Chapter 2
Spectral Dimensionality Reduction

Abstract In this chapter a common mathematical framework is provided which
forms the basis for subsequent chapters. Generic aspects are covered, after which
specific dimensionality reduction approaches are briefly described.

Keywords Spectral dimensionality reduction algorithms -+ Kernel methods -
Spectral graph theory.

Before addressing the open problems it is important to have an understanding of the
problem domain itself along with the techniques that have been proposed to perform
spectral dimensionality reduction. To fully understand and appreciate the open prob-
lems they need to be described in terms of a common mathematical framework. By
doing so the problems described in the latter sections can be coherently addressed in
relation to a common frame of reference.

This section begins by providing a general mathematical setting within which
both spectral dimensionality reduction, and the associated open problems, can be
described. Then key algorithms, both linear and nonlinear, are briefly described so
as to provide an important point of reference and discussion for the later discussion
of open problems.

2.1 A General Setting for Spectral Dimensionality Reduction

To effectively analyse spectral dimensionality reduction and the associated problems
it is useful to frame the methodology within a general setting. As the name suggests,
at the heart of spectral dimensionality reduction is the spectral decomposition of a
square symmetric feature matrix. Different techniques can be distinguished based on
the construction of this feature matrix and the eigenvectors that are subsequently used
(i.e. smallest or largest). This feature matrix aims to capture certain properties of the
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Fig. 2.1 The S-Curve dataset (a) along with its low-dimensional embedding (b)

subspace or submanifold upon which the data lies, the spectral decomposition of this
matrix then gives rise to the low-dimensional embedding (Fig.2.1). With this in mind
the general setting of spectral dimensionality reduction can be defined as follows:

Definition 1 Given a set of D-dimensional data X = {x;}]_, € RP that is sampled
from a d-dimensional manifold .# such that X C ., the goal of dimensionality
reduction is to recover a set of d-dimensional data' Y = {yi}?:1 e R? (d < D) such
that Y is a faithful representation of X and preserves certain properties of M .

Due to the vagueness of this definition, many questions naturally present themselves.
For example, what constitutes a faithful representation of the original data? Is the
high-dimensional data expected to lie on or near a low-dimensional subspace or
a low-dimensional submanifold? How is the data sampled from this subspace or
submanifold? These types of questions underlie the general assumptions that different
approaches make about the setting within which dimensionality reduction takes place
and will be returned to in due course.

A more formal definition of spectral dimensionality reduction can be obtained
by “filling in”” some of the gaps found in Definition 1. As previously mentioned, a
feature matrix is built from X that aims to capture certain properties of the data and
will often represent subspace or submanifold properties. Given the original data X,
the feature matrix F is built such that

(i) F is a square n x n matrix. Here n could refer to the number of objects in the
dataset or the ambient dimensionality of the data
(i1) Fissymmetric,ie. F;j=F; V i,jel[l,...n]
(iii) F is positive semi-definite, that is, u’ Fu > 0 for every u € R”

Itis this similarity matrix that distinguishes various spectral dimensionality reduc-
tion techniques. For example, F could measure the covariance of X as in Principal
Components Analysis [1], or the geodesic interpoint distances as in Isomap [2].

Once F has been built, it is recast in terms of its eigenvectors and eigenvalues
using eigendecomposition. By decomposing F in such a manner the low-dimensional
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representation can be found. Given that F is a square symmetric matrix, it can be
recast as

F =QaQ’ 2.1

where Q is a D x n matrix containing the eigenvectors as columns and Aisan x n
matrix with the eigenvalues on the diagonal, assuming that F is of size n x n. Each
eigenvector u; € Q has a corresponding eigenvalue A; € A for which Fu; = A;u;.
The low-dimensional representation Y is then found by utilising either the top or
bottom eigenvectors of the decomposition of X found using Eq. (2.1).

2.2 Linear Spectral Dimensionality Reduction

Linear approaches to spectral dimensionality reduction make the assumption that the
data lies on or near a low-dimensional subspace. In such cases, linear spectral dimen-
sionality reduction methods seek to ‘learn’ the basis vectors of this low-dimensional
subspace so that the input data can be projected onto the linear subspace. The two
main methods for linear spectral dimensionality reduction, Principal Components
Analysis and Multidimensional Scaling, are both described in this section. Although
more powerful nonlinear approaches have been presented in recent years, these lin-
ear techniques are still widely used and are worthy of attention since they provide
the basis for some of the subsequent nonlinear spectral dimensionality reduction
algorithms.

2.2.1 Principal Components Analysis (PCA)

PCA[1, 3] seeks to find the low-dimensional subspace within the data that maximally
preserves the covariance up to rotation. This maximum covariance subspace encap-
sulates the directions along which the data varies the most. Therefore, projecting the
data onto this subspace can be thought of as projecting the data onto the subspace
that retains the most information. An example embedding found using PCA is shown
in Fig.2.2a.

The first step of PCA is to calculate the D x D covariance matrix of X,

l< 7
F=-— inxi (2.2)

i=1

with the assumption that X is centred at the origin (i.e. zero mean). PCA is the only
spectral dimensionality reduction technique where the feature matrix F is not in
terms of the number of data points n, but rather the original dimensionality D. The
eigendecomposition of F, found according to Eq. (2.1), gives rise to the basis vectors
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Fig. 2.2 Example 2-dimensional embeddings of the S-Curve dataset found by a Principal Compo-
nents Analysis, and b Multidimensional Scaling

of the subspace upon which the data lies on or near. Therefore, the low-dimensional
embedding found according to PCA is given by the projection Y = XQg 4, where
Q.. 4 is the matrix of d eigenvectors ordered in descending order of their associated
eigenvalues.

The intuition behind PCA is that the largest eigenvector of the matrix F corre-
sponds to the dimension in the high-dimensional space along which X varies the most.
Similarly, the second largest eigenvector corresponds to the dimension with the sec-
ond most variation, and so on. So the top d-eigenvectors describe the d-dimensional
subspace which contains the most variance.

2.2.2 Classical Multidimensional Scaling (MDS)

Classical MDS [4], sometimes referred to as metric MDS, shares many similar prop-
erties to PCA, as shown by the example low-dimensional embedding in Fig.2.2b.
Whereas PCA seeks to find the subspace that maximally preserves variance, MDS
seeks to preserve pairwise distances in the low-dimensional space. As such, MDS
takes as input a matrix, S, of squared pairwise distances:

Sij = IIxi — x;|I? (2.3)

The squared distance matrix in its raw form is not positive semi-definite, so cannot
be used as the feature matrix for spectral dimensionality reduction. Therefore, it
needs to be converted to a Gram, or inner-product, matrix through the following
transformation: ]

F = —EHSH (24
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where H is a centring matrix such that H =1 — %eeT where I is the n x n identity
matrix, and e is an n vector of all ones. The spectral decomposition of F gives rise
to the tqp d eigenvalues.{)» j}‘jj.zl anq eigenvectors {q; }‘jj.:l. The low-dimensional
embedding found according to MDS is then

Y= (Vi @)

Both PCA and Classical MDS give rise to the same low-dimensional embedding
and the Gram matrix (Eq. 2.4) has the same rank and eigenvalues up to a constant
factor as the feature (covariance) matrix of PCA [5].

2.3 Nonlinear Spectral Dimensionality Reduction

The central limitation of linear approaches to dimensionality reduction is that they
assume the data lies on or near a linear subspace. In practice this may not always
be the case; spaces may be locally linear, but unlike the assumption made by linear
techniques, globally they may be highly nonlinear. As such, using linear techniques
in such circumstances could lead to distorted results with curved areas of the data
being projected on top of each other.

Nonlinear spectral dimensionality reduction techniques seek to alleviate this prob-
lem by modelling the data not using a subspace, but a submanifold. The data is
assumed to be sampled from a low-dimensional manifold embedded within a high-
dimensional space. This manifold could be highly nonlinear and convoluted, yet
nonlinear methods seek to maintain this manifold structure in the low-dimensional
space such that points that are close on the manifold are close in the low-dimensional
space, and conversely, points that are far away on the manifold are mapped as far
away in the low-dimensional space. An example of this is shown in Fig.2.3.

In all cases, the feature matrix is built from a graph whose vertices correspond to
the input data, and whose edge set corresponds to neighbourhood relations. Therefore,
nonlinear spectral dimensionality reduction methods build on the principles laid
out in linear algebra and graph theory whereby a graph is reconstructible from its
spectrum and the eigenvectors of the graph’s adjacency matrix [6].

This section reviews some of the most popular methods for nonlinear spectral
dimensionality reduction. This list of methods is by no means exhaustive, rather,
the methods included in this section are chosen for their didactic value and also
their popularity. Each method corresponds to an important and different paradigm
to spectral dimensionality reduction; as such, they are each landmarks within the
landscape of spectral dimensionality reduction and provide a brief but sufficient
survey of the main trends within this area.
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Fig. 2.3 Points sampled from a simple horseshoe shaped manifold (a). The two distances in (b)
show the difference between distances as measured across the manifold and the Euclidean distance.
The two end points are connected by the dotted line according to the Euclidean distance. However,
their manifold distance would be the sum of inter-point distances on the path between the two
points. For nonlinear spectral dimensionality reduction techniques, the manifold distances should
be used so that the two end points are mapped as far away in the low-dimensional space

Fig. 2.4 Example
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2.3.1 Isomap

Isomap [2], one of the first true nonlinear spectral dimensionality reduction methods,
extends metric MDS to handle nonlinear manifolds. Whereas metric MDS measures
inter-point Euclidean distances to obtain a feature matrix, [somap measures the inter-
point manifold distances by approximating geodesics. The use of manifold distances
can often lead to a more accurate and robust measure of distances between points
so that points that are far away according to manifold distances, as measured in
the high-dimensional space, are mapped as far away in the low-dimensional space
(Fig.2.3). An example low-dimensional embedding of the S-Curve dataset (Fig.2.1)
found using Isomap is given in Fig.2.4.

At the heart of Isomap is the computation of the manifold inter-point distances
which is achieved by estimating the geodesic distances across aneighbourhood graph.
The geodesic distance between two points is represented as S;; = ¢ (X;, X;), where
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¢ (-) is the distance between x; and x; as measured using geodesics. The key insight
of Isomap is that the geodesic distance function corresponds to the summation of the
distances of ‘short-hops’ along a neighbourhood graph. Given a graph G = (V, E)
such that V is the vertex set equal to X, and the edge set E contains the local connectiv-
ity of the vertices (calculated by the k-nearest neighbour rule or the e-neighbourhood
rule) the distance ¢ (x;, X;) corresponds to the shortest path in G between vertices
x; and X; as calculated by an algorithm such as Dijkstra’s method [7].

As with MDS, the matrix S is not positive semi-definite, so a Gram matrix is
derived according to Eq.(2.4). Once the geodesic distances have been computed,
Isomap follows the same algorithm as MDS. The Gram matrix is decomposed
into eigenvalues and eigenvectors and the low-dimensional embedding is given by
Eq. (2.5). However, unlike MDS, the feature matrix captures manifold distances as
opposed to squared Euclidean distances. Therefore, the low-dimensional embedding
will maintain manifold properties rather than linear subspace properties.

2.3.2 Maximum Variance Unfolding (MVU)

Sometimes referred to as semidefinite embedding, MVU [8] seeks to find the
low-dimensional representation by ‘unrolling’ the high-dimensional data. As with
Isomap, MVU constructs a k-nearest neighbourhood graph to represent the connec-
tivity of the manifold as sampled by the data in X. However, unlike Isomap, spectral
decomposition is not performed on this connectivity matrix, rather, the datapoints
are unfolded, throughout the formulation of an optimisation problem, by separat-
ing the data as much as possible subject to specific constraints. At its core, MVU
seeks to maximise the Euclidean distances between the datapoints whilst leaving
the distances at a local scale unchanged. This is done by formulating the central
optimisation problem as that of a semidefinite program [9].

The solution to the maximum variance unfolding problem is found by constructing
a Gram matrix, F, whose top eigenvectors give rise to the low-dimensional represen-
tation of the data. MVU seeks to maximise > i, [lyi — ¥ 12, with yi,j € Y, subject
to the following constraints

Wy —yjI>=1lx —x; 1>’V EG, j)eG

2> 5i=0

where E (i, j) indicates an edge in the graph G between vertex i and vertex j and
so only enforces a constraint on local distances, Constraint (2) ensures the low-
dimensional embedding is centred at the origin. As mentioned above, this maximi-
sation can be reformulated as the following semidefinite programming problem.
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Fig. 2.5 Example
2-dimensional embeddings
of the S-Curve dataset
found by Maximum Variance
Unfolding with k = 13

Maximise trace(F) subject to:
(1) F<0.

@ > t=0.
i
3) ki — 2k +kj = Ix; —x;|>V E(, j) € G.

Constraint (1) ensures that the matrix is positive semidefinite and Constraint (3)
ensures local isometry [10].

MVU differs from other spectral techniques in that rather than constructing a
feature matrix from measurable properties (i.e. covariance, Euclidean distance), it
directly learns the feature matrix by solving a convex optimisation problem. Once the
feature matrix has been learnt however, MVU fits in with other spectral techniques
as the low-dimensional embedding is given as the top eigenvectors of Eq. (2.1).

The low-dimensional embedding of the S-Curve dataset found using MVU is
shown in Fig.2.5.

2.3.3 Diffusion Maps

The Diffusion Maps framework [11] has its roots in the field of dynamical systems.
Whereas Isomap measures interpoint distances as geodesics, and MVU measures
them as ‘un-rolled’ Euclidean distances, Diffusion Maps uses the idea of diffusion
distance to capture the relationships between data points. Diffusion Maps works on a
fully connected model of the data, so unlike Isomap, which considers single shortest
paths, Diffusion Maps considers several paths through the data making it potentially
more robust to noise. Figure 2.6 shows the 2-dimensional embedding of the S-Curve
dataset founding using Diffusion Maps.

The feature matrix, F, found by Diffusion Maps contains the diffusion distances
between data points after ¢ time steps. The diffusion distance can be found by com-
puting a Markov random walk on a weighted graph G = (V, E), with the vertex set
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Fig. 2.6 Example
2-dimensional embeddings
of the S-Curve dataset found
by Diffusion Maps with
t=1,0=0.1
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corresponding to X and the edge set built using the Gaussian kernel such that

lIx; —x; 12

E@i,j)=e 27 (2.6)

where o is the variance of the Gaussian. This edge set can be recast in terms of an
affinity matrix such that W;; = E(i, j), and is subsequently row normalised (the rows
of W sum to 1) to adjust for the influence of local geometry versus distribution across
the mamfold [11]. The initial transition matrix P(! is then formed with entries p(l)

d(x 5> where d(x;) is the degree of node x; such that d(x;) = Z wix. Each entry,

pl(jl), can be interpreted as the forward transition probability of a diffusion process

between x; and X; in a single timestep. The transition matrix P therefore reflects
the first-order neighbourhood structure of G. Following on from this, the transition
matrix P®) represents the probability of the diffusion process after ¢ timesteps, and
p(]) corresponds to the probability of going from x; to X; in ¢ timesteps.

Using the forward probabilities from the random walk at timestep ¢, the diffusion

distance between x; and x; can be defined by

(p(t) (0)2
Dmm“ﬂ:ZLﬁ@i%‘ 2.7

k

where ¢o(x) is the unique stationary distribution defined as Zd(;(é . This term is

used to assign more weight to denser regions of the graph. As can be seen from
Eq.(2.7), the diffusion distance is low between data points with a high forward
transition probability.

As shown in [11], the low-dimensional representation is found by the decompo-
sition of a modified form of Eq. (2.1) such that

PYQ = AQ (2.8)
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The largest eigenvalue is trivial since the graph represented by P is fully
connected, and so the associated eigenvector, uj, is discarded. The eigenvec-
tors are then scaled by their eigenvalues leading to the d-dimensional embedding
Y = {Aoup, Azuz, ..., Agri0g41}).

2.3.4 Locally Linear Embedding (LLE)

Although published at the same time as Isomap, LLE [12] presents a very different
approach to spectral dimensionality reduction. Whereas Isomap, MVU, and Dif-
fusion Maps, seek to construct a dense distance matrix to model global geodesic
distances, LLE constructs a sparse feature matrix based on the local linear structure
of the manifold. As such, LLE derives the low-dimensional embedding from the bot-
tom eigenvectors of a sparse feature matrix and is considered a local technique for
spectral dimensionality reduction. At a broad level, LLE works by initially describ-
ing each input data point in terms of the weights needed to reconstruct it from its
nearest neighbours. These weights correspond to a description of the local geometry
of each data point, and as such, the low-dimensional embedding of the data can be
found by reconstructing each data point in the low-dimensional space in terms of the
previously found weights. LLE is therefore a two step framework, with the weights
being found in the first step by “locking” the data points, and then finding the location
of the low-dimensional data points by “locking” the weights found in the first step.
The simple intuition behind LLE is that each input point, X;, and its k-nearest
neighbours are locally linear, that is, they lie on or near a linear ‘patch’ of the
manifold. By making this assumption the local geometry can be characterised by
linear reconstruction weights, W, that reconstruct each point x; from its k-nearest
neighbours. The weights are measured by the squared distance cost function

2

e(W) =D Ixi — > Wix; (2.9)
j

1

which is minimised with the constraints: (i) W;; = 0 if x; is not in the k neighbour-
hood of x;; (ii) > j W,;; = 1 for all i. This sparse weight matrix therefore describes
the local geometry of the data up to size k. Once the weights in W have been found
by solving the least squares problem of Eq.(2.9) using the technique described in
[12], LLE seeks to reconstruct the data in the low-dimensional space by minimising
the embedding cost function

2

SY) =D [lyi— > Wiy, (2.10)
J

i
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Fig. 2.7 Example
2-dimensional embeddings
of the S-Curve dataset found
by Locally Linear Embedding
withk =8

with the specific constraints: (i) >; y; = 0, that is, the outputs are centered; (ii) the
outputs have unit covariance. These constraints prevent a degenerate solution and
also allow the minimisation of Eq. (2.10) to be found through the computation of the
bottom (d + 1) eigenvectors of the feature matrix F = (I — W)T (I — W), where the
bottom eigenvector (corresponding to the constant unit vector) is discarded.

Figure 2.7 shows the 2-dimensional embedding of the S-Curve dataset found using
LLE. As can be seen, since LLE is a local approach to dimensionality reduction, the
global shape of the manifold is not fully recovered.

Although similar methods existed before LLE to model the local geometry of
a manifold (e.g. Local PCA [13]), the novel feature of LLE is that it maps the
local geometric models into a single, coherent, coordinate system. As well as this,
by modelling the local geometry in terms of reconstruction coefficients, the core
methodology of LLE can be used to embed new data points into a previously learnt
manifold, a problem which is described in more detail in Chap. 5.

2.3.5 Laplacian Eigenmaps

Similar to LLE, Laplacian Eigenmaps [14] seeks to find a low-dimensional embed-
ding through the preservation of local neighbourhood properties. As in LLE, a weight
matrix is employed to capture the local structure of the data, and the low-dimensional
embedding is found through the bottom (d + 1) eigenvectors of this sparse feature
matrix. While LLE appeals to geometric intuition to model the local properties of
the data, Laplacian Eigenmaps appeals to spectral graph theory and the notion of the
graph Laplacian to find a solution to the minimisation of the central cost function.
Laplacian Eigenmaps seeks to minimise the following embedding cost function:

YY) =D (vi —¥,)’ Wy 2.11)
ij


http://dx.doi.org/10.1007/978-3-319-03943-5_5

18 2 Spectral Dimensionality Reduction

Fig. 2.8 Example 2-
dimensional embeddings

of the S-Curve dataset found ';.‘ .
by Laplacian Eigenmaps with ° () ° :&%;@’%Og&%qw. - M
k=12,0=2 PG & P TR e
W oBeg e, 0
o %000 Lok
Y ECLAN S5

L ° -
: ke sz

%ozl v i®. =2
L) o J
fj@:“‘;a% spo oy o el N ¢
%b%y ol *Efﬂ‘?w

where large weights in W correspond to small distances in the high-dimensional space
and so nearby points in X are brought together in Y with ‘nearness’ being represented
by the weight values in W. The weight matrix can be constructed in numerous ways
with the most common forms being either to assign constant weights, w;; = 1/k, or
to use a heat kernel to exponentially decay the weights, w;; = exp(—|[|x; —X; ||2) / o2
where o is a scale parameter defining the size of the kernel.

As shown in [14], the solution to Eq. (2.11) can be found by recasting itin terms of a
general eigenproblem involving the Laplacian of the graph. The Laplacian matrix, F,
is defined as F = M —W where M is the degree matrix of W such thatm;; = > ; wj;.
With this in mind, the cost function of Eq. (2.11) can be re-formulated as

DY) =D (vi —y))’ Wy
-
= Z:(yi2 +Y7 = 2yiy )W

= D WD+ D ¥ =22 yiyw;
i j ij

=2Y'FY

(2.12)

Therefore, the minimisation of Eq. (2.11) can be found by observing that F is positive
semidefinite, and so the values of Y that minimise the objective function are given
by the solution to the eigenvalue problem FY = ADY. As with LLE, the bottom
(smallest) eigenvector is discarded and the (d + 1) smallest eigenvectors give rise to
the g-dimensional embedding. Figure 2.8 shows the low-dimensional embedding of
the S-Curve dataset found using Laplacian Eigenmaps.

One further point of interest with regards to Laplacian Eigenmaps is the algo-
rithm’s linearised variant, Locality Preserving Projections (LPP) [15]. LPP seeks to
compute a transformation matrix using the graph Laplacian that maps the data points
into a subspace. Specifically, LPP seeks to minimise
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arg min a’ XDX”a (2.13)

a
al XDxT a=1

where a is a transformation vector. The vectors, a, that minimise the above objective
function are given by the smallest eigenvectors of the generalised eigenproblem
XFXTa = AXDX”a. Locality Preserving Projections has proved useful in many
problem domains due to its linearity and speed, and also due to the fact that it
naturally incorporates the mapping of new points. This is discussed in more detail in
Chap.5.

2.3.6 Local Tangent Space Alignment (LTSA)

The Local Tangent Space Alignment method [16] models the data in terms of the local
tangent space of each data point. The tangent space for a data point can conceptually
be thought of as an approximation of the principal manifold at a local scale passing
through the data point. The tangent spaces for a set of near neighbours are assumed
to be overlapping, and so the global co-ordinate system can be found by aligning the
local tangent spaces. LTSA therefore builds a global representation of the data by
aligning a set of local models.

The local information for a data point x; is calculated by finding the g largest
eignvectors of the correction matrix W; of the neighbourhood around x; such that

Wi = Xy — %)) (X _y; — xie) (2.14)

where X 4 corresponds to the points in X that appear in the k-neighbourhood of
x; represented as .4 and e is a k-dimensional column vector of ones. The local
information, G;, is then built from the largest eignvectors of W; such that G; =
le/vVk, 81,8, ..., g,] where e//k is a centering term.

LTSA seeks to minimise a cost function that minimises the distances between
points in the low-dimensional space and the tangent space. As shown in [16], the
solution to this minimisation problem is formed by the d smallest eigenvectors of an
alignment matrix F. The alignment matrix is found by iteratively summing over all
local information matrices:

F s < F oy +He(I - G;GHH (2.15)

starting from F = O for Vij. Here, Hy is a centering matrix of size k with Hy =
Iy — %eeT where e is a k-dimensional column vector of all ones.

The low-dimensional representation Y is given by the bottom (d + 1) eigenvectors
of F found according to Eq.(2.1) with the smallest eigenvector being discarded.
An example low-dimensional embedding of the S-Curve dataset found using Local
Tangent Space Alignment is given in Fig.2.9.
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Fig. 2.9 Example
2-dimensional embeddings
of the S-Curve dataset found ’ o2%
by Local Tangent Space balen Bt <§,Z,§&o
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Alignment with k = 10

Table 2.1 The kernel form of each technique is described relative to each specific feature matrix F

Method

Properties

Kernel form

Linear [1, 4]

Isomap [2]

MVU [8]
Diffusion maps [11]
LLE [12]

Top eigenvectors

Top eigenvectors

Top eigenvectors
Top eigenvectors
Bottom eigenvectors

K =k(x;,x;)

where « is an appropriately chosen
kernel function

K =—-1Hr(SH

where 7(S) is the squared distance
matrix and H is the centering
matrix

As given (Sect.2.3.2)

As given (Sect.2.3.3)

K=HGnxI-FH

where Amax is the maximum
eigenvalue of F

K = HF'H

where FT is the pseudo-inverse of
the Laplacian matrix

LTSA [16] K=I-F

For a definition of F with respect to each technique see Sects.2.2.1-2.3.6

Eigenmaps [14] Bottom eigenvectors

Bottom eigenvectors

2.4 Kernel Formulation

There have been numerous attempts to phrase spectral dimensionality reduction
within a unified framework, examples being Graph Embedding [17], and a unified
probabilistic framework [18]. But perhaps one of the most significant and useful uni-
fied settings is found when phrasing spectral dimensionality reduction algorithms as
kernel methods [19]. All spectral methods can be described as performing Kernel
Principal Components Analysis [20] on specially constructed Gram matrices (e.g.
Kernel Isomap, LLE, and Laplacian Eigenmaps [19], Kernel LTSA [21]). It is worth
noting that Maximum Variance Unfolding [8] and Diffusion Maps [11] already con-
struct kernel matrices so they do not need to be adapted to fit within this framework.
Table 2.1 summarises the kernel form of each of the discussed spectral dimension-
ality reduction algorithms. These kernel forms will be useful in later chapters when
solutions from the kernel methods community can be applied to kernel based spectral
dimensionality reduction techniques.
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2.5 Summary

Spectral dimensionality reduction seeks to obtain a low-dimensional embedding of a
high-dimensional dataset through the eigendecomposition of a specially constructed
feature matrix. This feature matrix will capture certain properties of the data such as
inter-point covariance or local linear reconstruction weights. The different methods
of formulating this feature matrix will have different implications for various open
problems, as will be seen in later chapters.
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