Chapter 2
Learning Actionlet Ensemble for 3D Human
Action Recognition

Abstract Human action recognition is an important yet challenging task. Human
actions usually involve human-object interactions, highly articulated motions, high
intra-class variations and complicated temporal structures. The recently developed
commodity depth sensors open up new possibilities of dealing with this problem
by providing 3D depth data of the scene. This information not only facilitates a
rather powerful human motion capturing technique, but also makes it possible to
efficiently model human-object interactions and intra-class variations. In this chapter,
we propose to characterize the human actions with a novel actionlet ensemble model,
which represents the interaction of a subset of human joints. The proposed model
is robust to noise, invariant to translational and temporal misalignment, and capable
of characterizing both the human motion and the human-object interactions. We
evaluate the proposed approach on three challenging action recognition datasets
captured by Kinect devices, a multiview action recognition dataset captured with
Kinect device, and a dataset captured by a motion capture system. The experimental
evaluations show that the proposed approach achieves superior performance to the
state of the art algorithms.

Keywords Actionlet + Frequent item mining - Fourier temporal pyramid - Local
occupancy pattern

2.1 Introduction

Recognizing human actions has many applications including video surveillance,
human computer interfaces, sports video analysis and video retrieval. Despite remark-
able research efforts and many encouraging advances in the past decade, accurate
recognition of the human actions is still a quite challenging task. There are two major
issues for human action recognition. One is the sensory input, and the other is the
modeling of human actions that are dynamic, ambiguous and interactive with other
objects.
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Human motion is articulated in nature. Extracting such highly articulated motion
from monocular video sensors is a very difficult task. This difficulty largely limits
the performance of video-based human action recognition, as indicated in the studies
in the past decade. The recent introduction of the cost-effective depth cameras may
change the picture by providing 3D depth data of the scene, which largely eases the
task of object segmentation. Moreover, it has facilitated a rather powerful human
motion capturing technique [1] that outputs the 3D joint positions of the human
skeleton. As we will show in this chapter, although the estimated 3D skeleton alone
is not sufficient to solve the human action recognition problem, it greatly alleviates
some of the difficulties in developing such a system.

The depth cameras in general produce better quality 3D depth data than those
estimated from monocular video sensors. Although depth information alone is very
useful for human action recognition, how to effectively combine such 3D sensory
data with estimated 3D skeletons is nontrivial. First, the 3D skeleton alone is not suffi-
cient to distinguish the actions that involve human-object interactions. For example,
“drinking” and “eating snacks” exhibit very similar skeleton motions. Additional
information is needed to distinguish the two actions. Second, human actions may
have specific temporal structure. For example, the action “washing a mug” may con-
sist of the following steps: “arriving at the mug”, “taking the mug”, “arriving at the
basin” and “dumping the water”. The temporal relationship of these steps is crucial
to model such actions. Finally, human actions may have strong intra-class variations.
A person may use either his left hand or right hand to make a phone call, and differ-
ent people have different ways of washing a plate. Modeling these variations is also
challenging.

This chapter proposes novel features to represent human actions in depth data. First
of all, we propose a new 3D appearance feature called local occupancy pattern (LOP).
Each LOP feature describes the “depth appearance” in the neighborhood of a 3D
joint. Translational invariant and highly discriminative, this new feature is also able
to capture the relations between the human body parts and the environmental objects
that the person is interacting with. Secondly, to represent the temporal structure of an
action, we propose a new temporal representation called Fourier Temporal Pyramid.
This representation is insensitive to temporal sequence misalignment, robust to noise,
and is discriminative for action recognition.

More importantly, we propose a new model called the Actionlet Ensemble Model,
illustrated in Fig. 2.1. The articulated human body has a large number of kinematic
joints, but a particular action may only involve a small subset of them. For example,
for right-handed people, action “drinking” typically involves joints “right wrist” and
“head”. Thus the combinational feature of the two joints is a discriminative fea-
ture. For left-handed people, action “drinking” typically involves joints “left wrist”
and “head”. Therefore the combinational feature of joints “left wrist” and “head” is
another discriminative feature for this action. Therefore, we introduce the concept of
actionlet. An actionlet is a conjunction of the features for a subset of the joints. As the
number of possible actionlets is enormous, we propose a novel data mining solution
to discover discriminative actionlets. An action is then represented as an action-
let ensemble, which is a linear combination of the actionlets whose discriminative
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Fig. 2.1 The general framework of the proposed approach

weights are learnt via a multiple kernel learning method. This new action model is
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more robust to the errors in the features, and it can better characterize the intra-class
variations in the actions.

Our main contributions include the following three aspects. First, this chapter pro-
poses the actionlet ensemble model as a new way of characterizing human actions.

Second, we propose a novel feature called local occupancy pattern, which is shown
through our extensive experiments to be well suitable for the depth data-based action

recognition task. Third, the proposed Fourier temporal pyramid is a new representa-

tion of temporal patterns, and it is shown to be robust to temporal misalignment and

noise.
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The proposed features and models are evaluated on five benchmark datasets: CMU
MoCap dataset [2], MSR-Action3D dataset [3], MSR-DailyActivity3D dataset, Cor-
nell Activity dataset (CAD-60) [4] and Multiview 3D Event dataset. The first dataset
contains 3D joint positions captured by a multi-camera motion capturing system,
and the other four datasets are captured with Kinect devices. Our extensive experi-
mental results show that the proposed method is able to achieve significantly better
recognition accuracy than the state-of-the-art methods. Moreover, we demonstrate
that the proposed algorithm is insensitive to noise and translation and can handle
view changes.

After a brief review of the related work in Sect.2.2, the proposed LOP feature
and the Fourier Temporal Pyramid are described in Sect.2.3. Section2.4 presents
the actionlet ensemble model and its learning method. The empirical evaluations are
given in Sect. 2.5. This chapter is an extension of the conference paper [5].

2.2 Related Work

Actions are spatio-temporal patterns. There are two important issues in action recog-
nition: the extraction and representation of suitable spatio-temporal features, and the
modeling and learning of dynamical patterns.

Features can be sensor-dependent. In video-based methods, it is a common prac-
tice to locate spatio-temporal interest points like STIP [6], and then use the local
distributions of the low-level features like gradients and optical flow (e.g., HOF [7]
or HOG [8]) to represent the local spatio-temporal pattern. When we want to use
depth data, however, because there is no texture in the depth map, these local features
are not suitable.

It is generally agreed that knowing the 3D joint positions is helpful for action
recognition. Multi-camera motion capture (MoCap) systems [9] can produce accurate
3D joint positions, but such special equipment is marker-based and expensive. It
is still a challenging problem to develop a marker-free motion capturing system
using regular video sensors. Cost-effective depth cameras have been used for motion
capturing, and produced reasonable results, despite the noise when occlusion occurs.
Because of the difference in the motion data quality, the action recognition methods
designed for MoCap data might not be suitable for depth cameras.

In the literature, there have been many different temporal models for human action
recognition. One way to model the human actions is to employ generative models,
such as a Hidden Markov model (HMM) and Conditional Random Field (CRF). Lv
and Nevatia [10] used HMM over pre-defined relative positions obtained from the 3D
joints. Han et al. [11] used CRF over 3D joint positions. Similar approaches are also
proposed to model human actions in normal videos [12, 13]. The 3D joint positions
that are obtained via skeleton tracking from depth maps sequences are generally
more noisy than the MoCap data. When the difference between the actions is small,
without careful selection of the features, determining the accurate states is usually
difficult, which undermines the performance of such generative models. Moreover,
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with limited amount of training data, training a complex generative model is prone
to overfitting.

Temporal patterns can also be modeled by a linear dynamical systems or a non-
linear Recurrent Neural Network [14]. Although these approaches are good models
for time series data and are robust to temporal misalignment, it is generally difficult
to learn these models from limited amount of training data.

Another method for modeling actions is the dynamic temporal warping (DTW) [15],
which defines the distance of two time series as their edit distance. The action recogni-
tion can be done through nearest-neighbor classification. DTW’s performance heav-
ily depends on a good metric to measure the frame similarity. Moreover, for periodic
actions (such as “waving”), DTW is likely to suffer from large temporal misalignment
thus degrading classification performance [16].

Different from these approaches, we propose a Fourier Temporal Pyramid for
temporal pattern representation. The Fourier temporal pyramid is a descriptive model.
It does not require complicated learning as in the generative models (e.g., HMM,
CRF and dynamical systems), and it is much more robust than DTW to noise and
temporal misalignment.

In the actions with a complex articulated structure, the motions of the individual
parts may be correlated. The relationship among these parts (or high-order features)
is often more discriminative than the individual ones. Such combinatorial features
can be represented by stochastic AND/OR structures. This idea has been pursued for
face detection [17], human body parsing [18], object recognition [19], and human
object interaction recognition [20]. This chapter presents an initial attempt of using
the AND/OR ensemble approach for action recognition. We propose a novel data
mining solution to discover the discriminative conjunction rules based on [21], which
is a branch-and-bound algorithm that guarantees to find all the frequent patterns
efficiently, and apply multiple kernel learning framework to learn the ensemble.
Other work that involves learning the interactions of human joints include poselet
model [22] and phraselet model [23]. Poselet has been successfully applied in action
recognition by mining discriminative appearance patterns to classify actions [24].
These models learn the relationship among human parts in annotated images.

Recently, a lot of efforts have been made to develop features for action recog-
nition in depth data and skeletons. Li et al. [3] represents each depth frame as a
bag of 3D points along the human silhouette, and utilizes HMM to model the tem-
poral dynamics. Wang et al. [25] learns semi-local features automatically from the
data with an efficient random sampling approach. Vieira et al. [26] also uses spatio-
temporal occupancy patterns, but all the cells in the grid have the same size, and
the number of cells is empirically set. Yang and Tian [27] proposes a dimension-
reduced skeleton feature, and [28] develops a histogram of gradient feature over
depth motion maps. Ofli et al. [29] selects most informative joints based on the
discriminative measures of each joint. Yun et al. [30] utilizes distances between
all pairs of joints as features and multiple instance learning for feature selection.
Raptis et al. [31] utilize Kinect cameras to recognizes dance actions. Chaudhry et al.
[32] uses linear dynamic systems to model the dynamic medial axis structures
of human parts and proposes discriminative metrics for comparing sets of linear
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dynamics systems for action recognition, but it organizes skeleton joints into human
parts manually rather than automatically learns from data. Our work is the first
attempt to model the structure and relationship among the human parts and achieves
state-of-the-art performance on multiple benchmark datasets.

2.3 Spatio-Temporal Features

This section gives a detailed description of two types of features that we utilize to
represent the actions: the 3D joint position feature and the local occupancy pattern
(LOP). These features can characterize the human motions as well as the interactions
between the objects and the human. In addition, the Fourier Temporal Pyramid is
proposed to represent the temporal dynamics. The proposed features are invariant to
the translation of the human body and robust to noise and temporal misalignment.
The orientation normalization method, which can improve the proposed method’s
robustness to human orientation changes, is also discussed.

2.3.1 Invariant Features for 3D Joint Positions

The 3D joint positions are employed to characterize the motion of the human body.
One key observation is that representing the human movement as the pairwise relative
positions of the joints results in more discriminative features.

For a human subject, 21 joint positions are tracked by the skeleton tracker [1] and
each jointi has 3 coordinates p; (t) = (x; (), yi (), zi (¢)) ataframe ¢. The illustration
of the skeleton joints are shown in Fig.2.2. The coordinates are normalized so that
the motion is invariant to the initial body orientation and the body size. The details
of the orientation normalization can be found in Sect.2.3.4.

For each joint 7, we extract the pairwise relative position features by taking the
difference between the position of joint i and any other joint j:

Dij = Pi — Pjs 2.1)

The 3D joint feature for joint i is defined as:
pi = {pijli #Jj}.

Although enumerating all the joint pairs introduces some information that may
be irrelevant to our classification task, our system is capable of selecting the joints
that are most relevant to our recognition task. The selection will be handled by the
actionlet mining algorithm as discussed in Sect.2.4.

Relative joint position is actually a quite intuitive way to represent human motions.
Consider, for example, the action “waving”. It can be interpreted as “arms above the
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Fig. 2.2 The human joints head
tracked with the skeleton
tracker [1]
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shoulder and moving left and right”. This can be effectively characterized through
the pairwise relative positions.

2.3.2 Local Occupancy Patterns

Using the 3D joint positions alone is insufficient to represent an action, especially
when an action includes the interactions between human subject and other objects.
Therefore, it is necessary to design a feature to describe the local “depth appearance”
for the joints. In this chapter, the interaction between the human subject and the
environmental objects is characterized by the Local Occupancy Patterns or LOP at
each joint. For example, suppose a person is drinking a cup of water. When the person
fetches the cup, the space around his/her hand is occupied by the cup. Afterwards,
when the person lifts the cup to his/her mouth, the space around both the hand and
the head is occupied. The occupancy information can be useful to characterize this
interaction and to differentiate the drinking action from other actions.

In each frame, as described below, an LOP feature computes the local occupancy
information based on the 3D point cloud around a particular joint. The temporal
dynamics of these occupancy patterns can discriminate different types of interactions.
An illustration of the spatial-temporal occupancy pattern is shown in Fig.2.3. Note
that we only draw the LOP box for a single joint in Fig.2.3, but in fact, a local
occupancy pattern is computed for every joint.

Atframe r, we have the point cloud generated from the depth map of this frame. For
each joint j, its local region is partitioned into N, x Ny x N, spatial grid. Each bin of
the grid is of size (Sy, Sy, S;) pixels. For example, if (Nx, Ny, N;) = (12,12, 4) and
(Sx, Sy, §;) = (6, 6, 80), the local (72, 72, 320) region around a joint is partitioned
into 12 x 12 x 4 bins, and the size of each bin is (6, 6, 80).
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Fig. 2.3 Local occupancy neighboring
pattern feature models the 3D cells
“depth appearance” around
each joint. Note that there
is a local occupancy pattern
feature for every joint
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The number of points at the current frame that fall into each bin by, of the grid is
counted, and a sigmoid normalization function is applied to obtain the feature oy,
for this bin. In this way, the local occupancy information of this bin is:

Orye =8( D Iy 22)

géebiny,y,

where I, = 1 if the point cloud has a point in the location ¢ and I, = 0 otherwise.
8(.) is a sigmoid normalization function: § (x) = 16%&. The LOP feature of a joint
i is a vector consisting of the feature o, of all the bins in the spatial grid around
the joint, denoted by o;.

2.3.3 Fourier Temporal Pyramid

Two types of features are extracted from each frame 7 : the 3D joint position features
pjlt], and the LOP features o ;[]. In this subsection, we propose the Fourier Temporal
Pyramid to represent the temporal patterns of these frame-level features.

When using the current cost-effective depth camera, we always experience noisy
depth data and unreliable skeletons. Moreover, temporal misalignment is inevitable.
We aim to design a temporal representation that is robust to both noisy data and the
temporal misalignment. We also want such temporal features to be a good represen-
tation of the temporal structure of the actions. For example, one action may contain
two consecutive sub-actions: “bend the body” and “pick up”.

The proposed Fourier Temporal Pyramid is a descriptive representation that sat-
isfies these properties. It is partly inspired by the Spatial Pyramid approach [33].
In order to capture the temporal structure of the actions, in addition to the global
Fourier coefficients, we recursively partition the action into a pyramid, and use the
short time Fourier transform for all the segments, as illustrated in Fig.2.4. The final
feature is the concatenation of the Fourier coefficients from all the segments.
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For each joint j, let g; = (p;, 0;) denote its overall feature vector, where p; is its
3D pairwise position vector and o; is its LOP vector. Let N; denote the dimension of
gj-1.e., gj = (g1,...,8gn;). Note that each element g, is a function of time and we
can write it as g,[¢]. For each time segment at each pyramid level, we apply Short
Fourier Transform [34] to the element g, [¢] and obtain its Fourier coefficients, and
we utilize its low-frequency coefficients as features. The Fourier Temporal Pyramid
feature at joint j is defined as the low-frequency coefficients at all levels of the
pyramid, and is denoted as G ;.

The proposed Fourier Temporal Pyramid feature has several benefits. First, by
discarding the high-frequency Fourier coefficients, the proposed feature is robust to
noise. Second, this feature is insensitive to temporal misalignment, because a tem-
porally translated time series has the same Fourier coefficient magnitudes. Finally,
the temporal structure of the actions is characterized by the pyramid structure.

2.3.4 Orientation Normalization

The proposed joint position features and local occupancy patterns are generally
not invariant to the human orientation. In order to make the system more robust
to human orientation changes, we perform the orientation normalization using the
tracked skeleton positions. An illustration of the orientation normalization procedure
is shown in Fig.2.5.

In our experiment, we employ the up-right pose for orientation normalization.
We find the frames where the human is approximately in an up-right pose, and use
the pose of these frames for orientation alignment. If there is no up-right pose in a
sequence, we do not perform orientation normalization for this sequence. For each
frame where the human subject is in an up-right pose, we fit a plane to the joints
“head”, “neck”, “hip”, “left shoulder”, and “right shoulder”. The plane normal is
used for orientation normalization.
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Fig. 2.5 The orientation alignment first fits a plane to the joints shown as red in the figure. Then,
we compute a rotation matrix that rotates this plane to the x-y plane

Denote the 3D positions of the joints “head”, “neck”, “hip”, “left shoulder”, and
“right shoulder” by pi, pa, --- , ps, respectively. The plane f(p) = n7[p; 1] =
0, ||| = 1, that best fits these joints can be found by minimizing the sum of the
distances of the points p1, p2, - - -, ps to the plane:

5
. A2 — i 2
min i; If(pll= = min | Pl (2.3)

s> =1

where P is an constraint matrix defined as

T
[1;1 plz plz zﬂ 2.4)

The plane parameters & = [m,; 7y; 7;; 77;] that minimize Eq. (2.3) are the right
singular vector of P corresponding to the smallest singular value, which can be found
by singular value decomposition.

In addition, we employ RANSAC procedure [35] to robustly estimate the plane.
The RANSAC procedure iterates between the plane fitting step and the outlier detec-
tion step. The plane fitting step fits a plane to the non-outlier points by solving Eq.
(2.3). The outlier detection step identifies the points that are too far from the plane
as the outliers. The RANSAC procedure is more robust to the outliers of the 3D joint
positions. When some joints are incorrectly tracked or the human pose we employ
is not precisely upright, the RANSAC procedure can still robustly find the correct
plane with small error.

To use the fitted plane for orientation normalization, we find a rotation matrix
R that maps orientation of the plane f(p) = m![p;1] = 0 to the x-y plane:
u(p) = e;[p; 11 = 0, where e; is the vector [0; 0; 1; 0]. Denote the normal of the
plane f(p) =0and u(p) =0 as
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r_ [7Tx; Ty, ;] 2.5)
I[wxs 7wy 2
e; =1[0;0; 1] (2.6)

This is equivalent as rotating the plane normal from 7’ to ¢/, shown in Fig.2.5.
The rotation axis x and rotation angle 6 of the rotation matrix R can be found as:

' xe,
x =[x x2; 03] = ———— 2.7
" x el
7'.el
0 =cos™! (——2— (2.8)
"l Nlez
Then the rotation matrix R can be defined according to exponential map:
R =1Icos6 + Asinf + (1 — cos 9)xxT (2.9)
where A is a skew-symmetric matrix corresponding to x
0 —x3 x2
A=1| x3 0 —x (2.10)
—X2 X1 0

When there are more than one frame with up-right pose, orientation normaliza-
tion utilizes the average of the fitted plane normals of all the up-right poses in this
sequence.

This rotation matrix can be applied to the 3D joint positions and 3D point cloud
of all the frames for orientation normalization.

In addition to orientation normalization, we also perform scale normalization.
The scale of the body can be estimated from the average pairwise distances of the
skeleton joints “head”, “neck”, “hip”, “left shoulder”, and “right shoulder”.

2.4 Actionlet Ensemble

To deal with the errors of the skeleton tracking and better characterize the intra-
class variations, an actionlet ensemble approach is proposed in this section as a new
representation of human actions.

An actionlet is defined as a conjunctive (AND) structure on the base features. One
base feature is defined as the Fourier Temporal Pyramid features of an individual joint.
A novel data mining algorithm is proposed to discover the discriminative actionlets,
which are highly representative of one action and highly discriminative compared to
the other actions.
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Once we have mined a set of discriminative actionlets, a multiple kernel learning
[36] approach is employed to learn an actionlet ensemble structure that combines
these discriminative actionlets.

2.4.1 Mining Discriminative Actionlets

The human body consists of a large number of kinematic joints, but a particular action
may only involve a small subset of them. For example, for right-handed people, action
“calling cellphone” typically involves joints “right wrist” and “head”. Therefore, the
combinatorial feature of the two joints is a discriminative feature. Moreover, strong
intra-class variation exists in some human actions. For left-handed people, action
“calling cellphone” typically involves joints “left wrist” and “head”. Therefore, the
combinatorial feature of joint left wrist and head is another discriminative feature
for this action. We propose the actionlet ensemble model to effectively characterize
the combinatorial structure of human actions. An actionlet is a conjunction (AND)
of the features for a subset of the joints. We denote an actionlet as its corresponding
subset of joints § C {1,2,---, N}, where N is the total number of joints. Since
one human action contains an exponential number of the possible actionlets, it is
time consuming to construct an ensemble from all of the possible actionlets. In this
section, We propose an effective data mining technique to discover the discriminative
actionlets.

We employ the training data to determine whether an actionlet is discriminative.
Suppose we have the training pairs (x ), y), where x ) is the features of i-th exam-
ple and y is the label of the i-th example. In order to determine how discriminative
each individual joint is, a SVM model is trained on the feature G ; of each joint j. For
each training example x ) and the SVM model on the joint j, the probability that its
classification label y) is equal to an action class ¢ is denoted as P; (D = c|x®),
which can be estimated from the pairwise probabilities by using pairwise coupling
approach [37].

Since an actionlet takes a conjunctive operation, it predicts y) = ¢ if and only
if every joint j € S (the joint contained in this actionlet) predicts y) = ¢. Thus,
assuming the joints are independent, the probability that the predicted label y@ is
equal to an action class ¢ given an example x ) for an actionlet S can be computed as:

Ps(y® = clx®) =[] Pi(»? = clx®) 2.11)
Jj€eS

Define 2 as the set of the training data with class label ¢: {i : 1@ = ¢}. For a
discriminative actionlet, the probability Ps(y® = ¢|x®) should be large for some
data in 2, and be small for all the data that does not belong to Z.. Define the
confidence score for actionlet S as

Confs = max log Pg(y(i) = c|x(i)) (2.12)
ieZ.
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and the ambiguity score for actionlet S as

D¢z, log Ps(y® = c|x®)
D¢z !

The discriminativeness of an actionlet S can be characterized by its confidence
score Confg and ambiguity score Ambg. A discriminative actionlet should exhibit
large confidence score Confg and small ambiguity score Ambg. Since one action
contains an exponential number of actionlets, it is time consuming to enumerate all
actionlets. We propose an Aprior-based data mining algorithm that can effectively
discover the discriminative actionlets.

An actionlet S is called an /-actionlet if its cardinality |S| = /. One important
property of the actionlet is that if we add a joint j ¢ S to an (I — 1)-actionlet S to
generate an [-actionlet S U {j}, we have Confgy(;; < Confg, i.e., adding a new joint
into one actionlet will always reduce the confidence score.

As aresult, the Aprior mining process [21] can be applied to select the actionlets
with large Confg and small Ambg. The Aprior-based algorithm is essentially a branch
and bound algorithm that effectively prunes the search space by eliminating the
actionlets that do not have the confidence score larger than the threshold. If the
confidence score Confg of an actionlet S is already less than the confidence threshold,
we do not need to consider any actionlets S” with §’ O S, because the confidence
score of these actionlets Confg: < Confy is less than the confidence threshold.

The outline of the mining process is shown in Algorithm 1. For each class c,
the mining algorithm outputs a discriminative actionlet pool P, which contains the
actionlets that meet our criteria: Ambg < Tymp and Confg > Teons.

The speed of the proposed data mining algorithm is a lot faster than naively
enumerating all the candidate actionlets. We implement the proposed data mining
algorithm with Python and run it on a Corei7-2600K machine with 8 GB memory. In
our experiment on MSR-DailyActivity3D dataset, which contains 20 human joints
and 320 sequences, we set the threshold for confidence score7conr = —1, and the
threshold for ambiguity score Tymp = —2. The data mining algorithm generates 180
actionlets in 5.23 s. In contrast, naively enumerating all the candidate actionlets takes
307 s under the same environment.

Since we do not impose the constraints that the discriminative actionlets are sig-
nificantly different from each other, there may be some redundancies among the
discovered discriminative actionlets. We will employ multiple kernel learning algo-
rithm to select the discriminative actionlets as described in the next subsection.

Ambs =

(2.13)

2.4.2 Learning Actionlet Ensemble

The discriminative power of a single actionlet is limited. In this subsection, we
propose to learn an actionlet ensemble with multiple kernel learning approach.



24 2 Learning Actionlet Ensemble

1 Take the set of joints, the feature G ; on each joint j, the number of the classes C, thresholds
Teont and Tymp.

2 Train the base classifier on the features G of each joint j.

3 for Classc =110 C do

4 Set P, the discriminative actionlet pool for class ¢ to be empty : P, = {}. Set/ = 1.

5 repeat

6 Generate the [-actionlets by adding one joint into each (I — 1)-actionlet in the
discriminative actionlet pool P..

7 Add the [-actionlets whose confidence scores are larger than T; ot to the pool P..

8 =141

9 until no discriminative actionlet is added to P. in this iteration,

10 remove the actionlets whose ambiguities scores are larger than T, in the pool P..

11 end
12 return the discriminative actionlet pool for all the classes.

Algorithm 1: Discriminative Actionlet Mining

An actionlet ensemble is a linear combination of the actionlet classifiers. For each
actionlet Sy in the discriminative actionlet pool, we train an SVM model on it as an
actionlet classifier, which defines a joint feature map @ (x, y) on data 2" and labels
% as alinear output function fi (x, y) parameterized with the hyperplane normal wy
and bias by:

fie(x, y) = (Wi, Pr(x, y)) + bi
= > aieKi((xi, yi), (x, ) + by 2.14)
1

where each kernel Ky (., .) corresponds to the conjunctive features of k-th actionlet.
We employ linear kernel in our actionlet ensemble model. Thus, given two conjunc-
tive features of the k-th actionlet x and x , their kernel function can be represented
as Kp(x; ,xf) (xk)T . The predlcted class y for x is chosen to maximize the
output fr(x,y).

Multiclass-MKL considers a convex combination of p kernels, K (x;, x;)
Z,’(’:] Bk Ky (x;, x ). Equivalently, we consider the following output function:

p
fonal (6, ) = D [Belwi, Pi(x, y)) + bi] (2.15)
k=1

We aim at choosing w = (wr) ,(9 = (by) ,/3 = .(,Bk) k=1, s D such that
given any training data pair (x®, y(’)), Sfinal (x®, y(’)) > ffinal (xD, w) forall u €
% — {y"}. The resulting optimization problem becomes:

ﬁnn]? 29(/3 w)+CZ$l

(2.16)
SLVE: g —ngxl(fﬁnal(x@ YD) = fina (¢, 1))



2.4 Actionlet Ensemble 25

where C is the regularization parameter and /( f) = max(0, 1 — f) is a convex hinge
loss function, and £2 (8, w) is a regularization term on 8 and w.

Following the approach in [38], we choose £2(8, w) = IIﬂII% + Cz”W”%. Since
there exists redundancies among the discriminative actionlets discovered with the
data mining algorithm, the /; regularization ||ﬂ||% acts as a feature selection reg-
ularization by encouraging a sparse 8 , so that an ensemble of a small number of
non-redundant actionlets is learned. The regularization ||w ||§ encourages the actionlet
classifiers to have large margin.

This problem can be solved by iteratively optimizing 8 with fixed w and b through
sparse solver, and optimizing w and b with fixed B through a generic SVM solver
such as LIBSVM.

2.5 Experimental Results

We choose CMU MoCap dataset [2], MSR-Action3D dataset [3], MSR-Daily Activity
3D dataset, Cornell Activity dataset [4], and Multiview 3D Event dataset to evaluate
the proposed action recognition approach. In all the experiments, we use two-level
Fourier Temporal Pyramid, with 1/4 length of each segment as low-frequency coef-
ficients. The coefficients of all levels are concatenated sequentially. The empirical
results show that the proposed framework outperforms the state-of-the-art methods.

2.5.1 MSR-Action3D Dataset

MSR-Action3D dataset [3] is an action dataset of depth sequences captured by a
depth camera. This dataset contains twenty actions: high arm wave, horizontal arm
wave, hammer, hand catch, forward punch, high throw, draw x, draw tick, draw circle,
hand clap, two hand wave, side-boxing, bend, forward kick, side kick, jogging, tennis
swing, tennis serve, golf swing, pick up & throw. Every action was performed by ten
subjects three times each. The frame rate is 15 frames per second and resolution
640 x 480. Altogether, the dataset has 402 action sequences with a total of 23,797
frames of depth maps. Some examples of the depth sequences are shown in Fig.2.2.

Those actions were chosen to cover a variety of movements of arms, legs, torso
and their combinations. The subjects were advised to use their right arm or leg if an
action is performed by a single arm or leg. Although the background of this dataset
is clean, this dataset is challenging because many of the actions in the dataset are
highly similar to each other (See Fig.2.6).

The 3D joint positions are extracted from the depth sequence by using the real
time skeleton tracking algorithm proposed in [1]. Since there is no human-object
interaction in this dataset, we only extract the 3D joint position features in this
experiment(Table?2.1).
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Fig. 2.6 Sample frames of the MSR-Action3D dataset

Table 2.1 Recognition

; Method Accuracy

accuracy comparison for

MSR-Action3D dataset Recurrent neural network [14] 0.425
Dynamic temporal warping [15] 0.540
Hidden markov model [10] 0.630
Action graph on bag of 3D points [3] 0.747
Histogram of 3D joints [39] 0.789
Random occupancy pattern [25] 0.862
Eigenjoints [27] 0.823
Sequence of most informative joints [29] 0.471
Proposed method with absolute joints positions 0.685
Proposed method 0.882

We compare our method with the state-of-the-art methods on the cross-subject
test setting [3], where the examples of subjects 1, 3, 5, 7, 9 are used as training data,
and the examples of subjects 2, 4, 6, 8, 10 are used as testing data. The recognition
accuracy of the dynamic temporal warping is only 54 %, because some of actions
in the dataset are very similar to each other, and there are typical large temporal
misalignment in the dataset. The accuracy of recurrent neural network is 42.5 %,
while he accuracy of Hidden Markov Model is 63 %. The recently proposed joint-
based action recognition methods, including Histogram of 3D joints, Eigenjoints
and Sequence of most informative joints, achieve accuracy 78.9, 82.3 and 47.06 %,
respectively. The proposed method achieves an accuracy of 88.2 %. This is a very
good performance considering that the skeleton tracker sometimes fails and the
tracked joint positions are quite noisy. We also compare the proposed relative joint
position features with the absolute joint position features. The proposed method using
absolute joint positions achieves much worse accuracy than the proposed method
using relative joint positions.

The confusion matrix is illustrated in Fig. 2.7. For most of the actions, our method
works very well. The classification errors occur if two actions are too similar to each
other, such as “hand catch” and “high throw”, or if the occlusion is so large that the
skeleton tracker fails frequently, such as the action “pick up and throw”(Fig.2.7).
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Fig. 2.7 The confusion matrix for MSR-Action3D dataset

The proposed temporal representation Fourier Temporal Pyramid has two advan-
tages: robustness to the noise and temporal misalignment, which are common in the
action sequences captured with Kinect camera. In this experiment, we compare its
robustness with a widely utilized temporal representation: Hidden Markov Model.
The comparison of the noise robustness of the Fourier Temporal Pyramid features
and that of Hidden Markov Model is shown in Fig.2.8a. In this experiment, we add
white Gaussian noise to the 3D joint positions of the samples, and compare the rela-
tive accuracies of the two methods. For each method, its relative accuracy is defined
as the accuracy under the noisy environment divided by the accuracy under the noise-
less environment. We can see that the proposed Fourier Temporal Pyramid feature
is much more robust to noise than Hidden Markov Model, because the clustering
algorithm employed in Hidden Markov Model to obtain hidden states is relatively
sensitive to noise, especially when the different actions are similar to each other.

The temporal shift robustness of the proposed method and the Hidden Markov
model is also compared. In this experiment, we circularly shift all the training data,
and keep the testing data unchanged. The relative accuracy is shown in Fig.2.8b.
Hidden Markov Model is very robust to the temporal misalignment, because learn-
ing a Hidden Markov Model does not require the sequences to be temporally aligned.
We find that the proposed approach is also robust to the temporal shift of the depth
sequences, though the Fourier Temporal Pyramid is slightly more sensitive to tem-
poral shift.
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Fig. 2.8 The relationship between the relative accuracy and the variance of noise or temporal
misalignment. a The standard variation of the added noise. b The number of frames shifted

Thus, compared with widely applied Hidden Markov Model, the proposed Fourier
Temporal Pyramid is a temporal representation that exhibits more robustness to noise
while retaining the Hidden Markov Model’s robustness to temporal misalignment.
These properties are important for the action recognition with the depth maps and
joint positions captured by Kinect devices, which can be very noisy and contain
strong temporal misalignment.

Another advantage of the proposed Fourier Temporal Pyramid is its robustness to
the number of action repetitions in the sequences. In order to evaluate the robustness
of the proposed method to the number of action repetitions, we manually replicate
all the action sequences two times and four times and apply the proposed algorithm
to the new sequences. The recognition accuracy is 86.45 and 86.83 % for two-times
repetitions and four-times repetitions, respectively. If we repeat half of the action
sequences two times, and the other half of the action sequences four times, the
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recognition accuracy is 84.24 %. This experiment shows that the proposed method
is relatively insensitive to the number of action repetitions.

We also study the relationship between the levels of Fourier pyramid and the
recognition accuracy of the proposed Actionlet Ensemble method, and the result
is shown in Fig.2.9. Each level of pyramid divides one temporal segment into two
parts. For example, 2-level Fourier Temporal Pyramid contains 1, 2, 4 segments in
level 0, 1 and 2, respectively. We can see that the proposed method achieves the best
performance when the number of pyramid levels is 2, although the performance is
quite close when the number of pyramid levels is 1 or 3.

2.5.2 DailyActivity3D Dataset

DailyActivity3D dataset is a daily activity dataset captured by a Kinect device. There
are 16 activity types: drink, eat, read book, call cellphone, write on a paper, use
laptop, use vacuum cleaner, cheer up, sit still, toss paper, play game, lay down on
sofa, walk, play guitar, stand up, sit down. If possible, each subject performs an
activity in two different poses: “sitting on sofa” and “standing”. The total number of
the activity sequences is 320. Some example activities are shown in Fig.2.10.

This dataset is designed to cover daily activities in a living room. This dataset is
more challenging than MSR-Action3D dataset. When the performer stands close to
the sofa or sits on the sofa, the 3D joint positions extracted by the skeleton tracker are
very noisy. Moreover, most of the activities involve the humans-object interactions.

We apply the cross-subject setting to evaluate the proposed algorithm on this
dataset. The subjects 1,2,3,4,5 are used as training data, while the subjects
6,7,8,9, 10 are used as testing data. Table2.2 shows the accuracies of different
methods. By employing an actionlet ensemble model, we obtain a recognition accu-
racy of 85.75%. This is a decent result considering the challenging nature of the
dataset. If we directly train an SVM on the Fourier Temporal Pyramid features, the
accuracy is 78 %. When only the LOP feature is employed, the recognition accuracy
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Fig. 2.10 Sample frames of the DailyActivity3D dataset

Table 2.2 Recognition
accuracy comparison for
MSR-DailyActivity3D
dataset

Sit Still Sit down
T | = = L
lay down on sofa Stand up play guitar

Method Accuracy
Dynamic temporal warping [15] 0.54
Random occupancy pattern [40] 0.64
Only LOP features 0.43
Only joint position features 0.68
SVM on Fourier Temporal Pyramid features 0.78
Actionlet ensemble on LOP features 0.61
Actionlet ensemble on joint features 0.74
MKL on all the base features 0.80

Actionlet ensemble 0.86
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Fig. 2.11 The confusion matrix of the proposed method on DailyActivity3D dataset

drops to 42.5 %. If we only use 3D joint position features without using LOP, the
recognition accuracy is 68 %. If we train an Multiple Kernel Learning classifier on
all the base features, the recognition accuracy is 80 %. We also evaluate Random
Occupancy Pattern (ROP) [40] method on MSR-DailyActivity3D dataset. Since, the
ROP method requires a segmentation of the human, we manually crop out the human,
and apply the ROP method on this dataset. The accuracy of ROP method is 64 %.

Figure2.11 shows the confusion matrix of the proposed method. The proposed
approach can successfully discriminate “eating” and “drinking” even though their
motions are very similar, because the proposed LOP feature can capture the shape
differences of the objects around the hand. Figure 2.12 compares the accuracy of the
actionlet ensemble method and that of the support vector machine on the Fourier
Temporal Pyramid features. We can observe that for the activities where the hand
gets too close to the body, the proposed actionlet ensemble method can significantly
improve the accuracy. Figure 2.13 illustrates some of the actionlets with large kernel
weights discovered by our mining algorithm.

We also study the effect of the parameters of the actionlet mining algorithm on the
recognition accuracy, shown in Fig.2.14. In this experiment, we adjust 7, while
fixing Teonr = —1 and adjust T, ¢ while fixing 7, = —1.8. We find that the
proposed data mining algorithm is not sensitive to these two parameters as long as
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red. a,b are actionlets for “drink” ¢, d are actionlets for “call”, e, f are actionlets for “walk”

100 100
(a 9 (b 90
80 80
3 70 3 70
S 60 £ 60
3 50 8 50
Q 40 40
< 30 <3
20 20
10 10

0 0

06 08 -1 -2 -14 -16 -8 14 16 18 2 22 24 26 28
T_conf T amb

Fig. 2.14 The relationship between the recognition accuracy and the parameters Tons and Tymb,
which are the threshold of the confidence score and ambiguity score in the actionlet mining algo-
rithm, respectively

they are in a reasonable range. However, setting Tionf too high or setting Tynp too
low may seriously undermine the recognition accuracy because the actionlet mining
algorithm rejects discriminative actionlets in these cases. On the other hand, setting
Teont too low or setting Tymp too high may lead to a large number of the actionlets
generated by the actionlet mining algorithm, which greatly slows down the actionlet
mining and the actionlet ensemble learning procedures.
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Fig. 2.15 An action captured from three views and their aligned skeletons

2.5.3 Multiview 3D Event Dataset

Multiview 3D event dataset! contains RGB, depth and human skeleton data captured
simultaneously by three Kinect cameras. This dataset includes 8 event categories:
drink with mug, make a call, read book, use mouse, use keyboard, fetch water from
dispenser, pour water from kettle, press button. Each event is performed by 8 actors.
Each actor repeats each event 20 times independently with different object instances
and action styles. An example action captured from three view points is illustrated
in Fig.2.15. In total, there are 480 sequences per action class. Figure2.16 shows
some examples of this dataset. The background of this dataset is relatively clean.
The difficulty of this dataset is to generalize across different views. We apply our
algorithm to this dataset to evaluate the robustness of our algorithm across different
views.

Before applying the proposed approach to this dataset, we first perform a human
orientation normalization described in Sect. 2.3.4. Although the human body ori-
entations are aligned, action recognition across multiple views is still challenging
due to the following two reasons. Firstly, the occlusions of different views are very
different even for the same action, as shown in Fig.2.15. Since the occluded joints
are usually non-critical joints (“legs”), these occlusions can be handled effectively
by the proposed actionlet ensemble model, because the actionlet ensemble model
usually does not contain the non-critical joints. Secondly, the orientation normaliza-
tion is usually not perfect due to skeleton tracking noise and errors. The proposed
actionlet ensemble model is also robust to these noises thanks to the Fourier Tempo-
ral Pyramid representation. As a result, the proposed algorithm achieves very good
performance on cross-view action recognition experiment.

! This dataset will be released to public.
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Fig. 2.16 Sample frames of the Multiview 3D event dataset

Table 2.3 Recognition accuracy comparison for multiview 3D event dataset

Method C-subject C-view
Dynamic temporal warping [15] 0.4712 0.4533
Hidden Markov model [10] 0.848 0.6187
Actionlet ensemble 0.8834 0.8676

First, we perform cross-subject recognition experiment. In this setting, we use
examples of 1/3 of the subjects as training data and the rest of the examples as testing
data. We implement the dynamic temporal warping [15] and Hidden Markov Model
[10] and compare the proposed model to these models. The classification accuracy
comparison of these algorithms is shown in Table 2.3. The dynamic temporal warping
achieves 47.12 %, and the hidden Markov model achieves 84.8 % accuracy on this
setting, while the proposed algorithm achieves an accuracy of 88.34 %. Most of the
confusion occurs between the actions “drinking” and “make a phone call”, because
the movement of these two actions are very similar.

Then, we perform evaluation under the cross-view recognition setting. In this
setting, the data are partitioned into three subsets each corresponding to a different
camera. We use the subset from one camera as the testing data and use the data
from the other two cameras for training. Three-fold cross-validation is applied to
measure the overall accuracy. The results are listed in Table2.3. One observation
is that the proposed algorithm is quite robust across multiple views. The proposed
algorithm achieves an accuracy of 86.75 % on cross-view setting, which is only 1.4 %
lower than the accuracy on cross-subject setting. The confusion matrix is shown
in Fig.2.18.

The experimental results show that, with orientation normalization, the proposed
algorithm can achieve good action recognition accuracy under cross-view action
recognition setting.
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Fig. 2.17 The confusion
matrix for multiview 3D
event dataset on cross-subject
setting

Fig. 2.18 The confusion
matrix for multiview 3D event
dataset on cross-view setting
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Cornell Activity dataset (CAD-60) [4] contains the RGB frames, depth sequences and
the tracked skeleton joint positions captured with Kinect cameras. The actions in this
dataset can be categorized into 5 different environments: office, kitchen, bedroom,
bathroom, and living room. Three or four common activities were identified for each
environment, giving a total of twelve unique actions: “rinsing mouth”, “brushing
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Table 2.4 Recognition accuracy comparison for cornell daily activity dataset

Method S-person C-person
MEMM [4] 81.15 51.9

Object offordances [41] N/A 71.4
Actionlet ensemble 94.12 74.70

still 100,00
talking on the phone 100.00
writing on whiteboard 100.00
drinking water 100.00
rinsing mouth with wate 100.00
brushing thet 8333 1667
wearing contact lenses m
talking on cduc 100.00
relaxing on cduc 100.00
cooking (chopping) 100.00
cooking (stirring) 8333 1667
opening pill container 100.00
working on computer 100.00

random 100.00
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Fig. 2.19 The confusion matrix for Cornell Activity dataset on same-person setting
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talking on the phone”, “drinking water”, “opening
”, “cooking (stirring)”, “drinking water”, “talk-
”, “writing on whiteboard”,

teeth”, “wearing contact lens”,
pill container”, “cooking (chopping)”,
ing on couch”, “relaxing on couch”, “talking on the phone”,
“drinking water”, “working on computer”

The recognition accuracy is shown in Table 2.4. We employ the same experimental
setup as [4]: The same-person experiment setup employs half of the data of the same
person as training, and the other half is used as testing. The cross-person experiment
setup uses leave-one-person-out cross-validation. The proposed method achieves an
accuracy of 97.06 % for the same-person setup and 74.70 % for the cross-person
setup. Both results are better than those of the state-of-the-art methods.

The confusion matrices of the proposed algorithm on Cornell Activity dataset
under the same-person setting and the cross-subject setting are shown in Figs.2.19
and 2.20, respectively. We can see that the proposed algorithm correctly classifies
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most of the actions under the same-person setting. The cross-person setting is more
challenging, and we find that many actions are classified into “still” under this setting,
because the motions of these actions are very subtle and there are serious noises in
Kinect skeleton tracking. Thus, it is difficult to distinguish the action “still” from
those actions with subtle motions.

2.5.5 CMU MoCap Dataset

We also evaluate the proposed method on the 3D joint positions extracted by a motion
capture system. The dataset we use is the CMU Motion Capture (MoCap) dataset.

Five subtle actions are chosen from CMU MoCap datasets following the config-
uration in [11]. The five actions differ from each other only in the motion of one or
two limbs. The actions in this dataset include: walking, marching, dribbling, walk-
ing with stiff arms, walking with wild legs. The number of segments of each action
is listed in Table2.5. The 3D joint positions in CMU MoCap dataset are relatively
clean because they are captured with high-precision camera array and markers. This
dataset is employed to evaluate the performance of the proposed 3D joint position-
based features on 3D joint positions captured by Motion Capture system.
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Table 2.5 Description of the

. Name Number of segments

subtle action dataset
Walking 69
Marching 23
Dribbling 11
Walking with stiff arms 26
Walking with wild legs 28

Table 2.6 Recogmtlon Method Accuracy

accuracy comparison for

CMU MoCap dataset Dynamic temporal warping [15] 0.6427
CRF with learned manifold space [11] 0.9827
Proposed method 0.9813

The comparison of the performance is shown in Table2.6. Since only the 3D
joint positions are available, the proposed method only utilizes the 3D joint position
features. It can be seen that the proposed method achieves comparable results with
the state-of-the-art methods on the MoCap dataset.

2.6 Conclusion

In this chapter, we propose a novel actionlet ensemble model that characterizes the
conjunctive structure of 3D human actions by capturing the correlations of the joints
that are representative of an action class. We also propose two novel features to
represent 3D human actions with depth and skeleton data. Local occupancy pattern
describes “depth appearance” in the neighborhood of a 3D joint. Fourier Temporal
Pyramid describes the temporal structure of an action. The proposed features effec-
tively discriminate human actions with subtle differences and human-object interac-
tions and are robust to noise and temporal misalignment. Our extensive experiments
demonstrated the superior performance of the proposed approach to the state-of-
the-art methods. In the future, we aim to exploit the effectiveness of the proposed
technique for the understanding of more complex activities.
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