
Chapter 2
In the Dance Studio: An Art and Engineering
Exploration of Human Flocking

Naomi E. Leonard, George F. Young, Kelsey Hochgraf, Daniel T. Swain,
Aaron Trippe, Willa Chen, Katherine Fitch and Susan Marshall

2.1 Flock Logic

The Flock Logic project [1] was conceived by engineering professor/control the-
orist Naomi Leonard and dance professor/choreographer Susan Marshall. Marshall
approached Leonard in 2010 about the possibility of an investigation to find out what
would happen if a group of dancers were in possession of the rules governing the
motion of groups of flocking animals. The project was initiated as a joint exploration
with professional dancers in July 2010 and then subsequently as a semester-long
Princeton University Atelier course co-taught by Leonard andMarshall in Fall 2010.
The professional dancers and the students, most of whom had previous dance train-
ing, participated in collaborative artistic and scientific investigations and experiments
inspired by the complex and beautiful group motion that emerges in bird flocks and
fish schools. The aim was to explore artistically and scientifically how individual
rules of interaction and response within a network of dancers yield complex emer-
gent collective motion of the group.

The emergent nature of flocking and schooling was a central driver for the project:
the remarkable collective motion of flocks and schools results not from a prescribed
choreography nor even from a designated leader, but rather from simple rules of
response that each individual obeys [2]. These feedback rules govern how each indi-
vidual moves in response to the relative position or motion of its close neighbors.
For instance, basic flocking rules typically have a cohesive element and a repulsive
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element [3]. The cohesive element requires that while each individual moves around
it should remain a comfortable distance from a few others; the repulsive element
requires that each individual should move away from others that get too close. An
active area of research is focused on explaining how the observed complex collective
motion of animal groups emerges from, and is influenced by, the feedback rules, the
dynamics of the social interactions within the group, the distribution of informa-
tion across the group, the features in the spatial surrounding, the differences among
individuals, the noise in measurements, and the uncertainty in decision making
[4, 5]. Analytical and numerical studies and laboratory and field experiments have
all been used to investigate; for example, see [6–8] for a range of studies on flocking
of starlings.

Flock Logic explored what happens when a group of dancers apply these and
related feedback laws as they move around a space together. In the Flock Logic
explorations the flocking rules were prescribed, but neither how the dancers applied
the rules nor how faithfully they followed the rules were controlled. For example, the
number of neighbors and the distance from neighbors to maintain in the coherence
rulewere prescribed, but the dancers were not instructed how to choosewithwhom to
cohere, how to prioritize among neighbors moving in diverging directions, nor how
to handle conflicts such as when cohering with one dancer meant getting too close to
another dancer. It was also possible that dancers broke the rules at times. Thus, the
emergent human flocking resulted from both prescribed and individualized, and thus
unknown, features of dancers’ choices and dynamics. In this way, the Flock Logic
project provided a framework for exploring emergent collective behavior somewhere
between studying animal aggregations in the wild, with all that is unknown, and
examining computer simulated flocking, with its exclusive reliance on a prescription.

This aspect of Flock Logic made it particularly well suited to an integrated art,
engineering, and science agenda. On the one hand, the Flock Logic framework made
it possible to observe the influence on collective motion of natural biases, in this case
human biases, and heterogeneity across the group. Dancers with different physical
features, personalities, dance training, etc., would respond differently to one another
and would prioritize rules and resolve conflicts differently. This would affect how
information would pass through the group and how the group as a whole would
respond to external forces. On the other hand, the Flock Logic framework made it
possible to systematically examine the influence on collective motion of parameters
of the prescribed rules. This applied to the parameters of rules and environments
meant to represent animal groups, e.g., number of others with whom to cohere,
total population of the group, availability of information or preferences across the
group, as well as the shape, size, and placement of obstacles. This also applied to the
parameters of rules and environments not necessarily intended to represent animal
groups but rather motivated by artistic and engineering design goals. By varying
rules and environmental features beyond what one would expect in animal groups,
it was possible to explore how individual-level behaviors connect more generally to
the aesthetics and the functionality of the emergent group-level behaviors. And this
led to the creation of a wide range of artistic and engineering design possibilities.
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The engineering goal was to use the explorations with dancers to gain insight into
the mechanisms of animal group and human crowd dynamics and into design princi-
ples for control of natural and robotic groups. Could the dance studio be viewed as an
experimental test-bed in this regard? Could the human data collected be used to help
explain a range of collective behaviors? The dancers could represent a human crowd
moving in a bounded space, trying to avoid colliding. Likewise, dancers moving in
a studio, responding to local neighbors and the environment, provide a reasonable
approximation to the collective motion of a herd. The walls of the studio are like
trees or topography, and the heterogeneity among the dancers (experience, height,
confidence) is similar to that in a herd [9]. Further, dancers are particularly well
suited to these kinds of explorations because they are trained to be physically aware
and can comfortably handle a number of feedback rules. Thus, the setting provided
enormous flexibility in the kinds of questions that could be addressed. For example,
in this chapter, the human motion data are used to rigorously study how influence
among individuals in the network is distributed and how that is reflected in the
changing spatial distribution of individuals and in the group-level shape and motion
dynamics. This could, for example, lead to insights on how human crowds move
in cluttered spaces and how animals organize themselves to reduce vulnerability to
predators [10]. This could also lead to bioinspired methods for designing robust and
responsive networks of heterogeneous robots [11].

There are a number of motivating and complementary scientific studies of human
collective motion, many of which focus on crowd dynamics. Experiments on lead-
ership and decision making in human crowds were described in Dyer et al. [12].
In Moussaid et al. [13], analysis of natural pedestrian group motion revealed the
influence of social interactions on crowd dynamics. In Funes et al. [14] a design
method for human collective behaviors used evolutionary dynamics. Simplifiedmod-
els described in Silverberg et al. [15] predicted collective behavior of humans inmosh
and circle pits as observed from video data of heavy metal concerts. Altenberg [16]
developed a set of rule-based movement experiments as a concrete way of teaching
emergence.

In Flock Logic, the engineering goal was tightly integrated with the artistic goal,
where the idea was to see how applying work on decentralized control of collective
motion, to dancers, could potentially result in choreographic tools or training tools for
developing individual and group awareness. It was also imagined that a site-specific
large group performance work could be developed with little more than a site and
the rules.

The artistic interest centered on a desire to translate flocking rules such as those
related to group cohesion and response to external pressures into improvisational
instructions for dancers. Could these rules support unexpected and complexly orches-
trated collective motion to emerge from individual interactions? Howmight the local
sensing rules be altered choreographically tomake emergent choreography that didn’t
resemble the familiar look of organic flocking? Could these rules be learned quickly
by nondancers to create a kind of flash mob performance?

In theater and dance, there is a long history ofmovement practice and performance
based on structured improvisation and rules and games [17]. Contemporary chore-
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ographer Forsythe has studied synchrony and pattern in dance, as in, for example,
“Synchronous Objects” [18]. Choreographer Sgorbati has explored dance through
“Emergent Improvisation,” which is modeled after ordering principles observed in
nature [19]. Hagendoorn [20] designed rules for dancers to explore complexity, emer-
gent patterns and emergent choreography. Carlson [21] introduced constraints in
movement generation to study creative decision making in choreographic practice.

Often in improvisational dance work, the individual has a wide range of choices
open to them and takes compositional responsibility for the entire stage as well as
their own body. The Flock Logic rules tend to limit the individual’s choices to their
immediate neighbors and to ask the individual to relinquish group choreographic
responsibility; nonetheless, rich group choreography results. Could rules be designed
that would allow dancers, ignorant of any overarching choreographic goals, to create
complex and organized patterns using these tools?

In Flock Logic, to generate human flocking, the dancers were asked to move
about a space and follow rules that were defined in advance. To enable cohesion,
each dancer was given the rule to keep m of their neighbors at a distance of arm’s
length with the selection of the m neighbors freely changeable. To enable repulsion,
each dancer was asked to avoid letting any dancer get closer than arm’s length. To
prevent tripping, the dancers were asked to avoid moving backwards.

These three rules (cohesion, repulsion, backwards avoidance) were among the
most fundamental rules examined. Variations on the three fundamental rules were
prescribed as well as a range of additional and alternative rules. For example, rules
for alignment with neighbors, response to obstacles and walls, options to initiate
or imitate specific movements, etc., were implemented. More complex informa-
tional structures were imposed—for example, two or three dancers in the group were
secretly given additional rules, such as to move to a particular location or according
to a particular pattern. The dancers also performed rules for other kinds of behaviors
such as dynamic coverage and pursuit and evasion. In part because each dancer’s
motion was relatively under-prescribed, there was considerable room for variation
among individuals, e.g., in speed, facing direction relative to motion, selection of
neighbors, positioning relative to neighbors, and response to walls or obstacles.

Complex and artistically satisfying collective behaviors were routinely observed.
As part of the 2010 Princeton University Atelier course, approximately 50 volunteers
participated in two flocking performances, each at a different site, after having been
briefly instructed in a few local rules of cohesion, repulsion and alignment as well as
responses to obstacles, to walls, and to “predators.” From both artistic and engineer-
ing perspectives, these were highly satisfying performances. A snapshot from one
of the performances is shown in Fig. 2.1. Video clips from the events are publicly
available and can be accessed from the Flock Logic website [1] or directly at the
following links:
http://vimeo.com/19361231 (Peter Richards);
http://www.princeton.edu/main/news/archive/S29/62/38K80/ (Evelyn Tu);
http://www.youtube.com/watch?v=Mg29hawdcMw (Jeffrey Kuperman).

In this chapter, we describe the Flock Logic explorations and the tools used for our
artistic and engineering investigations.As an illustration,we examine one experiment

http://vimeo.com/19361231
http://www.princeton.edu/main/news/archive/S29/62/38K80/
http://www.youtube.com/watch?v=Mg29hawdcMw
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Fig. 2.1 Snapshot from a Flock logic performance at Princeton University in December 2010

with 13 dancers who followed the flocking rules of cohesion and repulsion as they
moved around the dance studio.Using the trajectories tracked froman overhead video
camera and the prescribed interaction rules, we estimate the time-varying graph that
encodes who is sensing whom as a function of time. We compute the time-varying
status of each node in the graph, defining how much attention a dancer receives
from the rest of the dancers, and use these to infer emergent leaders. We discuss
implications, open questions, and further directions both artistic and scientific.

The work described in this chapter connects with the work described in several
other chapters in this collection. In Chap.7, Heupe et al. [22], similarly inspired,
investigate how flocking dynamics can be used to generate music, and they use
performance to explore the rich interplay between coherence and decoherence. In
Chap.9, LaViers et al. [23] also use performance to study dance and address engi-
neering design questions similar to ours by investigating how to translate information
about human dance styles into design for robotic motion. Although in our work, we
only track dancers offline after an event, real-time tracking of humans offers the
potential for more complex interactions between humans and machines, as shown in
Chap.8 byGodbehere andGoldberg [24]. The work in Chap.6 of Tsiotras and Castro
[25] further demonstrates the richness of multiagent geometries that can result from
modifications to the basic rules of flocking.

In Sect. 2.2, we describe our human flocking explorations, including our on-line
FlockMaker software tool, and the human flocking experiments. Trajectory tracking
is described in Sect. 2.3. In Sect. 2.4, we review graphs and FlockGrapher, our tool for
visualizing graphs. In Sect. 2.5, we estimate the time-varying graph of the network.
In Sect. 2.6, we estimate node status and discuss the influence of individuals. We

http://dx.doi.org/10.1007/978-3-319-03904-6_7
http://dx.doi.org/10.1007/978-3-319-03904-6_9
http://dx.doi.org/10.1007/978-3-319-03904-6_8
http://dx.doi.org/10.1007/978-3-319-03904-6_6
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conclude with a discussion of the results and a reflection on further artistic and
engineering opportunities that build on the Flock Logic project in Sect. 2.7.

An earlier version of this paper appeared in the proceedings of the American Con-
trolConference, held inMontreal, Canada in June 2012 [26].At this same conference,
a special interactive session was held in which 100 conference attendees participated
in a human flocking performance event. For this event, original accompanying music
was composed and performed live by Cristián Huepe.

2.2 Human Flocking

2.2.1 Explorations

A typical Flock Logic exploration involved on the order of 10–15 dancers who
moved around the dance studio for a few minutes applying flocking rules prescribed
in advance. Many of these explorations were run in series during a single session,
with a wide variety of flocking rules prescribed. The dancers were given frequent
opportunities to watch the group from the outside, and to discuss how it felt from
within the group and how it looked from without the group. The process was highly
collaborative: dancers made suggestions routinely and during a number of sessions
small groups of dancers would design a set of rules for themselves and for the rest
of the group.

The explorations evolved over time as the dancers gained more experience with
moving according to the rules of flocking. This meant that level of experience played
into the emergent collective motion, especially later in the semester when volunteers
were briefly “trained” and joined the group for flocking. By adding dancers to the
group, the role of the number of dancers was also explored. As many as 24 dancers
participated in some of the experiments in the studio, described in Sect. 2.2.3. In
one of the Flock Logic performances in December 2010 , more than 50 people were
involved and in later flocking events, such as at the special session in Montreal at the
American Control Conference, as many as 100 people participated. Sessions were
also held outdoorswhich provided the opportunity for explorations in a spacewithout
boundaries.

The basic flocking rules of cohesion, which meant keeping m neighbors at arm’s
length, repulsion, which meant moving away from anyone closer than arm’s length,
and backwards avoidance, formed the basis of many explorations. Two-person cohe-
sion (m = 2) was enough to create what looked like a planar school or flock.
With m = 2 the dancers were regularly spaced and exhibited polarized motion, i.e.,
everyone moving together in a single direction, as well as circular motion, i.e., the
group moving around a circle. The circular motion sometimes drifted and sometimes
remained fixed about a single stationary dancer. The group also experienced fissions
and fusions as well as significant changes in momentum. When m was decreased to
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m = 1, i.e., one-person cohesion, the result was a lot more “parading” and much less
of the distributed look of a natural flock.

Explorations made use of the presence of walls and the introduction of obstacles.
With no special rules attached to walls or obstacles, the dancers treated them much
as animals would likely treat them, i.e., they deftly avoided colliding with them. In
one case, a row of chairs was extended in a line from one wall into the middle of the
room. When the dancers moved into the smaller space created by the chairs and the
parallel wall, they would remain there temporarily, as if caught in a tidal pool, and
only move out once they had reversed direction. When rules were prescribed with
respect to walls and obstacles, all sorts of interesting, and less biologicallymotivated,
collective behavior emerged. For example, the walls were given an attractive pull as
well as a “stickiness.” As a result, dancers getting close to a wall got pulled away
from the group and stuck there (see Fig. 2.1). They were released from the wall by
cohesion to other dancers when at some later point the group passed by them. This
looked like the peeling off and adhering back of dancers in an ordered way since
these dancers still applied the cohesion and repulsion rules among themselves.

In another case, a round table was moved into the open space and endowed with
the properties of a sling shot. When dancers got close to the table they would circle
around it in a fixed direction, e.g., counter-clockwise, at an increased speed and then
get “flung off.” This led to a variety of different outcomes since different dancers
resolved conflicts differently. For example, in early runs with the round table, the first
few dancers moved around the table at elevated speed, but then they tended to slow
down and congregate in a slow moving flock nearby. The dancers who went around
the table subsequently either stopped short to avoid cutting through this congregating
group or broke the repulsion rule and charged right through it. In the performance
events inDecember 2010, a “waterfall” effect was sustainedwith two slingshot tables
(see Fig. 2.1).

The ability to prescribe individualized preferences and objectives was also
explored. These explorations were motivated by an interest in understanding the
role of heterogeneity in preference and objective in groups, if and how individuals
can exert leadership through motion, and the range of emergent collective motion
patterns that can result. Individualized objectives were typically prescribed secretly:
all dancers were told to follow the three basic flocking rules and two or three of the
dancers, unbeknownst to the others, were directed to follow certain additional rules.
For example, the two or three selected dancers were sometimes given the same addi-
tional rule, such as to head for one corner of the room or out a door. Alternatively,
the two or three dancers were given conflicting rules, such as one told to aim for
one corner of the room and another to aim for the opposite corner. Or the two or
three dancers were given a joint objective such as to split the group into subgroups.
How dancers attempted to attain their additional objectives was explored, and it
was observed and discussed how some dancers were successful and some were not
successful in influencing the other dancers through their motion.

In some explorations, one or two dancers were instructed to behave as a predator
or pursuer by waving a hand or t-shirt or flashing a bicycle light. In this case, the
dancers were given the rule to keep a safe distance from the pursuers, e.g., 5 or 10 ft
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Fig. 2.2 Snapshot of a cyclic pursuit experiment with 24 dancers. The position of each dancer
is marked with a green dot and a dashed line connects each pair of pursuer and pursued. The
collection of dashed lines show that the dancers move around a single closed curve that loops
around, intersecting itself three times

depending on the size of the studio. The pursuers could thus put pressure on the group
and create a variety of beautiful patterns by trapping the flock, shaping the flock, and
restricting the flock’s motion to changing corridors of space in the studio. Cyclic
pursuit and evasion was also explored in which case every dancer was assigned one
other dancer to pursue so that the group made a closed cycle with each dancer having
one person to pursue and one person to evade. The motion patterns were constantly
changing loops with multiple intersections, with qualitative features as predicted in
[27]. Figure2.2 shows a snapshot of 24 dancers in a cyclic pursuit experiment in the
dance studio.

It was also found that adding an optional alignment rule created further artistic
variation and options. Many other rules were explored in place of the basic flocking
rules; these contributed significantly to artistic, engineering and scientific goals. For
example , a rule was applied in which each dancer moved with oscillating speed, i.e.,
accelerating and decelerating repetitively, and such that the oscillations were out of
phase with others nearby. This was motivated by the oscillating speed observed in
fish schools and the rich family of motion patterns that could be designed using this
rule [28]. In another example, rules for dynamic coverage were explored; these rules
were motivated by problems of foraging over spaces of distributed resource [29].
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2.2.2 FlockMaker

FlockMaker is a Java WebStart application developed to aid the Flock Logic project
and designed for simulation and exploration of collectivemotion [30]. FlockMaker is
inspired by the original work of Reynolds [31] on rule-based simulation of flocking
particles. It is similar in spirit to the “Counterpoint Tool” in Synchronous Objects
[18], in which the dynamic motion of widgets are animated and the user can modify
the number and scale of widgets as well as the parameters that define the extent of
their alignment and synchrony of motion.

FlockMaker is intuitive for a curious layperson, and it can be used to model
complex combinations of flocking rules and initial configurations. Each dancer is
represented as a single particle, modeled as a colored dot with a directional arrow,
moving in the horizontal plane with variable velocity. Speed and facing angle (but
not acceleration) are taken to be approximately continuous in time.

The user can assign a variety of flocking rules to the dancers, such as “Pursue
Someone,” “Repel Neighbors,” and “Slow Down Near Neighbors.” To further con-
trol behavior, the user can set values for a wide range of parameters pertaining to a
dancer’s rules or initial configuration, including radius of sensing, number of neigh-
bors sensed, maximum speed of rotation, and magnitude of additive random noise.
Different rules can be assigned to different dancers. Furthermore, each dancer can be
assigned to follow multiple rules at a time, each rule potentially carrying a different
relative weight representing its level of priority.

Dancers interact not only with one another, but also with the room in which they
are moving, represented as a rectangular space contained within four walls. The
FlockMaker user can change the size of the room, add obstacles to the room, and
add rules applicable only within certain zones of the room.

After several weeks of work in the studio, the students in the Princeton University
Atelier course spent time using FlockMaker, both to test ideas that had been tried
in the studio and to investigate new ideas. Several of the rule sets and emergent
behaviors investigated in FlockMaker were subsequently explored in the studio.

2.2.3 Experiments

A series of human flocking experiments was run in mid December 2010 in the
62′7′′ × 28′4′′ New South dance studio at Princeton University. Groups of dancers
carried out the three basic rules of flocking with manipulations on initial conditions,
number of dancers N (either 13 or 24), and number of neighbors m for cohesion
(either 1 or 2). Alignment with neighbors was tested as was the assignment of an
additional rule to two of the dancers (of which the others were not aware), which was
to try to split the group. Several experimentswere also runwith dancers implementing
the rules for cyclic pursuit; see Fig. 2.2.
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Six Trendnet IP-600 cameras, synchronized over a local wired network, were set
up in fixed locations to record the motion of the dancers. Two cameras were hung on
the ceiling near either end of the studio, facing inward towards each other, and four
were mounted high up on one side wall. Camera views covered the majority of the
space in the studio and overlapped significantly. Using built-in software, the cameras
recorded video and stored it on a laptop. The video provided 640 × 480 resolution
and 20 frames per second.

For the December 2010 series of experiments, part of the room was blocked off
so that the motion of all of the dancers could be fully captured by one of the six
cameras (one of the two fixed to the ceiling). The dancers wore bright colored hats,
black clothing and bare feet to aid trajectory tracking.

In this chapter, we examine one experiment from the series in which there were
N = 13 dancers—two professional dancers and 11 students. All 13 dancers were
asked only to follow the three basic rules of flocking with cohesion to m = 2
neighbors. The total time for the experiment was 185 s, corresponding to the period
from the start to the stop of themusic.We study the tracked trajectories of the dancers
from the first 72 s of this experiment.

2.3 Trajectory Tracking

Trajectories were estimated using custom tracking software applied to the overhead
video from one camera for the first 72 s of the experiment. The tracked trajectories
comprise an ordered set of 1440 planar position vectors (x, y) for each of the 13
dancers. A velocity vector is computed for each dancer at every time step by dif-
ferencing the position vectors. Speed and heading are computed as the magnitude
and angle of the velocity vector. Figure2.3 shows one frame from the video with
superimposed tracked positions and directions of motion.

The custom tracking software uses a modified version of a real-time tracking
algorithm that was developed at Princeton and used successfully for experiments
involving multiple fish and robots [32]. The algorithm is implemented using the
MADTraC C++ library [33], which in turn relies upon OpenCV [34] for low-level
image processing routines. The original tracking software was designed to address
the challenges of tracking potentially densely distributed objects that are very similar
to one another in appearance. It was therefore applicable to the task of estimating
dancers’ trajectories.

The tracking algorithm follows three steps that are iterated for each video frame,
and described in greater detail in [32]. In the first step, image segmentation produces
a set of “blobs,” such that each blob is a collection of contiguous pixels with high
likelihood of belonging to any dancer’s hat. Likelihood is determined by thresholding
each pixel’s value in HSV color space and mapping to a binary image. Blobs are
extracted from the binary image using OpenCV’s built-in blob labelling algorithm,
which is based on [35]. A blob is often associated with more than one dancer because
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Fig. 2.3 From [26]. One frame from the video of the experiment with superimposed tracked
positions (colored dots) and normalized velocity vectors in the image plane (each colored arrow
indicates the direction in which the centroid of the corresponding hat is moving in the image).
Images of dancers are deliberately blurred

of the physical proximity of dancers to one another, the proximity of dancers in the
image due to the angle of the camera, and noise in the image.

In the second step, the blobs are analyzed in order to extract a noisy measurement
for the position of each dancer. If a single dancer is associated with a blob, then
the measurement of that dancer’s position is taken as the centroid of all pixels in
that blob. Otherwise, to resolve multidancer blobs or clusters of densely-spaced
blobs, an expectation-maximizationmixture-of-gaussian (EMMG) algorithm is used,
which iteratively adjusts dancer positions for a given cluster and provides position
measurements as output.

In the third step, the noisy position measurements are used with an unscented
Kalman filter (UKF) for each dancer to provide a more accurate estimated position
(x, y) in the current frame and to predict the position in the next frame. The estimated
position of each dancer is stored as the current point in the dancer’s tracked trajectory.
The predicted positions are used to inform the next tracking iteration. The (x, y)

position vector is expressed in a coordinate frame that is parallel to the floor. The
transformation to these coordinates from image plane coordinates was determined
by applying camera calibration techniques to an image of several objects placed at
known locations in the scene. The average height of each dancer is assumed to be
1.65 m.
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2.4 Graph Theory and Visualization

2.4.1 Background on Graphs

Let N be the number of dancers. For each dancer i , we define the set of neighbors,
Ni , to be the set of dancers whose positions are observed and used for cohesion by
dancer i .

We associate to the system a sensing graph G = (V, E, A), where V =
{1, 2, . . . , N } is the set of nodes, E ⊆ V × V is the set of edges and A is the
N × N adjacency matrix with ai, j = 1 when edge (i, j) ∈ E and ai, j = 0 otherwise.
Every node in the graph corresponds to a dancer, and the graph contains edge (i, j)
when j ∈ Ni . An edge (i, j) ∈ E is said to be undirected if ( j, i) is also in E ;
otherwise it is directed. A graph is undirected if every edge is undirected, that is, if
A is symmetric; otherwise it is directed.

A graph can be represented visually by drawing a dot for each node and a line
between the appropriate pair of nodes for each edge. An undirected edge is typically
drawn as a simple line, while a directed edge (i, j) will have an arrow head pointing
from node i to node j .

A path in G is a (finite) sequence of nodes containing no repetitions and such that
each node is a neighbor of the previous one. The length of a path is given by the
number of edges traversed by the path. The distance, di, j , between nodes i and j in
a graph is the shortest length of any path from i to j . If no such path exists, di, j is
infinite. This distance is not a metric since di, j is not necessarily equal to d j,i .

The graph G is connected if it contains a globally reachable node k; i.e., there is
a path in G from i to k for every node i . G is said to be strongly connected if there
is a path between every pair of nodes in the graph. A strongly connected component
of G is a maximal subset of nodes such that there is a path in G between every pair
of nodes in the subset. G is weakly connected if it is connected when every directed
edge is replaced by an undirected edge. Aweakly connected component is a maximal
subset of nodes that forms a connected component when every directed edge in G is
replaced by an undirected edge.

The status, sk , of a node k is the average inverse distance between every other
node and k. That is, sk = 1

N−1

∑
j �=k

1
d j,k

. sk will be maximum (equal to 1) if there
is an edge from every other node to node k, and minimum (equal to 0) if there are
no edges leading to node k.

2.4.2 Visualization of Graphs

FlockGrapher is aMatlab tool developed to compute, visualize and evaluate different
kinds of graphs derived from flock position data. Using a graphical user interface, the
tool accepts tracked position and direction of motion data for individuals in a flock
in two or three dimensions. It can visualize data from one specific instant in time or
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create a time series animation of data sets corresponding to successive time steps.
The user can create graphs from the data by defining an individual’s neighborhood
in terms of either a prescribed number of nearest neighbors or a prescribed sensing
radius. For data that includes the direction of motion of nodes, FlockGrapher can
incorporate a limited viewing angle, assumed to be symmetric about the individual’s
direction of motion. In the case of a fixed number of nearest neighbors and a limited
viewing angle, if there are fewer than the required number of neighbors visible to a
node, the viewing angle will be rotated with respect to the direction of motion until
enough neighbors are visible. Edge weights can be automatically manipulated, e.g.,
as a function of distance between nodes, or they can be prescribed by the user.

Once a sensing graph has been computed, FlockGrapher can evaluate a range of
graph properties, including number of strongly and weakly connected components,
algebraic connectivity, speed of convergence and node status. The tool also displays
some properties on the graph visualization; for example, directed and undirected
edges can be distinguished with different colors. For sets of data corresponding to
successive time steps, the time-varying values of these properties will be displayed
as the graph visualization changes. In the case of the human flocking experiment,
this dynamic graph visualization can be run at the same time as the video of the
dancers to compare computed and observed behavior. FlockGrapher can save all the
computed data to allow for further analysis. A screenshot of FlockGrapher is shown
in Fig. 2.4; the graph and its properties correspond to the frame from the video shown
in Fig. 2.3.

2.5 Sensing Model and Graph Computation

Since each dancer was given the same specific rules to follow, it is in principle
possible to apply the same rules to the tracked data and reconstruct the sensing graph
used by the dancers. However, certain aspects of both the rules and human behavior
make this task challenging. Although the dancers were each told to stay arm’s length
from two other dancers, no instruction was given for how they were to choose these
two neighbors. In addition, although humans have a field of view of up to 200◦ [37],
there was no compulsion for the dancers to keep both of their neighbors visible at
all times.

Given these limitations, two key assumptions were made in order to estimate the
dancers’ sensing graph. First, it was assumed that each dancer only chose neighbors
from within a limited angular range centered about the direction they were traveling.
Since no dancerwas observed to be rapidlymoving their head, the direction ofmotion
was assumed to be a reasonable proxy for direction of the head and therefore for center
of viewing range. Although this assumption is generally applicable to the data, there
were instances observed in which a dancer would either move in a different direction
to where they were facing, or move with their head turned at a constant angle to their
body. These occurrences are impossible to detect with our point-tracking approach,
but could be accounted for with a more sophisticated tracker with the ability to detect
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Fig. 2.4 Screenshot of FlockGrapher using dancer data corresponding to the instant shown in
Fig. 2.3. Nodes are shown as small green circles connected by edges. Directed edges are blue
with arrow heads and undirected edges are red. The number next to each node is its status. Other
computed graph properties are displayed on the left

the orientation of each dancer’s face. Second, it was assumed that each dancer was
applying the cohesion rule with the two nearest neighbors within this range. Since
every dancer was trying to keep two neighbors at arm’s length (and let no dancers
closer than arm’s length), a dancer’s neighbors would naturally be among the closest
of the other dancers.

With these assumptions, we used FlockGrapher to estimate the sensing graph
at each time (frame) by computing the two-nearest neighbor graph with a limited
viewing angle. When fewer than two other dancers were visible using the direction
of motion to center the viewing region, this region was allowed to rotate until two
dancers became visible. However, it was not known a priori what viewing angle to
choose to best represent the dancers’ behavior.

For collective behavior, it is impossible to guarantee that a group will remain
together if the communication graph is not connected [38]. When the graph is dis-
connected, there is nothing to prevent different subgroups from moving in different
directions and splitting the group. However, other features of the environment (such
as the limited space in the room) can drive the group back together. Since fissions and
fusions of the group were observed, we selected the viewing angle for our sensing
model as the one that produced a graph that was disconnected when the group of
dancers was observed to split and remained connected when the group of dancers
was observed to be cohesive.
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Table 2.1 Effects of
viewing angle on graph
connectedness over the whole
tracked period

Total viewing Percentage of time Number of
angle connected (%) disconnection events

360◦ 59.58 40
270◦ 91.67 43
210◦ 97.5 10
180◦ 98.47 3
150◦ 98.68 5
120◦ 99.65 3
90◦ 99.58 3

Table 2.1 shows the results of estimating the sensing graph across the whole
tracked period using different viewing angles. It can be seen that reducing the viewing
angle from 360◦ to 270◦ significantly improves the amount of time the graph is
connected, with the maximum connectedness occurring with a viewing angle of
120◦. However, our goal was not simply to maximize connectedness but rather to
match the observed behavior of the group.

Early in the experiment, between about 1 and3 s, a small groupof four dancers split
from the rest of the group. The dancers within this group appeared to be observing
only one another. Eight of the remaining dancers also formed a group, only observ-
ing one another. The thirteenth dancer was originally able to observe both groups
before turning to face the larger group, but since no other dancer was observing this
individual, the group was split during this whole period. Eventually, the dancers in
the larger group turned and observed the smaller group, leading to a single “flock”
again. This disconnection event was reflected in the estimated graphs for viewing
angles of 150◦ and greater, but not for the smaller angles. However, with a viewing
angle of 150◦ the graph became connected at a few points within this interval when
direct observation of the video suggests that the group was still split. This was not
the case with a viewing angle of 180◦; thus, 180◦ was chosen as providing the best
match of the splitting behavior of the dancers. Figure2.3 shows the group during this
disconnection event and the graph in Fig. 2.4 (corresponding to the frame of Fig. 2.3)
is computed using a viewing angle of 180◦.

Although our first estimate of the sensing graph captures a split in the group and
stays connected during the rest of the tracked period, it remains a crude approxi-
mation to the true sensing graph. For example, some nodes change their neighbors
rapidly in our estimated graph, which is likely an overestimation of the rate at which
dancers switch neighbors. Instead, if an individual has just been chosen as a neigh-
bor, that individual is likely to stay a neighbor for a period of time rather than being
immediately discarded as another individual comes closer in view. Two steps were
taken in an effort to reduce rapid neighbor fluctuations. First, the tracked position
data were passed through a low-pass filter, which consequently smoothed out node
headings. Then, to account for an individual’s reluctance to change neighbors soon
after they are chosen, a term was added to the estimation model representing the
probability of switching from a current neighbor to a closer dancer. The lower was
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the probability the greater was the “inertia” of the dancer to switch to a closer dancer,
equivalently, the greater was the commitment of the dancer to its current neighbor.
By allowing this probability to reset to a low value whenever a new neighbor was
chosen and then increase with time, we could capture the inertia of edges in the
sensing graph.

2.6 Analysis of Individual Influence

Weused the estimated time-varying sensing graph to begin investigating the influence
of each individual dancerwithin the group. Ourmethod computes and compares node
status for all dancers. Without knowing precisely how each individual implemented
the flocking rules, node status can provide an estimate of an individual’s importance
within the group. A dancer with a status of 0 has no influence since no one else in the
group is observing that dancer. A dancer with a status of 1 has the maximum possible
influence as every other individual is directly observing that dancer. However, due
to the time-varying nature of the graph, an individual’s importance depends not only
on its current node status but also on its node status in the past. Therefore, we took
as a first estimate of instantaneous importance each node’s average status over the
past 1 s. A plot of average node status for all nodes for part of the tracked period is
shown in Fig. 2.5.

Although node status provides a measure of an individual’s potential to influ-
ence the group, it does not indicate whether that influence was actually exercised.
Therefore, to examine if node status is indeed related to the influence of a dancer
in this data set, we investigated a quantitative measure of an individual’s influence
on the rest of the group. This quantity is the time, referred to as lead time, at which
a peak occurred in the cross-correlation function between an individual’s direction
of motion and the direction of the group’s motion. Positive values for this lead time
indicate that an individual tended to lead the group (i.e., change direction and then
have the group follow) while negative values indicate that an individual tended to lag
the group (i.e., change direction to follow the group after the group had changed).
This lead time measure was found to correlate strongly with average node status,
with the nodes with highest average status having the largest lead times and the
nodes with lowest average status having the largest lag times. Thus, we argue that
node status computations do indeed provide insight into leadership roles within the
group. Importantly, the ability to calculate node status at any point in time allows
for investigation of instantaneous and changing leadership throughout the flocking
event.

By examining the plot of averaged node status, “leadership events” can be iden-
tified, where one particular node achieved the greatest importance within the group
(with a high status value) for an extended period of time. Figure2.5 reveals one such
event when node 10 became a leader between approximately 28.75 and 31.45 s.
Looking at the video, it can be observed that during this time the group was moving
from the back left corner of the room toward the front right corner, with node 10 at
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Fig. 2.5 From [26]. Plot of 1 s running average of node status for all nodes, along with a sample
video frame and sensing graph near the end of the leadership event from t = 28.75 s to t = 31.45 s.
The red edge is undirected while all blue edges are directed. Node 10, with the highest status,
corresponds to the dancer in the front of the group

the front of the group. This suggests that the node status measurements can capture
emergent leadership.

Another leadership event can be observed from the data during a period when
one dancer stopped moving and the remaining dancers started circling around this
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Fig. 2.6 Average node status over the whole tracked period. The blue crosses represent the status
values without any inertia term, while the red crosses represent the status values with an inertia
term where the probability resets to 0 when new neighbors are chosen and grow back to 1 with an
increment of 0.14 per frame

individual. However, the individual with the highest status during this event was
not the stationary one, but rather one who was very close by the stationary one and
who kept moving in a circle. This seems particularly interesting since at other times
(however, not during our tracked period) one dancer would stop and the whole group
would eventually stop too. The difference between these two kinds of events (circling
vs. stationary group motion) may be due to the differences between the status of the
stationary and nearby dancers in the first case as compared to the second case.

By averaging each individual’s status over the whole tracked period, we evaluated
whether or not some individuals had a disproportionate influence on the group.
Figure2.6 shows the average of each node’s status over the tracked period. Nodes
12 and 10 had the highest average status, with values 1.9σ and 1.7σ higher than the
group mean, where σ is the standard deviation of the average status values over all
nodes.

The average of an individual’s status over thewhole tracked period can be similarly
computed in the case that the graph estimation model includes a probability-based
reluctance to switch neighbors, as described above to model switching inertia or,
equivalently, commitment to neighbors. Interestingly, while this inertia term does
lead to a significant decrease in average neighbor changes per second, the overall
structure of average node status values does not change significantly. Figure2.6
displays the average status of each node both for the original model (blue) and the
filtered model with the inertia term (red). Although there is some variation between
the average node status values for the twomodels, the same nodes represent upper and
lower outliers. This suggests that the incorporation of reluctance to switch neighbors
into the model does not alter the overall sensing structure, notably the emergence of
leaders, even as it potentially smooths out unrealistic fluctuations of node neighbors.
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Fig. 2.7 Average node status, with no inertia, from a simulation over an equivalent period to the
tracked dancer data

Wehypothesize that the emergence of the outlier nodes in Fig. 2.6, and in particular
those with very high status, is due to human bias. To test this, we developed an
agent-based flocking simulation which lacks any human bias. Given our hypothesis,
we would expect that the simulated agents, without human bias, would not exhibit
outlier nodes. The simulation models particles that move in the plane, in a space
with boundaries like in the dance studio, and follow the rules and parameter values
close to those given to the dancers. The simulation was run in Matlab with particle
positions updated synchronously to move in the direction to maintain one arm’s
length (assumed to be 0.80 m) from its two closest nodes within a viewing angle of
180◦, while also repelling from all other nodes within an arm’s length. Additional
functionswere incorporated to provide limits on velocities, turning rates and response
to boundaries. The corresponding node status of each of these particleswas calculated
analogously to those of the dancers.

The simulated particle system was initialized with positions and headings match-
ing those of the dancers in our experiment and then the average status of each node
was calculated over the following 72 s. The average node status over the first 72 s
is shown in Fig. 2.7 and can be compared to the plot in Fig. 2.6. It can be seen in
Fig. 2.7 that both the mean and the standard deviation are smaller than in the case of
the human dancers and furthermore there are no significant outliers. Every node in
the simulation has a status in the range of values below the human dancer that ranked
eighth in terms of highest node status and above the human dancer that ranked tenth.
Additional simulations were also run with random initial conditions. The average
mean status and average standard deviation of 40 simulations run for 72 s each with
random initial conditions was found to be approximately 0.352 and 0.0094, respec-
tively. These mean and standard deviation values are very similar to those from the
simulation of Fig. 2.7 with the dancers’ initial conditions (0.351 and 0.0080, respec-
tively) and are significantly smaller than what is computed from the tracked dancer
data (0.377 and 0.043, respectively).
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This comparison suggests that one consequence of human bias in the behavior
of the dancers is that some individuals were less influential and other individuals
significantly more influential as compared to a group of identical particles. This
implies that rather than leadership simply arising as a result of randommixing within
the group, the behavior of some individuals makes them more likely to assume
positions of high influence. We note that the dancers corresponding to nodes 10, 11,
and 12 (the three nodes with highest average status) are three of the four dancers
in the small disconnected group of Figs. 2.3 and 2.4, suggesting further possible
consequences of emergent leaders.

2.7 Final Remarks

The Flock Logic project, conceived at the intersection of dance and control theory,
produced a novel and generative framework for artistic, engineering, and scientific
investigation of collective motion. The project centered around explorations and
experiments with the motion patterns that emerge when dancers apply feedback
rulesmodeled after those attributed toflocking birds or schoolingfish. The framework
combined the prescribed rules of individual behavior and response with the unknown
choices and actions of living agents, yielding opportunities for exploration that was
part systematic and part uncontrolled. As a result, the Flock Logic framework proved
useful for artistic exploration of dance and tools for choreography, for engineering
exploration of decentralized control laws for multiagent system dynamics, as well
as for scientific investigation of collective animal behavior and crowd dynamics.

The explorations built off of a set of basic “flocking” rules of cohesion and repul-
sion: dancers were instructed to move around while maintaining an arm’s length dis-
tance from a prescribed number of other dancers and not letting anyone come closer
than arm’s length.Rules forwalls, obstacles, and zoneswere added.Additional objec-
tives and preferences were imposed selectively and secretly so that a small subset
of dancers were asked to influence the group only through their motion and with-
out explicit signaling. Dancers behaving as pursuers or predators applied pressure
dynamically on the group, often to beautiful effect. Synchrony and anti-synchrony of
directionality were explored using alignment rules. Many artistic explorations made
use of different kinds of rules that were originally motivated from observations or
analysis of animal behavior or from engineering design objectives, such as foraging
and coverage. Other explorations were motivated purely by artistic goals, such as
designed responses to specific obstacles.

To address questions concerning the role of the heterogeneity of the group of
dancers and specifically the relative influence of the different dancers on the collective
motion, we analyzed video data of an experiment with thirteen dancers applying the
basic rules of flocking with two-person cohesion. From the video we tracked, the
trajectories of the dancers over a 72 s segment. Then, we applied the flocking rules
to the data to estimate the network graph at each frame of the video, that is, who
was paying attention to whom at each time step. From the resulting time-varying
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graph, we computed node status for each dancer at each frame; node status provides
a measure of how much attention a dancer received from the rest of the dancers. We
discussed how node status was strongly correlated with lead time in turning, i.e.,
dancers with high status would typically turn before the rest of the group. From this
we argued that high node status suggests high influence and therefore leadership.
By examining the average status of each dancer over the whole tracked segment, we
found two of the dancers with status higher than the mean value by nearly twice the
standard deviation. We showed how this result is robust to the addition of an inertia
term that models a dancer’s commitment to its newly acquired neighbors. We also
showed evidence that human bias explains the large variation in influence among the
dancers, and in particular the outliers, by comparing the data with analogous results
from a simulation of dancers modeled as particles without human bias.

These results raise many more interesting questions and possibilities for future
investigation. For example, how does human bias produce leadership, where no
such leadership was assigned? Do certain dancers move in ways that attract the
attention of the others? Or do individuals who emerge as leaders break the rules, for
example, by paying less attention to others than instructed? The results suggest the
possibility of an interesting tension between following rules and breaking rules. This
could be explored scientifically using evolutionary game theory in which there is a
benefit to breaking the rules associated with influencing the group toward one’s own
preferences but also a cost to breaking the rules associated with losing the advantages
of group living.

Other questions concern the relationship between the rules and environment and
the resulting shape and momentum of the group. What accounts for polarized versus
circular motion? What accounts for fissions and fusions of the group? What role do
leaders play in these dynamic transitions? These questions address the fundamental
interplay between how an individual influences the group and how the group influ-
ences an individual. In [39] leadership in a dynamic network evolves according to
distributed adaptive dynamics driven by a metric that rewards efficient tracking of
an external signal; it can be shown in this context that optimal leader sets are defined
by their joint centrality, a property of the network graph much like node status [40].
Our present results suggest an important link between the spatial distribution of more
influential individuals, i.e., those with high node status, and the group-level dynam-
ics. These results may inform design of distributed multiagent adaptive dynamics of
rules, rule-breaking or network interconnections, to control leadership and thus the
collective behavior of the multiagent system.

Many further artistic, engineering, and scientific investigations are possible, even
extending the basic flocking rules into more abstract, nonspatial, domains. Such
domains could include music (as shown in Chap.7 [22]), personal preferences,
styles, language, and more. Human flocking for recreation or therapy might also be
explored—participants in the Flock Logic performances described finding it calming
to engage with a group without a goal and rewarding to be part of creating something
new.

http://dx.doi.org/10.1007/978-3-319-03904-6_7
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