
Preface

The ability to simplify means to eliminate the unnecessary
so that the necessary may speak.

—Hans Hofmann, 1880–1966

The last few years have seen a great increase in the amount of data available to
scientists, engineers, and researchers from many disciplines. Datasets with mil-
lions of objects and hundreds, if not thousands, of measurements are now com-
monplace in areas such as image analysis, computational finance, bio-informatics,
and astrophysics. This large volume of data does, however, come at a price, more
often than not many computational techniques used to analyze these datasets
cannot cope with such large data. Therefore, strategies need to be employed as a
pre-processing step to reduce the number of objects, or measurements, whilst
retaining important information inherent to the data. One of the key problems with
such datasets is how to reduce the number of measurements, often referred to as
dimensions, in such a way that the reduced set of measurements captures the main
properties of the original data. Spectral dimensionality reduction is one such
family of methods that has proven to be an indispensable tool in the data pro-
cessing pipeline. In recent years, the area has gained much attention; thanks to the
development of nonlinear spectral dimensionality reduction methods, often
referred to as manifold learning algorithms.

Spectral dimensionality reduction methods can be broadly split into two cate-
gories; those that seek to maintain linear properties in the data, and those that seek
to maintain nonlinear, manifold, properties. Both linear and nonlinear methods
achieve the reduction in dimensionality through the careful construction of a
feature matrix, the spectral decomposition of which gives rise to the reduced
dimensionality dataset. Ever since the first nonlinear spectral dimensionality
reduction methods were proposed over a decade ago, numerous algorithms and
improvements have been proposed for the purpose of performing spectral
dimensionality reduction. Although these algorithms may improve and extend
existing techniques, there is still no gold standard technique. The reasons for this
are many; however, one of the core problems with the area is that there are still
many obstacles that need to be overcome before spectral dimensionality reduction
that can be applied to a specific problem area. These obstacles, referred to herein
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as open problems, have implications for those without a background in the area
who wish to employ spectral dimensionality reduction to their problem domain.

Those wish to use spectral dimensionality reduction without prior knowledge of
the field will immediately be confronted with questions that need answering; what
parameter values to use? how many dimensions should the data be embedded into?
how are new data points incorporated? what about large-scale data? For many, a
search of the literature to find answers to these questions is impractical, as such,
there is a need for a concise discussion into the problems themselves, how they
affect spectral dimensionality reduction and how these problems can be overcome.

This book provides a survey and reference aimed at advanced undergraduate
and postgraduate students as well as researchers, scientists, and engineers in a wide
range of disciplines. Dimensionality reduction has proven useful in a wide range of
problem domains, and so this book will be applicable to anyone with a solid
grounding in statistics and computer science seeking to apply spectral dimen-
sionality to their work.
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