Bootstrap for Maximum Likelihood
Estimates of PARMA Coefficients
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Abstract In this chapter we use bootstrap techniques to estimate empirical
distributions of parameter estimates for PAR sequences determined by maximum
likelihood techniques. The parameters are not the periodic autoregression parame-
ters, but are the coefficients in the Fourier series representing the parameters. We
compare two different bootstrap techniques, [ID and GSBB, applied to the residuals
of the maximum likelihood estimation. The IID method seems a little better, which
is not a surprise since the conditions for the GSBB are not completely satisfied. We
expect these method to also work satisfactorily for full PARMA estimations, where
both PMA and PAR terms are present in the model.

1 Introduction

Let {X(t),t € Z} be a PARMA (p,q) (periodic autoregressive-moving-average)
time series with the known period of the length 7 i.e.

p q
Xo =D 90X j+ D D&« + 01, ()
j=1 k=1
where ¢ (1) = ¢t +T),0k(t) =6k (t+T),0() =0c(@+T)forallj =1, ..., p,
k=1, ..., gareperiodic coefficients, and &; is mean zero white noise with variance

equal to one.
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Examples of PARMA times series can be found e.g. in Hurd and Miamee (2007).

Several methods have been proposed for the estimation of the parameters in
the PARMA model (1). The first seems to have been the method of Maximum
Likelihood introduced by Vecchia (1985) and more recently a method using the
innovations algorithm introduced by Anderson et al. (2007). We have concen-
trated on the maximum likelihood method applied not to the parameters themselves
{pj(®),j=1, .., p; O@®),k=1,.. q; o(}fort=0,1,.. T —1,butthe
coefficients in their Fourier transforms. Since, for the maximum likelihood method,
the estimates are not expressed directly in terms of the data, computation of estima-
tion error is not straightforward. However, sample distributions of estimates can be
computed via bootstrap in a rather straightforward way.

An alternative parametrization that uses Fourier representation was introduced by

Jones and Brelsford (1967) to reduce the number of parameters required to represent
PARMA model.

L7/2] L7/2-1]

¢j() =aj1+ D ajamcosQumt/T)+ D ajopiisinQumt/T), j=1, .., p,
m=1 m=1
L7/2] (T/2-1

(1) = b1+ D bramcosQumt/T)+ D beomyrsinQamt/T), k=0, ..., q,
m=1 m=1

where 6g(t) = o(¢). The transformation is one-to-one when parameters are unre-
stricted but provides a simple, and sometimes physically motivated, way to reduce
the number of parameters by restricting the the number of frequencies in the Fourier
series of ¢ (1), Ok (¢), o (). Maximum likelihood estimates are made of the restricted
model parameters (some subset of the unrestricted {a,;u, b, }) and finally the solu-
tion can be transformed to {¢; (¢), O (7)}.

2 Bootstrap Methods

In the sequel we propose to use two different bootstrap methods to obtain the con-
fidence intervals for the parameters {a;, y, bk, m}. The main reason that bootstrap is
of interest here is that estimates (at least the maximum likelihood estimates) of the
parameters are made indirectly i.e. by maximizing a likelihood calculation, not by
a direct expression of the data. The first considered method is based on the idea of
bootstrap of residuals for ARMA time series (for more details see e.g. Lahiri 2003).
The latter one is using the Generalized Seasonal Block Bootstrap (GSBB) of Dudek
et al. (2014). Below we describe both techniques.

Let X(1), ..., X(n) be a sample from PARMA (p, q) time series. To apply any
of bootstrap algorithms first the estimates of {a; m, bx,n} coefficients need to be
calculated. As a result we get the residuals €; fori = 1, ..., N, where N = n —

(p+ 9.
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Since for ARMA time series to generate the valid approximation of the asymptotic
distribution the residuals need to be centered, we expect that PARMA model also
requires this condition. Thus, we define the centered residuals by

& =& —&n, 2)
- —1 N ~
where €y = (N)™ DL, &
Method 1-IID bootstrap:
1. Fori =1, ..., nlet
(1) _ =~
& = &k

where k; is iid from a discrete uniform distribution

1
P(ki=ys)= v for s=1,..., N.
2. Joining selected residuals we get the bootstrap sample (ST(I), ey 8:(1)).
Method 1 assumes the the residuals & (i = 1, ..., N) are at least approximately

independent, so selecting each of them separately we do not destroy the dependence
structure in the sample. But in practical cases this condition may not hold. For
example one may choose to fit the model of lower rank that the true one. Then, the
residuals are no longer independent. Moreover, they may reflect the periodic structure
of the original data.

GSBB is the new block bootstrap technique for periodic data. It is the general-
ization of two known block bootstrap methods i.e. the Seasonal Block Bootstrap of
Politis (Politis 2001) and the Periodic Block Bootstrap of Chan et al. (2004). Dudek
et al. (2014) used it for the overall mean and the seasonal means of the periodically
correlated (PC) time series. Moreover, they showed GSBB consistency for triangular
row-wice periodically correlated arrays with growing period. The wide spectrum of
possible GSBB applications encouraged us to apply it in the considered problem.

To simplify the presentation of GSBB algorithm we assume that the sample size
n is an integer multiple of the block length b (n = bl) and also is an integer multiple
of of the period length 7' (n = wT'). Each of these conditions can be easily omitted
(for more details see Dudek et al. 2014). Moreover, we present the circular version
of GSBB i.e. we treat the sample as wrapped on the circle. Whenever the index ¢ of
any chosen observation is greater than N we take ¢t — N instead.

Method 2-GSBB:
1. Choose a (positive) integer block size b(<N).
2. Fort =1,b+1,2b+1, ..., { — b+ 1, let

«2) *(Q2) @ )~ o~ ~
(8, CEfy T s E,H,,l) = (8. Ehyt1s - s Chitb—1) »
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where k; is iid from a discrete uniform distribution
1
Pk;=t+vl)=— for v=0,1, ..., w—1.
w

Since we consider the circular version of GSBB, when ¢ + vd > N we take the
shifted observations t + vT — N.
3. Join the [ blocks (&,, &k,+1, - .-, Ek,+b—1) to get the bootstrap sample.

Finally, the bootstrap version (X T('/ ), o X ,T(j )) of the original sample (X7, ...,
X,,) is obtained using the estimates of {¢; (), 6 (¢)} and the bootstrap error variables

(ET(j ), £Z(j )). The superscript j denotes the chosen bootstrap method. It is

equal to 1 for IID bootstrap and 2 for GSBB.

In the next section we present some simulation study results in which we construct
the bootstrap pointwise equal-tailed confidence interval for coefficients {a; u, br, m}-
The actual coverage probabilities (ACPs) are calculated to compare the performance
of both considered bootstrap algorithms. Although, we do not have any theoretical
results confirming the consistency of the proposed bootstrap methods, the preliminary
simulation results indicate the validity of our procedures.

3 Simulation Study

Our aim is to check the performance of the proposed bootstrap algorithms in the
problem od estimating confidence intervals for PARMA model coefficients. In this
section we consider a few examples of PARMA time series and calculate the bootstrap
equal-tailed pointwise confidence intervals for the coefficients {a;, p, bk, m} for j =
I, ....,p,k =0,...,gand m = 1, ..., T. In our study we use procedures
first implemented by Hurd (2007) and now available as R package ‘perARMA’
(Comprehensive R Archive Network reference Dudek et al. 2013).

To reduce the number of parameters that needs to be estimated and decrease the
time of computation we restricted our study only to PAR time series. The following
examples are considered:

PAR2: the nonzero coefficient are aj;; = 0.8, ajp = 0.3, a2; = —0.4 and
bo1 =1,
PAR1: the nonzero coefficient are aj,1 = 0.8, a12 = 0.3 and by,1 = by, = —0.5.

Note that PAR2 model has the constant o (¢) function (equal to 1) in contrary to the
PARI case, where o () is periodic. The names PAR2 and PARI1 indicate that these
are PAR(1) and PAR(2) time series, respectively. This particular choice was caused
by the fact that we wanted to restrict the number of parameters and simultaneously
investigate the influence of function o () on our results.

Unfortunately, o (¢) is not the only important factor. Much bigger impact can
have the choice of the model fitted to the data. Each practitioner will decide to take
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Table 1 Actual coverage probabilities for simulated PAR2 series
Method n ACP

El E2

ay,g a2 a3 a1 axp by b ain az1 bo

(%) ) %) B (B () () () (%) (%)
11D 120 922 922 952 920 934 922 932 89.6 934 894
Bootstrap 240 944 940 93,6 93.6 940 944 918 872 920 82.6
GSBB 120 89.0 912 894 870 91.0 868 87.0 89.2 91.8 84.8

240 878 894 89.6 888 89.8 912 882 89.6 91.6 846

Columns 1-7 refer to E1 case and 8-10 to E2. Rows 1-2 and 34 contain results for IID bootstrap
and GSBB, respectively. For both methods ACPs for two sample sizes n = 120 and n = 240 are
presented

the model of lower order if according to some criteria it is comparable to more
complicated one. Having this in mind we decided consider the following cases

E1: PAR2 estimating 7 coefficients i.e. a1,1, a1,2, a1,3, a2,1, az,2 and b 1, bo 2;
E2: PAR2 estimating 3 coefficients i.e. aj 1, a; 2 and by 1;

E3: PARI estimating 6 coefficients i.e. aj 1, a1 2, a1,3 and bg 1, bo 2, bo 3;

E4: PARI estimating 2 coefficients i.e. a; 1 and by .

As a result, in E1 and E3 cases we estimate more coefficient than are nonzero in
reality, while in E2 and E4 we always have one less coefficient of each type.

To simulate E1-E4 ‘makeparma’ procedure provided by ‘perARMA’ package
was used. This function enables to construct a PARMA type sequence of required
length for inputed matrices of coefficients. Two different sample lengths n were
taken 120 and 240. As presented approach is based on Fourier representation of
model coefficients, we use also ‘ab2phth’ and ‘phth2ab’ procedures that enable to
transform matrices of coefficients to their Fourier representation and conversely. For
each simulated series we fit PAR model using ‘parmaf’ procedure. The function
returns estimates of parameters {a; ., bx,n} as well as series of residuals of fitted
model. Next for residuals we apply one of two proposed bootstrap method: 11D
bootstrap or GSBB. The number of generated bootstrap samples B was 300. In
a case of GSBB method we also need to comment the choice of block length b.
Since so far, there is no method of optimal block length choice we decided to take
b = |Jn]| and b = T. The period length T is equal to 12. Taking b = T we wanted
to check how the performance of GSBB changes when the longer block is taken.
Moreover, b = T is a case when GSBB reduce to SBB. Since the results in both
cases were comparable in the sequel we only discuss b = | J/n] case. Finally, to
calculate the bootstrap equal-tailed pointwise confidence intervals bootstrap version
of coefficients {a; u, b, m} were calculated (using ‘makeparma’ function). The 95 %
confidence level was taken. The whole procedure was repeated 500 times and the
ACPs were calculated. The results for E1-E2 are presented in Tables 1 and 2 and for
E3-E4 in Tables 3 and 4.
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Table 2 Average lengths of confidence intervals for PAR2 model

Method n  Average length of CI
El E2
a;)  arp a3z a1 axp  boy  bop a1 axy by

IID bootstrap 120 0.3323 0.4693 0.3862 0.3247 0.4796 0.2403 0.3552 0.3332 0.3282 0.2531
240 0.2323 0.3280 0.2667 0.2314 0.3330 0.1734 0.2498 0.2349 0.2328 0.1828
GSBB 120 0.3127 0.4472 0.3656 0.3179 0.4627 0.2289 0.3403 0.3214 0.3106 0.2515
240 0.2218 0.3187 0.2566 0.2265 0.3277 0.1658 0.2479 0.2389 0.2501 0.1863
Columns of values 1-7 refer to E1 case and 8-10 to E2. Rows 1-2 and 3-4 contain results for

IID bootstrap and GSBB, respectively. For both methods ACPs for two sample sizes n = 120 and
n = 240 are presented

Table 3 Actual coverage probabilities for simulated PAR2 series

Method n ACP
El E2
ap,1 an a3 bo,1 bo,2 bo3 ap,1 bo,1

(%) (%) (%) (%) (%) (%) (%) (%)

IID bootstrap 120 88.6 90.2 92.8 59.4 70.4 94.8 59.0 24.0
240 90.0 90.4 90.6 78.6 70.4 99.0 36.2 5.8

GSBB 120 87.0 88.0 88.0 72.4 80.8 84.4 58.6 21.0
240 86.9 87.3 88.3 72.7 82.6 88.1 31.2 44

Columns 1-6 refer to E3 case and 7-8 to E4. Rows 1-2 and 3—4 contain results for IID bootstrap

and GSBB, respectively. For both methods ACPs for two sample sizes n = 120 and n = 240 are
presented

Table 4 Average lengths of confidence intervals for PAR2 model

Method n ACP
E3 E4
ai ap a3 bo,1 by, bo3 ai, by,

IID bootstrap 120  0.3343  0.3308 0.4965 0.3186 0.4782 0.3407 0.1973 0.2278
240 0.2076 0.2067 0.3181 0.2010 0.2901 0.1863 0.1334 0.1648
GSBB 120 0.3276 0.3358 04772 02747 0.4141 0.2369 0.1852 0.2056
240 0.3248 0.3287 0.4680 0.2735 04116 0.2411 0.1210 0.1589
Columns of values 1-6 refer to E3 case and 7-8 to E4. Rows 1-2 and 3—4 contain results for IID

bootstrap and GSBB, respectively. For both methods ACPs for two sample sizes n = 120 and
n = 240 are presented

When the number of estimated parameters is big enough i.e. in E1 case IDD
bootstrap definitely outperforms GSBB. In fact it is exactly what one may expect
as in these examples the residuals are approximately independent and IID method
is the most appropriate. The ACPs for all coefficients are about 2-3 % lower
than the nominal confidence level independently on the sample size n. For GSBB
the corresponding values are even 6% lower. Similar conclusions can be taken
in E3 case for a type parameters, although all ACPs are definitely lower than
for E1. Surprisingly, IID bootstrap is not working well for b type coefficients.
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For by, 1 and by > the ACPs are about 35 % lower than the nominal coverage probabil-
ity for n = 120 and about 15-25 % for n = 240. Let us recall that by 1 and by > were
the nonzero coefficients. Additionally, for by 3 which in reality is equal to zero IDD
bootstrap seems to produce too wide confidence intervals. For n = 120 the ACP is
almost perfectly equal to 95 % but for n = 240 it is close to 1. On the other hand,
GSBB provides constantly too low ACPs independently on n, but they are higher
compering to IID bootstrap and seem to converge slowly to the nominal coverage
probability.

Finally, E2 and E4 provide the evidence how destructive influence of the too small
set of estimated parameters can be. In fact the performance of the both bootstrap
techniques is good for E2 and the differences between those methods are small. E2
is a case, where the shocks are constant. The ACPs are similar comparing to E1 for
coefficient of a type and decrease about 5 % for by ;. The noticeable problems appear
in E4 example. For both methods and n = 120 the ACPs are very low to became
extremely small for n = 240. This may indicate that bootstrap is inconsistent in
this problem. Let us recall that estimating only bg | we treat the rest of bs as zeros,
which means that o (¢) is a constat function. As a result the residuals are definitely
dependent.

Although we are aware that we did not provide any theoretical confirmation of
validity of the bootstrap methods in the considered problem, the simulation study
results seem to be very encouraging. They indicate the consistency of bootstrap.
Moreover, probably the practitioner will not be able to use the universal method
independently on the PARMA series structure. IDD bootstrap seems to be the best
choice when the shocks are constant, while block bootstrap is more appropriate in
the opposite case. Additionally, one needs to be extremely careful choosing the size
of parameters set that need to be estimated. Despite the longer time of computation,
the larger set should be taken to avoid the bootstrap inconsistency.
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