On the Convergence of the Combination
Technique

Michael Griebel and Helmut Harbrecht

Abstract Sparse tensor product spaces provide an efficient tool to discretize
higher dimensional operator equations. The direct Galerkin method in such ansatz
spaces may employ hierarchical bases, interpolets, wavelets or multilevel frames.
Besides, an alternative approach is provided by the so-called combination technique.
It properly combines the Galerkin solutions of the underlying problem on certain full
(but small) tensor product spaces. So far, however, the combination technique has
been analyzed only for special model problems. In the present paper, we provide
now the analysis of the combination technique for quite general operator equations
in sparse tensor product spaces. We prove that the combination technique produces
the same order of convergence as the Galerkin approximation with respect to the
sparse tensor product space. Furthermore, the order of the cost complexity is the
same as for the Galerkin approach in the sparse tensor product space. Our theoretical
findings are validated by numerical experiments.

1 Introduction

The discretization in sparse tensor product spaces yields efficient numerical methods
to solve higher dimensional operator equations. Nevertheless, a Galerkin discretiza-
tion in these sparse tensor product spaces requires hierarchical bases, interpolets,
wavelets, multilevel frames, or other types of multilevel systems [9, 12, 17] which
make a direct Galerkin discretization in sparse tensor product spaces quite involved
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and cumbersome in practical applications. To avoid these issues of the Galerkin
discretization, the combination technique has been introduced in [14]. There, only
the Galerkin discretizations and solutions in appropriately chosen, full, but small,
tensor product spaces need to be computed and combined.

In [8, 18, 19], it has been shown that, in the special case of operator equations
which involve a tensor product operator, the approximation produced by the
combination technique indeed coincides exactly with the Galerkin solution in the
sparse tensor product space. However, for non-tensor product operators, this is no
longer the case. Nevertheless, it is observed in practice that the approximation error
is of the same order. But theoretical convergence results are only available for
specific applications, see for example [3, 14,21-23, 25]. Moreover, a general proof
of convergence is so far still missing for the combination technique.

In the present paper, we prove optimal convergence rates of the combination
technique for elliptic operators acting on arbitrary Gelfand triples. The convergence
analysis is based on two compact lemmas (Lemmas 1 and 2) which have basically
been proven in [22,25]. In contrast to these papers, besides considering abstract
Gelfand triples, we deal here with the combination technique for the so-called
generalized sparse tensor product spaces which have been introduced in [10].
Lemma 1 involves a special stability condition for the Galerkin projection (cf. (18))
which, however, holds for certain regularity assumptions on the operator under
consideration (see Remark 1).

To keep the notation and the proofs simple, we restrict ourselves to the case
of operator equations which are defined on a twofold product domain £2; x £25.
However, we allow the domains £2; C R"! and £2, C R”"2 to be of different spatial
dimensions. Our proofs can be generalized without further difficulties to arbitrary
L-fold product domains £2; x £2, x --- x §£2; by employing the techniques from
[11,25].

The remainder of this paper is organized as follows. We first present the
operator equations under consideration in Sect. 2. Then, in Sect. 3, we specify the
requirements of the multiscale hierarchies on each individual subdomain. In Sect. 4,
we define the generalized sparse tensor product spaces and recall their basic
properties. The combination technique is introduced in Sect. 5 and its convergence is
proven in Sect. 6. Section 7 is dedicated to numerical experiments. They are in good
agreement with the presented theory. Finally, in Sect. 8, we give some concluding
remarks.

Throughout this paper, the notion “essential” in the context of complexity
estimates means “up to logarithmic terms”. Moreover, to avoid the repeated use
of generic but unspecified constants, we signify by C < D that C is bounded
by a multiple of D independently of parameters which C and D may depend on.
Obviously, C 2 D isdefinedas D < C,andC ~DasC S DandC Z D.
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2 Operator Equations

We consider two sufficiently smooth, bounded domains §2; € R"' and £2, € R,
where ny,n, € N. Moreover, on the product domain §2; x £2,, let the Hilbert space
‘H be given such that

H C L*(2, x §£,) C H’

forms a Gelfand triple. Thus, the inner product
o) = [ [ uxyey axdy
2 J2

in L?(£2, x £2,) can continuously be extended to H x H’. For sake of simplicity of
presentation, we write (4, V) 2(g, x,) also in the case u € H and v € H'.

Now, let A : H — H’ denote a differential or pseudo-differential operator. It is
assumed that it maps the Hilbert space H continuously and bijectively onto its dual
H, i.e.,

| Aul|7¢ ~ [lull for all u € H.

The Hilbert space H is thus the energy space of the operator under consideration.
For the sake of simplicity, we further assume that A is H-elliptic. Consequently, the
resulting bilinear form

a(u,v) := (Au,v) 2 x2,) - HXH —R
is continuous
a(u,v) < |lullxllv]x forallu,v e H
and elliptic
a(u,u) Z ||u||§{ forall u € ‘H.

In the following, for given f € H’, we want to efficiently solve the operator
equation Au = f or, equivalently, the variational formulation:

find u € 'H such that a(u, v) = (f.v)2(2,xe,) forall v € H. (1)

Of course, since we like to focus on conformal Galerkin discretizations, we should
tacitly assume that, for all j;, j» > 0, the tensor product Vj(ll) ® Vj(zz) of the ansatz

spaces Vj(ll) and Vj(zz) is contained in the energy space H. Moreover, for the solution
u € H of (1), we will need a stronger regularity to hold for obtaining decent
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convergence rates. Therefore, for 51,5, > 0, we introduce the following Sobolev

spaces of dominant mixed derivatives with respect to the underlying space 'H

B Ly
de b

mix

H2 = %f eH:

fH < oo forall |e| < sy and |B| < s5¢ .
H

We shall illustrate our setting by the following specific examples.

Example 1. A first simple example is the operator A : L?(£21x$2,) — L?(§2;x£2,)
which underlies the bilinear form

a(u,v) = /Q /Q a(x, Y)u(x, y)v(x, y) dxdy,

where the coefficient function « satisfies
0<a<oa(xy) <aforall (x,y) € £, X £2,. 2)

Here, it holds H = L?*(£2, x £2,). Moreover, our spaces Hf,ii’)‘:z of assumed
stronger regularity coincide with the standard Sobolev spaces of dominant mixed
derivatives, i.e.,

ot = Hy2 (20 x ) = H" (1) ® H™(2,).
Example 2. Stationary heat conduction in the product domain £2; x §2, yields the
bilinear form

alu, v) = /Q /Q (%, Y Vatt(x, Y)Vxv(x,¥) + Vyu(x, ) Vyo(x, y)} dxdy.

If the coefficient o satisfies (2), then the associated operator A is known to be
continuous and elliptic with respect to the space H = H| (£2; x §2,). Moreover,
our spaces M, of assumed stronger regularity now coincide with ;.

HL (21 x 25) N HIEY2(2) x 25) 0 HV2 (92 % 27).

mix mix

Example 3. Another example appears in two-scale homogenization. Unfolding [4]
gives raise to the product of the macroscopic physical domain §2; and the periodic
microscopic domain §2, of the cell problem, see [20]. Then, for the first order
corrector, one arrives at the bilinear form

a(u,v):/Q /9 a(x,y)Vyu(x, y)Vyv(x,y) dx dy.

The underlying operator A is continuous and elliptic as a operator in the related
energy space H = L2(£2)) ® H,(£2,) provided that the coefficient « satisfies
again (2). Furthermore, our spaces H,'> of assumed stronger regularity coincide

with 1122 = (L2(21) ® H] (22)) N HL2 (21 x 22).

mix mix
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3 Approximation on the Individual Subdomains
On each domain £2;, we consider a nested sequence
v e coc v coc LA(S) (3)
of finite dimensional spaces
I/j(") = span{fp;’;,i 1k e Ay)}

(the set A;i) denotes a suitable index set) of piecewise polynomial ansatz functions,
such that dim I/j(i) ~ 2" and

2 _ @)
L@y=Jv".
Jj€Np

We will use the spaces Vj(i) for the approximation of functions. To this end, we
assume that the approximation property

inf_ ||u — Uj”]—]q(gi) < hj,_q”uHHA(Qi), ue HS(,Q,-), “4)
U‘/'EVj(I)
holds for ¢ < y;, ¢ < s < r; uniformly in j. Here we set h; := 27/ ie., hj

corresponds to the width of the mesh associated with the subspace Vj(i) on £2;. The
parameter y; > O refers to the regularity of the functions which are contained in
v ie

jor e

yi ==sup{s e R: V]-(i) C H*($2)}.

The integer r; > 0 refers to the polynomial exactness, that is the maximal order of
polynomials which are locally contained in the space Vj(') .

Now, let Q;i) D L2(2;) — Vj(i ) denote the L?($2;)-orthogonal projection onto
the finite element space Vj(i) . Due to the orthogonality, we have (Qy))* = Q;.i) .

Moreover, our regularity assumptions on the ansatz spaces Vj(i) imply the continuity
of the related projections relative to the Sobolev space H7(£2;) for all |¢| < y;, i.e.,
it holds

109 ull 1o,y < Nullmacans  lal < v, 5)

uniformly in j > O provided that u € HY9(£2;).
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By setting Q(_’; := 0, we can define for all j > 0 the complementary spaces
(@) . (@) (@) (@)
W= (07 — 01 L*(2) c V.
They satisfy
@ _ @) (@) (@) (0 _
Vii=Vvihie W V4 n Wi ={0),

which recursively yields
v =Ppw. 6)
j=0

A given function f € HY($2;), where |¢| < y;, admits the unique multiscale
decomposition

o0
=3 fwith fy = (0 = 0fL)) f e W,
j=0
One now has the well-known norm equivalence
= 2
2 2j (i) (@)
L Waragan ~ 227025 = Q5L) fll o,y lal < i
j=0

see [S]. Finally, for any f € H*(£2;) and |g| < y;, the approximation property (4)
induces the estimate

109 = 0% f ooy <27 VN f s g <5 <1

4 Generalized Sparse Tensor Product Spaces

The canonical approximation method in the Hilbert space H is the approximation
in full tensor product spaces’

1) 2) _ 1) (2)
VJ/U®VJU - @ I/le ®VVJ'2 :
Jjio<J
J2/o=J

'Here and in the following, the summation limits are in general no natural numbers and must of
course be rounded properly. We leave this to the reader to avoid cumbersome floor/ceil-notations.
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Here, 0 > 0 is a given parameter which can be tuned to optimize the cost
complexity. There are 2%1/9 . 27129 degrees of freedom in the space V](}(), & V(z).

Moreover, for f € (21 % £2) N H2 (21 % 2:) and f := (Q), ® 00 f €

mix mix

VJ(}(); VJ(G) , an error estimate of the type

1 = frllae 27 MO F] oy 0 ™

holdsforall0 < s; < p;and 0 < 5, < p,. Note that the upper bounds p; and p, are
the largest values such that H?." € H'1"2(2) x £2,) and HO.P> © HIL'2(82) x £2,),
respectively.

Alternatively, based on the multiscale decompositions (6) on each individual
subdomain, one can define the so-called generalized sparse tensor product space,
see [2,10],

> 1 2 1 2
e @ wiewi- Y Wert
J1o+j2/0<] J1o+jpfo=J

Thus, a function f € H is represented by the Boolean sum

fr= Z Jljzf evy ©)

Jio+jp/o=<]
where, for all jj, j» > 0, the detail projections A9 71,/ are given by

A% =00 -0 he -0 ). (10)

For further details on sparse grids we refer the reader to the survey [2] and the
references therein.

The dimension of the generalized sparse tensor product space 17;’ is essentially
equal to the dimension of the finest univariate finite element spaces which enter its
construction, i.e., it is essentially equal to the value of max { dim Vj(ll, dim V(z)}
Nevertheless, by considering smoothness in terms of mixed Sobolev spaces, its
approximation power is essentially the same as in the full tensor product space.

To be precise, we have

Theorem 1 ([10]). The generalized sparse tensor product space I}]” possesses

2Jmax{nl/tf,nzl7}7 ifl’ll/U 75 npo,

dim V9 ~
mr 2/m/o g, ifni /o = nyo,

51,52

degrees of freedom. Moreover, for a given function f € H,.> and its

L?-orthonormal projection fj S 171" defined by (9), where 0 < s; < p; and
0 < §o < po, there holds the error estimate
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2—7 min{sl/(ﬂssz}”f||H51‘,52, if s1/0 # 5,0,
mix

— <
”f fJ “H ~ 2—151/0\/7”](”7_{;152, ifs1/0 = $,0.

The optimal choice of the parameter o has been discussed in [10]. It turns out
that the best cost complexity rate among all possible values of sy, 5, is obtained for
the choice 0 = /n;/n,. This choice induces an equilibration of the degrees of
freedom in the extremal spaces VJ(/I()T and VJ(?.

We shall consider the Galerkin discretization of (1) in the generalized sparse
tensor product space 171", that is we want to

finduy; € 17}’ such that a(uy,vy) = (f,v1) 120 xs,) forallv; € 17}’ (11)

In view of Theorem 1, we arrive at the following error estimate due to Céa’s lemma.

Corollary 1. The Galerkin solution (11) satisfies the error estimate

A 2—./ mil’l{Sl/U,SZU} ||u||H.\'1..A2 s l:fS]/O— 7é §20,
=yl S lluw—itslln <9, B
277N T Nl ifsi/o = 80,
mix

forall 0 < 51 < p1and 0 < s, < p, provided that u € H:* (21 x $2,).

mix

Nevertheless, for the discretization of (11), hierarchical bases, interpolets,
wavelets, multilevel frames, or other types of multilevel systems [2,9, 12, 13, 15—
17,24,26] are required which make a direct Galerkin discretization in sparse tensor
product spaces quite involved and cumbersome in practical applications.

5 Combination Technique

The combination technique is a different approach for the discretization in sparse
tensor product spaces. It avoids the explicit need of hierarchical bases, interpolets,
wavelets or frames for the discretization of (11). In fact, one only has to compute
the Galerkin solutions with respect to certain full tensor product spaces Vj(ll) ® Vj(zz)
and to appropriately combine them afterwards. The related Galerkin solutions u, ;,
are given by

find uj, ;, € Vj(ll) ® Vj(zz) such that
W01 = (F0j.1) forall v, ;, € Vi © v
a\Ujy.jr» Vjr,ja » Ujija) L2(92)x2,) TOr all Uy j, J1 2 -
This introduces the Galerkin projection

. 1) (2 —
Pj j  H — le ® ij o Pjjui=ug g
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which especially satisfies the Galerkin orthogonality
a(u— P, ju,vj,j,) = 0forall vy, j, e VIV @ V2.

The Galerkin projection P;, ;, is well defined for all ji, j» > 0 due to the
ellipticity of the bilinear form a(-,-). Moreover, as in (7), we conclude the error
estimate

u— P, jullr S Ju—(Q%) ® 0D)ullpy 5 27 ™t y|| 0

OHO .52

forall0 < sy < p;and 0 < s, < p, provided that u € H’" 0N 102 In particular,

mix mix *
for fixed ji > 0 and j, — oo, we obtain the Galerkin projection P;, o, onto the

space Vj, o0 1= (Q(l) ® I)H C 'H. It satisfies the error estimate

lu = Pjrooullze < llu = (Q5 ® Dull < 277 ull .0 (12)

forall 0 < 51 < p;. Likewise, for fixed j, > O and j; — oo, we obtain the Galerkin
projection P j, onto the space Vo j, 1= (I ® Q;?)H C 'H. Analogously to (12),
we find

lu = Poopullze < llu = (1 ® QP )ullie < 2772 ul o (13)

forall 0 < s, < po».
With the help of the Galerkin projections, we can define

AL ui= (P = Pji1jy = Pjyjp1 + Pji1jp—)u (14)

where we especially set P; — := 0, Py ;, := 0, and P_;—; := 0. Then, the
combination technique is expressed as the Boolean sum (cf. [6-8])

N P _ P
uyp = Z A]l pH=u Z AJI J2 (15)
J1o+j2/0<] J1o+j2/0>J

Straightforward calculation shows

[J/o]
MJ - Z( j1.[Jo—ji102] — le 1,[Jo— 1162])’4 (16)
J1=0
if j1 < j»0?, and
[Jo]
ity = Y (Pijomipjorjo = Plijo—pso?) 1) 17
J2=0

if j; > j,02. A visualization of the formula (17) is found in Fig. 1.
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JG'\

Q@
/
0](¢2)
/
Qo
/
Qo
/

&
O
9\@ J1

J/c

Fig. 1 The combination technique in I?}’ combines all the indicated solutions P;, j,u with positive
sign (“@”) and negative sign (“©”)

Our goal is now to show that the error ||u — @t |7, converges as good as the error
of the true sparse tensor product Galerkin solution given in Corollary 1.

6 Proof of Convergence

To prove the desired error estimate for the combination technique (16) and (17),
respectively, we shall prove first the following two helpful lemmata.

Lemma 1. Forall 0 < s1 < p;and 0 < sy < p,, it holds
I(Pji.jo = Pji—1j)ullre < 277 lul, i 0,
mix
I(Pjijo = Pji.jp=0ullne < 2772 ull, 0,
mix

provided that u is sufficiently smooth and provided that the Galerkin projection
satisfies

Proof. We shall prove only the first estimate, the second one follows in complete
analogy. To this end, we split

(P = Ph—1)ulln < (P j, = Poo,j)ullm + [(Poo,jy — Pji—1, o)l

Due to V},—1,. Vi, C Veo,j,, the associated Galerkin projections satisfy the
identities P;, ;, = P;, j, Poo j, and P; 1 j, = P; 1 j, P, j,- Hence, we obtain

1P = Pji—1)ulln = |(Pjyjy = 1) Poo jptll + 1T = Pji—1.j2) Poo jpttll 7
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By employing now the fact that the Galerkin projections Pj,—; j,u and P}, ;,u are

quasi-optimal, i.e., |(/ — Pj, pulln < (I — Q(l) ® Q(z))uHH and likewise for
Pj 1 j,u, we arrive at

(P, = Pi—1j)ulln

SO & QF — 1) Pos jyull + (1 = Q%) ® 0F) Poc 1.

The combination of Q(l) ® Q(z) = (Q(l) RIU Q Q(z)) and (I ® Q(z))Poo 5 =
Py j, yields the operator 1dent1ty

(05 ® 07 P jo = (25, ® 1) Poc .

and likewise

(Q(l) . ® Q(Z))Poo (Q(l) X ® 1) o072

Hence, we conclude

(P j» — Pji—1,5)ulln
S =05 @ 1) Poo ]y, + [ (1 = QFL) @ 1) Poc o],

<27/ ”POOJZMHH‘;L{:)’

Using the condition (18) implies finally the desired estimate. |

Remark 1. Condition (18) holds if A : H — H’ is also continuous and bijective
as a mapping 4 : H)\ 0 - (H): O forall 0 < s, < p1 and also as a mapping

A H?m‘j — (H' )OS2 for all 0 < s, < p», respectively. Then, in view of the

continuity (5) of the projections Q(l) and Q(i), the Galerkin projections
Poojy = (I ® 0)AU ® 00)) (1 ® 09) i H — Voo, C I
Pioo = (2} @ DA} @ D) Q) ® 1) : H = V00 C H,
are also continuous as mappings

Poojy i M = Vo sy CHIY Pjo i HEZ 5 Vi oo ©HO2

mix mix ’ mix mix

which implies (18).
Lemma 2. [fu € H,\\2, then it holds

mix

[Af s, = AT ully < 277722 ullye
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forall0 < s; < pyand 0 < sy < p, where A2 s given by (10) and A?

given by (14), respectively.

J1.J2 Jt ]2

Proof. Due to Pj,, ]Z(Q(l) ® Q(Z)) = Q(l) ® Q(Z) forall ji, j» > 0, we obtain

1 2 1 2
AD A8 =Py (- 0W e 0P~ Pyl - 00 0D

Pj jp—1(I = Q(l) ® Qg)—l) + Pioyj—1 (1 — Q(l) 1 ® Qg) V-
19)

We shall now make use of the identity

Q(l) Q(Z)—I®I Q(l) Q(Z)
=1 -0 +U-0Mel-U-0")eU-0P).

Inserting this identity into (19) and reordering the terms yields
Ai J2 A% 2= (Pjij = le—lqu)(l ® (- Q(Z)))
—(Pjjo—1 — Pj—1jp-) (I ® (I — Qﬁ)_l))
+ (Pjijs = Prp-)(( = Q5 ® 1)
—(Pjy—1jy — Pji—1p-D (U — Q;})_l) ® 1)
Pip( =23 ® (1 = 0F)))
+ P (= 051D ® (1 = 0)))
+ P (=05 ® (1= 0% )
—Pj—1p (= Q5L ) @ (1 - 00))).
The combination of the error estimates
1Pz = il S 270 ull o,
1P = Pl S 277 ull
cf. Lemma 1, and
[(7® (= @5N)ul 0 < 27 lulygn

(1 =0y & D, p0 S 277 ullp g2,

| | 0.5
Hmix
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leads to

H( g — le_l,jz)(l ® - Q(Z)))MHH < p—J1s1— ’2‘2||u|| o,

[P = Pa (0 = O ® Dl 255 .
Similarly, from the continuity
1Py jpullr < Ml
and
[((2 =0y ® (1 = @))ully, < 2775722l
we deduce
|2 (1 = Q5 & (I = O )ully S 27722 Jullpe. (21)

With (20) and (21) at hand, we can estimate each of the eight different terms which
yields the desired error estimate

|At = A9 D, S 27972 ], o

Ji.J2 Ji.J2

Now, we arrive at our main result which proves optimal convergence rates.

Theorem 2. The solution (16) and (17), respectively, of the combination technique
satisfies the error estimate

2 2 s, if51/0 # 520,
mix

lu—isll# <
2—Js1/o /] ||u||HA1‘,A2 , ifSl/CT = 5,0,
mix

forall0 < s; < pyand 0 < s, < p provided that u € H,) .

Proof. In view of (15), we have

2. Al

Jj1o+j/o>J

~ 2
llu = itsll7 =

H

The Galerkin orthogonality implies the relation

2

Z ” A]l jzu“i(‘

H Jj1o+j2/o>J

2. Al

Jjio+ja2/o>J
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Thus, we arrive at

~ 2 2
le—islhes D0 Jafuul+ 20 MAf, =A% uly
Jio+ja/o>J jio+jpfo>J

We bound the first sum on the right hand side in complete analogy to [10] from
above by

2 Coiis1—2i )
DI LV AR FERD D
Jjio+jfo>J jio+jajo>T

_ [ s /o # 520,
mix

T 27 T 2 ifs1/0 = s20.
Hmix

Likewise, with the help of Lemma 2, the second sum on the right hand side is
bounded from above by

P 0 2 .
Z H (Ajl,jz - Ajlﬁjz)“”H < Z 27 12‘2”“”7{
jio+jafo>J Jj1o+j/o>J

51,52
mix

2-2J min{SI/a,sz(T}||u||§{\v1“\,2’ if s1/0 # 5,0,

mix

2_2“1/"J||u||§{51,52, if 1 /0 = s,0,
mix

which, altogether, yields the desired error estimate. |

7 Numerical Results

We now validate our theoretical findings by numerical experiments. Specifically, we
will apply the combination technique for the three examples which were mentioned
in Sect. 2. To this end, we consider the most simple case and choose 2| = §2, =
(0,1),i.e,, n; = np, = 1. The ansatz spaces Vj(l) and Vj(z) consist of continuous,
piecewise linear ansatz functions on an equidistant subdivision of the interval (0, 1)
into 2/ subintervals. This yields the polynomial exactnesses r; = r, = 2. For the
sake of notational convenience, we set (1 = (0, 1) x (0, 1).

Example 1. First, we solve the variational problem
find u € L?(0) such that a(u, v) = £(v) for all v € L*(0J)

where

a(u,v) = /D a(x. y)ulx, y)u(x. y) dex. y)
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and
() = /D FGe v y) A, ). 22)

The underlying operator A is the multiplication operator

(Au)(x, y) = a(x, y)u(x, y)

which is of the order 0. Hence, we have the energy space H = L?(J) and the related
spaces of assumed stronger regularity are H,' "> = H)'**(0). If the multiplier
a(x, y) is a smooth function, then A arbitrarily shifts through the Sobolev scales
which implies the condition (18) due to Remark 1.

Let the solution u be a smooth function such that u € an‘i’f for given 51, 52 > 0,
which holds if the right hand side f is sufficiently regular. Then, the best possible
approximation rate for the present discretization with piecewise linear ansatz
functions is obtained for s; = r; = 2 and s, = r, = 2, i.e., for H;2 = H>*(0).

mix mix
Thus, the regular sparse tensor product space

(1) 2 _ (1) ®)
@ le ® sz - Z le ® ij ' (23)
it j2=<J itj=J

(cf. (8)) is optimal for the discretization, see [10] for a detailed derivation. In
particular, with Theorem 2, the combination technique yields the error estimate

la—iisll 2y 477V T lull 22
For our numerical tests, we choose

a(x,y) = 1+(x+y)>  fx.y)=alx yux.y), u(x,y)= sin(rx)sin(ry).

The resulting convergence history is plotted as the red curve in Fig.2. As can be

seen there, the convergence rate 4=7 /], indicated by the dashed red line, is indeed

obtained in the numerical experiments.

Example 2. This example concerns the stationary heat conduction in the domain .
In its weak form, it is given by the variational problem

find u € Hy (O) such that a(u, v) = £(v) forall v € H, (O)

where

a(uav)Z/Da(x,y){ (x, y) ()C y)+ (x y) ()C y)g dx,y)
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Fig. 2 Convergence rates in Convergence rates
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and £(v) as in (22). The underlying operator A is the elliptic second order
differential operator

(A“)(x’ y) = - div(x,y) (oc(x, y)v(x,y)u(x7 y))

and maps the energy space H = H_ (O) bijectively onto its dual H' = H~'(0O).
Recall that now the spaces of assumed stronger regularity are H,*> = HJ (0) N
Hy @) n HyR o).

Since the domain [ is convex, the second order boundary value problem under
consideration is H 2-regular, which implies that A : H}(O) N HZ(D) — LZ(E]) is
also bijective. By interpolation arguments, we thus find that A4 : Hm - (M )
continuous and bijective since

mix

LX@) c (K c H7'(@) and H (@)n H2@) c K2 c HY(D).

mix

Likewise, A4 : ngi - (H )mw is continuous and bijective. Hence, the condition (18)
holds again due to Remark 1 and Lemma 1 applies.

Again, the regular sparse tensor product space (23) is optimal for the present
discretization with piecewise linear ansatz functions. Consequently, Theorem 2

implies as the best possible convergence estimate
- -J
||M —uy ”Hl(D) <2 \/7||“||H’i;xl(|j)m1-1"11f((|j)

provided that u € H 1(I:|) nH: 2(D) Here, we exploited that Hmlx HO1 @n

mix mix

H*'@) n H'2(O). Nevertheless, in general, we only have u € H?*(O) ¢

nmix mix

H>N(O) n H2(@). Thus, due to H/>*(0) n H/>3>@) ¢ H*(O), one can

mix mix mix mix
only expect the reduced convergence rate



On the Convergence of the Combination Technique 71

lu=aslm@ 22772Vl
In our particular numerical computations, we use
oz(x, y=1+x+ y)2, u(x, y) = sin(zx) sin(wy),

flx,y) = (x y) (x y) + (x y) (x y) —a(x, y)Au(x, y).

Therefore, due to u € H>: 1(D) nH: 2([]), we should observe the convergence

rate 2~/ +/J . The computational approximation errors are plotted as the blue graph
in Fig.2. The dashed blue line corresponds to 277 +/J and clearly validates the
predicted convergence rate. We even observe the shghtly better rate 27/ which can
be explained by the fact that the solution u is evenin H (D) see [1] for the details.

mix

Example 3. We shall finally consider the variational problem
findu € L*(0,1) ® H, (0, 1) such that a(u, v) = £(v) forall v € L*(0,1) ® H, (0, 1)

where
a(u,v) = / (e, ) o “, e (5, )

and {(v) is again given as in (22). The underlying operator A is the elliptic
differential operator

0 0
(Au)(x,y) = —@(a(x, y)gu(x, y))-

Its energy space is H = L2(0, 1)® H, (0,1) € H';\(O) with dual H' = L*(0,1)®
H~1(0,1). Here, the spaces of assumed stronger regularity coincide with H,'.”> =
(L0, 1) ® H}(0, 1)) N K> HH(D).

The operator A shifts as a operator an‘l)fZH — (H' )f,iwfﬁ'l for arbitrary sq, 5 >
0 provided that the coefficient « is smooth enough. Thus, Theorem 2 holds and
predicts the best possible convergence estimate for our underlying discretization
with piecewise linear ansatz functions if u lies in the space Hjj([]).

According to the theory presented in [10], the optimal cost complexity with
respect to the generalized sparse tensor product spaces V7 is obtained for the choice

ni r
o€ [\/n:z /rz_1 = [1,V2].

In order to be able to compare the convergence rates instead of the cost complexities
for different choices of o, we have to consider the generalized sparse tensor product
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Fig. 3 Convergence rates in Convergence rates
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spaces Vj", where J := oJ. Then, for all the above choices of o, we essentially

expect the convergence rate

—7, —J
277 Null o2 @y ~ 27 Nl 22

”“ - MTHH,B‘;(D) <
while the degrees of freedom of VJE essentially scale like 27/7 ~ 27 This setting is
employed in our numerical tests, where we further set

a(x,y) =1+ (x + )%, u(x,y) = sin(zx)sin(xy),
0 0 92
flx.y) = %(m)%(x,y) —a(x,y)gbzt(x,y).

We apply the combination technique for the particular choices

* o0 = 1, which yields an equilibration of the unknowns in all the extremal tensor

o (2)
product spaces W~ ® W

J—j10%’
* 0 = /2, which yields an equilibration of the approximation in all the extremal
tensor product spaces Wj(ll) ® W7(2_)j1,72’ and

* 0 = ,/3/2, which results in an equilibrated cost-benefit rate, see [2, 10] for the
details.

The computed approximation errors are found in Fig.3, where the red curve
corresponds to o = 1, the black curve corresponds to ¢ = +/2, and the blue
curve corresponds to o0 = \/3/_2 In the cases 0 = 1 and 0 = +/2, we achieve
the predicted convergence rate 2~/ which is indicated by the dashed black line.
In the case 0 = +/2 the predicted convergence rate is only 277 +/J which is also
confirmed by Fig. 3.
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8 Conclusion

In the present paper, we proved the convergence of the combination technique in
a rather general set-up. Especially, we considered the combination technique in
generalized sparse tensor product spaces. We restricted ourselves here to the case of
twofold tensor product domains. Nevertheless, all our results can straightforwardly
be extended to the case of generalized L-fold sparse tensor product spaces by
applying the techniques from [11, 25]. Then, of course, the constants hidden by
the “~”-notation will depend on the given dimension L.
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