial:
the maximal Q-split torus in the center of G has Q-points

{(
a 0
0 a

) ∣∣ a ∈ Q×}
. In

3Like Molière’s Monsieur Jourdain: “Par ma foi! Il y a plus de quarante ans que je dis de la prose
sans que j’en susse rien, et je vous suis le plus obligé du monde de m’avoir appris cela.”
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G(R) this subgroup embeds the same in each factor, and after taking the connected
component of the R-points we find

AG =
{((

a 0
0 a

)
,

(
a 0
0 a

)) ∣∣∣∣ a ∈R>0

}
� R>0,

which is one-dimensional. Counting dimensions, we see that G/AGK is five-
dimensional. In fact, as Riemannian manifolds we have

G/AGK = H×H×R, (4.6)

where R has the flat metric. The space (4.6) looks unnatural, especially to someone
interested in the geometry of Hilbert modular surfaces, but as we will see later the
“flat factor” is very convenient.

Now let F be imaginary quadratic and let G = RF/QSL2. Since F ⊗ R � C,
we have G = SL2(C). The maximal compact subgroup K is SU(2) and the split
component AG is trivial. The symmetric space is now H3, three-dimensional hyper-
bolic space. If we take instead G = RF/QGL2, we find G = GL2(C) and K = U(2).
The maximal Q-split torus in the center of G is again

{(
a 0
0 a

) ∣∣ a ∈ Q×}
, so

AG = {(
a 0
0 a

) ∣∣ a ∈ R>0
}
. Thus the symmetric space is again H3. Again, the situa-

tion is similar to the case of F = Q: there is no flat factor, and replacing semisimple
with reductive doesn’t change the symmetric space.

Comparing the cases of F real/imaginary quadratic and the rationals suggests
that the flat factors have something to do with the rank of O×

F , the units of the
integers of F . This is in fact true. Suppose F ⊗R � Rr ×Cs .

• If G = RF/QSL2, then

G � SL2(R)r × SL2(C)s,

K � SO(2)r × SU(2)s,

AG � {1},
G/K � H

r ×H
s
3.

• If G = RF/QGL2, then

G � GL2(R)r × GL2(C)s,

K � O(2)r × U(2)s,

AG � R>0,

G/AGK � H
r ×H

s
3 ×Rr+s−1.

We can see that the dimension of the flat factor is the same as the rank of O×
F .
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5 Arithmetic Groups, Locally Symmetric Spaces and
Cohomology

We now have an analogue of the upper halfplane H, namely our globally symmetric
space D = G/AGK . To build locally symmetric spaces, the analogues of the open
modular curves, we need to get discrete subgroups into the picture. This brings us
to arithmetic groups.

Let G be a linear algebraic group. Then a subgroup Γ ⊂ G is an arithmetic group
if it is commensurable with G(Z). This means the intersection Γ ∩ G(Z) has finite
index in both Γ and G(Z).4

For instance, suppose G is GLn. Then G(Z) is GLn(Z), the group of invert-
ible integral matrices. If we put G = RF/QGLn, then we find G(Z) = GLn(O). We
can make further examples by taking quotients. For instance, if we choose an ideal
I ⊂ O, we can consider the map GLn(O) → GLn(O/I). The kernel is a subgroup
of finite index in GLn(O) called a congruence subgroup.

Given an arithmetic group Γ we can form the quotient

YΓ = Γ \D = Γ \G/AGK.

The space YΓ is a locally symmetric space. This is our replacement for the open
modular curve. We propose to study

H ∗(YΓ ;C); (5.1)

classes in these spaces will be our analogue of holomorphic modular forms of
weight two.

What about higher weight modular forms? We can find analogues of these as
well, if we’re willing to work with fancier cohomology. Let (�,M) be a finite-
dimensional (complex) rational representation of G. The reader should think of the
case of G a classical matrix group and � a classical polynomial representation. We
get a representation of Γ in M . If Γ is torsionfree, then the fundamental group of
YΓ is Γ . The representation � : Γ → GL(M) thus induces a local coefficient system
M on YΓ . We can then form the cohomology spaces

H ∗(YΓ ;M). (5.2)

For more details about local coefficients see [Ste43, Brow94, Vic94]. This construc-
tion works even if Γ has torsion, although the quotient is an orbifold, not a manifold.
Nevertheless cohomology with coefficients in a local system still makes sense for
such objects. If G = SL2(R) and Γ ⊂ SL2(Z), this construction is exactly what we
did to express higher weight forms in terms of cohomology of the modular curve,

4This definition of arithmetic group suffices for our purposes because we have defined our algebraic
groups as subgroups of GLn. If one works more abstractly, then the correct condition is that Γ ⊂
G(Q) is arithmetic if for any Q-embedding ι : G → GLn, the group ι(Γ ) is commensurable with
ι(G) ∩ GLn(Z).
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cf. (2.4)–(2.5). In that case the degree k homogeneous polynomials are an incarna-
tion of the standard representation of SL2 of dimension k + 1.

We claim that the cohomology spaces (5.2), which include those in (5.1) as a
special case, provide a means to compute certain automorphic forms explicitly. Cer-
tainly it is not clear that cohomology has anything to do with automorphic forms,
although (2.4)–(2.5) give some evidence. Justifying this relationship in detail would
take us well beyond the scope of these lectures; for an excellent discussion of the
connection, we refer to [Vog97, LS01, Schw10]. What we can say is the following:

1. According to a deep theorem of Franke [Fra98], which proved a conjecture of
Borel, the cohomology groups H ∗(YΓ ;M) can be directly computed in terms of
certain automorphic forms (those that are “cohomological,” also known as those
with “nonvanishing (g,K) cohomology” [VZ84]).

2. There is a direct sum decomposition

H ∗(YΓ ;M) = H ∗
cusp(YΓ ;M) ⊕

⊕
{P}

H ∗
{P}(YΓ ;M), (5.3)

where the sum is taken over the set of classes of associate proper Q-parabolic
subgroups of G (cf. [Lan76, Chap. 2]).

The summand H ∗
cusp(YΓ ;M) of (5.3) is called the cuspidal cohomology; this is

the subspace of classes represented by cuspidal automorphic forms. The remain-
ing summands constitute the Eisenstein cohomology of Γ [Har91]. In particular the
summand indexed by {P} is constructed using Eisenstein series attached to certain
cuspidal automorphic forms on lower rank groups; one should compare (5.3) with
(2.4). Hence H ∗

cusp(YΓ ;M) is in some sense the most important part of the coho-
mology: all the rest can be built systematically from cuspidal cohomology on lower
rank groups.5

We emphasize that the cohomological automorphic forms are a very special sub-
set of all the automorphic forms, and that in some sense the typical automorphic
form will not contribute to the cohomology of an arithmetic group. For SL2/Q,
for example, it is only the holomorphic modular forms of weights ≥ 2 that appear.
Neither the (real-analytic) Maass forms nor the weight 1 holomorphic forms are
cohomological.

The underlying reason comes from the infinite-dimensional representation the-
ory of SL2(R). We can only sketch the connection here; for more details, includ-
ing undefined terms, see [Gel75, Bum97]. Any automorphic form f on SL2/Q

gives rise to an automorphic representation π . This is a certain subquotient of
L2(SL2(Q)\SL2(AQ)), where AQ is the Adele ring of Q. The representation π

5In fact the cuspidal cohomology can itself come from groups of lower rank, through functorial
liftings. The paper [AGMcC08] contains evidence of cohomological lifts of paramodular forms on
Sp4/Q to SL4/Q.
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factors as a restricted tensor product of local representations

π∞ ⊗
⊗

p prime

πp.

The factor π∞ is a unitary representation of SL2(R). Apart from the trivial repre-
sentation, the irreducible unitary representations of SL2(R) come in four families:

1. The principal series.
2. The discrete series.
3. The limits of discrete series.
4. The complementary series.

Which of these occur as π∞ depends on what f is. If f is a Maass form, then π∞
is principal series. If f is holomorphic, then π∞ is either discrete series (k ≥ 2) or
a limit of discrete series (k = 1). The complementary series do not appear as π∞.
Only the discrete series are cohomological, which is why we only see holomorphic
modular forms of weights ≥ 2 is the cohomology of the modular curves.

Since many—indeed most—automorphic forms are not cohomological, why do
we study cohomological forms? Here is one answer. Our ultimate goal is not to study
automorphic forms for their own sake, but instead to pursue links between automor-
phic forms and arithmetic. The standard example occurs in every course on modular
forms: the mysterious connection between counting points on elliptic curves over
prime fields and computing Hecke eigenvalues of weight two holomorphic cusp
forms. In general one expects that certain automorphic forms on a reductive group
G should have connections to arithmetic geometry (Galois representations). These
connections are revealed through the Hecke eigenvalues. The cohomology of arith-
metic groups gives us a way to get our hands on some automorphic forms, and
these forms are among those predicted to be related to arithmetic. Some forms we’d
like to see will be missing (e.g. weight 1 holomorphic forms), but in any event the
cohomological automorphic forms are a natural and tractable class to investigate.6

6 Reduction Theory I: The Rational Numbers

At this point we have found our analogues of the modular curves, the locally sym-
metric spaces. We need to compute their cohomology. As everyone learns in alge-
braic topology courses, to compute cohomology one needs a cochain complex, and
a first step to finding this is forming a cell decomposition of the underlying space.
For the spaces Y(N),X(N), this can be done using the Farey tessellation of the
upper halfplane. In fact, since the Farey tessellation is SL2(Z)-invariant, it leads

6Note added in proof: After this paper was prepared, dramatic progress connecting cohomology
of arithmetic groups with Galois representations was announced by Harris-Lan-Taylor-Thorne and
Scholze (see [HLTT13, Scho13]).
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to a nice triangulation of the quotient by any finite-index torsionfree subgroup of
SL2(Z). Even if a subgroup has torsion, as Γ0(N) typically does, one can still use
the Farey tessellation to compute cohomology. One can take the barycentric subdi-
vision, or can work with more sophisticated techniques that incorporate the torsion
(cf. Sect. 8). Thus, for modular curves, one has a powerful tool to compute coho-
mology.

Unfortunately, for general locally symmetric spaces Γ \D the situation is not as
nice. In fact we don’t know a good way to construct Γ -invariant subdivisions of D

for an arbitrary symmetric space! But all is not lost: we have one general tool, a tool
that works in the important case of GLn over number fields. The construction has its
origin in Voronoi’s work on reduction theory for positive-definite quadratic forms
[Vor], which we discuss in this section as a warm-up. We treat the case of general
number fields in Sect. 7.

Let us reconsider the setting of Sects. 2–3 and show a different way to build
the Farey tessellation. Let V = Sym2(R) be the three-dimensional vector space of
2 × 2 real symmetric matrices. Inside V we have the subset C of positive-definite
matrices. The set C is a convex cone: if x ∈ C then so is �x for any � ∈ R>0, and if
x, y ∈ C so is x + y. The vector space V comes with an inner product

〈x, y〉 = Trace(xy), (6.1)

and C is self-adjoint with respect to this product, namely

C = C∗ = {
y ∈ V | 〈x, y〉 > 0 for all x ∈ C

}
.

The group G = SL2(R) acts on V by (g, x) �→ gxgt , and this action preserves C.
The stabilizer of any point is a conjugate of K = SO(2). The G-action is not transi-
tive, so we can’t identify C with G/K = H, but the action is transitive after we mod
out C by homotheties. This leads to an identification

C/R>0 ∼−→ H, (6.2)

which is compatible with the action of SL2(Z) on both sides. The cone C is an
example of a real self-adjoint homogeneous cone [FK94]. Figure 2 shows C, where
we have used the coordinates (

x z
z y ). The cone is determined by the inequalities

xy − z2 > 0, x > 0. We have also indicated a few forms in C and its closure.
Now consider the closure C of C. This consists of certain rank 1 symmetric

matrices, as well as the unique rank 0 symmetric matrix. Consider the lattice Z2,
which we write as column vectors. We have a map q : Z2 → C given by q(x) = xxt .
Restricting q to Z2�{0}, we obtain a collection of nonzero points Ξ in the boundary
∂C = C �C. The image is discrete since it lies in the lattice of integral symmetric
matrices. Furthermore the action of SL2(Z) on V induces an action on these points.
As we shall see, the points Ξ are almost exactly the vertices of the Farey tessellation.

What makes (6.2) so useful is that C gives a linear model of H, apart from the
mild complication of the homotheties. In particular, given the linear structure and
convexity of C and the collection of points Ξ , the geometer’s next step is irresistible:
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Fig. 2 Cone of positive
definite binary quadratic
forms: the ellipse is the slice
of constant trace 4

take the convex hull Π of Ξ . The result is a huge polyhedron equipped with an
action of SL2(Z). Of course, there is no reason a priori that Π is a nice object, or is
even computable in any reasonable sense.

Fortunately for us, this is not the case. The polyhedron Π is very nice, with a
beautiful combinatorial structure. It has the deficiency of not being locally finite
(each vertex meets infinitely many edges), but its facets (top-dimensional proper
faces) are finite polytopes, in fact triangles. Moreover, after modding out by ho-
motheties and applying (6.2), the proper faces of Π become the vertices, arcs, and
triangles of the Farey tessellation. The connection can be understood as in Sect. 3.
Suppose (a, b)t and (c, d)t are primitive vectors giving cusps at the endpoints of an
arc in T . Then this arc is exactly the image of the edge of Π between q(a, b) and
q(c, d). Note how useful the homotheties are in (6.2). The map q “lifts” the nonzero
integral points (a, b)t , primitive or not, up along ∂C (cf. Fig. 3). When forming Π

by taking the convex hull, we group the lifts nontrivially into the faces of Π . The
projection back down to

C/R>0 ∼−→ H∪ P1(R)

then recovers the Farey triangles.
From this many properties of Π become clear:

• Modulo the action of SL2(Z), there are only finitely many vertices, edges, and
triangles in Π .

• Every edge meets finitely many triangles (namely two), but every vertex meets
infinitely many edges. Thus the polyhedron fails to be locally finite, but only “at
infinity.”

Now we turn to higher rank. Let n ≥ 2, let V be Symn(R), the real vector space
of n × n symmetric matrices. Let C ⊂ V be the convex cone of positive definite
matrices. Everything we did before goes through without trouble. Again the group
G = SLn(R) acts on C by (g, x) �→ gxgt . The quotient of C by homotheties is
isomorphic to the symmetric space D = SLn(R)/SO(n), where G acts on D by left
translations. We have a map q : Zn � {0} → C determining a point set Ξ ⊂ ∂C. The
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Fig. 3 A few facets of the
Voronoi polyhedron Π for
SL2(Z)

convex hull of Ξ is a polyhedron Π , called the Voronoi polyhedron. By construction
SLn(Z) acts on Π . The cones on the faces of Π descend to form cells in D, where
the latter is a certain natural compactification of D.

Voronoi defined and studied Π because he was interested in the reduction theory
of positive-definite quadratic forms, which essentially boils down to finding a nice
fundamental domain of SLn(Z) acting on C. To explain his results we need the
concept of a perfect form. A recent treatment of Voronoi’s work can be found in
[Sch09, Chap. 3].

Let A ∈ C, and let QA be the corresponding positive-definite quadratic form.
Given a point x ∈ Rn, regarded as a column vector, we can evaluate QA on it in a
variety of ways:

QA(x) =
∑
i,j

Aij xixj = xtAx = 〈
xxt ,A

〉
.

Thus if x ∈ Zn, then the inner product 〈q(x),A〉 gives the value of QA on the lattice
point x. The minimum m(A) of QA is by definition the minimum of 〈q(x),A〉 as x

ranges over all points in Zn � {0}. The set M(A) of minimal vectors is the subset
of Zn on which the minimum is attained. A quadratic form is called perfect if it can
be reconstructed from the knowledge of its minimum and its minimal vectors. For
instance, the binary quadratic form x2 + xy + y2 is perfect, whereas x2 + y2 is not.
Whether or not a form is perfect is unchanged under homothety.

Voronoi proved that modulo SLn(Z), the polyhedron Π has finitely many faces.
He also proved that the facets of Π are in bijection with the homothety classes
of perfect quadratic forms. Under this bijection, if F is a facet of Π with vertices
ξ1, . . . , ξk , then the inverse images of the ξi in Zn are the minimal vectors of a form
in the corresponding class.

He even gave an algorithm that, starting with an initial perfect form, produces
a list of perfect forms modulo SLn(Z), and used it to compute perfect forms for
n ≤ 5. Today we have a good understanding of the combinatorics of Π up to n = 7.
For n = 8 we know the SL8(Z)-orbits of the facets of Π , but a notorious bugaboo
living in dimension 8 challenges further progress: the E8 root lattice [DVS]. This
lattice gives rise to a perfect form whose corresponding facet of Π contains more
that 2.5 × 1014 maximal faces!
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Voronoi’s algorithm produces, as a by-product, an explicit reduction theory for C.
Consider the collection of cones Σ in C obtained by taking the cones on the faces of
Π . Modulo SLn(Z) there are only finitely many cones in Σ , and one can prove that
if a cone meets C then its stabilizer in SLn(Z) is finite. Thus the top dimensional
cones in Σ are very close to fundamental domains of SLn(Z); we saw this already
for n = 2, where each Farey triangle was a union of three fundamental domains of
SL2(Z). In particular, if Γ ⊂ SLn(Z) is torsionfree, then one can make a fundamen-
tal domain for Γ by taking a union of finitely many closed top-dimensional cones
in Σ . In any case, whether Γ has torsion or not, one can show that any point x ∈ C

lies in a unique cone σ(x) ∈ Σ . It turns out that Voronoi’s algorithm to enumerate
perfect forms leads to an algorithm that finds σ(x).

7 Reduction Theory II: General Number Fields

Voronoi’s theory is fantastic for the rational numbers, but what about other num-
ber fields? The good news is that we have tools for explicit reduction theory
there as well, thanks to work of Ash [Ash77] and Koecher [Koe60]. The former
was developed in the context of compactifying hermitian locally symmetric spaces
[AMRT75], and is in some ways more similar to Voronoi’s original theory. The lat-
ter sacrifices some of the structure of the former, but has the advantage that it works
over any number field: it can be Galois or not, CM or not, totally real or not, and so
on.

Let F/Q be a number field of degree d = r + 2s, where F ⊗R � Rr ×Cs . Let
O = OF be the ring of integers of F . Our goal is to compute the cohomology of
GLn(O) and its congruence subgroups by building cell decompositions of locally
symmetric spaces as in Sect. 6. It turns out that this can be done in a straightforward
way. There are just a few differences from the rational case.

First we need a vector space and a cone. The field F has r real embeddings
and s complex conjugate pairs of complex embeddings. For each pair of complex
conjugate embeddings, choose and fix one. We can then identify the infinite places
of F with its real embeddings and our choice of complex embeddings. For each
infinite place v of F , let Vv be the real vector space of n × n real symmetric (re-
spectively, of complex Hermitian) matrices Symn(R) (resp., Hermn(C)) if v is real
(resp., complex). Let Cv be the corresponding cone of positive definite (resp., pos-
itive Hermitian) forms. Put V = ∏

v Vv and C = ∏
v Cv , where the products are

taken over the infinite places of F . We equip V with the inner product

〈x, y〉 =
∑

v

cv Trace(xvyv), (7.1)

where the sum is taken over the infinite places of F , and cv equals 1 for v real and
2 for v complex. Once again, the cone C is self-adjoint with respect to this inner
product.
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Koecher calls C a positivity domain; one can regard it as the cone of real-valued
positive quadratic forms over F in n-variables. Specifically, if A ∈ C is a tuple (Av),
then A determines a quadratic form QA on Fn by

QA(x) =
∑

cvx
∗
vAvxv,

where cv is defined in (7.1) and ∗ denotes transpose if v is real, and conjugate
transpose if v is complex. Such forms are sometimes called Humbert forms in the
literature. Note that we do not require that (Av) arises from a matrix with entries in
F via the embedding F → F ⊗R. Instead each Av is an independent matrix in its
Cv .7

The group G = GLn(R)r × GLn(C)s acts on V by

(g · y)v =
{

gvyvg
t
v, v real,

gvyvg
t
v, v complex.

This action preserves C, and exhibits G as the full automorphism group of C. In
fact, we can identify the quotient C/R≥0 of C by homotheties with the globally
symmetric space D = G/KAG, where K � O(n)r × U(n)s is a maximal compact
subgroup of G and AG is the split component, cf. Sect. 4.

Now we construct a subset Ξ ⊂ ∂C. We can do almost exactly what we did
before; we just have to take the different embeddings of F into account.

In particular, the nonzero (column) vectors On � {0} determine points in V via

q : x �−→ (
xvx

∗
v

)
. (7.2)

We have q(x) ∈ ∂C for all x ∈ On, and we define

Ξ = {
q(x) | x ∈ On � {0}}.

These points play the same role for the forms in C that the lattice points did for
positive-definite quadratic forms in Sect. 6. In particular, they lead to a notion of
perfection. Given A ∈ C we define its minimum to be

m(A) = inf
ξ∈Ξ

〈ξ,A〉

and its minimal vectors by

M(A) = {
ξ ∈ Ξ | 〈ξ,A〉 = m(A)

}
.

A form is called perfect if it can be recovered from the knowledge of m(A) and
M(A).

7Although this construction sounds strange, we shall see that it is a reasonable notion of forms
over F . Not every quadratic form of interest comes from a matrix A that is the image of a matrix
from F under the embeddings; in particular the perfect forms defined in this section usually do not
come from a matrix over F .
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With this set up, Koecher proves that perfect forms exist, and that every perfect
form has finitely many minimal vectors. Given a perfect form A, let σ(A) ⊂ C be
the cone

σ(A) =
{∑

�ξ ξ

∣∣∣ ξ ∈ M(A), �ξ ≥ 0
}
.

Koecher calls σ(A) a perfect pyramid, and proves that they behave almost identi-
cally to Voronoi’s perfect cones:

1. Any compact subset of C meets only finitely many perfect pyramids.
2. Two different perfect pyramids have no interior point in common.
3. Given any perfect pyramid σ , there are only finitely many perfect pyramids σ ′

such that σ ∩σ ′ contains a point of C (which, by item (2), must lie on the bound-
aries of σ , σ ′).

4. The intersection of any two perfect pyramids is a common face of each.
5. Let σ be a perfect pyramid a τ and codimension one face of σ . If τ meets C,

then there is another perfect pyramid σ ′ such that σ ∩ σ ′ = τ .
6. We have

⋃
σ∈Σ σ ∩ C = C.

Now we bring our discrete group into the picture. The group GLn(O) acts on C

and takes Ξ into itself. It clearly acts on the set of perfect pyramids and thus on the
cones in Σ . Koecher proves that there are finitely many GLn(O)-orbits in Σ , and
that each σ ∈ Σ that meets C has at worst a finite stabilizer. Quotienting the entire
picture out by homotheties, we wind up with a picture exactly analogous to the Farey
tessellation of the upper halfplane, and we can use the resulting decomposition of the
symmetric space D to compute cohomology of finite-index subgroups of GLn(O).

We conclude this discussion with two points. First, it is essential that we use GLn

instead of SLn. To pass from C to the SL-symmetric space DSL, we would need to
divide each factor Cv by R>0, not just the product. In fact, one passes from DGL to
DSL by dividing out by the group of real points of the unit group. This kills the flat
factor (and explains why it has the same dimension as the rank of O×). But we only
know how to do the explicit reduction theory for the full cone C, and so we have to
keep the flat factor. Second, when F = Q, we can construct the cones in Σ by taking
cones on the faces of the Voronoi polyhedron Π . For general F , we can define the
Koecher polyhedron to be the convex hull of Ξ . It’s not hard to see that any perfect
form gives rise to a facet of Π , but the converse is not clear. One needs to know that
the perfect pyramids have no dead ends (cf. [DSV08, §3]). More discussion can be
found in [GY13, §2].

8 The Cohomological Dimension and Spines

In Sect. 7 we explained how to find the analogues of the Farey tessellations for GLn

over number fields. In this section we want to explain how to use them to compute
cohomology.

Let Γ be an arithmetic group in a reductive Q-group G. Assume for the moment
that Γ is torsionfree. Let D = G/KAG be the global symmetric space, and let YΓ
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Fig. 4 The retract inside H

be the locally symmetric space Γ \D. Let M be a Z[Γ ]-module and let M be the as-
sociated local system on YΓ . Then the cohomological dimension of Γ is defined to
be the smallest integer ν such that Hi(YΓ ;M) = 0 for all M [Ser71, §1.2]. We ex-
tend this to Γ with torsion by defining the virtual cohomological dimension vcd(Γ )

to be the cohomological dimension of any finite-index torsionfree subgroup of Γ

[Ser71, §1.8]. One can show that this is well-defined.
It turns out that one can compute the virtual cohomological dimension for any

arithmetic group. By a result of Borel-Serre [BS73, Theorem 11.4.4], we have

vcd(Γ ) = dim(D) − rQ
(
G/R(G)

)
, (8.1)

where R(G) is the radical. In general this is less than the dimension of D, which is
the same as the dimension of YΓ . For instance, if G = SL2/Q, then D = H, which
has (real) dimension 2, and rQ(G) = 1 (the radical is trivial since G is semisimple).
Thus the cohomology of the open modular curve Γ \H vanishes in degrees > 1. For
G = RF/QGLn, where F ⊗R � Rr ×Cs , we have

dim(D) = r · n(n + 1)

2
+ s · n2 − 1, rQ

(
G/R(G)

) = n − 1.

For some examples of these numbers, see Table 1 on p. 38.
For our main groups of interest, there is a way to understand geometrically why

vcd(Γ ) should be given by (8.1). We first consider the simplest case: G = SL2/Q.
Consider the Farey tessellation of H. Inside the tessellation one can find a regular
3-tree W that’s dual to the tessellation (Fig. 4). The vertices of W lie at the SL2(Z)-
translates of ω = e2π i/3, and the edges meet the edges of the Farey tessellation at
the SL2(Z)-translates of i. The tree, like the tessellation, is an SL2(Z)-equivariant
collection of cells, but it has an advantage over the tessellation: modulo any finite
index subgroup Γ ⊂ SL2(Z), the tree is compact. For instance, if one takes Γ =
Γ (N) for N = 3,4,5 and computes Γ \W , the result is once again very familiar
(cf. [Pla]).

But there is still more: not only is W modulo Γ compact, it is actually an SL2(Z)-
equivariant deformation retract of H. In other words, there is a continuous map
r : H → W that is SL2(Z)-equivariant and is the identity when restricted to W .

This means

H ∗(YΓ ;M) ∼−→ H ∗(Γ \W ;M)
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for any finite-index subgroup Γ . Since Γ \W is compact and of lower dimension
than YΓ , it is easier to work with.

This motivates the following definition. Let D be a symmetric space acted on
by an arithmetic group Γ . We say that a subspace W ⊂ D is a spine for Γ if the
following hold:

1. There is a Γ -equivariant deformation retraction of D onto W .
2. W is a locally finite regular cell complex of dimension vcd(Γ ).
3. Γ acts on W with finite stabilizers, and modulo Γ there are only finitely many

cells in W .

Spines are only known for a few symmetric spaces, and almost all of those are some
form of GLn. For GL2/Q the existence of a spine is classical. For GLn/Q, n ≥ 3,
spines were constructed by Ash, Soulé, and Lannes-Soulé [Ash84, Ash77, Sou75].
For GL2/F when F is imaginary quadratic, spines were built by Mendoza [Men79],
Flöge [Flö83], and Vogtmann [Vog85]. The most general construction along these
lines is due to Ash, and is known as the well-rounded retract [Ash84]. It treats
G such that G(Q) = GLn(A), where A is a division algebra over Q. This in-
cludes RF/QGLn. Outside of these cases, spines are only known sporadically. Yasaki
proved a spine exists when G has Q-rank one and gave complete details for SU(2,1)

over Q(
√−1) [Yas06, Yas08]. McConnell-MacPherson [MMcC93, MM89] con-

structed a spine for Sp4/Q.
Ash’s construction [Ash84] provides a spine for RF/QGLn; in fact he builds an

(h − 1)-parameter family of spines, where h is the class number of O. For our
purposes we prefer to follow an idea in Ash’s earlier paper [Ash77], which gives a
spine beginning from a Koecher-like decomposition. This has the advantage that the
resulting spine is clearly dual to the cones in Koecher fan, just like the tree is dual
to the Farey tessellation. We only sketch the construction here, and leave the details
to the reader.

Consider the 1-dimensional cones in the Koecher fan Σ . Each contains a distin-
guished point, namely the first point in Ξ that lies on it. We call this point a spanning
point of the 1-cone, and thus for any cone in Σ we can speak of its spanning points.
Using the spanning points, we can form the barycentric subdivision of the cones in
Σ to make a new fan Σ̃ . Note that GLn(O) acts on Σ̃ .

The fan Σ has the property that any cone of dimension n − 1 cannot meet C,
i.e. such cones lie in ∂C. We define a subcone W ′ ⊂ C by taking the union of all
cones in Σ̃ that are contained entirely in C. We claim that W = W ′/R>0 gives the
spine in D.

Figure 5 illustrates this for SL2/Q, after we’ve modded out by homotheties; thus
this represents a “cross-section” of what’s happening in the cone C. The triangle on
the left is taken from the Farey tessellation and has vertices at infinity. The triangle
in the middle has been barycentrically subdivided. The heavy lines in the triangle
on the right are pieces of the retract W . Note that the edges in the spine are actually
unions of cells from the barycentric subdivision. This is what happens in general:
the cells in W will be glued together from cells arising from Σ̃ mod homotheties.
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Fig. 5 Subdividing the Farey tessellation to make a spine

From this construction it is not hard to see that W meets all the criteria to be a
spine. For instance, the retraction is done piecewise-linearly, simply by appropri-
ately projecting within each cone in Σ̃ (cf. [Ash77, §3]). The stabilizer of a cell in
W is the same as the stabilizer of the dual cone in Σ . These stabilizers are finite,
since the dual cones meet C.

We end this section with a few words about how one can use W to compute
the cohomology of YΓ . If Γ is torsionfree, there is not much to say. One simply
takes the regular cell complex Γ \W and proceeds as usual in algebraic topology
courses. But if Γ has torsion, as most of the Γ do that we care about, the situation
is more complicated. We can’t simply divide out by the action of Γ , since there can
be nontrivial stabilizer subgroups.

One solution to this dilemma would be to pass to the barycentric subdivision W̃

of W . It’s not hard to see that all Γ -stabilizers in W̃ are trivial for any Γ , so Γ \W̃ is
a regular cell complex. But this is not always such a useful path to take. The number
of Γ -orbits in W̃ , for instance, will be much greater than the number in W . It’s
also less clear how to use W̃ to compute the action of the Hecke operators on the
cohomology, cf. Sect. 11.

Another solution is to compute the equivariant cohomology H ∗
Γ (W,M). This is

a ramped-up version of cohomology that takes into account the stabilizers. Usu-
ally when a group acts on a space, the equivariant cohomology computes dif-
ferent information from the cohomology of the quotient, but we’re lucky in this
case: we have an isomorphism H ∗

Γ (W ;M) � H ∗(Γ \W ;M). In particular, we have
H ∗

Γ (W ;C) � H ∗(Γ \W ;C). To prove this one uses a spectral sequence relating the
two cohomology theories; for more information see [Brow94, Chap. VII] (in the
language of homology) or [AGMcC02, §3]. What makes everything work is that (1)
the stabilizers on W are finite and (2) the local systems we consider come from com-
plex representations of our discrete group. In particular, the orders of the stabilizers
are invertible in the ring over which the coefficient modules are defined.

The paper [AGMcC02] explains in great detail how to compute the boundary
maps one needs to compute H ∗

Γ (W ;C). Another presentation can be found in
[EVGS]. The amazing fact is that, after all the dust settles, the boundary map is
essentially what one would make from the Koecher fan! In other words, there is
a natural chain complex one could build from the cones in Σ . One simply takes
the free abelian groups generated on the oriented cones that meet C, and then the
boundary map is induced from passing from a cone to the codimension one cones
on its boundary. This gives a chain complex that mod Γ computes the cohomology
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of YΓ , at least if Γ is torsionfree. If Γ has torsion, then the boundary maps must
include information about the stabilizers in its definition and things get more com-
plicated (cf. [AGMcC02]); otherwise the construction is the same. The indexing in
this scheme is very pleasant: the cones of codimension k in Σ induce the chain
group that captures Hk .

9 Hecke Operators and Modular Symbols

It is now time to talk about Hecke operators. They are a collection of linear maps
on the cohomology, and their eigenvalues reveal the arithmetic lurking in the coho-
mology.

We fix a reductive group G and an arithmetic group Γ . The symmetric space
(resp., locally symmetric space) is denoted D (resp., YΓ ) as usual. Let g ∈ G have
the property that Γ and g−1Γ g have finite index in Γ ′ = Γ ∩ g−1Γ g. We get a
diagram

Γ ′\D
ts

Γ \D Γ \D,

(9.1)

where the map t is the composition of Γ \D → g−1Γ g\D with the diffeomorphism
g−1Γ g\D → Γ \D given by multiplication on the left by g:

g−1Γ gx �−→ Γ gx.

The diagram (9.1) is called a Hecke correspondence. The condition on g ensures
that s, t are finite-to-one maps.

The diagram (9.1) induces a map on cohomology, namely

t∗s∗ : H ∗(YΓ ;M) −→ H ∗(YΓ ;M). (9.2)

The map s∗ is just the usual map s induces on cohomology, but t∗ only makes
sense because t has finite fibers. This kind of map is sometimes called a “wrong-
way” map. It can be built using integration over the fibers, if one uses de Rham
cohomology [BT82], or via the transfer map in group cohomology [Brow94, III.9].
The map (9.2) is called an Hecke operator and is denoted Tg . For instance if one

takes G = SL2/Q and g = ( 1 0
0 p

)
, one gets the classical operator Tp .

The Hecke operators satisfy many properties. For instance, the correspondence
and the operator depend only on the double coset Γ gΓ . The operators form an
algebra by composition. Given any g as above, we can write

Γ gΓ =
⊔
h∈Ω

Γ h, (9.3)
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Fig. 6 Hecke correspondences don’t preserve the tessellation

where the Ω is a finite set (i.e., the double coset Γ gΓ is a finite union of single
cosets). Thus the diagram (9.1) can be thought of as a “multi-valued function” on
YΓ :8 We have

Γ x �−→ {Γ hx}h∈Ω. (9.4)

Many details about the Hecke operators on GLn/Q, especially the algebra structure,
can be found in [Shi71, Chap. 3].

We are keenly interested in using topological tools to determine eigenvalues and
eigenclasses of the Hecke operators in cohomology. But unfortunately we cannot di-
rectly use the cell decompositions we constructed in Sects. 6–7 to achieve this. The
problem is that the Hecke correspondences do not act cellularly on our decomposi-
tions, and so we cannot easily write the Hecke operator as a linear map on our chain
complexes. This is already visible for SL2(Z): the Farey tessellation is not taken into
itself under the “map” (9.4). To see this, take g = ( 1 0

0 2

)
and consider the edge from

0 to ∞, which is colored green in Fig. 6. We have Ω = {( 1 0
0 2

)
,
( 2 0

0 1

)
,
( 1 1

0 2

)}
. After

applying (9.4), this edge is taken to itself with multiplicity two and the red edge in
Fig. 6, which runs from 1/2 to ∞. The red edge isn’t an edge in the tessellation.

How to deal with this problem? One solution is to simply refine the cell decom-
position to include these new edges. In fact for T2 on the upper halfplane this is not
an unreasonable approach. It’s not hard to see that essentially all one needs to do is
to add all the SL2(Z)-translates of the red edge and to take the common refinement
of them with the original Farey triangles. A similar strategy can be applied to Tp .
The problem is that this will only allow one to compute a single Hecke operator at a
time, with the geometric complexity rapidly increasing as p increases. Usually one
wants to be able to compute many Hecke operators, for as many p as possible.

Another solution is to build a bigger complex with Γ -action that also computes
H ∗(YΓ ) but has the additional property of admitting a Hecke action. Such a complex
can’t possibly be finite modulo Γ , so a priori is not computationally useful.

The example of SL2/Q is instructive. We recall from Sect. 3 how we used
the Farey triangulation to compute cohomology. There we took a congruence sub-
group Γ ⊂ SL2(Z) and let XΓ be the compactified modular curve. The chain com-
plex built from the Farey tessellation allowed us to compute the relative homology

8According to R. MacPherson, the great geometers of old were perfectly comfortable with multi-
valued functions and would have embraced such a perspective. It is only modern mathematicians
who have the paucity of imagination to insist that functions be single-valued.
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H1(XΓ , ∂XΓ ;C). We now need to add edges to this triangulation to account for
the Hecke images. A little experimentation with (9.4) quickly convinces one that
one needs to add the images (under the projection H∗ → XΓ ) of all geodesics in
H∗ from cusp to cusp, if one wants to include all possible Hecke images of Farey
edges. This is now a huge collection of geodesics. It’s clearly not Γ -finite, since the
absolute value of the determinant of a pair of cusps is preserved by Γ (cf. (3.2)).
Nevertheless, we’ll see that this is a good idea.

Thus one is naturally led to a new model for H1(XΓ , ∂XΓ ;C). One considers
the C-vector space U generated by symbols u = [x1, x2], where each xi is a cusp.
We think of the symbol u as corresponding to the class in H1(H

∗, ∂H∗;C) of the
oriented geodesic from x1 to x2. As such, these symbols have to satisfy some obvi-
ous relations. For instance, [x2, x1] = −[x1, x2], since the geodesics have opposite
orientations. Certainly [x1, x1] = 0, since the geodesic is a point. The most compli-
cated one is the three-term relation, which says

[x1, x2] + [x2, x3] + [x3, x1] = 0. (9.5)

This simply says that if three geodesics form the oriented boundary of a triangle, the
sum of their classes should vanish. The space U is the space of modular symbols.
It has a Γ -action since Γ acts on the cusps, and we let UΓ be the quotient U by
relations of the form u−γ ·u (i.e., the space of coinvariants). Then UΓ is isomorphic
to H1(XΓ , ∂XΓ ;C) and admits a Hecke action: if Γ gΓ has the decomposition
(9.3), then

Tg(u) =
∑
h∈Ω

h · u. (9.6)

By (3.1) this corresponds to a Hecke action on H 1(YΓ ;C), and thus on the weight
two modular forms.

Now we connect this back to our original model for the relative H1, which came
from the Farey tessellation. Clearly the Farey tessellation determines a subspace
U ′ ⊂ U , the subspace generated by unimodular symbols, which by definition are
the symbols with determinant ±1 (cf. (3.2)). This is an easier space to work with
since the space of coinvariants U ′

Γ is finite. So our computational problem becomes
the following:

1. Start with a cycle η ∈ U ′
Γ , representing a class in H1(XΓ , ∂XΓ ;C).

2. Lift η to sum of symbols η̃ = ∑
auu and thus to an element of U ′, which deter-

mines an element of U .
3. Now apply the Hecke operator (9.6) to compute Tg(̃η). Thus will lie in U and

not U ′ in general.
4. Somehow push Tg(̃η) to an equivalent element in U ′. Here “equivalent” means

that we are allowed to rewrite Tg(̃η) using the defining relations for U , such as
(9.5). The goal is to obtain a sum

θ̃ =
∑

buu,

where each u is unimodular.
5. Then one projects θ̃ back down to U ′

Γ .
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Fig. 7 Making the red modular symbol unimodular

Of course step (4) is the subtle part of this process; this is where all the action
takes place. For modular symbols on SL2/Q, step (4) is done through a version of
the continued fraction algorithm and is known as Manin’s trick. See [Ste07, Propo-
sition 3.11] for an exposition.

Since our goal is to treat more complicated groups, here we content ourselves
with showing what happens to the red modular symbol from Fig. 6. We can push it
back to the unimodular subspace by applying one three-term relation, which writes
it as the sum of the two orange modular symbols in Fig. 7.

10 The Sharbly Complex

We return to G = RF/QGLn. Our goal is to describe a complex S∗ with Hecke
action that computes H ∗(YΓ ;C). This will take the place of the modular symbols
U from Sect. 9. In fact it will turn out that U is the quotient S0/∂S1, where ∂ is the
boundary map in the complex. Like the modular symbols, this complex will be built
from tuples of “cusps,” but now the cusps will be equivalence classes of the points
we used in the construction of the Koecher fan.

Recall that for any x ∈ On � {0}, we have constructed a point q(x) ∈ C (see
(7.2)). Write x ∼ y if there exists λ ∈R>0 such that q(x) = λq(y). Thus x is equiv-
alent to y if they determine the same ray in C. Let Ak be the set of formal C-linear
sums of symbols u = [x1, . . . , xk+n], where each xi is in On � {0}. Let Ck be the
submodule generated by the elements

1. [xσ(1), . . . , xσ(k+n)] − sgn(σ )[x1, . . . , xk+n] for any permutation σ on (k + n)

letters,
2. [x, x2, . . . , xk+n] − [y, y2, . . . , yk+n] if x ∼ y, and
3. u if x1, . . . , xk+n are contained in a hyperplane (we say u is degenerate).

The quotient Sk = Ak/Ck is called the space of k-sharblies. We define a boundary
map ∂ : Sk+1 → Sk by linearly extending

∂[x1, . . . , xk+n] =
k+n∑
i=1

(−1)i[x1, . . . , x̂i , . . . , xk+n], (10.1)

where x̂i means omit xi . The resulting complex S∗ is called the sharbly complex.
Note that S∗ is a homological complex—the boundary maps decrease degrees.
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For example, let G = SL2/Q. Two points x, y ∈ Z2 � {0} satisfy x ∼ y if and
only if they determine the same cusp of the upper halfplane. The defining relations
for C0, together with the additional relations obtained from the image of ∂(S1), are
exactly the relations used to build U .

The complex S∗ has a left Γ -action for any subgroup Γ ⊂ GLn(O): if g ∈ Γ and
u = [x1, . . . , xk+n], then g ·u = [gx1, . . . , gxk+n]. The Γ -action commutes with the
boundary, so we can form the complex (S∗)Γ of coinvariants. We claim

H vcd(Γ )−k(YΓ ;C) ∼−→ Hk

(
(S∗)Γ

)
.

This follows from Borel-Serre duality, as we now explain. We first need to recall the
Steinberg module.

Let V = Fn be an n-dimensional vector space over F . We build a simplicial
complex T , called the Tits building, from this vector space as follows. The vertices
are the proper nonzero subspaces of V . Subspaces V1, . . . , Vk+1 determines a k-
simplex if they can be arranged into a flag

{0}� V1 � V2 � · · ·� Vk+1 � V.

By the Solomon-Tits theorem, T has the homotopy type of a bouquet of (n − 2)-
spheres.9 In particular the reduced homology groups H̃∗(T ) are nonzero only in
degree (n − 2).

One can construct classes in H̃n−2(T ) by taking the fundamental classes of apart-
ments: one chooses a basis E = {v1, . . . , vn} of V and considers all the possible flags
that can be constructed from E by taking spans of permutations of subsets. By ap-
propriately choosing signs one obtains a class 〈v1, . . . , vn〉 ∈ H̃n−2(T ). It is known
that such classes span the homology. We have an action of G(Q), and by definition,
the Steinberg module Stn is the G(Q)-module H̃n−2(T ).

For instance, suppose n = 3 and F = Q. Then the vertices of T come in two
types, namely those indexed by lines and those indexed by planes. Two vertices
are joined by an edge if one corresponds to a line and one to a plane, and the line
is contained in the plane. There are no higher-dimensional simplices. Thus T is a
graph, which certainly has the homotopy type of a bouquet of circles. If we fix a
triple of lines in Q3 only meeting at the origin, we can determine 3 planes by taking
their pairwise spans. Thus we obtain 6 different flags whose edges can be grouped
together into a hexagon (Fig. 8; the white (resp., black) dots correspond to the lines
(resp., planes)). The classes of all such hexagons span H̃1(T ).

Now we are ready to connect the Steinberg module to the sharbly complex. The
Borel-Serre duality theorem [BS73] states that for any arithmetic group Γ ⊂ G(Q),
we have

H vcd(Γ )−k(YΓ ;C) ∼−→ Hk(Γ ;Stn ⊗C).

A more general result holds for the local coefficient systems M; one simply replaces
Stn ⊗ C with Stn ⊗ M . Thus to compute the cohomology of Γ , we need to take a

9A bouquet of spheres is wedge sum of a set of spheres.



Lectures on Computing Cohomology of Arithmetic Groups 29

Fig. 8 A cycle in the Tits
building

resolution of the Steinberg module. This is what the sharbly complex gives us. We
have a map

ε : S0 −→ Stn

gotten by taking the 0-sharbly u = [x1, . . . , xn] to the class 〈x1, . . . , xn〉. It is not
hard to see that the composition ∂ ◦ ε : S1 → Stn vanishes, so we get a map of
complexes S∗ → Stn (we regard Stn as being a complex concentrated in degree 0).
The sharbly complex itself is easily seen to be acyclic, and thus it furnishes us with
a resolution of Stn.

Hence we can use the sharbly complex to compute the cohomology H ∗(YΓ ;C).
By extending the coefficients of the sharbly complex, we can even use it to compute
the cohomology with coefficients H ∗(YΓ ;M). The sharbly complex admits an ac-
tion of the Hecke operators. Suppose η ∈ (Sk)Γ is a cycle. Then we can lift η to a
k-sharbly chain η̃ = ∑

auu ∈ Sk , where au ∈C and almost all coefficients are zero.
If a Hecke operator T has coset representatives Ω , as in (9.3), then we put

μ̃ = T (̃η) =
∑

au(h · u).

In general μ̃ will depend on our choice of Ω , but the image μ of μ̃ in (Sk)Γ will
not. Thus we can define T (η) to be μ.

At this point we find ourselves in a very similar position to that in Sect. 9. We
have a complex S∗ that allows to compute the cohomology of YΓ , a complex that
is the analogue of the modular symbols U . The only glitch is that each Sk isn’t
finite modulo Γ . This is easy to see. If u = [x1, . . . , xn] is a 0-sharbly, we can
compute how “big” it is using determinants. For any x ∈ On � {0}, let x′ ∈ On � {0}
denote the unique point such that x′ ∼ x and q(x′) is closest to the origin in the ray
through q(x). We define Size(u) = |NF/Q det(x′

1, . . . , x
′
n)| ∈ Z>0. If is clear that

Size is constant on GLn(O)-orbits in S0, and that Size is unbounded on S0.
Hence we have an analogue of the space of modular symbols. What’s missing

is the analogue of the unimodular subspace U ′. This subspace U ′ has two charac-
terizations: it can be defined as the space spanned by (i) determinant one modular
symbols, or (ii) modular symbols whose support is an edge in the Farey tessellation.
By coincidence these are the same condition for SL2(Z), but this is not necessarily
true in other settings. Our perspective is that the second criterion is more robust, and
works better for other groups.

Thus the decompositions we constructed in Sects. 6–7 return to the stage. Recall
that Σ is the fan of Koecher cones in the closed cone C, and that the quotient C/R>0
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Fig. 9 Reduced 1-sharblies
from a cone on a square

is a model for the symmetric space associated to G. Recall also that we can compute
the cohomology H ∗(YΓ ;C) by computing the equivariant cohomology H ∗

Γ (W ;C)

of the retract W dual to Σ , and that the complex used to do this is essentially the
chain complex on the Koecher cones. Since the Koecher cones are encoded by tuples
of nonzero points in On, just as the sharblies are, it is irresistible to try to build a
“Koecher” subcomplex of S∗ corresponding to the Koecher cones. In fact this is
basically what the unimodular subspace is: it comes from the subcomplex of S0
built from the Farey edges, i.e. the Voronoi 2-cones.

This is the idea that will eventually allow us to compute the action of the Hecke
operators on the cohomology, but implementing it is not as straightforward as one
might hope. An immediate problem is that the Koecher cones need not be simplicial.
Hence for some Koecher cones there is not an obvious way to build a corresponding
sharbly chain.

One way to deal with this is as follows. A basis k-sharbly u = [x1, . . . , xk+n]
induces a collection of rays R>0q(x1), . . . ,R>0q(xk+n) in C. We say u is reduced
if there is a top-dimensional Koecher cone that contains these rays. We say a k-
sharbly chain is reduced if all its basis sharblies are reduced. Note that a sharbly
being reduced is not the same as saying that these rays span a cone in the fan Σ ,
since the cones in Σ aren’t necessarily simplicial.

Reduced sharblies are our analogue of unimodular symbols. It is clear that the
reduced sharblies form a subcomplex of S∗, since the boundary of any reduced
sharbly chain is reduced. Let R∗ be this complex. It is finite modulo Γ , since there
are only finitely many Koecher cones modulo Γ .

Thus (R∗)Γ looks like a good candidate to compute H ∗(YΓ ;C), but unfortu-
nately it doesn’t work. The problem is that because the Koecher fan isn’t simplicial,
the complex (R∗)Γ could be missing some identifications necessary to capture the
cohomology we want. Rather than pursuing a complete presentation, which is not
necessary for our purposes, we give an example to illustrate what’s going on.

Suppose that n = 2 and that Σ contains a 3-cone σ that is a cone on a square;
this is the simplest way Σ can fail to be non-simplicial. There are four reduced 1-
sharblies “associated” to σ , namely those corresponding the four simplicial cones
obtained by drawing the two different diagonals across the square (Fig. 9 shows a
cross section). Let’s call these 1-sharblies u1, . . . ,u4. Certainly we want to have the
relation u1 + u2 = u3 + u4. If the stabilizer of σ in Γ includes rotation by 90◦,
then we can pick it up when we pass to the coinvariants. But if we don’t have this
rotation we may miss a relation we clearly want, and YΓ might appear to have extra
cohomology.

There are three ways out of this problem:
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1. We can ask for less by restricting ourselves to torsionfree Γ . Then we can take
each cone σ ∈ Σ and can simplicially subdivide it without adding new rays.
Since Γ is torsionfree we can perform this subdivision Γ -equivariantly. We can
define a subcomplex R′∗ ⊂ R∗ corresponding to these cones. Then (R′∗)Γ is
finite and computes the cohomology of YΓ . But this possibility is rather unap-
pealing, since our main groups of interest (analogues of Γ0(N) ⊂ SL2(Z)) have
torsion in general.

2. We can steel ourselves and can work with R∗. We just add all the extra relations
we need. In particular, if two unions of cones corresponding to two sets of re-
duced k-sharblies form the same cone in C, then we pick up a relation, exactly
as Fig. 9 tells us that u1 + u2 = u3 + u4. This can be somewhat painful to work
out, but there are only finitely many possibilities to worry about, and often the
stabilizers of the Koecher cones can help.

3. We can gamble and only compute cohomology in the degrees where the Koecher
fan is simplicial. In particular suppose we are interested in the cohomology group
H vcd(Γ )−i . Then we want to work with k-sharblies for k = i − 1, i, i + 1. If
the Koecher fan is simplicial in these dimensions, then we can use R∗ without
having to muck around with subdivisions.

The last idea sounds somewhat crazy, but it turns out to work very well in practice:
experience teaches us that in many examples the Koecher fan is simplicial up to
cones of relatively large dimension. Even better, for various reasons we may only
care about the small-dimensional cones in Σ , where Σ is often simplicial. For in-
stance this is what happens in the computations described in Sect. 12. In the next
section, we will try to explain this.

11 Hecke Operators and Sharbly Reduction

In this section we finally describe how to use the sharbly complex to compute the
action of the Hecke operators. We will explain what happens in the mysterious step
(4). However, we must come clean at the very beginning, and confess that we don’t
actually have a proof that our techniques to compute Hecke operators work. Nev-
ertheless, the techniques are robust enough that they have worked in every attempt,
without fail. We frame the discussion in a sequence of heuristics.

Before we begin, we must discuss the cuspidal range. Recall the decomposition
(5.3) from Sect. 5:

H ∗(YΓ ;C) = H ∗
cusp(YΓ ;C) ⊕

⊕
{P}

H ∗
{P}(YΓ ;C). (11.1)

Here we have taken cohomology with trivial coefficients. The cuspidal cohomology
H ∗

cusp is the most interesting summand from our point of view, since it corresponds
to certain cuspidal automorphic forms; these are our analogues of the weight two
holomorphic modular forms.
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This decomposition only tells us that there is a summand for the cusp forms.
It doesn’t say anything about which cohomological degrees actually contain cus-
pidal cohomology, so where does it live? It turns out that cuspidal cohomology is
a rather picky beast: outside of a certain interval, called the cuspidal range, the
cuspidal cohomology vanishes. One can get an estimate for this range using the
structure theory of G = G(R) [LS01, §2.C]. Assume that G = RF/QSLn, so that
G � SLn(R)r × SLn(C)s , with maximal compact subgroup K � SO(n)r × SU(n)s

and associated symmetric space D = G/K . Let r(G) = rC(G) be the absolute rank
of G, and let l0(G) = r(G) − r(K). Then for any coefficient system M as before
and any arithmetic group Γ , we have

Hi
cusp(YΓ ;M) = 0

unless

b(Γ ) := 1

2

(
dimD − l0(G)

) ≤ i ≤ 1

2

(
dimD + l0(G)

) =: t (Γ ). (11.2)

For instance, if F = Q then r(SL2(R)) is the rank of SL2(C), which is 1, and
r(SO(2)) is the rank of SO(2,C), which is 1. Thus l0 = 0, and the cuspidal co-
homology occurs in degree 1 = (dimH)/2. This is why we see the holomorphic
cuspidal modular forms in H 1. For SL3 we have r(SL3(R)) = 2, but r(SO(3)) = 1
(since this is the rank of SO(3,C), which has Cartan-Killing type B1 � A1). Thus
l0 = 1. The space D has dimension 5, and so cuspidal cohomology can only show
up in degrees 2 ≤ i ≤ 3.

The case of F imaginary quadratic is also interesting. We have G = SL2(C),
thought of as a real Lie group, not a complex Lie group. Thus r(SL2(C)) = 2, since
G(C) is two copies of SL2(C). On the other hand r(SU(2)) = 1, since SU(2) is the
compact form of SL2(C). Hence l0 = 1, and since dimH3 = 3, cuspidal cohomology
can only occur in degrees 1 ≤ i ≤ 2.

What about the difference between G = RF/QGLn and G′ = RF/QSLn? The
only difference in the locally symmetric spaces attached to these two groups is that
the GL-space YΓ is a torus bundle over the SL-space Y ′

Γ . One can find a Γ ⊂
GLn(O) such that this bundle is trivial, which means (by the Künneth theorem) that
H ∗(YΓ ) = H ∗(T ) ⊗ H ∗(Y ′

Γ ), where T � (S1)r+s−1. From this it is clear that the
formula (11.2) becomes

b(Γ ) := 1

2

(
dimD − l(G)

) ≤ i ≤ 1

2

(
dimD + l(G)

) =: t (Γ ), (11.3)

where l(G) = l0(G′(R)) + r + s − 1. Notice that the lower bound b(Γ ) doesn’t
change. The upper bound t (Γ ) grows, but the difference vcd(Γ ) − t (Γ ) doesn’t
change. Table 1 gives some examples of these numbers.

Thus the cuspidal cohomology only occurs in a restricted range. Furthermore,
if a given cusp form contributes to any cohomology group in this interval, then it
does so to all of them, and in an easily understood way. Therefore if one wants to
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compute cuspidal cohomology, one might as well pick a single group in the cuspidal
range to study.

Now we work with k-sharbly cycles. There are two reasons we prefer to make k

as small as possible. First, in many examples the Koecher fan is simplicial in low di-
mensions; thus it is easy to map the chain complex coming from the reduction theory
into the sharbly complex. Second, k-sharbly cycles become more difficult to handle
as k increases, since our main tool is to modify k-sharbly cycles

∑
a[x1, . . . , xk+n]

by fiddling with subtuples of the xi of order n. This leads to our first heuristic:

(A) It is better to work with sharbly cycles in low degree, and thus with cohomology
in high degree.

In fact, to date we have focussed on k-sharbly cycles when k = 0 or 1, for the
number fields F where the cuspidal cohomology contributes either to vcd(Γ ) or
vcd(Γ ) − 1. Some of these cases have been previously studied using other tech-
niques. Indeed this prior work was extremely important to us; our work would not
have been possible without it.

11.1 0-Sharblies

We begin with 0-sharblies and F = Q. Let u = [x1, . . . , xn] be a 0-sharbly. We may
assume each xi is primitive, which is equivalent to xi = x′

i . Call u unimodular if
Size(u) = 1. Unimodular 0-sharblies are reduced in the sense of Sect. 10, since they
are all equivalent to v = [e1, . . . , en] modulo GLn(Z), where {ei} is the standard ba-
sis of Zn; the vectors ei are some of the minimal vectors of the An perfect form. We
have the following fundamental result of Ash-Rudolph [AR79], which generalizes
Manin’s trick to higher dimensions:

Theorem 11.1 ([AR79]) If Size([x1, . . . , xn]) > 1, then there exists x ∈ Zn � {0}
such that

0 ≤ Size
([x, x1, . . . , x̂i , . . . , xn]

)
< Size

([x1, . . . , xn]
)
, (i = 1, . . . , n).

Thus H vcd(Γ )(YΓ ;C) is spanned by unimodular 0-sharblies.

We call any integral point that can play the role of x in the theorem a reducing
point for u = [x1, . . . , xn]. The set of all reducing points for u is denoted Red u. The
proof of Theorem 11.1 is constructive, and gives an algorithm for finding a reducing
point for u. The algorithm is a higher-dimensional version of continued fractions.

Theorem 11.1 has been applied to compute the Hecke action on H 3(YΓ ) when
Γ ⊂ SL3(Z) [AGG84, vGvdKTV97]. Variants have been used for RF/QSL2 where
F is an imaginary quadratic field with ring of integers O norm-Euclidean [Cre84,
GHM78, EGM82] or a PID [CW94], and even in some cases of nontrivial class
group [Byg99, Lin05]. These algorithms compute the Hecke action on H 2(YΓ ) for
Γ ⊂ SL2(O).
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Fig. 10 Using the
tessellation to find reducing
points: y is the center, and
w,w′,w′′ are the potential
reducing points

Theorem 11.1 provides a beautiful way to reduce 0-sharblies to unimodular, but
its beauty is also its fatal flaw when one goes from Q to other number fields: it
relies on the Euclidean algorithm in an essential way. Thus the method breaks down
on fields that aren’t norm-Euclidean, in particular for fields with nontrivial class
number. Other techniques must then be tried. This leads us to our next heuristic:

(B) Choose candidates for 0-sharblies using the geometry of Koecher fan, and not
using continued fractions.

This is based on ideas that go back to [Gun00, Gun99]. This idea and variations
of it have been used in [AGMcC02, GY13, GHY13, Yas09a]. Here’s how it works.
To make the discussion more accessible we restrict to RF/QGL2, which has Q-
rank 1. A 0-sharbly u is then a pair [x1, x2]. In the compactified symmetric space
D = C/R>0, we can realize u as a geodesic ϕ running from the image of q(x1) to
that of q(x2). It will meet the images of the Koecher cones in various ways, and u
will be reduced if and only if ϕ is completely contained in the image of a Koecher
cone.

We want to find a reducing point x ∈ O2 such that in the three-term relation

[x1, x2] = [x1, x] + [x, x2] =: u1 + u2, (11.4)

the 0-sharblies u1,u2 will be closer to being reduced (for instance, we might ask
that their sizes be smaller than that of u). The idea is that the reducing point x

should be selected from the vertices of the Koecher cone containing the center of ϕ.
Here the center means the ray through the points q(x1 + x2); note that this is only
well-defined since we’ve chosen specific points in the rays R>0q(x1),R>0q(x2).

Why should an x chosen in this way be a reducing point? We must confess that
we don’t know. Geometric motivation comes from looking at the Voronoi cones for
SL2(Z). Consider Fig. 10, which shows a cross-section of the cone C. The triangles
in the middle look rather large compared to the triangles on the outside, so the center
of a “balanced” 0-sharbly will tend to land there. Any of the three points w,w′,w′′
appear to be good choices for a reducing point, since the two 0-sharblies on the
right of (11.4) look like they will cut across fewer top-dimensional cones and will
be closer to being reduced.

Of course, motivation is not a proof, and sadly we don’t have a proof that this
will work. Thus we don’t know if selecting reducing points in this way eventually
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allows one to write a 0-sharbly as a sum of reduced ones. For SL2(Z), it’s not hard
to engineer a geometric proof that realizes the motivation above, but the general
case is unknown. Nevertheless, the heuristic works extremely well in practice. In
fact, the 0-sharblies on the right of (11.4) tend to be much closer to being reduced
than the original. We also expect this idea to work in cases where Γ is cocompact,
such as [Voi10, GV11, Pag12].

11.2 1-Sharblies

Now we go to 1-sharblies. We continue to take G = RF/QGL2. We will also assume
that Γ is torsionfree to avoid some complications. We assure the reader that these re-
strictions are only for convenience: we have also applied the ideas in this subsection
to groups of higher Q-rank, in particular GLn/Q, n = 3,4, and RF/QGL3 where
F is imaginary quadratic. We have also treated Γ with torsion. The reader curious
about dealing with torsion and higher Q-rank can consult [AGMcC02, Gun00]. The
papers [GY08, GY13] also contain more details of this method. Our goal here is to
explain its geometry and combinatorics.

Let u = [x1, x2, x3] be a basis 1-sharbly. We call the three 0-sharblies that appear
in ∂u the submodular symbols of u. We denote the set of all submodular symbols
appearing in u by Z(u), and extend this notation to sharbly chains in the obvious
way.

Let η = ∑
auu be a 1-sharbly chain that is cycle modulo Γ . Note that this is

now a nontrivial condition, unlike for 0-sharblies. In particular, any 0-sharbly chain
in S0 automatically a cycle, even without passing to (S0)Γ . For a 1-sharbly chain to
have zero boundary modulo Γ , there must be nontrivial identifications among the
submodular symbols Z(η) appearing in its boundary.

Suppose η is not reduced. How can we reduce it? One criterion for whether or not
η is reduced involves its submodular symbols. Since we have heuristics for reducing
0-sharblies, it makes sense to try to reduce η by somehow reducing Z(η). This is in
fact the approach we take, although there are some subtleties:

1. We can try to reduce the modular symbols in Z(η) by choosing a bunch of re-
ducing points. But what’s the best way to do this?

2. And if we select reducing points, what are we supposed to do with them? In
other words, how do we combine the candidates and the points in η into a new
1-sharbly cycle that is somehow better?

3. Certainly if η is reduced, then is submodular symbols are as well. Unfortunately
the converse is not true in general: it is possible for Z(η) to consist entirely of
reduced 0-sharblies and for η to not be reduced. What do we do about this?

Let’s treat these one at a time. First, we should use heuristic (A) to pick reducing
points, just as we did for 0-sharblies on their own. However we have to take more
care in this case, since the submodular symbols in Z(η) are the boundary ∂η ∈ S0,
and for η to be a cycle modulo Γ we need the image of ∂η to vanish in (S0)Γ .
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Fig. 11 The 1-sharbly u and its reducing points (left) assembled into an octahedron (middle)—the
shaded triangles (right) don’t appear in (S1)Γ , so u is transformed to four new 1-sharblies

This means we need to choose reducing points Γ -equivariantly. In other words,
suppose v,v′ appear in ∂u and satisfy v = γ · v′ for some γ ∈ Γ . Then if we choose
w ∈ Red v for v, we must take γw for v′. We also insist that we choose the best
possible reducing points, in the sense that the sizes of the resulting 0-sharblies are
as small as possible (for instance, we might want to minimize the sum of sizes).

The second issue is more interesting. Assume that all submodular symbols of
u = [x1, x2, x3] need reducing (the general case is an easy variation of this). Choose
three reducing points w1,w2,w3 using (A); we label them such that wi goes with
[xj , xk] if any only if i, j, k are distinct. We need to assemble them into a 2-sharbly
chain whose boundary contains u and some 1-sharblies that have a chance of being
closer to reduced. This gives us our next heuristic:

(C) Three points and a triangle make an octahedron.

Figure 11 illustrates what’s happening. We use the six points x1, . . . ,w3 to make
an octahedron O . We can subdivide O any way we like into tetrahedra to make a
2-sharbly chain; its boundary in S2 will be eight 1-sharblies, which in S1 induces
the relation

u = u1 + u2 + u3 − u12 − u13 − u23 + u123. (11.5)

In (11.5) the notation uS for S ⊂ {1,2,3} means the 1-sharbly in the boundary that
contains {wi | i ∈ S}. When we mod out by Γ , a miracle happens: (11.5) becomes

u = −u12 − u13 − u23 + u123. (11.6)

That is, the three 1-sharblies represented by the shaded triangles in Fig. 11 disap-
pear. The reason is simple. Consider the 1-sharbly u1 = [w1, x2, x3]. Since u was
part of a cycle mod Γ , there must be some 0-sharbly v′ that cancels v = [x2, x3]
when ∂η is taken. This 0-sharbly cannot be reduced since v isn’t, so we must have
chosen a reducing point for it. Since we made these choices Γ -equvariantly, there
must be some other 1-sharbly u′ with v′ in its boundary. When we build an octahe-
dron O ′ over u′, a triangle in ∂O ′ will cancel u1 in ∂O .

Thus over η we replace each 1-sharbly with four new 1-sharblies and ob-
tain a new cycle η′ mod Γ . Why is η′ better than η? Consider (11.6). Certainly



Lectures on Computing Cohomology of Arithmetic Groups 37

Fig. 12 The transformation of Fig. 11 viewed in the cone—the new 1-sharblies are closer to being
reduced

u12,u13,u23 look better than u, since the reducing points have improved some
edges. But why is u123 better? Notice that it is built from the reducing points. When
choosing them we only look at the 0-sharblies; we don’t consider them collectively
until we package them into u123. In fact, upon reflection it’s clear that we can’t
choose the wi with the intent of making u123 good, since we have to choose them
Γ -equivariantly over the whole cycle η, and we have no control over what this cy-
cle looks like. All we can do is look at the submodular symbols and pick reducing
points locally, in other words without considering what 1-sharblies contain them.

We claim that u123 will be much closer to being reduced than u. In fact, in prac-
tice u123 will be far better than the other 1-sharblies in (11.6). We have no proof of
this, but again we can provide some geometric motivation. Up to a flat factor, the
symmetric space D is of noncompact type and is thus nonpositively curved. This
means the centers of the facets of a simplex tend to be close to the center of the sim-
plex itself; think of what triangles look like in the hyperbolic plane. The hyperbolic
plane is not an entirely accurate picture of what happens, since D may have high-
dimensional flat subspaces if the R-rank of G is large, but nevertheless this picture
is compelling.

Thus the three reducing points for the submodular symbols of u tend to be taken
from the same Koecher cone, or at least from cones that are very close together.
Therefore the potentially bad 1-sharbly u123 = [w1,w2,w3] tends to be very close
to reduced. Since u123 has good edges, so do the other three 1-sharblies on the right
of (11.6). Figure 12 illustrates this principle in the cone model of H. The reducing
points wi are the vertices of two adjacent triangles, which means u123 can’t be too
bad.

Finally we come to the last issue: what do we do if a 1-sharbly has reduced
edges but is not itself reduced? This phenomenon does occur, quite often in fact,
although not for G = SL2/Q. This phenomenon is an artifact of the flat factor and
reflects the presence of the unit group O×. What happens is that we wind up with
a 1-sharbly [x1, x2, x3] when we really want [ε1x1, ε2x2, ε3x3] for some εi ∈ O×
of infinite order. The fix in this case involves “subdividing edges at infinity.” The
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Table 1 Examples of
dimensions of symmetric
spaces (Sect. 4), virtual
cohomological dimensions
(Sect. 8), and cuspidal ranges
(Sect. 11): Fr,s means, F is
number field with
F ⊗R � Rr ×Cs

dim(D) vcd(Γ ) t (Γ ) b(Γ )

SL2/Q 2 1 1 1

SL3/Q 5 3 3 2

SL4/Q 9 6 5 4

SL5/Q 14 10 8 6

RF0,1/Q(SL2) 3 2 2 1

RF2,0/Q(SL2) 4 3 2 2

RF2,0/Q(GL2) 5 4 3 2

RF1,1/Q(SL2) 5 4 3 2

RF1,1/Q(GL2) 6 5 4 2

RF0,2/Q(SL2) 6 5 4 2

RF0,2/Q(GL2) 7 6 5 2

process is similar to what we describe above, but is in fact easier since it is an
abelian analogue. For more details, we refer to [GY13, § 7] for an example.

12 Computational Examples

As proof of concept, we conclude by presenting some examples of computations
done with these techniques [GHY13, GY13]. Other examples can be found in
[AGMcC02, AGMcC08, AGMcC10, AGMcC11, GY08]. Here we consider GL2

over two number fields:

• F1 is the quartic field Q(ζ ), where ζ is a primitive fifth root of unity. Thus F1 �
Q[x]/(x4 +x3 +x2 +x +1). F1 has discriminant 53, is Galois with Galois group
isomorphic to Z/4Z, and is a CM extension of its totally real subfield F+

1 = Q(η),
η = ζ + 1/ζ . The ring of integers O1 has class number one and as a Z-module
equals Z[ζ ].

• F2 is the nonreal cubic field of discriminant −23. Thus F2 = Q(t) with t a root of
x3 − x2 + 1. The field F2 is not Galois over Q (obviously), and has no subfields
other than Q. The ring of integers O2 has class number one and admits a power
basis: O2 = Z[t].

In some sense these two fields are as different as possible. F1 is highly symmetric, in
fact much more symmetric than a complex quartic field “deserves” to be, since it is
a cyclotomic extension. F2, on the other hand, has no symmetry at all. But this does
not mean F2 is devoid of charm. For example, it is the first cubic field in databases
of such fields ordered by absolute value of discriminant. Its Galois closure is the
Hilbert class field of Q(

√−23), which means F2 often appears in algebraic num-
ber theory courses as an appealing example. The field F2 is the invariant trace field
of the Weeks–Mateo’s–Fomenko manifold, which is the contender for the orientable
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hyperbolic 3-manifold of minimal volume [MR03]. This field even appears in archi-
tecture and design: the unique real root of x3 − x − 1, which lives in F2, is known
in some circles as the plastic number, and apparently functions as a generalization
of the golden ratio [Pad99].

The focus of the papers [GHY13, GY13] is testing the relationship between auto-
morphic forms on GL2 and elliptic curves. In particular, we wanted to test whether
elliptic curves over these number fields were modular, in the weakest possible sense
that still has content: matching of partial L-functions on both sides, at least as far as
we could compute. We recall what this means.

Let F be a number field with ring of integers O. Let E be an elliptic curve defined
over F with conductor n ⊂ O. Given any prime p not dividing n, one defines an
integer ap(E) by

ap(E) = N(p) + 1 − Np. (12.1)

Here N(p) is the cardinality of the residue field Fp = O/p, and Np is the number
of points E has in Fp. These numbers can be assembled into a (partial) L-function
L(s,E) by making an Euler product

L(s,E) =
∏
p�n

1

1 − ap(E)N(p)−s + N(p)1−2s
. (12.2)

The product (12.2) can be completed with certain local factors at the “bad primes”—
those p that divide n—and with Gamma factors for the archimedian places of F , so
that the resulting L-function has a functional equation of the form s �→ 2 − s and
has analytic continuation to the complex plane. For more details, see [Sil09].

On the automorphic side, let f be an cuspidal automorphic form on GL2/F , also
of conductor n. Assume f is an eigenform for the Hecke operators. Then f produces
a collection of eigenvalues ap(f ), one for each for each prime p not dividing n, and
we can make an L-function L(s,f ) using (12.2), with ap(E) replaced with ap(f ).

Now a modularity result predicts, at the lowest level, that there should be a tight
relationship between the L-functions constructed from elliptic curves and modular
forms. In particular, given E, one hopes to find f such that

L(s,E) = L(s,f ). (12.3)

In particular one should have ap(f ) = ap(E) for all p � n. We say f is attached to E

if (12.3) is true. Conversely, given a cuspidal automorphic form with rational Hecke
eigenvalues, one expects to find an elliptic curve attached to it in this sense, with
matching conductor. This is motivated by what happens when F = Q. In this case,
thanks to work of many people, we know that this is true. Hence one might hope the
same phenomenon happens over general number fields, or at least might check the
extent to which it does. As it turns out, there are some subtleties; we indicate some
below.

The papers [GHY13, GY13] test this relationship in the following way. First we
generate a small database of elliptic curves over F in the most ingenuous way: we
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search over a family of Weierstrass equations

y2 + a1xy + a3 = x3 + a2x
2 + a4x + a6

by taking a1, a2, a3, a4, a6 in some bounded subset of O. On the automorphic side,
we look for appropriate automorphic forms by computing cohomology of the sub-
groups Γ0(n) ⊂ GL2(O) using techniques described above. In particular we can use
the reduction algorithm in Sect. 11 to decompose the cohomology into eigenspaces
for the Hecke operators Tp for a range of primes p. We found excellent agreement
between the arithmetic and automorphic sides:

• For each elliptic curve E with norm conductor within the range of our cohomol-
ogy computations, we found a cuspidal cohomology class with rational Hecke
eigenvalues that matched the point counts for E as in (12.1), for every Hecke
operator that we checked.10

• For each cuspidal cohomology class with rational Hecke eigenvalues, we found
a corresponding elliptic curve whose point counts matched every eigenvalue we
computed, with just one exception: over the CM field F1, we found an eigenclass
with rational eigenvalues that corresponds to an abelian surface over F+

1 .11

We now present more information for our specific fields.12

12.1 The Field F1 = Q(ζ )

The positivity domain C1 is Herm2(C)2, which has real dimension 8. The Koecher
polyhedron and the perfect forms for F1 were determined by D. Yasaki [Yas09b].
(For GL2 over F1 and F2, the facets of the Koecher polyhedron are in bijection with
the perfect forms.) Modulo the action of GL2(O1) there is just one perfect form
with 240 minimal vectors. Any two minimal vectors that differ by multiplication by
a torsion element of O×

1 determine the same vertex of the Koecher polyhedron. Thus
the Koecher fan Σ1 contains one top-dimensional cone; the corresponding facet of

10For general number fields, it is not expected that every elliptic curve should correspond to a cusp
form in this way. For instance, suppose F is complex quadratic. Then if E is defined over F and
has complex multiplication by an order in OF , then E should correspond to an Eisenstein series,
cf. [EGM82].
11Similar phenomena happen over complex quadratic fields [Cre92], and can be expected to happen
over any CM field.
12The cohomology computations in the following are simplified by the fact that F1 and F2 each
have class number 1. One can still perform these computations for fields with higher class numbers,
although it is best to work adelically. In practice this means that one has to work with several copies
of the locally symmetric spaces instead of one, each equipped with its own Koecher decomposition.
However, such complications are not always necessary. For F imaginary quadratic with odd class
number, for instance, Lingham [Lin05] developed a technique to work with a single connected
component.
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the Koecher polyhedron has 24 = 240/10 vertices. One can easily compute the rest
of the cones in Σ1 modulo GL2(O1). One finds 5 GL2(O1)-classes of 7-cones, 10
classes of 6-cones, 11 classes of 5-cones, 9 classes of 4-cones, 4 classes of 3-cones,
2 classes of 2-cones, and 1 class of 1-cones.

The symmetric space X1 attached to G1 = RF1/QGL2 has dimension 7. Since
the derived subgroup G′

1 has Q-rank one, the virtual cohomological dimension is 6.
By Table 1 the cuspidal cohomology occurs in degrees 3,4,5. Using 1-sharblies we
compute with H 5(Γ ;C).13 The Koecher fan is simplicial in dimensions 2,3,4, so
we can identify R∗ in these degrees with a subcomplex of S∗.

We were able to compute H 5 for all levels n with N(n) ≤ 4941. For n prime
we were able to carry the computations further to N(n) ≤ 7921. We also computed
Hecke operators on H 5. For all levels we were able to compute at least up to Tq
with q ⊂ O1 prime satisfying N(q) ≤ 41; at some smaller levels we computed much
further.

We found a variety of phenomena:

1. We found classes that seemed to correspond to elliptic curves defined over F1 that
were not base changes from any subfield of F1. The smallest conductor we found
was p with N(p) = 701. The elliptic curve had equation (a1, a2, a3, a4, a6) =
(−ζ − 1, ζ 2 − 1,1,−ζ 2,0). Altogether we found 13 such examples.14

2. We found classes that seemed to correspond to base changes of curves from Q

and curves/abelian surfaces from F+
1 .

3. We found “old” cohomology classes, namely eigenclasses whose eigenvalues
matched those of eigenclasses appearing at smaller level norms.

4. One eigenclass ξ at level norm 3025 deserves some extra discussion. Let m ⊂
OF+

1
be the ideal p2

5p11. The space of parallel weight 2 Hilbert modular newforms

of level m contains an eigenform g with Hecke eigenvalues aq in the field F+
1 .

For any prime q ⊂ OF+ , let q ∈ Z be the prime under q. Then we have aq(g) = 0
if q = 5, and

aq(g) ∈
{
Z, if q = 1 (mod 5),

Z · √5, if q = 2,3,4 (mod 5).
(12.4)

These conditions (12.4), together with the Hecke eigenvalues of g, imply that
the L-series L(s, g)L(s, g ⊗ ε) agrees with the L-series attached to our eigen-
class ξ , where ε is the unique quadratic character of Gal(F1/F

+
1 ). Thus ξ has

rational Hecke eigenvalues, but does not correspond to an elliptic curve over F1.
Instead, it can be attributed to an abelian surface over F+

1 with extra symme-
try, and thus gives an example over F1 of phenomena first seen in [Cre92] for
complex quadratic fields.

Other than item 4, we found perfect matching between elliptic curves and cuspidal
cohomology classes with rational eigenvalues.

13Actually, to avoid precision problems we work with the large finite field F12379 instead of C.
14One curve was found by Mark Watkins using the method of Cremona-Lingham [CL07]; see the
appendix to [GHY13].
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12.2 The Field F2 = Q(t)

For this field the positivity domain C2 is Sym2(R) × Herm2(C), which has real
dimension 7. Modulo the action of GL2(O2) there are nine perfect forms. Of these,
seven give simplicial cones in the Koecher fan Σ2; for the other two the facets of
the Koecher polyhedron have eight and nine vertices respectively.15 For the rest of
Σ2, one finds 35 GL2(O2)-classes of 6-cones, 47 classes of 5-cones, 31 classes of
4-cones, 10 classes of 3-cones, 2 classes of 2-cones, and 1 class of 1-cones.

The symmetric space X2 attached to G2 = RF2/QGL2 has dimension 6. As before
the derived subgroup G′

2 has Q-rank one; the virtual cohomological dimension is
5. The cuspidal cohomology occurs in degrees 3,4, and 1-sharblies enable us to
compute H 4(Γ ;C).16 As before the Koecher fan is simplical in the dimensions we
care about, so in these degrees we can identify R∗ with a subcomplex of S∗.

We computed the cohomology at 308 different levels, including all ideals with
level norm ≤ 835, and the Hecke operators:

1. As for F1, we found examples of elliptic curves over F2 that are not base changes
from Q and that are apparently attached to eigenclasses of the appropriate levels.
The first curve appears at level norm 89, and has equation (a1, a2, a3, a4, a6) =
(t − 1,−t2 − 1, t2 − t, t2,0). Altogether 43 such curves were found in the range
of our computations.

2. We found “old” cohomology classes.
3. We found one base change from Q to F : at level norm 529 = 232, there is an

eigenclass with eigenvalues in Q(
√

5). This class is accounted for by the level
23 abelian surface over Q with real multiplication by Q(

√
5).
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