
Chapter 2
Piezoelectric Materials

Abstract After some historical remarks the field equations for piezoelectric mate-
rials are presented for the 3D and the 2D case. Furthermore, the boundary value
problems in bounded and unbounded cracked domains are formulated.

2.1 Short Historical Overview

In the middle of eighteenth century Carolus Linnaeus and Franz Aepinus first
observed that certain materials, such as crystals and some ceramics, generate electric
charges in case of a temperature change. Both René Just Haüy and Antoine César
Becquerel subsequently attempted to investigate the phenomena further but were
unsuccessful. Piezoelectricity as a research field in crystal physics was initiated by
the brothers Jacques Curie (1856–1941) and Pierre Curie (1859–1906) with their
studies, [4, 5]. They discovered an unusual characteristic of certain crystalline min-
erals as tourmaline, quartz, topaz, cane sugar and Rochelle salt. It was found that
tension and compression generated voltages of opposite polarity and proportional
to the applied load. This was called by Hankel [13] the piezoelectric effect. The
at first discovered direct piezoelectric effect is shown schematically in Fig. 2.1a, b.
The word piezoelectricity comes from Greek and means electricity resulting from
pressure (Piezo means pressure in Greek). In the year following the discovery of the
direct effect, Lippman [22] predicted the existence of the converse effect basing on
fundamental thermodynamic principles. Before the end of 1881 the brothers Curies
confirmed experimentally the existence of the converse effect. They showed that if
one of the voltage-generating crystals was exposed to an electric field it lengthened
or shortened according to the polarity of the field, and in proportion to its strength,
see Fig. 2.2.

The study of piezoelectricity remained something of a laboratory curiosity for the
years until the World War I. In this period it is worth to mention the textbook on
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(a) (b)

Fig. 2.1 Direct piezo-effect: a at applied compressive stress, b at applied tension

(a) (b)

Fig. 2.2 Inverse piezo-effect at applied electric field

crystal physics of Voigt [39] where are described 20 natural crystal classes capable
of piezoelectricity with their piezoelectric constants using tensor analysis.

Piezoelectric materials did not come into widespread use until the World War I,
when quartz was used as resonators for ultrasound sources in SONAR to detect
submarines through echolocation.

A very important stage in the research of piezoelectric materials and especially
in their applications in modern engineering practice was the discovery of the phe-
nomenon ferroelectricity byValasek [38]. Ferroelectric materials exhibit one ormore
phases and have domain structure inwhich the individual polarization can be changed
by an applied electric field. The first known ferroelectric material was Rochelle salt.
Unfortunately, Rochelle salt loses its ferroelectric properties if the composition is
slightly changed, which made it rather unattractive for industrial applications. Fer-
roelectricity was mainly regarded as an interesting physical effect.

During World War II, in the United States, Japan and the Soviet Union, isolated
research groups working on improved capacitor materials discovered that certain
ceramicmaterials (prepared by sinteringmetallic oxide powders) exhibited dielectric
constants up to 100 times higher than common cut crystals. Furthermore, the same
classes of materials (called ferroelectric) were made to exhibit similar improvements
in piezoelectric properties. This led to themanufacturing of syntheticmaterialswhose
piezoelectric and dielectric properties are about 100 times higher than the ones of the
natural piezoelectric. The discovery of easily manufactured piezoelectric ceramics
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with astonishing performance characteristics naturally touched off a revival of intense
research and development of piezoelectric devices.

In 1945, piezoelectricity started on the market when it was realized that the mixed
oxide compound barium titanate BaT i O3 was a ferroelectric which can easily fab-
ricated and shaped at low price and can made piezoelectric with constants many
times higher than natural materials by an electrical poling process. This material is
of stable perovskite type, which is one of the fundamental crystal lattice structures.
This discovery brought the perovskite type materials into the focus of investigations.
Soon other perovskites with ferroelectric properties were discovered, thus opening
the path to industrial application. This time could be called the beginning of the era
of the piezoelectric ceramic and modern history of piezoelectricity. The following
successful results were obtained in the time period 1940–1965:

• Development of the barium titanate family of piezoceramic and the lead zirconate
titanate family, see Jaffe et al. [17];

• Development of an understanding of the correspondence of the perovskite crystal
structure with electro-mechanical activity;

• Development of a rationale for doping both of these families with metallic impu-
rities in order to achieve desired properties such as dielectric constants, stiffness,
piezoelectric coupling coefficients, ease of poling, etc.

Piezoelectricity as one of the branches of crystal physics is now the base of the
modern engineering practice in the following technologies:

• Frequency control and signal processing e.g. mechanical frequency filters, surface
acoustic wave devices, bulk acoustic wave devices, etc.;

• Soundandultrasoundmicrophones and speakers, ultrasonic imaging, hydrophones,
etc.;

• Actuators and motors based on the converse effect, i.e. when an electric field is
applied to a material it will deform in a predictable way. For example, in manufac-
turing of piezoelectric ceramics it is possible to create rods that deform along the
long axis and act like a piston. The amount of deformation can be controlled by the
amount of electric field applied to the material. Since the deformations are small,
usually within micrometers precision, they are excellent in application that require
very small amounts of movement. They have been used as tools for micro preci-
sion placement and for micro adjustments in lens for microscopes. The converse
effect is used in printers (needle drivers and ink jet), miniaturized motors, bimorph
actuators (pneumatics, micropumps, Braille for the blind), multilayered actuators
for fine positioning and optics, injection systems in automotive fuel valves, etc.

• Detection of pressure variations in the form of sound is the most common sensor
application, e.g. piezoelectric microphones (sound waves bend the piezoelectric
material, creating a changing voltage) and piezoelectric pickups for electric guitars.
A piezo sensor attached to the body of an instrument or structure is known as
a contact microphone giving information of deformation. This is the base of all
sensors for strain, mass, flow, pressure online control. By continuously monitoring
deformation, the sensors can record operational loads, compute material fatigue,
and estimate remaining component life.
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• Generator with application in gas and fuel ignition. Piezoelectricity can gener-
ate very high voltages but the current is very small. The amount of pressure
needed to distort a piezoelectric ceramic element by 0.05mm can generate nearly
100,000volts. This amount of voltage is enough to create an electric spark to ignite
gas in an oven, grill or pocket lighter.

• Smart structures that use discrete piezoelectric patches to control the response of
a structure have been of considerable interest in recent years. The development of
modern software makes it possible to fully model coupled thermo–mechanical–
electrical systems and obtain reciprocal relations between piezoelectric actuator
voltages and system response. By integrating such models into a closed-loop con-
trol system, very effective active control on the vibration, noise, shape, deforma-
tion, pressure, etc. can be achieved. Structural panels embedded with a series of
sensors and actuators canbeused in civil, industrial and aerospace structures. These
panels can actively monitor the structural integrity and detect faults at early stages,
thereby providing precise information on structural failure and life expectancy.

• The concept Crowd Farm with the basic idea that large amounts of people moving
in dense areas would step on tiles embedded in the floor and these tiles would
use piezoelectric materials to generate electricity that could be collected and used.
A prototype of the crowd farm has already been tested in a selected number of
Japanese train stations.

• Experimental science for investigation of atomistic structure of materials based on
the micro-coupling of mechanical and electrical fields.

2.2 Types of Piezoelectric Materials

Piezoelectric materials can be natural or man-made. The natural PEM are crystal
materials like quartz (Si O2), Rochelle salt, Topaz, Tourmaline-group minerals and
some organic substances as silk, wood, enamel, dentin, bone, hair, rubber. Figure2.3
shows the unit cell of quartz which has specific atomic structure of the lattice which
is a tetrahedron built of oxygen atoms around a silicon atom. Each oxygen atom has
the same distance to the silicon atom, and the distances between the oxygen atoms
are all the same. The change in the position of the atoms due to applied stress leads
to the formation of net dipole moments that causes polarization and an electric field,
respectively.

Man-made piezoelectric materials are crystals that are quartz analogs, ceramics,
polymers and composites.

There are 32 crystal classes which are divided into the following seven groups:
triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal and cubic. These
groups are also associated with the elastic nature of the material where triclinic rep-
resents an anisotropic material, orthorhombic represents an orthotropic material and
cubic are in most cases isotropic materials. Only 20 of the 32 classes alow piezoelec-
tric properties. Ten of these classes are polar, i.e. show a spontaneous polarization
without mechanical stress due to a non-vanishing electric dipole moment associated
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Fig. 2.3 Unit cell of quartz

with their unit cell. The remaining 10 classes are not polar, i.e. polarization appears
only after applying a mechanical load.

There are the following families of man-made ceramics with crystal structure
as perovskite: Barium titanate (BaT i O3; Lead titanate (PbT i O3); Lead zirconate
titanate (Pb[Zrx T i1−x ]O3, 0 < x < 1)—more commonly known as PZT; Potas-
sium niobate (K NbO3) ; Lithium niobate (Li NbO3); Lithium tantalate (LiT aO3),
etc. and other lead-free piezoceramics. The general chemical formulae of perovskite
crystal structure is AB O3 , where A is a larger metal ions, usually lead Pb or barium
Ba, B is a smaller metal ion, usually titanium T i or zirconium Zr , see Fig. 2.4, which
shows the crystal structure of a piezoelectric ceramic (BaT i O3) at temperature above
and below Curie point.

To prepare a piezoelectric ceramic, fine powders of the component metal oxides
are mixed in specific proportions, then heated to form a uniform powder. The pow-
der is mixed with an organic binder and formed into structural elements having the
desired shape (discs, rods, plates, etc.). The elements are subsequently fired accord-
ing to a specific time and temperature program, during which the powder particles
sinter and the material attains a dense crystalline structure. The elements are cooled,
then shaped or trimmed to specifications, and electrodes are applied to the appropri-
ate surfaces. Above a critical temperature, the Curie point, each perovskite crystal in
the fired ceramic element exhibits a simple cubic symmetry with no dipole moment,
it is in the so-called paraelastic phase (Fig. 2.4a). At temperatures below the Curie
point, however, each crystal exhibits a tetragonal or rhombohedral symmetry leading
to a dipole moment; this phase of the material is called ferroelectric phase (Fig. 2.4b).
When electric field of about 106 V/m is applied to the ferroelectric polycrystal as it
passes through its Curie temperature, so that its spontaneous polarizations develop,
all polarization vectors are aligned in a more or less uniform direction. This process
leading to a macroscopic net polarization is called poling. Initially there exists a uni-
form distribution of all direction, i.e. no macroscopic net polarization. After poling:
a distribution around the poling direction leads to a macroscopic net polarization.
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(a) (b)

Fig. 2.4 Crystal structure of a traditional piezoelectric ceramic (BaT i O3) at temperature above
(a) and below (b) Curie point

Now, at this stage, when a mechanical stress is applied, the polarization will
increase or decrease and the ceramic will have typical piezoelectric behavior. The
mechanism of this process will be explained in Sect. 2.3.

The piezoelectricity of polyvinylidene fluoride was discovered by Kawai [18].
PVDF is a ferroelectric polymer, exhibiting piezoelectric and pyroelectric properties.
These characteristics make it useful in sensor and battery applications. Thin films
of PVDF are used in some newer thermal camera sensors. Piezocomposite materials
are an important update of existing piezoceramic, see Newnham [26]. They can be
of two types: piezo-polymer in which the piezoelectric material is immersed in an
electrically passive matrix (for instance PZT in epoxy matrix) and piezo-composites
that are composite materials made by two different ceramics (for example BaT i O3
fibers reinforcing a PZT matrix).

2.3 Physical Peculiarities

Piezoelectric materials are anisotropic dielectrics of special type, where both fields
the electrical and the elastic are coupled. Some of them (for instance ceramic) have
ferroelectric properties, but the rest of them (as quartz) display no ferroelectric
behaviour. In the following a brief explanation is given of the physical properties
of dielectrics, ferroelectric, piezoelectric materials and the similarity and difference
between them.

A dielectricmaterial is anymaterial that supports chargewithout conducting it to a
significant degree. The main property is that they have no free electrical charges, but
when an external electrical field is applied the electric dipoles are being created due to
the interaction of the electrical field with the dielectric structure. The electric dipole,
see Fig. 2.5 is an electro–neutral unit volume in which the centers of the positive +q
and negative−q electric charges (poles) do not coincide and are at distance r , so that
the dipole momentμ = qr arises. The dipole moment is a vector with direction from
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(a)

(b)

Fig. 2.5 The dipole moment

the negative to the positive pole. Because of dielectric polarization, positive charges
are displaced toward the external field and negative charges shift in the opposite
direction.

If the center of positive charge within a given region and the center of negative
charge within the same region are not in the same position, a dipole momentμ arises.
For example, in the Fig. 2.5, the center of positive charge from the eight cations shown
is atX,while the center of negative charge is located some distance away on the anion.
The second view of dipole moment is more useful, since it can be applied over a large
area containing many charges in order to find the net dipole moment of the material.

The polarization of a material is simply the total dipole moment for a unit volume

P = 1

V

∑

i

μi , where V is the overall volume of the sample. Because
∑

i

μi is

a vector sum, a material may contain dipoles without having any net polarization,
because dipole moments can cancel out. If a material contains polar molecules,
they will generally be in randomly orientated when no electric field is applied, see
Fig. 2.6. An applied electric field E[N/C] will polarize the material by orienting
the dipole moments of polar molecules in opposite direction—mainly to the applied
electrical field Ea . Or, when a dielectric is placed between charged electrode plates,
the polarization of the medium produces an electric field E p opposite to the field
of the charges on the plate and then the effective electrical field is: Ee = Ea −
E p. The dielectric constant ε[C/N M2], which is also called permittivity, is the
main characteristic of the dielectric. It reflects the amount of reduction of effective
electric field as shown in Fig. 2.6. The dielectric constant depends on the polarization
properties of the dielectric material, but also on its elastic, thermal, etc. properties.

The relative dielectric constant εγ = ε

ε0
shows howmany times the effective electric

field decreases in a given dielectric material in comparison with the electric field
between the plates when they are in vacuum with a dielectric constant ε0 = 8.85 ×
10−12 C/Nm2.

Permittivity is directly related to the dimensionless characteristic electric sus-
ceptibility χ , which is a measure of how easily a dielectric polarizes in response
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Fig. 2.6 Reduction of an effective electric field due to the polarization

to an electric field. They are related to each other through the scalar relation
ε = εγ ε0 = (1+χ)ε0 for the isotropic case and the tensor relation εi j = (δi j +χi j )ε0
for an anisotropic dielectric materials. An important property of dielectrics is that
they posses naturally polarization and in the absence of applied electrical field they
have no electric dipoles.

The polarization of piezoelectric material has its specific peculiarities in com-
parison with polarization of ordinary dielectrics. First we will consider polarization
of piezoelectric materials that are not ferroelectric and will discuss the polarization
process of quartz as classical representative of this class of materials.

When a piezoelectric is placed under a mechanical stress, the geometry of the
atomic structure of the crystal changes, such that ions in the structure separate, and
a dipole moment is formed. For a net polarization to develop, the dipole formed
must not be canceled out by other dipoles in the unit cell. Therefore the piezoelec-
tric atomic structure must be non-centrosymmetric. When a piezoelectric material is
loaded electrically then the electrical dipoles appear, dipole moment is formed and
this results in deformation. The polarization is linear as those shown in Fig. 2.7 and
electrical dipoles nucleate only after electrical or mechanical load. The other types
of piezoelectric materials are with ferroelectric properties, i.e. spontaneous polariza-
tion and electric dipoles exist in their structure even in the absence of electrical field.
The piezoelectric effect in ferroelectric is strongly dependent on its atomic structure.
Depending on the type of a crystal, a compressive stress can increase or decrease the
polarization, or sometimes, have no effect at all. For example, let us consider again
the two crystal structures of a traditional piezoelectric ceramic at temperature above
and below Curie point, presented in Fig. 2.4. The ceramic phase above Curie point
is cubic and has no spontaneous polarization. The ceramic phase below the Curie
point is a crystal of tetragonal or rhombohedral symmetry and develops spontaneous
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Fig. 2.7 Dielectric
polarization

polarization. Piezoelectric properties can be found in the ceramic phase below the
Curie point. Materials are polarized along a unique crystallographic direction, in
that certain atoms are displaced along this axis, leading to a dipole moment along
it. Depending on the crystal system, there may be few or many possible axes. In
a crystal, it is likely that dipole moments of the unit cells in one region lie along
one of the six directions. Each of these regions is called a domain. A domain is a
homogenous region of a ferroelectric, in which all of the dipole moments have the
same orientation. In a newly-grown single crystal, there will be many domains, with
individual polarizations such that there is no overall polarization. If a mechanical
stress is applied to the ferroelectric, then there are domains which will experience
an increase in dipole moment and some which will experience a decrease in dipole
moment. Overall, there is no net increase in polarization, see Fig. 2.8. This makes
BaTiO3 useless as a piezoelectric unless it is put through some additional process-
ing. This process is called poling. An electric field is applied to the ferroelectric as
it passes through its Curie temperature, so that its spontaneous polarization devel-
ops and it is aligned in a single direction. All of the domains in the piezoelectric
have a dipole moment pointing in that direction, so there is a net with approximately
the same polarization, see Fig. 2.8. When the electric field is removed most of the
dipoles are locked in a configuration of near alignment (Fig. 2.8). The full alignment
is only possible in a single crystal and in a polycrystalline material there exists still
a polarization distribution. The material now has a remanent polarization. The max-
imum possible value of the remanent polarization is called saturation polarization,
i.e. this is the horizontal part of the hysteresis curve in Fig. 2.9. The distinguishing
feature of PEM with ferroelectric properties is that the direction of the spontaneous
polarization can be reversed by an applied electric field, yielding a hysteresis loop,
see Fig. 2.9. The non- linear behavior of the polarization with respect to the applied
electrical field consists of three stages which are characterized by:

• reversible domain motion;
• growth of new domains;
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Fig. 2.8 Domain structure
of ferroelectric materials and
their behavior during poling
process

Fig. 2.9 Hysteresis curve for
polarization of piezoelectric
material

• new domains reaching the limit of their growth and reaching the saturation polar-
ization.

Figure2.9 shows a typical hysteresis curve created by applying an electric field to
a piezoelectric ceramic element until the maximum (saturation) polarization Psat is
reached, reducing the field to zero determines the remanent polarization Pr reversing
the field attains a negative maximum (saturation) polarization and negative remanent
polarization, and re-reversing the field restores the positive remanent polarization.
When the electric field is the coercive field Ec there is no net polarization due to the
mutual compensation of the polarization of different domains.

Summarizing the information of the physical properties of piezoelectric materials
presented above, some conclusions can be made:

• PEM is a special type of anisotropic dielectrics where electrical and mechanical
fields are coupled due to both the existence of the specific asymmetric atomic struc-
ture of the lattice and the existence of spontaneous polarization at the microstruc-
ture level;

• The effective usage of both the ferroelectric properties of the piezoelectric ceramics
together with the poling process during their manufacture make these materials a
basic element in the modern industrial applications.
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2.4 Field Equations in 3D

The macroscopic phenomenological theory of piezoelectricity, based on thermody-
namic principles, can be traced back to Thompson [36]. However, significant con-
tribution to the theory, as we know it today, was made by Voigt and Duhem. The
thermodynamic approach reveals the reversibility and the equivalence of the piezo-
electric constants of the direct and converse piezoelectric effects. It is noted that the
full thermodynamic derivation should linkmechanical, electrical and thermal effects,
where the thermo-electric coupling gives rise only to the pyroelectric effect. How-
ever, since we will not focus on pyroelectricity and as coupling effects are assumed
to be linear, the thermal influence can be safely neglected.

2.4.1 Constitutive Equations

For a general piezoelectric material, the total internal energy density U is given by
the sum of the mechanical and electrical work done, i.e. in differential form it is

dU = σi j dsi j + Emd Dm . (2.1)

Here the mechanical stress σi j and strain si j are second rank tensors, Em is the vector
of electric field, Dm is the vector of electrical displacement. All indices run from 1 to
3 and the summation convention over repeated indexes is implied. The polarization
vector Pi is introduced to quantify the degree of polarization of the material and
it is connected with the vectors of electric field and electrical displacement by the
relation, see Parton and Kudryavtsev [29]:

Di = ε0Ei + Pi , Pi = χi j E j . (2.2)

In order to derive the constitutive equations of a piezoelectric material dif-
ferent types of thermodynamic potentials can be used as e.g. internal energy
U = U (si j , Di ), the electric Gibbs energy (electric enthalpy) Ge = Ge(si j , Ei ),
the Helmholtz free energy F = F(σi j , Di ), the elastic Gibbs energy G1(σi j , Pi )

and the Gibbs free energy G = G(σi j , Ei ). The different thermodynamic potentials
will facilitate different sets of piezoelectric constitutive formulations, see [10, 15,
20, 29, 37]. Here the constitutive equation derived by using the Gibbs electrical
function (electric enthalpy) Ge(si j , Ei ) is presented, assuming it is a quadratic form
of si j , Ei . The Gibbs electrical function is a thermodynamic potential in which the
independent variables are the strain deformation si j and the electrical field Ei , and
the dependent flux variables are the stress σi j and electric displacement (electric flux
density) Di , i.e.
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dGe =
(

∂Ge

∂si j

)

E

dsi j +
(

∂Ge

∂ Em

)

s
d Em . (2.3)

The differential form of Ge = U − EiDi , see Ikeda [15], is:

dGe = σi j dsi j − Dmd Em . (2.4)

Comparing Eqs. (2.3) and (2.4) yields

σi j =
(

∂Ge

∂si j

)

E

, Dm = −
(

∂Ge

∂ Em

)

s
. (2.5)

Having in mind that σi j = σi j (si j , Em) and Di = Di (si j , Em), the differentials
of stress and electric displacement have the form:

dσi j =
(

∂σi j

∂skl

)

E
dskl +

(
∂σi j

∂ Em

)

s
d Em, (2.6)

d Dm =
(

∂ Dm

∂skl

)

E
dskl +

(
∂ Dm

∂ Ek

)

s
d Ek . (2.7)

The physical meaning of the partial derivatives is as follows:

•
(

∂σi j

∂skl

)

E
= Ci jkl is the fourth rank tensor of the elastic stiffness constants at

E = const with Ci jkl = Ci jlk = C jikl = Ckli j ;

•
(

∂σi j

∂ Em

)

s
= −

(
∂ Dm

∂si j

)

E

= −ei jm is the third rank tensor of the piezoelectric

constants at si j = const with eki j = ek ji ;

•
(

∂ Dm

∂ Ek

)

s
= εmk is the second rank tensor of the dielectric permittivity constants

at si j = const with εik = εki .

In the case of general anisotropy Ci jkl , ei jm, εmk admit 21, 18 and 6 independent
components, respectively.

After integration of Eqs. (2.6) and (2.7) at constant partial derivatives the following
constitutive equations are obtained:

σi j = Ci jkl skl − ei jm Em, (2.8)

Dm = emi j si j + εmk Ek . (2.9)

The constitutive equations forPEMshowcouplingbetween electrical andmechan-
ical quantities. The direct piezoelectric effect or the sensorial effect is described by
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Eq. (2.9). This equation shows that an electric polarization and electric field is gener-
ated by mechanical stress. The converse effect, or the actuator effect is described by
Eq. (2.8) which shows that a PEM undergoes a deformation under an electric field.

The strain-displacement and the electric field-potential relations are given by

si j = 1

2
(ui, j + u j,i ), Ei = −Φ,i , (2.10)

where ui is the mechanical displacement and Φ is the electrical potential.
The symmetry of the stress tensor enables nine stress components to be reduced

to six independent stress components. This also enables the tensor notation to be
transformed into a pseudo-tensor form. Using this so-called contracted Voigt sub-
script notation: (11) → 1, (22) → 2, (33) → 3, (23) = (32) → 4, (13) = (31) →
5, (12) = (21) → 6, the fourth order tensor Ci jkl reduces to the matrix represen-
tation Cαβ with (i j) → α, (kl) → β. In the same way the third order tensor eki j

reduces to the matrix representation ekα with (i j) → α. For the analysis of piezo-
electric problems it is advantageous to use the notation introduced by Barnett and
Lothe [3] and later by [6, 40].With this notation, the elastic displacement and electric
potential, the elastic strain and electric field, the stress and electric displacement, and
the elastic and electric coefficients can be grouped as:

• Generalized displacements

uI =
{

ui , I = 1, 2, 3,
Φ, I = 4

(2.11)

• Generalized strain, for j = 1, 2, 3,

sI j =
{

si j , I = 1, 2, 3,
−E j , I = 4.

(2.12)

• Generalized stresses, for i = 1, 2, 3,

σi J =
{

σi j , J = 1, 2, 3,
Di , J = 4.

(2.13)

• Generalized stiffness matrix for i, j, k, l = 1, 2, 3,

Ci J Kl =

⎧
⎪⎪⎨

⎪⎪⎩

Ci jkl , J, K = 1, 2, 3,
eli j , J = 1, 2, 3; , K = 4,
eikl , J = 4; K = 1, 2, 3,
−εil , J = K = 4.

(2.14)

The symmetry properties of elastic, piezoelectric and dielectric tensors
Ci jkl , eki j , εi j imply the following symmetry property for the extended stiffness
tensor:



20 2 Piezoelectric Materials

Ci J Kl = Cl K Ji . (2.15)

In this definition, the lowercase and uppercase subscripts take the values of 1, 2, 3
and 1, 2, 3, 4, respectively. In terms of this shorthand notation, the constitutive rela-
tions Eqs. (2.8), (2.9) can be unified into the one single equation

σi J = Ci J KlsKl , (2.16)

or in matrix notation
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ11
σ22
σ33
σ23
σ31
σ12
σ14
σ24
σ34

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= C

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s11
s22
s33
2s23
2s31
2s12
−E1
−E2
−E3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.17)

where

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 c13 c14 c15 c16 e11 e21 e31
c12 c22 c23 c24 c25 c26 e12 e22 e32
c13 c23 c33 c34 c35 c36 e13 e23 e33
c14 c24 c34 c44 c45 c46 e14 e24 e34
c15 c25 c35 c45 c55 c56 e15 e25 e35
c16 c26 c36 c46 c56 c66 e16 e26 e36
e11 e12 e13 e14 e15 e16 −ε11 −ε12 −ε13
e21 e22 e23 e24 e25 e26 −ε12 −ε22 −ε23
e31 e32 e33 e34 e35 e36 −ε31 −ε32 −ε33

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.18)

As discussed in Sect. 2.3, piezoelectric materials show in most cases a crystal
structure with a symmetry of hexagonal 6mm class. In the case that the poling axis
coincideswith oneof thematerial symmetry axes thesematerials become transversely
isotropic. Transversely isotropic elastic materials are those with an axis of symmetry
such that all directions perpendicular to this axis are equivalent. In other words, any
plane perpendicular to the axis is a plane of isotropy. In the case of a transversely
isotropic solid, the number of the independent elastic, piezoelectric and dielectric
constants is 5, 3 and 2 respectively. In this case matrix C in Eq. (2.18) takes the form
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C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 c13 0 0 0 0 0 e31
c12 c11 c13 0 0 0 0 0 e31
c13 c13 c33 0 0 0 0 0 e33
0 0 0 c44 0 0 0 e15 0
0 0 0 0 c44 0 e15 0 0
0 0 0 0 0 c66 0 0 0
0 0 0 0 e15 0 −ε11 0 0
0 0 0 e15 0 0 0 −ε11 0
e31 e31 e33 0 0 0 0 0 −ε33

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.19)

where c66 = 1

2
(c11 − c12)

The elasticity coefficients Ci jkl and the dielectric constants εi j are said to be
positive-definite if

ci jklqi j qkl > 0, εilai al > 0 (2.20)

for any non-zero tensor qi j and any non-zero vector ai and the following reciprocal
symmetries hold due to Eq. (2.16)

ci jkl = c jikl = ckli j , ei jk = eik j ε jk = εk j . (2.21)

Essentially, these constraints are thermodynamic constraints expressing that the
internal energy density must remain positive since this energy must be minimal in
a state of equilibrium, see Dieulesaint and Royer [7]. Specializing for the case of
transversely isotropic solids, one obtains, see Alshits and Chadwick [2]:

c11 > |c12|, (c11 + c12)c33 > 2c213, c44 > 0, ε11 > 0, ε33 > 0. (2.22)

2.4.2 Equations of Motion

The governing equations are given by the equations of motion for the mechanical
displacement and by the equations of electrostatic. The electric field that develops in
piezoelectrics can assumed to be quasi-static because the velocity of the elastic waves
is much smaller than the velocity of electromagnetic waves. Therefore, the magnetic
field due to the elastic waves is negligible. This fact implies that the time derivative of

the magnetic field B is close to zero, i.e.
∂ B

∂t
≈ 0. Thus one of Maxwell’s equations

of electrodynamics becomes rotE = ∂ B

∂t
≈ 0, hence E = −gradΦ. Consequently,

a piezoelectric continuum is based on the governing equations of elastodynamics in
the case of small deformations and quasi-electrostatic fields. Restricting to the case
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of time-harmonic motion with frequency ω and suppressing the common factor eiωt

in all terms, the equation of motion read

σi j, j + ρω2ui = −bi , Di,i = −q. (2.23)

Here bi is the body force, ρ is the mass density and q is free electric volume
charge. In generalized notation Eq. (2.23) is written as

σi J,i + ρJ K ω2uK = −FJ , (2.24)

where FJ = (bi , q) and ρJ K =
{

ρ, J, K = 1, 2, 3
0, J or K = 4

The field equations are represented by Eqs. (2.10), (2.16) and (2.24). These group
of equations in generalized notation lead to the following equation of motion in the
absence of body forces (bi = 0) and free volume charges (q = 0)

Ci J KluK ,li + ρJ K ω2uK = 0, i, l = 1, 2, 3; J, K = 1, . . . , 4. (2.25)

or in coordinate notation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c11u1,11 + c44u1,33 + (c13 + c44)u3,13 + c66u1,22 + 1

2
(c11 + c12)u2,12

+(e31 + e15)u4,13 + ρω2u1 = 0,
1

2
(c11 + c12)u1,12 + c66u2,11 + c11u2,22 + c44u2,33 + (c13 + c44)u3,23

+(e31 + e15)u4,33 + ρω2u2 = 0,
(c13 + c44)u1,13 + c44(u3,11 + u3,22) + c33u3,33 + (c13 + c44)u2,23

+e15(u4,11 + u4,22) + e33u4,33 + ρω2u3 = 0,
(e15 + e31)u1,13 + e15(u3,11 + u3,22) + e33u3,33 + (e31 + e15)u3,23
−ε11u4,11 − ε11u4,22 − ε33u4,33 = 0.

(2.26)

Note that there is no time rate in the last equation due to the quasi-electrostatic
approximation, i.e. the absence of magnetization. This means that frequency depen-
dence is induced only by the mechanical displacement ui .

The reason to show simultaneously the equations in generalized notation (2.25)
and in coordinate notation (2.26) is that for the derivation of the fundamental solutions
in Chap.3, it is better to use a coordinate notation, while for the derivation of the
integro–differential equations and for explaining the numerical solution by BIEM in
Chap.4, it is better to use the generalized notation.

http://dx.doi.org/10.1007/978-3-319-03961-9_3
http://dx.doi.org/10.1007/978-3-319-03961-9_4
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Fig. 2.10 Location of the
defect in a Cartesian coor-
dinate system Ox1x2x3:
a anti-plane deformation
state, b in-plane deformation
state

(a) (b)

x x

x1x1
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2.5 Field Equations in 2D

The equations ofmotion simplify considerablywhen “in-plane” or “anti-plane” prob-
lems are considered. For this purpose a Cartesian coordinate system Ox1x2x3, see
Fig. 2.10 is used. Assume that PEM shows hexagonal symmetry with respect to the
Ox3 axis and the poling axis is collinear with the Ox3 axis. The plane Ox1x2 then
is the isotropic plane. In what follows we will consider two coupled plane problems
that are obtained from the 3D stress–strain state described in Sect. 2.4. The uncou-
pling of equations that would allow us to study the in-plane and anti-plane problems
separately is only possible if the material is monoclinic. Fortunately the piezoelectric
materials belong to this group of materials.

2.5.1 In-plane Piezoelectric Equations

Assumed is an electromechanical load as follows:

• the electric field is applied in the plane Ox1x3, i.e. E1 �= 0, E3 �= 0, E2 = 0 and
also corresponding electrical displacements are D1 �= 0, D3 �= 0, D2 = 0, see
Fig. 2.10a;

• the mechanical load is also in the plane Ox1x3 and the mechanical displacements
are u1 �= 0, u3 �= 0, u2 = 0. The nonzero stress and strain components are
σ11, σ33, σ13 and s11, s33, s13.

2.5.1.1 Constitutive Equations

The constitutive equations are obtained from Eqs. (2.16):

σi J = Ci J KlsKl , i, j, l = 1, 3; J, K = 1, 3, 4. (2.27)

or in matrix notation
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⎛

⎜⎜⎜⎜⎝

σ11
σ33
σ31
σ14
σ34

⎞

⎟⎟⎟⎟⎠
= C

⎛

⎜⎜⎜⎜⎝

s11
s33
2s31
−E1
−E3

⎞

⎟⎟⎟⎟⎠
, (2.28)

where

C =

⎛

⎜⎜⎜⎜⎝

c11 c13 0 0 e31
c13 c33 0 0 e33
0 0 c44 e15 0
0 0 e15 −ε11 0
e31 e33 0 0 −ε33

⎞

⎟⎟⎟⎟⎠
, (2.29)

and in coordinate notation

σ11 = c11u1,1 + c13u3,3 − e31E3,

σ33 = c13u1,1 + c33u3,3 − e33E3,

σ13 = c44u1,3 + c44u3,1 − e15E1, (2.30)

D1 = e15u1,3 + e15u3,1 + ε11E1,

D3 = e31u1,1 + e33u3,3 + ε33E3.

The strain-displacement and the electric field-potential relations are

si j = 1

2
(ui, j + u j,i ), Ei = −Φ,i , i, j = 1, 3. (2.31)

and the generalized displacement is uK = (u1, u3, Φ).

2.5.1.2 Equation of Motion

The equations of in-plane coupled motion in the Ox1x3 plane is obtained from
Eq. (2.25)

Ci J KluK ,li + ρJ K ω2uK = 0, i, l = 1, 3; J, K = 1, 3, 4. (2.32)

and in coordinate notation

⎧
⎨

⎩

c11u1,11 + c44u1,33 + (c13 + c44)u3,13 + (e31 + e15)u4,13 + ρω2u1 = 0,
(c13 + c44)u1,13 + c44u3,11 + c33u3,33 + e15u4,11 + e33u4,33 + ρω2u3 = 0,
(e15 + e31)u1,13 + e15u3,11 + e33u3,33 − ε11u4,11 − ε33u4,33 = 0.

(2.33)
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Equations of motion (2.32) and (2.33) govern the solution of the 2D coupled in-plane
electro-elastic problem, when the displacement and electric field are both in-plane.

2.5.2 Anti-plane Piezoelectric Equations

The electromechanical load is prescribed as follows:

• mechanical load is out of plane Ox1x2 and the mechanical displacements are
u1 = 0, u2 = 0, u3 �= 0. The nonzero stress and strain components are σ13, σ23
and s13, s23, see Fig. 2.10b.

• electric field is applied in plane Ox1x2, i.e. E1 �= 0, E2 �= 0, E3 = 0 and also the
corresponding electrical displacements are D1 �= 0, D2 �= 0, D3 = 0.

2.5.2.1 Constitutive Equations

The constitutive equations are obtained from Eq. (2.16):

σi J = Ci J KlsKl , i, j, l = 1, 2; J, K = 3, 4. (2.34)

or in coordinate notation

σ13 = c44u3,1 − e15E1

σ23 = c44u3,2 − e15E2, (2.35)

D1 = e15u3,1 + ε11E1,

D2 = e15u3,2 + ε11E2,

where
⎛

⎜⎜⎝

σ13
σ23
σ14
σ24

⎞

⎟⎟⎠ = C

⎛

⎜⎜⎝

s13
s23
−E1
−E2

⎞

⎟⎟⎠ , C =
(

c44 e15
e15 −ε11

)
. (2.36)

2.5.2.2 Equation of Motion

The equation of anti-plane coupled motion in Ox1x2 plane is obtained by Eq. (2.25)

Ci J KluK ,li + ρJ K ω2uK = 0, i, l = 1, 2; J, K = 3, 4. (2.37)
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where the generalized displacement is uK = (u3, Φ). In coordinate notations
Eq. (2.37) is

{
c44�u3 + e15�u4 + ρω2u3 = 0,
e15�u3 − ε11�u4 = 0

. (2.38)

where � = ∂2x1 + ∂2x2 is Laplace operator.
Equations of motion (2.37) and (2.38) govern the solution of the 2D coupled

in-plane piezoelectric problem, when the displacement field is out of plane and the
electric field is in-plane.

2.6 2D Domains with Cracks

2.6.1 Wave Propagation

Wave propagation in amedia with defects, if there are no other sources of dissipation,
is accompanied by wave phenomena as:

• diffraction, revealing the wave deviation from original wave path due to the super-
position of incident and scattered wave;

• scattering refers to the wave radiation from defects acting as secondary sources
of radiation due to the excitation of the incident wave;

• attenuation, i.e. the amplitude of the incident wave diminishes because during the
diffraction and scattering process, a part of the incident wave energy is converted
into the energy of diffracted and scattered waves;

• dispersion, that is energy (wave shape) distortion due to the frequency dependence
of the effective wave phase velocity.

Interaction mechanism between waves and defects depend on the relation between
the size c of the defect and the wavelength λ, i.e. the wave is not sensitive to the
defect if c � λ/2. Wave scattering and diffraction is dominant at c ≈ λ and wave
reflection and refraction is being realized at c � λ. The defects as cracks or holes
are not only wave refractors and scatterers but they acts also as stress concentrators.

The evaluation of wave field distortion produced by a defect is a process studied
in nondestructive testing of materials and structures, wave propagation theory with
its application in seismology, modern engineering and medicine. The obstacle can be
an inclusion, a hole, a crack or any existing boundary. Also, the fracture mechanics
approach can be applied to the continua with existing defects like cracks and holes
for assessing the initiation, growth, stability of the crack state and respectively to
evaluate the resistance of the studied material or engineering structure.

In the following sections the basic 2D mechanical models describing time-
harmonic wave propagation in homogeneous piezoelectric solid with cracks and
holes are formulated. We are considering finite internal cracks with a straight or an
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arc shape in a simply connected domain (unbounded or bounded) or in a domain
with holes.

2.6.2 Fracture Mechanics Approach

Fracture mechanics provides a theoretical background for materials and structures
containing cracks and faults. Stress intensity factors are key parameters in crack
analysis. The classicalwork of Irwin [16] showed that the coefficients of the dominant
singular term in the near-field solution for the stresses at the crack tip are directly
related to the energy release rate (the energy released per unit of crack extension).
These coefficients are referred to as the stress intensity factors.Generalized SIFs, play
a dominate role because they characterize the intensity of the singular piezoelectric
crack field (generalized stress and strain). The knowledge of SIFs is based on the
near-field solutions and it is useful because it gives information for the strength and
life time prediction of the studied solids and structures.

As can be seen from the field equations discussed in Sects. 2.4 and 2.5 we restrict
our attention to the sufficiently small loading range which in a good approximation
can be characterized by a linear material model with a constant polarization field.
In this case we can apply the concepts of linear fracture mechanics generalized to
treat the piezoelectric materials. The aim is to evaluate the influence of the electro-
mechanical loads on the fracture behaviour of cracked piezoelectric solids. Following
[12, 19, 27, 28, 32, 33, 35] the near-field solutions for typical crack opening mode,
(see Fig. 2.11) can be expressed in polar coordinates with the origin at the crack-tip
(see Fig. 2.12), as

σi J (r, θ, ω) = 1√
r

K H (ω) f H
i J (θ),

u J (r, θ, ω) = √
r K H (ω)gH

i J (θ),

(2.39)

where H = I, . . . , I V , and the generalized stresses behave singular as O(1/
√

r),
whereas the generalized displacements behaves as O(

√
r) for r → 0. The angu-

lar functions f H
i J (θ), gH

i J (θ) depend only on the material constants. The coefficients
K I , K I I and K I I I are the mechanical stress intensity factors, which are comple-
mented by the new forth “electric” intensity factor K I V , that characterizes the elec-
tric field singularity. In the general case the stresses and displacements are the sum
of the four terms and they can only be separated in specific loading cases. Note that
the behaviour of the stresses and displacements near the crack-tip is fully prescribed
by the theoretical study of the asymptotic behaviour of solutions of elliptic boundary
value problems in the domain with singularities, like angular points, see Kondratiev
[19]. Correspondingly the K-factors K H are coefficients of the representation of the
solution near the crack-tip. From Eq. (2.39) the following conclusions can be drawn:
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Fig. 2.11 Crack opening modes

Fig. 2.12 Stress components
and reference system in the
neighborhood of the crack
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• The mutual interdependence between mechanical and electrical crack tip parame-
ters;

• Angular functions f H
i J , gH

J do not depend on the applied load and the domain
geometry;

• The generalized SIFs K H depend strongly on the applied load.

The numerical calculation of the SIFs is based on then well-known displacement
or traction formulae, see [1, 12, 35, 43]. The traction formulae will be explained and
used here.

Consider an in-plane crack along the segment AB with local coordinate of points
A(−c, 0), B(c, 0) in the plane Ox1x3 and subjected to an electro-mechanical load in
the crack plane. The following expressions for the generalized K-factors are obtained
in this case, see [1, 41]:

K I = limx1→±c t3
√
2π(x1 ∓ c),

K I I = limx1→±c t1
√
2π(x1 ∓ c),

K I V = limx1→±c t4
√
2π(x1 ∓ c),

(2.40)

where tJ is the traction at a point close to the crack-tips.
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For an anti-plane crack subjected to mechanical load out of plane x3 = 0 and
electrical load in the plane x3 = 0 the corresponding formulae are:

K I I I = limx1→±c t3
√
2π(x1 ∓ c),

K I V = limx1→±c t4
√
2π(x1 ∓ c).

(2.41)

2.6.3 Boundary Value Problems

Selection of the adequate boundary condition on the crack faces in piezoelectric
fracture mechanics has been discussed over the past 2decades. It is a well-known
fact that there are discrepancies between the experimental measurements and the
theoretical predictions based on linear piezoelectric crack models. The character of
the electrical boundary conditions is discussed in a number of papers, see [8, 9, 11,
14, 21, 23–25, 30, 32, 34, 42], etc.

Different types of crack surface boundary conditions belonging to the linear mod-
els are addressed:

• impermeable crack with mechanical traction-free surface;
• permeable crack with mechanical traction-free surface;
• limited permeable crack or deformation dependent electrical PKHS
(PartonKudryavtsevHaoShen) boundary condition with mechanical traction-free
surface;

• energetically consistent cracks with mechanical non-traction-free surface.

The BIEM that we apply for the numerical study of crack problems in 2D piezo-
electric domains is a linear method—i.e. it presumes a linear boundary value prob-
lem. Therefore, we will deal in most cases with impermeable or permeable electrical
boundary conditions along the crack line. Under some additional restrictions, the
limited permeable cracks can also be considered. The detailed description of the
electric boundary conditions together with comparative numerical studies is pro-
vided in Chap.9. In the following we formulate the basic boundary-value problems
for the in-plane and anti-plane problems of Sect. 2.5 that will be solved numerically
with BIEM.

With respect to the domain we consider two types of BVP for cracks—(i) in
bounded domains, and (ii) in infinite domains. The problem (i) aims to estimate
the global behaviour of the solution in the presence of cracks in the domain and
to evaluate the dependance of the SIFs on the geometry parameters of the external
boundary. Such a problem is related to the eigenvalue problem and correspondingly
to inverse problems. The solution of the problem (ii) gives an information about the
local behaviour of the wave field near the cracks and the evaluation of the SIFs.

Denote by G a bounded domain with smooth boundary S = ∂G in the plane R2 =
Ox1x3 for the in-plane case and R2 = Ox1x2 for the anti-plane case and by Scr =
S+

cr ∪ S−
cr an internal crack—an open arc. Suppose that S = Su ∪ St , Su ∩ St = ∅ and

that there are prescribed displacements, ū J on Su and prescribed tractions t̄ J on St .

http://dx.doi.org/10.1007/978-3-319-03961-9_9
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The BVP in G with impermeable boundary conditions on Scr is defined as
∣∣∣∣∣∣

σi J,i + ρJ K ω2uK = 0 in G\Scr ,

u J |Su = ū J , tJ |St = t̄ J ,

tJ |Scr = 0.
(2.42)

SolutionofEq. (2.42) is a vector-valued functionwith components u J ∈ C2(G\Scr )

that satisfies the equation and boundary conditions. We will transform the problem
(2.42) in Chap.4 into an integro–differential equation on S ∪ Scr with the unknowns
u J on St ; tJ on Su and the jump of displacement across the crack line, i.e. the crack
opening displacement Δu J = u J |S+

cr
− u J |S−

cr
.

The BVP in G with permeable boundary conditions on Scr is defined as
∣∣∣∣∣∣

σi J,i + ρJ K ω2uK = 0 in G\Scr ,

u J |Su = ū J , tJ |St = t̄ J ,

ti |Scr = 0, u4|S+
cr

= u4|S−
cr
.

(2.43)

SolutionofEq. (2.43) is a vector-valued functionwith components u J ∈ C2(G\Scr )

that satisfies the equation andboundary conditions. InChap.4 after the transformation
of the problem (2.43) into an integro–differential equation on S ∪ Scr , the unknowns
are: u J on St ; tJ on Su , the crack opening displacement Δui and t4 on Scr .

The BVP in the plane R2 = Ox1x3 for the in-plane case and R2 = Ox1x2 for
the anti-plane case with impermeable boundary conditions on Scr is defined as

∣∣∣∣
σi J,i + ρJ K ω2uK = 0 in R2\Scr ,

tJ |Scr = 0.
(2.44)

In addition the unknown u J must satisfies the Sommerfeld’s type condition at
infinity, see Sommerfeld [31]. Solution of Eq. (2.44) is a vector-valued function with
components u J ∈ C2(R2\Scr ) that satisfies the equation and boundary condition.
In Chap.4 after the transformation of the problem (2.44) into an integro–differential
equation on Scr , the unknown is the crack opening displacement Δu J = u J |S+

cr
−

u J |S−
cr
.

The BVP in the plane R2 = Ox1x3 for the in-plane case and R2 = Ox1x2 for
the anti-plane case with permeable boundary conditions on Scr is defined as

∣∣∣∣
σi J,i + ρJ K ω2uK = 0 in R2\Scr ,

ti |Scr = 0, u4|S+
cr

= u4|S−
cr

(2.45)

In addition the unknown u J must satisfies the Somerfield type condition at infinity.
Solution of Eq. (2.45) is a vector-valued functionwith components u J ∈ C2(R2\Scr )

that satisfies the equation and boundary condition. In Chap.4 after the transformation
of the problem (2.45) into an integro–differential equation on Scr , the unknown is
the crack opening displacement Δui and t4.

http://dx.doi.org/10.1007/978-3-319-03961-9_4
http://dx.doi.org/10.1007/978-3-319-03961-9_4
http://dx.doi.org/10.1007/978-3-319-03961-9_4
http://dx.doi.org/10.1007/978-3-319-03961-9_4


2.6 2D Domains with Cracks 31

Note that the field equations for the in-plane case, are prescribed in Sect. 2.5.1
for i = 1, 3, J, K = 1, 3, 4, while field equations for the anti-plane case are in
Sect. 2.5.2 for i = 1, 2, J, K = 3, 4.

The non-hypersingular traction BIEM and its numerical solution are discussed
in Chap.4. Different illustrative numerical examples are presented in Chaps. 5–
15, where we consider uncoupled problems, multiple cracks and dynamic crack
interaction phenomena, unbounded and bounded domains, inhomogeneous domains,
domains with hole or crack and hole. For every particular case the BVPwill be stated
together with the corresponding boundary integral equation formulation.
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