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In this chapter, we formulate the antenna design task as a nonlinear minimization 
problem. We introduce necessary notation, discuss typical objectives and constraints, 
and give a brief overview of conventional optimization techniques, including gradient-
based and derivative-free methods, as well as metaheuristics. We also introduce the 
concept of the surrogate-based optimization (SBO) and discuss it on a generic level. 
More detailed exposition of SBO and SBO-related design techniques will be given 
in Chaps. 3 and 4.

2.1  �Antenna Design Task as an Optimization Problem

Let Rf(x) denote a response of a high-fidelity (or fine) model of the antenna under 
design. For the rest of this book, we will assume that Rf is obtained using accurate 
full-wave electromagnetic (EM) simulation. Typically, Rf will represent evaluation of 
performance characteristics, e.g., reflection |S11| or gain over certain frequency band 
of interest. Vector x = [x1 x2…xn]T represents designable parameters to be adjusted 
(e.g., geometry and/or material ones).

In some situations, individual components of the vector Rf (x) will be considered, 
and we will use the notation Rf (x) = [Rf (x, f1) Rf (x, f2) … Rf (x, fm)]T, where Rf (x, fk) 
is the evaluation of the high-fidelity model at a frequency fk, whereas f1 through fm 
represent the entire discrete set of frequencies at which the model is evaluated.

The antenna design task can be formulated as the following nonlinear minimization 
problem (Koziel and Ogurtsov 2011a):

	
x R x

x

* = ( )( )arg minU f 	
(2.1)

where U is the scalar merit function encoding the design specifications, whereas x* 
is the optimum design to be found. The composition U(Rf (x)) will be referred to as 
the objective function. The function U is implemented so that a better design x 
corresponds to a smaller value of U(Rf (x)). In antenna design, U is most often 
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implemented as a minimax function with upper (and/or lower) specifications. 
Figure 2.1 shows the example of minimax specifications corresponding to typical 
UWB requirements for the reflection response, i.e., |S11| ≤ −10 dB for 3.1–10.6 GHz. 
The value of U(Rf(x)) (also referred to as minimax specification error) corresponds 
to the maximum violation of the design specifications within the frequency band of 
interest.

To simplify notation, we will occasionally use the symbol f(x) as an abbreviation 
for U(Rf(x)).

In reality, the problem (2.1) is always constrained. The following types of 
constraints can be considered:

• Lower and upper bounds for design variables, i.e., lk ≤ xk ≤ uk, k = 1, …, n
• Inequality constraints, i.e., cineq·l(x) ≤ 0, l = 1, …, Nineq, where Nineq is the number 

of constraints
• Equality constraints, i.e., ceq·l(x) = 0, l = 1, …, Neq, where Neq is the number of 

constraints

Design constraints are usually introduced to make sure that the antenna structure 
that is to be evaluated by the EM solver is physically valid (e.g., certain parts of the 
structure do not overlap). Also, constraints can be introduced in order to ensure that 
the physical dimensions (length, width, area) of the antenna do not exceed certain 
assumed values.

In this book, geometry constraints such as those described above are handled 
explicitly. Other types of constraints, particularly those that emerge due to convert-
ing initially multi-objective design problem into single-objective one, are handled 
through penalty functions. It should be mentioned though that the literature offers 
efficient ways of explicit handling expensive constraints; see, e.g., Kazemi et al. 
(2011), Basudhar et al. (2012).

Figure 2.2 shows the simulation-driven design optimization flowchart. Typically, 
it is an iterative process where the designs found by the optimizer are verified by 
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Fig. 2.1  Illustration of minimax design specifications, here, |S11| ≤ −10  dB for 3.1–10.6  GHz, 
marked with thick horizontal line. An example UWB antenna reflection response that does not 
satisfy our specifications (dashed line) (specification error, i.e., maximum violation of the require-
ments is about +5 dB) and another response that does satisfy the specifications (solid line)
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evaluating the high-fidelity model in the EM solver and—depending on a particular 
algorithm—the search process is guided either by the model response itself or the 
response of its gradients (if available). In Sects. 2.2–2.5, we briefly discuss conven-
tional optimization approaches. In Chaps. 3 and 4, we discuss surrogate-based opti-
mization methods, which are the main topic of this book.

2.2  �Gradient-Based Optimization Methods

Gradient-based optimization techniques are the oldest and the most popular optimi-
zation methods (Nocedal and Wright 2000). In order to proceed toward the opti-
mum design, they utilize derivative information of the objective function. Assuming 
that the objective f(x) is sufficiently smooth (i.e., at least continuously differentia-
ble), the gradient ∇f = [∂f/∂x1 ∂f/∂x2…∂f/∂xn]T gives the information about descent of 
f in the vicinity of the design at which the gradient is calculated. More specifically,

	
f f f fx h x x h x+( ) @ ( ) +Ñ ( ) × < ( ) 	

(2.2)

for sufficiently small h as long as ∇f(x)∙h < 0. In particular h = −∇f(x) determines the 
direction of the steepest descent. In practice, using steepest descent as a search 
direction results in a poor performance of the optimization algorithm (Nocedal and 
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Fig. 2.2  Simulation-driven design through optimization. Generic optimization scheme is an iterative 
process where the new candidate designs are generated by the optimization algorithm and the high-
fidelity model is evaluated through EM simulation for verification purposes and to provide the 
optimizer with information that allows searching for possible better designs. Depending on the 
type of the algorithm, the search process may be guided by the model response or (if available) by 
the response and its derivatives (gradient)
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Wright 2000; Yang 2010). Better results are obtained using so-called conjugate-
gradient method where the search direction is determined as a combination of the 
previous direction hprev and the current gradient, i.e.,

	
h x h= -Ñ ( ) +f i

prevg
	

(2.3)

An example way of selecting the coefficient γ is a Fletcher-Reeves method with

	

g =
Ñ ( ) Ñ ( )

Ñ ( ) Ñ ( )
f f

f fprev prev

x x

x x

T

T

	

(2.4)

Having the search direction, the next design xi+1 is determined from the current 
one xi as

	 x x hi i+ = + ×1 a 	 (2.5)

Here, the choice of the step size α > 0 is of great importance (Nocedal and Wright 
2000), and finding it is referred to as a line search.

It is also possible to utilize second-order derivative information, which is charac-
teristic to so-called Newton methods. Assuming f is at least twice continuously 
differentiable, one can consider a second-order Taylor expansion of f:

	
f f fx h x x h h H x h+( ) @ ( ) +Ñ ( ) × + × ( ) ×1

2 	
(2.6)

where H(x) is the Hessian of f at x, i.e., H(x) = [∂2f/∂xj∂xk]j,k=1,…,n. This means, given the 
current design xi being sufficiently close to the minimum of f, that the next approxi-
mation of the optimum can be determined as

	
x x H x xi i f+ -

= - ( )éë ùû Ñ ( )1 1

	
(2.7)

If the starting point is sufficiently close to the optimum and the Hessian is posi-
tive definite (Yang 2010), the algorithm (2.7) converges very quickly to the (locally) 
optimal design. In practice, neither of these conditions is usually satisfied, so vari-
ous types of damped Newton techniques are used, e.g., Levenberg-Marquardt 
method (Nocedal and Wright 2000). On the other hand, the Hessian of the objective 
function f is normally not available so quasi-Newton methods are used instead 
where the Hessian is approximated using various updating formulas (Nocedal and 
Wright 2000).

From the point of view of simulation-driven antenna design, the use of gradient-
based methods is problematic mostly because of the high computational cost of 
accurate simulation and the fact that gradient-based methods normally require large 
number of objective function evaluations to converge, unless cheap way of obtain-
ing sensitivity is utilized (e.g., through adjoints or automatic differentiation). 
Another problem is numerical noise that is always present in EM-based objective 
functions. Recently, adjoint sensitivity techniques have become available in some 
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commercial EM solvers (CST 2013; HFSS 2010), which may revive the interest in 
this type of methods for antenna design because they allow calculation of sensitivity 
at little or no extra cost compared to a regular EM simulation of the antenna struc-
ture. On the other hand, automatic differentiation is usually not an option because 
source codes are not accessible whenever commercial solvers are utilized. It should 
also be mentioned that gradient-based methods exploiting a trust-region framework 
are usually more efficient than those based, e.g., on line search so that using trust 
region (Conn et al. 2000) is recommended whenever possible.

2.3  �Derivative-Free Optimization Methods

In many situations, gradient-based search may not be a good option. This is particu-
larly the case when derivative information is not available or expensive to compute 
(e.g., through finite differentiation of an expensive objective function). Also, if the 
objective function is noisy (which is typical for responses obtained from EM simu-
lation) then the gradient-based search does not perform well.

Optimization techniques that do not use derivative data in the search process are 
referred to as derivative-free methods. Formally speaking metaheuristics (Sect. 2.4) 
as well as many surrogate-based approaches (Chaps. 3 and 4) also fall into this cat-
egory. In this section, however, we only mention the basic idea of the local search 
methods. Figure 2.3 illustrates the concept of the pattern search (Kolda et al. 2003), 
where the search of the objective function minimum is restricted to the rectangular 
grid and explores a grid-restricted vicinity of the current design. Failure in making 
the step improve the current design leads to refining the grid size and allowing 
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Fig. 2.3  The concept of pattern search. The search is based on exploratory movements restricted 
to the rectangular grid around the initial design. Upon failure of making the successful move, the 
grid is refined to allow smaller steps. The actual implementations of pattern search routines also 
use more sophisticated strategies (e.g., grid-restricted line search)
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smaller steps. Various variants of the pattern search methods are available (see, e.g., 
Torczon 1997; Kolda et  al. 2003). With sufficiently large size of the initial grid, 
these techniques can be used to perform a quasi-global search.

One of the most famous derivative-free methods is the Nelder-Mead algorithm 
(Yang 2010) also referred to as the simplex method. Its search process is based on 
moving the vertices of the simplex in the design space in such a way that the vertex 
corresponding to the worst (i.e., highest) value of the objective function is replaced 
by the new one at the location where the objective function value is expected to be 
improved.

Pattern search and similar methods are usually robust although their convergence is 
relatively slow compared to gradient-based routines. Their fundamental advantage 
is in the fact that they do not use derivative information and, even more importantly, 
they are quite immune to the numerical noise. An excellent and mathematically 
rigorous treatment of derivative-free optimization techniques, including model-
based trust-region derivative-free methods, can be found in Conn et  al. (2009). 
Many pattern search methods and their extensions possess mathematically rigorous 
convergence guarantees (Conn et  al. 2009). An interesting extension of pattern 
search to constrained black-box optimization is Mesh Adaptive Direct Search 
(MADS) (Audet and Dennis 2006).

2.4  �Metaheuristics and Global Optimization

Metaheuristics are global search methods that are based on observation of natural 
processes (e.g., biological or social systems). Most metaheuristics process sets 
(or populations) of potential solutions to the optimization problem at hand in a way 
that these solutions (also called individuals) interact with each other so that the 
optimization process is capable to avoid getting stuck in local optima and 
converge—with reasonable probability—to a globally optimal solution of the problem. 
At the same time, metaheuristics can handle noisy, non-differentiable, and discon-
tinuous objective functions.

The most popular types of metaheuristic algorithms include genetic algorithms 
(GAs) (Goldberg 1989), evolutionary algorithms (EAs) (Back et al. 2000), evolu-
tion strategies (ES) (Back et al. 2000), particle swarm optimizers (PSO) (Kennedy 
et al. 2001), differential evolution (DE) (Storn and Price 1997), and, more recently, 
firefly algorithm (Yang 2010). A famous example of metaheuristic algorithm that 
processes a single solution rather than a population of individuals is simulated 
annealing (Kirkpatrick et al. 1983).

The typical flow of the metaheuristic algorithm is the following (here, P is the set 
of potential solutions to the problem at hand, also referred to as a population):

	1.	 Initialize population P.
	2.	 Evaluate population P.
	3.	 Select parent individuals S from P.
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	4.	 Apply recombination operators to create a new population P from parent 
individuals S.

	5.	 Apply mutation operators to introduce local perturbations in individuals of P.
	6.	 If termination condition is not satisfied, go to 2.
	7.	 End.

Initialization of the population is usually random. In the next stage, each 
individual is evaluated, and its corresponding value of the objective function deter-
mines its “fitness.” An important step is selection of the subset of individuals to 
form a new population. Depending on the algorithm, the selection can be determin-
istic (pick up the best ones only, ES) or partially random (probability of being 
selected depends on the fitness value but there is a chance even for poor individuals, 
EAs). In some algorithms, such as PSO or DE, there is no selection at all (i.e., indi-
viduals are modified from iteration to iteration but never die). There are two types 
of operations that are used to modify individuals: exploratory ones (e.g., crossover 
in EAs or ES) and exploitative ones (e.g., mutation in GAs). Exploratory operators 
combine information contained in the parent individuals to create a new one. 
For example, in case of an evolutionary algorithm with natural (floating point) 
representation, a new individual c can be created as a convex combination of the 
parents p1 and p2, i.e., c = αp1 + (1 − α)p2, where 0 < α < 1 is a random number. These 
types of operators allow making large “steps” in the design space and, therefore, 
explore new and promising regions. Exploitative operators introduce small pertur-
bations (e.g., p ← p + r, where r is a random vector selected according to a normal 
probability distribution with zero mean and certain, problem-dependent variance). 
These operators allow exploitation of a given region of the design space improving 
local search properties of the algorithm. In some of the more recent algorithms, e.g., 
PSO, the difference between both types of operators is not that clear (modification 
of the individual may be based on the best solution found so far by that given indi-
vidual as well as the best solution found by the entire population).

A common feature of metaheuristics is that they normally require a large number 
of objective function evaluations to converge. Typical population size is anything 
between 10 and 100, whereas the number of iteration may be a few dozen to a few 
hundred. Also, their performance may be heavily dependent on the values of control 
parameters, which may not be easy to determine beforehand. Finally, because they 
are stochastic methods, a solution obtained in each run of the algorithm will be 
generally different from the previous one. From the point of view of antenna design, 
metaheuristics are attractive approaches for problems where evaluation time of the 
objective function is not of a primary concern and when multiple local optima are 
expected. For that reason, metaheuristics are mostly used for solving antenna array 
optimization problems with non-coupled radiators, in particular, for pattern synthesis 
(e.g., Ares-Pena et al. 1999; Bevelacqua and Balanis 2007; Li et al. 2008). It should 
also be mentioned that the problem of high computational cost can be partially alle-
viated by surrogate-assisted metaheuristics (e.g., Ong et al. 2003; Emmerich et al. 
2006; Zhou et al. 2007; Jin 2011; Parno et al. 2012; Loshchilov et al. 2012; Regis 
2013a, b), where metaheuristic optimization is combined with response surface 
modeling of the expensive objective function.

2.4 � Metaheuristics and Global Optimization
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2.5  �Challenges of Conventional Optimization Toward Design 
Using Surrogate Models

The optimization methods considered in this chapter attempt to solve the design 
problem (2.1) directly. In this sense, we refer to these techniques as conventional 
ones. As explained in Sect. 2.1 and Fig. 2.2, the direct approach requires that each 
new candidate design produced by the optimizer is verified by performing EM simu-
lation of the underlying antenna structure. Because each high-fidelity simulation is 
already computationally expensive, conventional optimization with its large number 
of objective function evaluations may be prohibitive. Numerical noise that is inherent 
to EM simulations poses additional problems, particularly for gradient-based meth-
ods. Consequently, application of conventional off-the-shelf optimization algorithms 
for EM-based antenna design often results in failures. As a result, although almost 
all commercial simulation tools offer certain built-in optimization capabilities 
(e.g., CST 2013; FEKO 2012), many designers rely on repetitive parameter sweeps 
and own expert knowledge that allow them to find at least satisfactory designs in 
reasonable time.

The surrogate-based optimization concept that is a main topic of this book 
attempts to address this problem by replacing direct optimization of the high-fidelity 
model, with optimization of its cheap and analytically tractable representation 
referred to as a surrogate model. As indicated in the following chapters, it is possible 
to construct and exploit such representations in such a way that—with occasional 
reference to the high-fidelity model—a satisfactory design can be found at a fraction 
of a computational effort required by conventional optimization.
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