Chapter 2
Synthesizable VHDL for FPGA-Based
Devices

Abstract This chapter presents a concise introduction to synthesizable VHDL that
is sufficient for the design methods and examples given in subsequent chapters to
be understood without much background knowledge. The main objective of this
chapter is to explain the basis of VHDL modules and their specification capabili-
ties without going into detail. There are many excellent books dedicated to VHDL
that may be used to complement this book. Our primary target is the synthesis and
optimization of FPGA-based circuits and systems and VHDL is just an instrument
that is used in the book to describe the desired functionalities and structures. Thus
this chapter only provides the minimum necessary to allow subsequent chapters to
be read without additional material, and to enable all the proposed examples to be
understood and tested with the FPGA-based prototyping boards.

2.1 Introduction to VHDL

VHSIC (Very High Speed Integrated Circuits) Hardware Description Language
(VHDL) was created as a result of USA government sponsored program in 1980s [1].
The language has been standardized in 1987 (with revisions done in 1993, 2002, and
2008) and is widely adopted by designers.

The target of this section is to provide a brief introduction to VHDL through
simple examples. The main objective is to describe such constructions that will
be used for FPGA projects in the book. VHDL is a complex language with wide-
ranging specifications not all of which are synthesizable. Subsequent sections of
this chapter will present just a basis for using VHDL in FPGA design. For deeper
study of the language the books [1, 2] are recommended.

A specification of a digital circuit in VHDL includes two major parts: an entity
declaration which is a definition of the circuit interface (where all the external
circuit connections are declared), and an architecture body where a description
of internal functionality is given. There are three types of architecture: structural,
behavioral, and mixed.

V. Sklyarov et al., Synthesis and Optimization of FPGA-Based Systems, 43
Lecture Notes in Electrical Engineering 294, DOI: 10.1007/978-3-319-04708-9_2,
© Springer International Publishing Switzerland 2014

44 2 Synthesizable VHDL for FPGA-Based Devices

library ieee;
use ieee.std_logic_1164.all; Libraries and
| - library UNISIM; packages
wier A N E use UNISIM.Vcomponents.all;
\‘ g‘ §|
______ _\ ‘g L entity (StructuraIVHDL is N
. 1 by b ¥ port (x1,x2,x3 1in std_logic;
) \\ —~ R — y :out std_logic);— Entity
[N end StructuralVHDL;
\\ \\ % N
\\ \\ < N architecture BEHAVIORAL of StructuralVHDL is
SN \ signal out_and1 : std_logic;
P “‘\\ \:\\ \\ signal out_and2 :std_logic;
NERNN \ signal out_and3 : std_logic;
NET"x1" LOC="A10"; \ “\ N, begin
NET "x2" LOC ="D14"; AN AN \\\ N [or_circuit : OR3
NET "x3" LOC ="C14"; N AN port map (I0=>out_and1, I1=>out_and2,
NET"y" LOC="U18"; NN 12=>0ut_and3, 0=>y);
\ N ~
Led OFF 1—% Led ON I N N\ fandicrcurt : AND3BZ
pin Uy, FPGAd pin U, FPGA. \\\ \\ I port map (10=>x3, 11=>x2, 12=>x1, O=>out_and1);
[o Q \\ 3 =
S H 5 2 é H w . IandZ_cwcwt 1 AND3B2]
4 E &E & E 4 E EE E N port map (10=>x3, 11=>x1, 12=>x2, O=>out_and2);
SRk : BB E i —
O a << O and3_circuit : AND3B2
g_ T g_T £ T g_ T I port map (10=>x1, 11=>x2, 12=>x3, O=>out_and3);]
X X X

9
NS

X3 % end BEHAVIORAL; Architecture

Fig. 2.1 Structural VHDL for the circuit shown in Fig. 1.2

Structural architecture provides all necessary internal connections between the
circuit components that are either library primitives or previously developed cir-
cuits. Figure 2.1 demonstrates a structural VHDL description of the circuit firstly
shown as a schematic entry in Fig. 1.2.

The first two lines of VHDL code identify a standard library, IEEE, and a pack-
age, std_logic_1164, which contains important definitions needed for our speci-
fication. In particular, we would like to use the type std_logic and the associated
operations defined in that package. The type std_logic includes 9 values (‘U'—
uninitialized, ‘X’—unknown, ‘0°’—0, ‘1’—1, ‘Z’—high impedance, ‘W’ —weak
unknown, ‘L’—weak 0, ‘H'—weak 1, ‘—’—don't care) that allow signals to be
modeled with strong, weak and high-impedance strengths. For now, from these 9
values we need just two: ‘0’ and “1° (logic values are enclosed in quotation marks
to distinguish them from the numbers O and 1). VHDL is not case sensitive lan-
guage. That is why we can use the name STD_LOGIC instead of std_logic.

The second two lines of VHDL code identify a library, UNISIM.vcomponents, (with
the package vcomponents) which contains the component declarations for the Xilinx
primitives and defines models needed for simulation.

As you can see from Fig. 2.1 there are three sections in VHDL code:

1. Specification of libraries and packages that are intended to be used.
2. Specification of interface (entity).
3. Specification of architecture.

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1

2.1 Introduction to VHDL 45

The components OR3 and AND3B2 are Xilinx library primitives and they
correspond to the relevant schematic symbols in Fig. 1.2. The declared internal
signals out_and1, out_and2, and out and3 are needed to describe internal connec-
tions between the library primitives (there are totally 3 instances and1_circuit,
and2_circuit and and3_circuit of the primitive AND3B2 and one instance or_circuit of the
primitive OR3). Connections are shown by comma delimited lines in parenthe-
sis after the port map keywords, for example, port map (I0=>x3, [1=>x2, [2=>x1,
O=>out_and1). The component AND3B2 is defined in the UNISIM library (the file
unisim_VCOMP.vhd) as follows:

component AND3B3
port (O cout std_ulogic; - std_ulogic is unresolved type [I] similar to std_logic
[0,11,12 :in std_ulogic);
end component;

The VHDL keyword signal permits signals to be declared in the declarative
part of an architecture (between the head of the architecture and the key-
word begin). Signals in VHDL are similar to wires in hardware circuits.

Keywords (reserved words) here and later in the book are shown in bold
font. In VHDL two successive hyphens (-) denote a single-line comment and they are shown in
such font. Each port is given a name (e.g. O, 10, 11, 12) and is either an input (in)
or an output (out). Other types (namely inout and buffer) are also allowed
and they are described in Appendix A. For every port we specify the associ-
ated type which states the range of values that can be used on that port. In the
example above each port is of type std_ulogic. Please note that the specification
of each port is followed by a semicolon except for the last port. A signal of
the type std_ulogic is similar to std_logic but it does not contain predefined reso-
lution functions (the details can be found in [1, 3]). The names O, 10, 11, 12 of
the interface signals in the component declaration above appear in the mapping
line: port map (I0=>x3, 11=>x2, [2=>x1, O=>out_and1). The latter involves a named
association where each component port 10, I1, 12, O (see the component AND3B3
above) is associated with x3, x2, x1 and out_and1 signals from the entity where
the component is used (see the StructuralVHDL entity in Fig. 2.1). Internal signals
(used for connections just within the entity StructuralVHDL) are explicitly declared
as (Fig. 2.1):

signal out_and1 : std_logic; -- signal and component declarations appear in the dedlarative
signal out_and2 : std_logic; - part of architecture which is between the keywords
signal out_and3 : std_logic; -- architecture. . .of. . .is and begin (see example in Fig. 2.1)

Besides of the named association a positional association can be used, which
will be considered in another example of structural specification below and is also
described in Appendix A (see Aggregate).

Behavioral architecture represents the desired functionality of a circuit in
an abstract way similar to general-purpose programming languages. However,
VHDL statements differ in many aspects mainly because of inherent to hardware

http://dx.doi.org/10.1007/978-3-319-04708-9_1

46 2 Synthesizable VHDL for FPGA-Based Devices

Connected components which are either library
primitives or previously designed circuits from:
a) HDL specifications

......... b) schematic specifications
\c) IP cores '/—w |

Description of entity
Structural

Declaration of libraries:
library . . . ;

entity <name of entity> is
Declaration of generic parameters
Declaration of ports

end <name of entity>;

—
Entity
declarative part

Examine VHDL code
and component
instantiation for

schematic entries

Description of architecture

architecture <name of architecture> of <name of entity> is
Declaration of signals

Declaration of constants

Declaration of types

Declaration of components

Declaration of functions (with bodies)
Declaration of procedures (with bodies)
Declaration of shared variables
begin

i1

[)

Concurrent constructions:
a) signal assignments
b) VHDL processes

Architecture
declarative part

Body of architecture

i View HDL Functional Model
end <name of architecture>; |

Fig. 2.2 A simplified structure of elements for a VHDL module

description languages concurrency and advanced operations manipulating individ-
ual bits and sets of bits.

For the considered above structural architecture an equivalent behavioral speci-
fication can be done as follows:

library ieee; - note that the UNISIM library is not needed now
use ieee.std_logic_1164.all;

entity BehavioralVHDL is - the entity name (such as BehavioralVHDL) is chosen by the designer
port (x1,x2, x3 :in std_logic;

y out std_logic);

end BehavioralVHDL;

architecture behavioral of BehavioralVHDL is
begin -- and/not/or are VHDL logical operators for AND/NOT/OR logical operations
y <= (x1 and not x2 and not x3) or (not x1 and x2 and not x3) or
(not x1 and not x2 and x3); -- <= is VHDL signal assignment operator
end behavioral;

Functionality of the synthesized circuit is exactly the same. Structural and behav-
ioral specifications complement each other and may have different effectiveness for
different projects. Thus, it is reasonable to combine them within a mixed architec-
ture, which is composed of both behavioral and structural specifications. For com-
plex projects such mixed architecture can often be seen as the most frequently used.

Figure 2.2 gives a simplified structure of elements for a VHDL module (design
entry in VHDL) which nevertheless is sufficient for an introductory level.

2.1 Introduction to VHDL 47

Up to now we have not described yet many keywords shown in Fig. 2.2:

e generic enables compact scalable and parameterizable designs to be described
(see Sect. 2.5 for details and Appendix A);

e constant permits objects with unchangeable values to be declared (see
Sect. 2.2 for details and Appendix A);

e type is used to declare new types including arrays and enumerations (see
Sect. 2.2 for details and Appendix A);

e function and procedure (subprograms) allow pieces of code to be used mul-
tiple times in a design (see Sect. 2.4 for details and Appendix A);

e shared variable is an extension of variable, allowing inter-process communi-
cation. Note that variable cannot be declared directly in architecture and it is
declared in a process or in a subprogram (function or procedure). Variable is
assigned using the := operator.

e process is a concurrent statement with such behavior that is described by
sequential statements (see also Sect. 2.3 and Appendix A).

Subsequent sections of this chapter will present details about indicated above
and other VHDL keywords (reserved words). A summary about the use of differ-
ent reserved words is given in Appendix A.

A code below demonstrates a behavioral VHDL specification for a half-adder
discussed in Sect. 1.5. The external interface and the truth table of the half-adder
are shown in Fig. 2.3.

library |EEE;
use IEEE.std_logic_1164.all;

entity half_adder is

port (A - in std_logic;
B - in std_logic;
carry_out : out std_logic;
sum - out std_logic); - there is no semicolon following the specification
end half_adder; -- of the last port
architecture half_adder_behavior of half_adder is
begin
sum <=Axor B; - xor is a VHDL keyword for XOR logical operation
carry_out <= A and B; - and is a VHDL keyword for AND logical operation

end half_adder_behavior;

Each port of the half-adder is given a name (A, B, carry_out, sum). The architec-
ture is entitled half_adder_behavior and is associated with the half_adder entity. These
names can be chosen arbitrary but have to respect VHDL syntax rules, i.e. a user
identifier can only include alphanumerical symbols and the underline character _
must start with a letter, may not include two consecutive underline characters, and
may not have an underline character at the end.

The next example presents the complete mixed VHDL specification of a full
adder composed of two structural components (half-adders) and a behavioral
description of a two-input OR gate: carry_out <=s2 or s3; (see also Fig. 1.19b).

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1

48 2 Synthesizable VHDL for FPGA-Based Devices

I|brary |IEEE;

use of libraries and packages
use |[EEE.std_logic_1164.all;

HA

entity half_adder is
port (A . inSTD_LOGIC; —— |* carry_out *}

g . inSTD_LOGIC; —— | ,_-ZO,'T’ 19 sumi—

9o @ carry out : out STD_LOGIC;

= : out STD_LOGIC);

end half_ adder
I s]

g architecture half_adder_behavior of half_adder is 0 0

g | begin 0 1 0 1

-S @ <= A xor B; 10 0 1

< carry_out <= AandB; T - G

end half_adder_behavior;

Fig. 2.3 Specification in VHDL and the truth table of a half-adder

library |EEE;
use |EEE.std_logic_1164.all;

entity FULLADD is

port (A, B, carry_in tin std_logic;
sum, carry_out - out std_logic);
end FULLADD;

architecture STRUCT of FULLADD is
signal s1, s2, s3 : std_logic;

component half_adder
port(A.B tin std_logic;
carry_out, sum : out std_logic);
end component;

begin
ul: half_adder port map(A, B, s2, s1);
u2: half_adder port map(s1, carry_in, s3, sum);
carry_out <= s2 or s3;

end STRUCT;

The component half adder is described explicitly using the VHDL keyword
component. If we comment the lines:

component half_adder
port(A,B tin std_logic;
carry_out, sum - out std_logic);
end component;

2.1 Introduction to VHDL 49

library IEEE; ‘ library IEEE; c S
use |EEE.std_logic_1164.all; use IEEE.std_logic_1164.all; —1 |10
entity FULLADD is _ entity half_adderis ? zl
port (A, B, carry_in tin std_logic; @ port (<o 3 = g
sum, carry_out : out std_logic); _g - A :in STD_LOGIC; o v
end FULLADD; -gg B +in STD_LOGIC; 000 |0 O
architecture STRUCT of FULLADD is o% carry_out : out STD_LOGIC; g ({ (]5 8 %
signal s1, 52, s3 : std_logic; o8 sum tout STD_LOGIC);
begin %’_& end half_adder; o11])10
(T
ul: entity work.half_adder.- £ architecture half_adder_behavior of half_adder is 100101
der-".—.- 5 " 101 |10
port map(A, B,’s2, s1); X begin 110110
u2: entity work.half_adder sum <= Axor B; 1111011
port map(s1, carry_in, s3, sum); carry_out <=Aand B;
carry_out <=s2 or s3; end half_adder_behavior;
FULLADD
A—s>\ ul
[A] —— [carry_out]
B—>"\ half_adder
. [B]—— —
carry_in o1 carry *out <= carry_out
uz s3 —s2 or s3;
[A] [carry_out]
half_adder sum
(B]l—— [sum] >

Fig. 2.4 Structural VHDL description of a full adder

the following error appears: <half_adder> is not declared. However, since all
VHDL modules are compiled (by default) to a library with the name work we can
use the half-adder component directly from the library as follows:

architecture STRUCT of FULLADD is
signal s1, s2, s3 : std_logic;
begin - getting the half_adder from the library work in the construction: entity work.half_adder

ul: entity work.half_adder port map(A, B, s2, s1);
u2: entity work.half_adder port map(s1, carry_in, s3, sum);
carry_out <= s2 or s3;

end STRUCT;

Now the code does not have errors and the resulting circuit works exactly
the same as the circuit in Fig. 1.19b. The connections of the components are
done through the respective external (A, B, carry_in, sum, carry_out) and internal
(s1, s2, s3) signals that are associated with components‘ ports by positions (i.e.
a positional association has been used). For example, the half adder has 4 ports
A, B, carry_out, sum. In the component u/ they are connected with external sig-
nals A, B and internal signals s2, s1, accordingly. In the component u2 they are
connected with s1 (internal), carry_in (external), s3 (internal), and sum (exter-
nal) signals. All other details should be understandable from Fig. 2.4 (see also
Appendix A).

The examples above illustrate the general organization of structural, behav-
ioral, and mixed VHDL specifications. In the next sections of this chapter we

http://dx.doi.org/10.1007/978-3-319-04708-9_1

50 2 Synthesizable VHDL for FPGA-Based Devices

will present more details about different VHDL constructions paying the main
attention to comprehensive examples that can be directly synthesized, imple-
mented and tested in FPGA-based circuits.

There are two appendices A and B in this book. Appendix A explains infor-
mally a variety of synthesizable constructions and VHDL keywords listed alpha-
betically. Appendix B includes some coding examples for frequently needed
modules.

To conclude this section we would like to explicitly indicate that the book is not
about VHDL and only a subset of this language is used to describe functionality
of the considered FPGA-targeted circuits and systems. There are some limitations
assumed in the book and they are listed below:

1. Only two values ‘0’ and ‘1’ from the allowed values of std_logic type are used.

2. For the majority of examples unsigned vectors with element values ‘0’ and ‘1’
are used and their type is declared as std_logic_vector. There are just a few exam-
ples with the types signed and unsigned (see the next section and Appendices).

3. Taking into account the assumptions 1 and 2, in many examples below the type
std_logic_vector is used in the same way as an unsigned type although the latter
might be more correct, for instance, for such operations as comparison, arith-
metical, and some others. This way does not give rise to any problem for the
resulting (synthesized and implemented) circuits that are presented in the book
and it permits the number of conversion functions to be minimized. This is done
because we would like to pay the primary attention to the design methods and
the described circuits but not to supplementary constructions, which often make
the code more difficult to analyze and understand.

4. Many design methods described in the book are equally applicable to signed
vectors and if required the necessary (minimal) changes can easily be done
assuming that the given examples are firstly well understood and tested.

2.2 Data Types, Objects and Operators

We consider the following VHDL basic data types: (1) enumerated (including pre-
defined and user-defined); (2) bit vector; (3) integer; and (4) record.

Pre-defined enumerated types are: (1) bit (with possible values ‘0° and ‘1°);
boolean (with possible values false and true); and (3) std_logic defined in the /EEE
std_logic_1164 package (with 9 possible values ‘U’, ‘X, 0°, “1°, ‘2, ‘W’, °L’, ‘H’,
‘-> described in the previous section).

User-defined enumerated types are frequently introduced for naming states of
finite state machines, for example:

type FSM_states is (begin, run, end); - begin, run, end are user-defined names of FSM states

Bit vector is (1) a standard bit_vector type with elements of the type bit, and (2)
defined in the IEEE std_logic_1164 package std_logic_vector with elements of type

2.2 Data Types, Objects and Operators 51

std_logic. Std_logic and std_logic_vector are the most frequently used types in the book.
Two examples are given below:

signal sw : std_logic_vector(3 downto 0);
signal my_bit : bit_vector(2 to 3);

The first example declares a vector sw with 4 elements: sw(3), sw(2), sw(1), sw(0).
If, for example, sw <= “1100” then sw(3) is ‘17, sw(2) = “1°, sw(1) = ‘0’, sw(0) = ‘0. If
for the second example my_bit <= “01” then my_bit(2) is ‘0’, and my_bit(3) is “1°. Single-
bit values are written in between single quotes while multi-bit values are specified
with double quotes.

Integer type enables an integer to be declared. The range of the integer val-
ues can explicitly be defined, for example:

signal my_int : integer range 3 to 8; -- allowed values now are only 3, 4, 5, 6, 7, and 8

Record type permits a set of data with different types to be combined in a
named structure, for example:

type user_defined_record is record -- the name of the structure is user_defined_record

data1 : std_logic_vector(7 downto 0); - record fields
data2 : integer range 0 to 7; -~ a field can also be of type record
end record;

Data types can form an array. Although any number of dimensions can be cho-
sen it is frequently recommended to limit them, for example, by 3 in [3]. The fol-
lowing type declares an array named my_array of 16 integers with possible values 0,
1,2,3, 4

type my_array is array (0 to 15) of integer range 0 to 4;

The following line declares a two dimensional array containing 4 sets of
integers:

type my_table is array (3 downto 0) of my_array; -- the type my_array is declared above

We consider here three VHDL objects that are signals, variables and constants.

Signals are declared in the declarative part of architecture (shown in Fig. 2.2
between the lines architecture... and begin) with the keyword signal and
used within that architecture.

Variables are declared in the declarative part of a process or a sub-program
(function or procedure) with the keyword variable and used within that process
or sub-program. We will discuss processes and sub-programs a bit later in this
section.

Constants are declared in the declarative part of architecture, process, or sub-
program (function or procedure) with the keyword constant. Declarative part
of a process, a function or a procedure is placed between the lines process...
/function.../procedure... and begin).

52 2 Synthesizable VHDL for FPGA-Based Devices

|

|
NET "led<2>" LOC = "N14"; |
NET "led<3>" LOC = "L14"; !
NET "led<4>" LOC = "M13"; |
NET "led<5>" LOC = "D4"; |
NET "led<6>" LOC = "P16"; |
|

|

|

|

|

|

|

|

|

|

|

NET "led<7>" LOC = "N12";
NET “sw<0>" LOC = "A10";
NET “sw<1>" LOC = "D14";
NET “sw<2>" LOC = "C14";
NET “sw<3>" LOC = "P15";

Fig. 2.5 UCF and functionality of the project with the entity types_and_objects for the Atlys board

Let us consider a complete example:

library IEEE; - in future VHDL modules we will assume including these libraries

use IEEE.STD_LOGIC_1164 all;

use |[EEE.STD_LOGIC_ARITH.all; - see also appendix A and section 2.6
use IEEE.STD_LOGIC_UNSIGNED.all; -~ for conversion functions

entity types_and_objectsis -- sw and led are signals from switches and to LEDs
port (sw :in std_logic_vector(3 downto 0);
led : out std_logic_vector(7 downto 1));
end types_and_objects;

architecture Behavioral of types_and_objects is
type my_array is array (0 to 15) of integer range 0 to 4;
constant Hamming_weight : my_array := (0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4);
signal index : integer range 0 to 15;

begin
led(4 downto 1) <=sw;
index <= conv_integer(sw(3 downto 0));
led(7 downto 5) <= conv_std_logic_vector(Hamming_weight(index), 3);

end Behavioral;

Here, conv_integer (casting std_logic_vector type to integer type) and conv_std_logic_
vector (casting integer type to std_logic_vector type of size n where n is the second argu-
ment) are conversion functions for which we need to include additional packages
indicated in the code above. The line:

constant Hamming_weight : my_array :=(0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4);

declares and initializes a constant Hamming_weight which is a one-dimensional array
of integers. Each integer with index i1 is a Hamming weight of iy, i.e. the number
of values ‘1’ in the binary vector i,. Indeed, if ijo = 5, then my_array(5) = 2, and
ip = “0101” contains 2 digits ‘1’. The one-dimensional array is a new type my_array
declared in the line: type my_array is array (0 to 15) of integer range 0 to 4;.
Figure 2.5 demonstrates the user constraints file (UCF) for our project and the pro-
ject functionality.

2.2 Data Types, Objects and Operators 53

In subsequent VHDL modules we will also use the following derived data types
(they are also described in Appendix A):

o natural that declares integers with nonnegative values (0,1,2,...);

e positive which is the same as natural without the value 0 (1,2,...);

e unsigned declares unsigned vectors based on std_logic type and is defined, for
example, in the VHDL package std_logic_arith (see also Sect. 2.6);

e signed declares signed vectors based on std_logic type and is defined, for example,
in the VHDL package std_logic_arith (see also Sect. 2.6);

e character is a 7-bit ASCII code;

e string(positive) is an array of characters.

The following two lines give declaration examples for a character and a string:

signal my_string : string(1 to 3); - declaration of signal my_string of type string(l to 3)
signal my_char :character; - dedaration of signal my_char of type character

The following lines give examples of assignments which can be done in an
architecture body:

my_char <="3"; - my_char receives the ASCIl code of digit 3
my_string(1) <="5", -- my_string(l) receives the ASCII code of digit 5
my_string(2) <= my_char; -- my_string(2) receives the value of my_char
my_string(3) <='9"; - my_string(3) receives the ASCIl code of digit 9

led <= std_logic_vector(conv_unsigned(character'pos(my_char), 8));

The last line finds position of my_char in ASCII table (characterpos(my_char)),
then converts the position to an 8-element unsigned vector of std_logic (conv_
unsigned(<position>,8)) and finally converts the unsigned vector to std_logic_vector (std_logic_
vector(<unsigned vector>)) which is assumed to be displayed on eight onboard LEDs.

The following operators will be used in examples of this book:

1. Arithmetical: + (addition), — (subtraction), * (multiplication), / (division).
Often, division is supported only if the right operand is a power of 2 [3].

. Assignment: <= (for signals) and := (for variables).

. Concatenation: &.

. Logical: and, nand, nor, not, or, xor, xnor (see appendix A for details).

. Relation: = (equal to), /= (not equal to), < (less than), <= (less than or equal

to), > (greater than), > = (greater than or equal to).

6. Shift: s11 (logic shift left), srl (logic shift right), sla (arithmetic shift left),
sra (arithmetic shift right), rol (rotate left), ror (rotate right). Examples and
additional explanations are given in Appendix A. We would prefer to use logi-
cally equivalent operators (see Shift operators in Appendix A).

7. Others: abs (absolute value), rem (remainder), mod (modulo), * (power if the
left operand is 2). Frequently, the operations rem and mod are supported only if
the right operand is a constant power of 2 [3].

W B~ W N

54 2 Synthesizable VHDL for FPGA-Based Devices

Using the majority of the operators is clear. So, we will consider below just a
part of them. The first VHDL module is given below:

entity abs_rem_mod is - the project was tested in the ISE 14.7 and Atlys board

port (sw - in std_logic_vector(7 downto 0);
led - out std_logic_vector(7 downto 0);
BTNU, BTNC, BTND, BTNL, BTNR :in std_logic); -- onboard buttons in the Atlys

end abs_rem_mod;

architecture Behavioral of abs_rem_mod is
signal result : integer range 0 to 16;
signal but : std_logic_vector(4 downto 0);
begin
but <= BTNU & BTNC & BTND & BTNL & BTNR; - concatenation of five signals
result <= 16 when conv_integer(sw(3 downto 0)) = 0 else - 16 indicates "divide by 0"
conv_integer(sw(7 downto 4)) mod conv_integer(sw(3 downto 0))
when but ="00001" else - only BTNR is pressed
conv_integer(sw(7 downto 4)) rem conv_integer(sw(3 downto 0))
when but ="00010" else - only BTNL is pressed
conv_integer(sw(7 downto 4)) / conv_integer(sw(3 downto 0))
when but ="00100" else -~ only BTND is pressed
abs(-10) when but = "01000" else ~ -- abs(-10) = 10 (only BTNC is pressed)
abs(5) when but ="10000" else 0; - abs(5) = 5 (only BTNU is pressed
led <= conv_std_logic_vector(result, 8);
end Behavioral;

We introduced here when ... else conditional signal assignment which allows
more operators to be described in a compact code. The conditional assignment has
the following general form:

<name> <= <expression> when <condition> else <expression>;

which can be repeated any number of times. For example mod operator will be
applied if and only if but = “00001”, i.e. only one BTNR button is pressed. Indeed,
the signal but is a concatenation (&) of 5 signals from the onboard buttons (BTNU
& BTNC & BTND & BTNL & BTNR). Some operations are explained in comments above
and some others are shown in Table 2.1. For example, using a modulo (A mod B)
operator permits the result to be changed from A = 0 up to the value B—1 and then
again from O to the value B—1 until the final allowed value A is reached (exact
definition of the described above operators is given in [1]). As you can see from
Table 2.1 division (/) and remainder (rem) give correct results in the Xilinx ISE
14.7 for any integer operands (the document [3] indicates that the respective oper-
ations are only supported if the second operand is a power of 2 or both operands
are constants). The operator with an asterisk in Table 2.1 (mod*, rem*, and /*) are
applied to the first positive and to the second negative arguments:

conv_integer(sw(7 downto 4)) mod (-conv_integer(sw(3 downto 0)))
conv_integer(sw(7 downto 4)) rem (-conv_integer(sw(3 downto 0)))

conv_integer(sw(7 downto 4)) / (-conv_integer(sw(3 downto 0)))

2.2 Data Types, Objects and Operators 55

Table 2.1 The results of mod, rem and division (/) operations

A =sw(7:4) B =sw(3:0) Mod mod* rem (rem*) /(/¥)
0000, (019) mod, rem, / : (0000,) 010 (000005) 01 (0000,) 010 0 (0)
00015 (119) 01015 (510) (00015) 119 (111002) —419 (00012) 119 0 (0)
0010, (210) (0010,) 210 (111012) =330 (00102) 219 0 (0)
00117 (310) mod*, rem*, /* (00112) 310 (111102) =219 (00112) 310 0 (0)
01002 (410) (=510)» (01002) 419 (111113) =130 (01002) 410 0(0)

01017 (510) i.e. the sign is forced (00002) 0190 (000007) 019 (0000,2) 019 1(=1)
to be changed

0110, (610) (00012) 119 (111002) =419 (00012) 119 1(=1)
01115 (710) (00102 219 (111012) =319 (00102) 210 1(=1)
10005 (810) (00112) 310 (111102) =219 (00112) 319 1(=1)
10015 (910) (01000) 419 (111112) =119 (0100 419 1(=1)
10105 (1010) (0000,) 019 (000005) 019 (00000 019 2 (=2)
10115 (1110) (00012) 119 (111002) =419 (00012) 119 2(=2)
1100, (1210) (0010, 210 (111012) =319 (00102) 219 2(=2)
11015 (1310) (00112) 310 (111102) =210 (00112) 319 2(=2)
11105 (1410) (01000) 419 (111112) =119 (0100 419 2 (=2)
11115 (1510) (0000,) 019 (000002) 019 (00000) 019 3 (=3)

Since the result of (A mod B) has the same sign as B and abs(resulf)<abs(B),
the result of (A mod B) is different from (A mod (—B)). The result of (A rem B)
has the same sign as A and, thus, (A rem B) = (A rem (—B)). Clearly (A/B) = (A/
(—B)). Table 2.1 (where two’s complement codes are used for negative numbers
and for positive numbers just the absolute values are given) presents various exam-
ples for different values of the first operand (A) and B = 51 with different signs
for the latter one (positive: 519 and negative: —519). The column / (/*) contains
only decimal values. Additional details are given in Appendix A.

2.3 Combinational and Sequential Processes

VHDL process is a concurrent statement which is described by sequential state-
ments. Almost always in this book we consider processes with a sensitivity list
that appears within parentheses after the process keyword (it is recommended
for greater flexibility, in particular, by the document [3]). A few examples of pro-
cesses without a sensitivity list are given in Appendix A (see on and until). A pro-
cess is activated if any of sensitivity list signals is changed (i.e. in case of event
on these signals). For simulation purposes (see Sect. 2.7) processes with wait
statement without a sensitivity list will also be used (it is not allowed to include
both a sensitivity list and a wait statement). Additional details can be found in
Appendix A.

56 2 Synthesizable VHDL for FPGA-Based Devices

2.3.1 Combinational Processes

A process is a combinational when all signals/variables assigned in the process
explicitly receive new values every time the process is executed [3]. Thus, the
sensitivity list must contain: (1) all signals in conditional statements, and (2) all
signals on the right-hand side of assignment operators (<= or :=). If any value
needs to be stored from the previous execution of the process the latter cannot be
combinational.

There are a number of VHDL constructions that can be used in a process. Some
of them (primarily needed for this book) will be described on examples below. The
following combinational process tests if the value of an input vector sw is between
the given low and high bounds (i £ (sw > low) and (sw < high) then led <= sw;) or less
than the low bound (elsif sw < low then led <= not sw;):

entity TestCombProc is - simplified syntax rules for processes are given in appendix A
port (sw :in std_logic_vector(7 downto 0); -~ onboard switches

led - out std_logic_vector(7 downto 0)); -- onboard LEDs
end TestCombProc;

architecture Behavioral of TestCombProc is
constant low :integer :=5;
constant high : integer := 10;
begin
cp1: process(sw) -- cpl (combinational process 1) is an optional label
begin - A simplified syntax rule for if. . elsif...else. . .end if statement is given in appendix A
if (sw > low) and (sw < high) then led <= sw;
elsif sw < low then led <= not sw;
else led <= (others =>"'0";
end if;
end process cp1; - ¢pl (combinational process) is an optional label

end Behavioral;

If the value of sw is greater than low and less than high then this value is
displayed on the onboard LEDs. If sw<low then the values of all sw elements are
inverted (applying the not operator) and displayed on the LEDs. Otherwise all
LEDs are OFF. The statement led <= (others => ‘0’); assigns to zero all elements
of the signal led (corresponding to all LEDs OFF). The following conditional
assignments (either the first or the second) directly used in the architecture body
instead of the cp1 process execute exactly the same operations:

led <= sw when (sw > low) and (sw < high) else -~ the first conditional assignment
not sw when sw < low else (others =>'0"); - see also Appendix A
with conv_integer(sw) select - the second (alternative) conditional assignment
led <= sw when low+1 to high-1,
not sw when low-1 downto 0,

(others =>'0") when others; - see also Appendix A

2.3 Combinational and Sequential Processes 57

If statement can be replaced with case statement in the following process cp2
below which implements similar to the process cp1 functionality:

cp2: process(sw) -- A simplified syntax rule for case statement is given in Appendix A
begin
case conv_integer(sw) is
when low+1 to high-1 =>led <=sw;
when low-1 downto 0 =>led <=not sw;
when others =>led <= (others =>'0');
end case;
end process cp2;

The next combinational process cp3 can be used to find out the Hamming
weight—HW (i.e. the number of ones) in the sw.

cp3: process(sw) -- numerous examples with for statement are given in appendix A
variable HammingWeightCount : integer range 0 to 8;

begin
HammingWeightCount := 0;
for iin sw'range loop - HW for sw(7), sw(6), ... , sw(0)
if sw(i) = 1" then HammingWeightCount := HammingWeightCount+1;
end if;
end loop;

led <= conv_std_logic_vector(HammingWeightCount,8);
end process cp3;

The line for i in swrange 1loop begins a loop that is implemented combi-
nationally and causes replication of the logic described in the loop body. Index
i does not need to be declared and it is incremented in a range of the vector sw
(i.e. 7 downto 0 in the order: 7,6,5,4,3,2,1,0). Besides of range we will use some
other VHDL attributes shown in Appendix A (see Attribute). Let us consider some
examples:

for i in sw'left downto sw'right+4 loop - HW for sw(7 downto 4): i.e. for i values 7,6,5,4
for i in sw'reverse_range loop - the order of i values is: 0,1,2,3,4,5,6,7

for i in sw'length-4 downto 0 loop - HW for sw(4 downto 0), because the length is 8
foriin 5 downto 3 loop -- the order of i values is: 54,3

The following combinational process cp4 demonstrates using the exit state-
ment that allows the subsequent index values in the loop to be skipped:

cp4: process(sw)
variable left_1, right_1 : integer range 0 to 8;
begin
left_1:=8; right_1:=8; -- the value 8 is chosen to indicate all zeros in the sw
for iin sw'range loop -- exit as soon as the first 'I" from the left is encountered
if sw(i) = '1" then left_1 := i; exit;
end if;

58 2 Synthesizable VHDL for FPGA-Based Devices

end loop;

for i in sw'reverse_range loop - exit as soon as the first ‘1" from the right is found
if sw(i) = '1" then right_1 :=i; exit; - see also ex/t in Appendix A
end if;

end loop;

led(7 downto 4) <= conv_std_logic_vector(left_1, 4);
led(3 downto 0) <= conv_std_logic_vector(right_1, 4);
end process cp4;

The keyword next permits to terminate the loop with the current index value
and to continue the loop with the next index value. Note that any iteration with a
particular index value is not a cycle in a sequential circuit. Each iteration replicates
the logic in the loop body described between the loop and end loop lines. The
loop while (also available in VHDL) can be used similarly to the loop £or. The
details are given in Appendix A.

A process may use signals and variables. There is an important difference
between them. Assignments (:=) of variables are done immediately (without
delays) unlike signal assignments (<=) that are done when the process suspends.
The statements in the process are executed sequentially (from the top to the bot-
tom). If there are some mutually reassigned signals in a process they are not
updated immediately. For example if A, B are integer signals initialized with the
values A = 10 and B = 20:

A<=5; - initialized before with the value 10
B<=A; -- initialized before with the value 20

then at the end of the process (with single invocation) B = 10 (but not 5) because
the above assignments of A and B are done at the same time at the end of the pro-
cess (i.e. when the process suspends). Thus, B = 10 (the initial value of A) and A =5
(the assigned value in the statement A <= 5 above).

In some practical applications iterative invocations of the same statement
are required, for example, the statement A <= A + 1 can be executed in a combi-
national process with a loop such as for or while. The results are obviously
wrong with the signal A because of the following: (1) the signal A has to be
included in the process sensitivity list (because it appears on the right-hand side
in the expression above); (2) any change of A (any event on A) forces reinvoca-
tion of the same process; (3) a combinational loop is created and this is a wrong
for our example. Since variables are assigned immediately, a similar process
with variables does not give rise to any problem. Let us consider the following
example:

entity TestLoops is

port (led_signal :out std_logic_vector (3 downto 0);
led_variable :out std_logic_vector (3 downto 0);
sw - in std_logic_vector(7 downto 0));

end TestLoops;

2.3 Combinational and Sequential Processes 59

architecture Behavioral of TestLoops is
signal count_sig : integer range 0 to 15;
begin

use_of_signals: process(sw, count_sig) - this process gives definitely wrong results
begin -- warnings in ISE about a combinational loop are displayed
count_sig <= 0;
optional_label: for i in sw'range loop -- DO NOT USE SIGNALS IN SUCH LOOPS
if(sw(i) = '1') then count_sig <= count_sig+1; -- this is definitely wrong
end if;
end loop optional_label;
led_signal <= conv_std_logic_vector(count_sig, 4);
end process use_of_signals;

use_of_variables: process(sw) -- this process gives correct results
variable count_var - integer range 0 to 15;
begin
count_var :=0;
optional_label: for i in sw'range loop -~ this loop is correct
if(sw(i) = '1') then count_var := count_var+1; -- now this line is correct
end if;

end loop optional_label;
led_variable <= conv_std_logic_vector(count_var, 4);
end process use_of variables;

end Behavioral;

It is easy to examine that the first process use_of_signals gives wrong results and
the second process use_of_variables gives correct results.

2.3.2 Sequential Processes

A process is sequential if some previously assigned signals keep their previous
values and, thus, are not explicitly assigned in a new process execution [3]. We
mainly consider clock-edge-triggered sequential processes with a sensitivity
list and with an eventual synchronous reset that can be described as follows:

<optional label:> process(clock) -~ dock is the name of the clock signal
< optional declarative part>

begin
if rising_edge(clock) then -- the same as: if clock'event and clock = 'I' then
<sequential (possibly conditional) statements>
end if;

end process <optional label>;

The rising_edge statement can be replaced with a falling_edge statement:

if falling_edge(clock) then -- the same as: if clock'event and clock = '0" then

60 2 Synthesizable VHDL for FPGA-Based Devices

The following example demonstrates communication between several sequential
processes. The first process sp1 together with a conditional assignment (marked
with --*%) describe a circuit that reduces the frequency of the clock (clk):

sp1: process(clk)
begin
if rising_edge(clk) then internal_clock <= internal_clock+1; end if;
end process sp1; - sw is a 3-bit vector (2 downto 0)
divided_clk <= internal_clock(internal_clock'left - conv_integer(sw)) R
when falling_edge(clk); -

The following declarations have to be done in the architecture declarative part:

signal internal_clock : unsigned(how_fast downto 0); -- how_fast = 30
signal positive_reset : std_logic; - this signal will be needed in examples below
signal divided_clk - std_logic;

Since internal_clock is a 31-bit unsigned vector (std_logic_vector can also be used)
and the signal divided_clk takes (internal_clockleft - conv_integer(sw)) bit in the vector
internal_clock, the frequency of the clock clk is divided by 2 how-fast+i-conv_integer(sw) pf
conv_integer(sw) = O then the base frequency for the Atlys board (which is 100 MHz)
is divided by 231 — 2.147,483,648. Thus, the clock period of the divided_clk
becomes ~21.5 s. If conv_integer(sw) = 7 then the base frequency is divided by
231=7 = 16,777,216. Thus, the clock period becomes ~0.16 s. The greater the
value of sw the higher frequency (the shorter period) of the divided_clk is provided.

Conditional signal assignment (marked with —** in the code above) can be
replaced by the following lines in the sp1 process body:

if falling_edge(clk) then
divided_clk <= internal_clock(internal_clock'left - conv_integer(sw));
end if;

The next sequential process sp2 describes functionality of a binary counter:

sp2: process (divided_clk) - signal count keeps the result of the counter
begin
if rising_edge(divided_clk) then -- using divided_clk enables the results to be observed visually
if positive_reset = '1" then count <= (others=>'0"); - synchronous reset of the counter
else

if count_enable ='1'then -- increment/decrement of the counter
if increment="1' then count <= count + 1;
else count <= count - 1;
end if;

end if;

end if;
end if;
end process sp2;

Here, count_enable is the enable signal for the counter and increment permits either
the counter increment (increment = ‘1) or decrement (increment = ‘0’) to be selected.

2.3 Combinational and Sequential Processes 61

The last sequential process sp3 describes functionality of a shift register:

sp3: process (divided_clk) - signal shift keeps the result of the register
begin - the size of shift is chosen to be (6 downto 0)
if rising_edge(divided_clk) then -- using divided_clk enables the results to be observed visually
if positive_reset ='1' then shift <= (others=>'0"); -- reset of the register
else
if load_enable ='1' then shift <= count; -- loading the register
elsif right ='1" then -- shift right/left of the register
shift <= shift(0) & shift(5 downto 1);
else
shift <= shift(4 downto 0) & shift(5);
end if;
end if;
end if;
end process sp3;

Here, load_enable is the enable signal for the register (allowing the value of the
count from the counter to be loaded) and the signal right permits either the shift right
(right = “1”) or the shift left (right = ‘0") to be selected.

The code below includes all the processes described above:

entity sequential_processes is - pins are given below for the Atlys board
generic (how_fast: integer := 30); - generic how_fast constant with the default value 30

port (clk - in std_logic; - clock 100 MHz ~ — pin LIS
load_enable - in std_logic; - signal from sw(6) — pin T5
count_enable »in std_logic; - signal from sw(7) — pin E4
increment - in std_logic; -- signal from sw(3) — pin PI5
right - in std_logic; -~ signal from sw(4) — pin P12
count_shift - in std_logic; -~ signal from sw(5) — pin RS
swW - in std_logic_vector(2 downto 0); -- pins Cl4, D14, Al0
rst - in std_logic; - RESET button ~ — pin TIS
led - out std_logic_vector(7 downto 0)); -- see pins in Fig. 2.5 above

end sequential_processes;
architecture Behavioral of sequential_processes is
signal internal_clock : unsigned(how_fast downto 0);
signal positive_reset : std_logic;
signal divided_clk : std_logic;
signal shift, count - std_logic_vector(5 downto 0);
begin
positive_reset <= not rst; -- the onboard RESET button for the Atlys produces 0 when pressed
-- the described above spl process
-- the described above sp2 process
-- the described above sp3 process
led(7 downto 2) <= count when count_shift = '1' else shift; -- the results of count or shift
led(1) <='0"; -- LEDI is set to OFF
led(0) <= divided_clk; -- divided_clk with the selected by sw frequency
divided_clk<=internal_clock(internal_clock'left-conv_integer(sw))
when falling_edge(clk);
end Behavioral;

62 2 Synthesizable VHDL for FPGA-Based Devices

[N
[N
a) o = b
(@) count or shift 5 2 reset (D) 'O O NONON NONG)
selected by sw(5) £ 3 ! E E
L& 3 HE
w []
[IEd O e 0o ‘ O @Ied(o) Stop countlng
EE Increment 0000000
& counter o
Tt LEFLEET
£ %52 = 2333 Ut B
3 & 5 2 g " 7 —=
(] = Q B D
E 3 : g =t ‘_é*,\ Change to Load shlftreglsterfrom counter
g = z g = shift right
= 8 = > qu (S
5 2¢ 25 :E OC@00®@00O0
2 5 <2 T T £E i (()
253 %2 g3 q | E E E E
J % : \"E S E L =2 2 /
- g g2 a— c
5 9 @ 2 ° S Shift Ieft loaded vector in shift
8 B 2 23S
= 8 s &< register
T = c &
: < :
w

Fig. 2.6 Test of the project with sequential processes: Links with the board components a and
the results of the test (b)

Figure 2.6 demonstrates how the results of the project above can be tested.

We already mentioned in the previous section that a process may use signals
and variables and that there is an important difference between them. Figure 2.7
gives an additional example of a sequential process in which the block marked
with 1 is executed just once. There are two signals A and B in the process test_
assign. These signals are updated only when the process suspends. Thus, in the if
statement within the process test_assign the signals led(1) and led(2) are assigned the
previous values of A and B, which is perhaps not the result that you might expect.

if B ="1"then A<=B; B<=A;
led(1) <= A; led(0) <= B;
end if;

If variables would be used instead of signals they would be assigned immedi-
ately and, thus, led(1) would receive the updated value of A and led(2) would receive
the updated value of B.

In conclusion let us consider a complete example with two processes: test_vari-
able with a variable vA; and test_signal (looking similarly) with a signal sA.

entity TestProc is

port (clk - in std_logic;
sw - in std_logic_vector(3 downto 0);
led : out std_logic_vector(7 downto 0));

end TestProc;

2.3 Combinational and Sequential Processes 63

architecture Behavioral of TestProc is
signal sA - std_logic_vector(3 downto 0) := (others =>'0");
signal divided_clk : std_logic;
begin -- the lines of the test_variable process are similar to the lines of the test_signal process
test_variable: process(divided_clk)
variable VA : std_logic_vector(3 downto 0) := (others =>'0");
begin -- the functionality of the test_variable and the test_signal processes is not the same
if rising_edge(divided_clk) then

VA := sw(3 downto 0); - a new value is assigned without delay
led(7 downto 4) <=VA; - the new value is displayed
end if;

end process test_variable;

test_signal: process(divided_clk)

begin
if rising_edge(divided_clk) then
sA <= sw(3 downto 0); - a new value is assigned
led(3 downto 0) <= sA; -- the new value is delayed until the next activation
end if; - of the test_signal process

end process test_signal;

low_freq: entity work.clock_divider
port map (clk, divided_clk);

end Behavioral;

If values of the switches sw3, sw2, sw1, sw0 are changed then these changes first
appear on LEDs 7,6,5,4 and only after one period of the clock signal divided_clk —
on LEDs 3,2,1,0. Such functionality can easily be examined because the clock fre-
quency is divided (by the clock_divider) up to a visual scale (1 Hz or so).

As follows from the previous examples and explanations, using signals in loops
might give problems. For example, if the variable HammingWeightCount is replaced
with a signal in the combinational process sp3 in Sect. 2.3 then the functionality
will be different from what we might expect (and eventually wrong). Many poten-
tial problems of such kind in combinational processes are recognized by synthesis
tools which produce warnings about combinatorial (combinational) loops. Thus,
the designers are informed. For sequential processes (like shown above and in
Fig. 2.7) there is no reason for warnings but in many cases the functionality is dif-
ferent from what we might expect.

2.4 Functions, Procedures, and Blocks

Functions and procedures are used for blocks of codes that need to be invoked
multiple times in the design. They permit such functionality to be described that is
similar to combinatorial processes. A function is always terminated with a return
statement and enables a single value to be computed and returned. Simplified syn-
tax rules for functions and procedures are given in Appendix A. Note, that input

64

entity TestCombProc is
port (clk :in std_logic;
BTND : in std_logic;

led : out std_logic_vector(1 downto 0) := (others=>'0"));

end TestCombProc;

2 Synthesizable VHDL for FPGA-Based Devices

The results might be
wrong without initial
values

-

After uploading

the bitstream

LEDO'
Pin: U18

LED, O
Pin: M14

°
Sc architecture Behavioral of TestCombProc is
o

5 g [signalB : std_logic:='1:

g s | signalA : std_logic :="0 Initially, LED, is OFF and LED is ON.

® £ begin When BTND is pressed for the first

© test_assign: process(clk) time, values A and B are swapped and

begin thus LED is ON and LED is OFF
— _§ if rising_edge(clk) then Since now B = ‘0’, the signals A and B
88 s 3 if BTND ='1' then led <= A & B; will not change any more.
8 §‘§ s else 0
2535 2 if B="1"then A1
SRe 2 : 1e¥ o
< = ’ e ot ugd
S v o . 5
%E S] £ ; P‘\?Sst\\\e
39 % ° led(1) <= A; € B}
»n S8 = g 3 © T
78 '%’ led(0) <= B; ‘§ OD — |fB_1Athen @
] b o oy] — R
end if; £ | |
g it g: §¢ W B<-A:
updates the @ endif; BTND led(1) <= A;
used signals end if; Pin: P3 led(0) <= B;
end if;

énd process test_assign; these statements are executed just/

end Behavioral; once when B is initialized with 1

Fig. 2.7 An example demonstrating how a process test_assign is executed

parameters can be unconstrained, i.e. they do not have bounds. Let us describe a
function HammingWeight that implements operations of the process sp3 in Sect. 2.3:

function HammingWeight (input: std_logic_vector) return integer is
variable HammingWeightCount : integer range 0 to inputlength;
begin -- the "input" parameter is unconstrained above because bounds are not declared
HammingWeightCount := 0;
for i in input'range loop
if input(i) = "1 then HammingWeightCount := HammingWeightCount+1;
end if;
end loop;
return HammingWeightCount;
end HammingWeight;

The code of the function (such as that is shown above) needs to be defined in
the declarative part of architecture.

A function can have more than one argument and may activate another func-
tion. For example, the following function HammingWeightComparator has three argu-
ments and calls the first function HammingWeight:

function HammingWeightComparator (input: std_logic_vector;
thresholdLow: integer; thresholdHigh: integer) return Boolean is
begin
if HammingWeight(input) < thresholdLow
elsif HammingWeight(input) > thresholdHigh
else
end if;
end HammingWeightComparator;

then return false;
then return false;
return true;

2.4 Functions, Procedures, and Blocks 65

The code below presents a complete description of a module that invokes the
functions HammingWeight and HammingWeightComparator.

entity TestFunctions is

port (BTND :in std_logic; -- signals from the onboard BTND
sw - in std_logic_vector(7 downto 0); - signals from the onboard switches
led : out std_logic_vector(7 downto 0)); -- signals to the onboard LEDs

end TestFunctions;

architecture Behavioral of TestFunctions is
-- the code of the function HammingWeight given above
-- the code of the function HammingWeightComparator given above
begin -- invocations of the functions are shown below on simple examples
led(6 downto 0)<=conv_std_logic_vector(HammingWeight(sw),7) when BTND='0'
else conv_std_logic_vector(HammingWeight(not sw(7 downto 4)), 7);
led(7) <="1" when HammingWeightComparator(sw, 3, 6) = true else '0';
end Behavioral;

It is allowed for a function to use signals that do not appear in the list of the
function arguments. However, in such case the function has to be declared as
impure (all functions are pure by default). Let us remove the first argument from
the function HammingWeightComparator and examine the following code:

impure function HammingWeightComparator -- error without the use of the impure keyword
(thresholdLow: integer; thresholdHigh: integer) return Boolean is
begin
-- the lines from the function HammingWeightComparator given above
end HammingWeightComparator;

The line for led(7) in the TestFunctions entity above has to be also changed
(because now there are just 2 arguments) as follows: led(7) <=*1> when HammingWeig
htComparator(3,6) = true else‘0’;. Now the functionality is exactly the same as before.

The keyword impure is an option for a function that extends the scope of var-
iables and signals declared outside of the function that become available in the
function. Thus, an impure function (in contrast to a pure function) may return differ-
ent values for the same arguments (much like it is shown in the example above).

A function can receive and return values with user-defined types. Let us con-
sider the following example:

entity FunctionSortis - this function was tested for the Nexys-4 board

port (sw - in std_logic_vector(15 downto 0); - the onboard switches
led - out std_logic_vector(15 downto 0)); -- the onboard LEDs

end FunctionSort;

architecture Behavioral of FunctionSort is
type array4vect is array (0 to 3) of std_logic_vector(3 downto 0); -- user-defined type

signal my_array : arraydvect;

66 2 Synthesizable VHDL for FPGA-Based Devices

function sort (Data_in : in array4vect) return array4vect is
variable data_|1 : array4vect;
variable data_I2 : array4vect;
variable Data_out : array4vect;

begin
foriin0to 1 loop
if data_in(i*2) <= data_in(i*2+1) then

Data_|1(i*2) := data_in(i*2+1); Data_|1(i*2+1) := data_in(i*2);
else Data_|1(i*2) := data_in(i*2); Data_|1(i*2+1) := data_in(i*2+1);
end if;

end loop;

foriin0to 1 loop
if data_I1(i) <= data_|1(i+2) then

Data_I2(i) := data_l1(i+2); Data_|2(i+2) := data_I1(i);
else Data_I2(i) := data_I1(i); Data_|2(i+2) := data_|1(i+2);
end if;

Data_out(i*3) := data_I2(i*3);
end loop;
if data_I2(1) > data_I2(2) then
Data_out(1) := data_I2(1); Data_out(2) := data_I2(2);
else Data_out(1) := data_I2(2); Data_out(2) := data_I2(1);
end if;
return Data_out;
end sort;
begin

my_array <= (sw(15 downto 12), sw(11 downto 8), sw(7 downto 4), sw(3 downto 0));

(led(15 downto 12), led(11 downto 8), led(7 downto 4), led(3 downto 0)) <=
sort(my_array);

end Behavioral;

The function implements a combinational even—odd merge sorting network for
four 4-bit data items. It is not important now how the even—odd merge sorting net-
work is coded in the function. Such networks will be described in Sect. 3.4.1. We
would only like to demonstrate how to use input and return parameters of user-
defined type (e.g. arraydvect type in the code above). The presented example is
ready to be tested in the Nexys-4 board with 16 onboard switches and 16 onboard
LEDs. Data items are taken from groups of 4 switches as it is shown above in
the assignment to my_array. The results are displayed on LEDs divided in similar
groups (4 LEDs in each group shown in the statement above where the function
sort is called. Data items are displayed in descending order (the maximum value on
led(15 downto 12) and the minimum value on led(3 downto 0)).

Procedures differ from functions because they permit more than one object to
be produced. The following example demonstrates the use of a procedure left1_
right! which finds the first and the last position ‘1’ in the supplied vector (sw). The
number of each position is indicated relatively to the right-hand switch starting
with 1 (i.e. the right-hand switch is assumed to be 1 and not 0 to avoid all zeros on
the LEDs when this switch is ON) (see Fig. 2.8).

http://dx.doi.org/10.1007/978-3-319-04708-9_3

2.4 Functions, Procedures, and Blocks 67

Fig. 2.8 An example Position 6 of the Position 3 of the
demonstrating how to test the leftmost ON ('1') rightmost ON ('1')
procedure . is displayed is displayed

© { A \

c

o

£ 000 O O ON Q

o

index O (posmon 1)

EEEEEEEE

The leftmost ON Le rightmost ON
has position 6 has position 3

index 7 (p

entity TestProcedure is -- see Fig. 2.8 for additional explanations
port (sw :in std_logic_vector(7 downto 0); - the onboard switches

led - out std_logic_vector(7 downto 0)); - the onboard LEDs
end TestProcedure;

architecture Behavioral of TestProcedure is

procedure left1_right1
(signal sw :in std_logic_vector;
- sw is an input vector (all parameters are unconstrained; see appendix A)
signal f_left : out std_logic_vector; -- f_left is the first result (the leftmost value | in the sw)
signal f_right : out std_logic_vector) is
- f_right is the second result (the rightmost value | in the sw)
variable first_left, first_right :integer range 0 to 8;

begin - initially the leftmost and the rightmost positions of 'I' are assigned to be 0
first_right := 0; first_left := 0;

for iin sw'range loop - the first loop finds the leftmost position of 'I" (from N-I downto 0)
if sw(i) = "1" then first_left := i+1; exit; -- the range of first_left is from N downto |
end if;

end loop; - f_left below receives the value of the leftmost 'I" in the given vector

f_left <= conv_std_logic_vector(first_left, 4);

foriin sw'reverse_range loop - the second loop finds the rightmost 'I" (from 0 to N-I)
if sw(i) = "1" then first_right := i+1; exit; -- the range of first_right is from I to N
end if;

end loop; - f_right below receives the value of the rightmost 'I' in the given vector

f_right <= conv_std_logic_vector(first_right,4);
end left1_right1; - end of the procedure

signal first_left, first_right : std_logic_vector(3 downto 0);

begin
left1_right1(sw, first_left, first_right); -- use of the procedure leftl_rightl
led(7 downto 4) <= first_left; -- in this example the vector is taken from 8 switches and the
led(3 downto 0) <= first_right; -- results are displayed on groups of LEDs (7,6,5,4) and (3,2,1,0)
end Behavioral;

68 2 Synthesizable VHDL for FPGA-Based Devices

If we declare the procedure like the following:

procedure left1_right1 (sw : in std_logic_vector;
- sw is an input vector (all parameters are unconstrained; see appendix A)
f_left: out std_logic_vector;
- f_left is the first result (the leftmost value | in the sw))
f_right: out std_logic_vector) is
- f_right is the second result (the rightmost value | in the sw)

then the synthesis tools will report an error saying that the output arguments must
be variables whereas the parameters supplied to the procedure sw, first_left and first_
right were declared as signals in the entity TestProcedure above. However, the proce-
dure may be called in a process for the parameters first_left and first_right declared as
variables like the following:

process (sw) - note that the signal sw does not appear on the left-hand side of assignments in the
-- procedure leftl_rightl and the signal declaration does not give rise to any problem

variable first_left, first_right : std_logic_vector(3 downto 0);

begin -- pay attention to the correct use of operators <= and := in the procedure leftl_right
left1_right1(sw, first_left, first_right);
led(7 downto 4) <= first_left;
led(3 downto 0) <= first_right;

end process;

Let us consider another example in which a procedure finds the minimum and
the maximum values in a set of data items used for the function FunctionSort above:

entity ProcMaxMinis - this function was tested for the Nexys-4 board
port (sw »in std_logic_vector(15 downto 0); -- the onboard switches
led - out std_logic_vector(7 downto 0)); - the onboard LEDs

end ProcMaxMin;

architecture Behavioral of ProcMaxMin is
type array4vect is array (0 to 3) of std_logic_vector(3 downto 0);

signal my_array : arraydvect;
procedure max_min (signal Data_in :in array4dvect;
signal max_v - out std_logic_vector;
signal min_v - out std_logic_vector) is
variable data_out : array4vect;
begin

foriin0to 1 loop
if data_in(i*2) <= data_in(i*2+1) then
Data_out(i*2) := data_in(i*2+1); Data_out(i*2+1) := data_in(i*2);
else Data_out(i*2) := data_in(i*2); ~ Data_out(i*2+1) := data_in(i*2+1);

end if;
end loop;
if Data_out(0) > Data_out(2) then max_v <= Data_out(0);
else max_v <= Data_out(2);

end if;

2.4 Functions, Procedures, and Blocks 69

if Data_out(3) < Data_out(1) then min_v <= Data_out(3);
else min_v <= Data_out(1);
end if;
end max_min;
begin

my_array <= (sw(15 downto 12), sw(11 downto 8), sw(7 downto 4), sw(3 downto 0));
max_min(my_array, led(7 downto 4), led(3 downto 0));

end Behavioral;

The method used to find the maximum and the minimum values in a combinational
circuit is described in Sect. 3.6 (see Fig. 3.16). We would only like to demonstrate
here how to use different types of procedures. The presented example is ready to be
tested in prototyping boards with 16 onboard switches and 8 onboard LEDs. Data
items are taken similarly to the function FunctionSort above. The results are displayed on
LEDs divided in groups: led(7 downto 4) for the maximum value and led(3 downto 0)
for the minimum value.

Blocks are concurrent statements that enable designs to be partitioned. They
are intended to clarify hierarchical structure of VHDL modules and (although
are not widely used) may be helpful for some projects. A simplified syntax rule
for block statements is given in appendix A. We will not use blocks in the sub-
sequent chapters and only minimum details about them are given below. Let
us partition the described above module with two functions HammingWeight
and HammingWeightComparator in two blocks labeled block_with_one_function and
block_with_another_function.

entity TestBlock is

port (sw - in std_logic_vector(7 downto 0); ~ -- onboard switches
led - out std_logic_vector(7 downto 0)); -- onboard LEDs
end TestBlock;

architecture Behavioral of TestBlock is
signal HW : integer range 0 to §;
begin
block_with_one_function: block is - the first line of the first block
- code of the function HammingWeight given above
begin
led(6 downto 0) <= conv_std_logic_vector(HammingWeight(sw), 7);
HW <= HammingWeight(sw);
end block block_with_one_function; -- the last line of the first block

block_with_another_function: block is - the first line of the second block
- code of the impure function HammingWeightComparator given above
begin -- see example available at the Internet (http://sweet.ua.pt/skl/Springer2014.html)
led(7) <="1" when HammingWeightComparator(3,6) = true else '0';
end block block_with_another_function; -- the last line of the second block
end Behavioral;

http://dx.doi.org/10.1007/978-3-319-04708-9_3
http://dx.doi.org/10.1007/978-3-319-04708-9_3

70 2 Synthesizable VHDL for FPGA-Based Devices

Functionality of the partitioned design is the same as before. New signal HW in
the architecture declarative part is used to supply the result of the first block to the
second block.

A block statement may include a guarded signal assignment that allows the
assignment only when the guard condition in the block is true. Let us consider an
example:

entity TestBlockGuarded is

port (clk - in std_logic;
enableBTND - in std_logic; - the onboard BTND button
BTNU »in std_logic; -- the onboard BTNU button
sw - in std_logic_vector(7 downto 0); -- onboard switches
led - out std_logic_vector(7 downto 0)); -~ onboard LEDs
end TestBlockGuarded;
architecture Behavioral of TestBlockGuarded is
signal shift_rg - std_logic_vector(7 downto 0);
signal divided_clk - std_logic;
begin

-- the block below copies sw to LEDs when BIND=1 and shifts the copied values left

-- when BTND=BTNU=1

my_block: block (enableBTND='"1" and rising_edge(divided_clk)) is
begin -- the guarded assignment below is done only if the condition above is true

shift_rg <= guarded sw when BTNU ="'0" else shift_rg(6 downto 0) & shift_rg(7);
end block my_block; - the end of the block

led <= shift_rg; -- the value of shift_rg is displayed on the onboard LEDs

- the clock divider below reduces the clock frequency to observe the changes of the LEDs visually
low_freq: entity work.clock_divider port map(clk, divided_clk); -- see appendix B

end Behavioral;

If the onboard button BTND is pressed the states of the onboard switches are
copied to the shift_rg; if, in addition, the onboard button BTNU is pressed the cop-
ied values are shifted left on each rising edge of the divided_clk.

2.5 Generics and Generates

Generic statements provide support for scalable designs through supplying such
parameters as sizes of vectors, ranges of values, and numbers of repetitive ele-
ments. Generics are declared with default values in the entity declarative part. The
first example shows the use of different types of generics.

entity TestGenericsis - it is assumed to be used for the Atlys board
generic(name » string 1= "7954321";-- generic parameters with default values
position sinteger := 2; - indicated after the characters ":="

max_length :integer:=7;
my_char0 : character :='0"

2.5 Generics and Generates 71

my_char9 : character :='9";
MSL sinteger :=4;
bool_value :Boolean := true);
port (led - out std_logic_vector(2*MSL-1 downto 0));

end TestGenerics;

architecture Behavioral of TestGenerics is
signal tmp : Boolean := false;

begin

assert (MSL <=4) - if MSL > 4 the message "wrong size for LEDs" is displayed
report "wrong size for LEDS" - the message indicated here is displayed if MSL > 4
severity FAILURE; -- severity can be NOTE, FAILURE, WARNING and ERROR

assert position <= name'length -~ check the position
report "position is wrong"
severity FAILURE; -- severity FAILURE terminates the synthesis
assert name'length <= max_length -- check the maximal length
report "max length is wrong"
severity WARNING; - for severity WARNING the warning message "max length is wrong"
- (if activated) appears in the Design Summary/Reports
led(2*MSL-1 downto MSL) <=std_logic_vector(conv_unsigned
((character'pos(name(position))-character'pos(my_char0)), MSL));
tmp <= bool_value when character'pos(name(position)) >
character'pos(my_char9) else not bool_value;
led(MSL-1) <="1" when tmp else '0';
led(MSL-2 downto 0) <= conv_std_logic_vector(name'length,MSL-1); -- name'length =7
end Behavioral;

The result on the LEDs is the value 10010111. The first 4 digits (1001) is the
difference in the positions in the ASCII table of the characters ‘9’ and ‘0’. The
next bit is 0 because the position of ‘9’ is not greater than the position of ‘9’ (the
second character in the string “7954321” is ‘9’ and my_char9 is ‘9’). The last 3 bits
(111) represent the length of the string 7954321

The generic line name: string : = “7954321”; defines a generic parameter name
which is a string with the default value “7954321” (see literal in appendix A).
The leftmost character ‘7 in “7954321” has the position 1 and the rightmost
character ‘1’ has the position 7. The part characterpos(name(position)) in the expres-
sion above uses the pos attribute (see attribute in appendix A). For our example
with the default value of the position (i.e. 2) the result of characterpos(name(2)) = cha
racter'pos(‘9’) returns the position of the character ‘9’ in the ASCII table, which is
5710 = 3916. It can be verified in the following statement:

led(2*MSL-1 downto 0) <=
std_logic_vector(conv_unsigned((character'pos(name(2))), 8));

displaying on the LEDs the value “00111001” which is a binary equivalent of
5710 = 3916. The conv_unsigned and std_logic_vector provide the necessary conversion
and casting. The similar result can also be obtained in the following statement:

led(2*MSL-1 downto 0) <= conv_std_logic_vector(character'pos(name(2)), 8);

72 2 Synthesizable VHDL for FPGA-Based Devices

which produces the LEDs value “00111001”.

It is clearly seen from the code above that the design is scalable. Indeed, it is
sufficient to change generic parameters to customize the module for the proper needs.
For example, the tmp signal indicates if a character in the name is below the position of
the character ‘9’ in the ASCII table. If we change the default value of my_char9 from 9 to,
for instance, 5 then a character is checked relatively to the position of the character ‘5.

The assert statement ensures that some constraints are satisfied. For example in
the following fragment:

assert position <= name'length -~ check position
report "position is wrong"
severity FAILURE;

it is checked if the position is less than or equal to the name’length. If the con-
dition (less or equal: <=) is not satisfied then synthesis is terminated (because of
the option severity FAILURE;) and the message “position is wrong” is displayed.
Similarly other errors and warnings may be discovered and they are shown in the
comments above.

We can now use the entity TestGenerics as a component of a higher level entity,
for instance:

entity NowForNexys4Board is - it is assumed to be used for the Nexys-4 board
generic (name : string := "FBCD"; -- the default value "7954321" was changed to "ABCD"
new_position :integer := 3; -- the default value 2 was changed to 3
max_length :integer := "FBCD"length; -- the default value 7 was changed to 4
my_char_F :character :='F'; - the default value '0' was changed to 'F'
- the default value '9" for the my_char9 was unchanged
MSL sinteger :=8); - the default value '4" was changed to '8'
- the default value true for the bool_value was unchanged
port (led - out std_logic_vector(2 * MSL-1 downto 0));
end NowForNexys4Board;

architecture Behavioral of NowForNexys4Board is -- the code is adjusted for the Nexys-4
begin
assert (MSL <= 8) -- now the MSL is tested for the value 8
report "wrong size for LEDs"
severity FAILURE;
assert new_position <= name'length -- the name new_position is used instead of the position
report "position is wrong"
severity FAILURE;
assert name'length <= max_length
report "max length is wrong"
severity WARNING;
To_test: entity work.TestGenerics -- unchanged generics my_char9 and bool_value are
-- not used in the generic map statement below
generic map (name => name, position=> new_position,
max_length => max_length, my_char0 =>my_char_F, MSL => MSL)
port map (led => led);

end Behavioral;

2.5 Generics and Generates 73

As you can see the code above is now used for the Nexys-4 board and the
onboard LEDs show the following values: 1111110110000100 (the construction
generic map permits the default generic values to be replaced with new generic
values). The first eight bits 11111101 represent two’s complement representation
of —3p that is the difference in the positions of ‘C’ (i.e. 671¢) and ‘F’ (i.e. 7010)
in the ASCII table (i.e. position of ‘C’ minus position of ‘F’). Please note, that
all the generic names that were not used in the generic map statement were left
unchanged.

The second example uses generic parameters for the HammingWeight function
described in the Sect. 2.4. Let us create a schematic symbol for the project shown
in Fig. 1.6 in Chap. 1. At the beginning we need to add a copy of schematic source
from Sect. 1.2.1 (see Fig. 1.6) to a new project, i.e. create a new project and select
options Project — Add Copy of Source... in the ISE and add the file DistTop.sch
from the previous project. At the next step let us add a new source that is a top
level module. Then under the Design Utilities option double click on View HDL
Instantiation Template and copy the following code to the top module:

UUT: DistTop port map (-- UUT is a label and we remind that VHDL is not case sensitiv
s in=>,
clk1Hz =>,
Sw=>,
s_out=>,
clock =>,
BTND =>);

Finally the top-level module TestGenerics1Top needs the following code:

entity TestGenerics1Top is

generic(number_of_bits : integer :=48; - generic parameters with default values
max_bits - integer := 52;
bits_sr : std_logic_vector(4 downto 0) := (4 downto 2 =>'0", others=>'1");
rst : std_logic :='0");

port(clk - in std_logic;
led : out std_logic_vector(7 downto 0));

end TestGenerics1Top;

architecture Behavioral of TestGenerics1Top is
signal Rg : std_logic_vector(number_of_bits-1 downto 0):=(others=>'0");
signal s_in, clk1Hz, s_out : std_logic;
signal limit : integer range 0 to max_bits + conv_integer(bits_sr) := 0;
-- code of the function HammingWeight given above in section 2.4
begin
process(clk1Hz) -- the process takes bits from the output s_out of the project from Fig. 1.6
begin -~ and pushes them to the shift register RG
if rising_edge(clk1Hz) then
if limit <= (max_bits + conv_integer(bits_sr)) then -- less than or equal operator <=
[imit <= limit+1; -- assignment operator <=
Rg <= Rg(number_of_bits-2 downto 0) & s_out;
else Rg <= Rg;

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1

74 2 Synthesizable VHDL for FPGA-Based Devices

end if, - after (max_bits+conv_integer(bits_sr)) clock periods the Rg will contain max_bits
end if; -- shifted values. Note that bits_sr bits are skipped because the LUT-based shift register
end process; -- involves the bits_sr delay (see details in Fig. 1.7: sw(4 downto 0) = bits_sr)

led(7 downto 3) <= conv_std_logic_vector(HammingWeight(Rg), 5);
led(2) <=s_out; led(1) <= clk1Hz;
UUT: entity work.DistTop

port map(s_in =>led(0), - see also map in Appendix A

clk1Hz => clk1Hz, Sw => bits_sr, s_out =>s_out, clock => clk, BTND => rst);
end Behavioral;

As can be seen from Fig. 1.6 the LUT-based 256 x 1 ROM is initialized with the
INIT value: OfOfOfOfOfOfOfOfOfOFOfOfOFOFOfOfOFOfOfOfOFfOfOfOf0f0f070301013731.
These 64 hexadecimal digits represent 64 x 4 = 256 binary digits (bits). We want
to consider max_bits = 52 least significant bits (they are shown above in bold font)
and extract the last number_of_bits = 48 bits (i.e. the most recently copied bits to the
register Rg underlined in the INIT value above). The module counts the Hamming
weight in the underlined digits and copies the result to the led(7 downto 3). All
the remaining LEDs are used exactly the same as in Fig. 1.6. Thus, for our default
generic values the result is: led(7 downto 3) = 10010, i.e. 18 values 1 in f070301
01373, = 111100000111000000110000000100000001001101110011,. Changing
generic parameters number_of_bits and max_bits permits the Hamming weights to be
computed for different sub-vectors within the indicated above INIT value.

The generic parameter

bits_sr : std_logic_vector(4 downto 0) := (4 downto 2 =>'0', others=>'1");

involves a named association in which the elements 4, 3, 2 receive the value
‘0’ and the remaining elements receive the value ‘1’ (the details can be found in
appendix A).

The generate construction is employed to instantiate an array of components.
The following code presents an example in which a ripple adder with a generic
size N is created from the full adders described in Sect. 2.1.

entity Topis - it is assumed to be used for the Atlys board
generic(N -integer := 4); - the default value of N is 4
port(Op1 :instd_logic_vector(N-1 downto 0);

Op2 :instd_logic_vector(N-1 downto 0);

led :outstd_logic_vector(N downto 0));
end Top;

architecture Behavioral of Top is
assert N <=4
report "cannot be used for the Atlys board because there are just 8 switches"
severity FAILURE;
signal carry_in : std_logic_vector(N downto 0);

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1

2.5 Generics and Generates 75

signal carry_out : std_logic_vector(N-1 downto 0);

signal sum : std_logic_vector(N-1 downto 0);
begin
carry_in(0) <="0"; - carry in signal for the least significant full adder is zero
generate_adder: - an initial line with the label generate_adder at the beginning
foriin 0to N-1generate -- "for" is used to generate a network from connected full adders
FA: entity work.FULLADD - connections are provided through indexed links

port map(Op1(i), Op2(i), carry_in(i), sum(i), carry_out(i));
carry_in(i+1) <= carry_out(i);
end generate generate_adder;

led <= carry_out(N-1) & sum; -- the results are displayed on the onboard LEDs

end Behavioral;

Figure 2.9 demonstrates how the ripple adder for N = 4 has been generated.
The figure also gives the user constraints file and shows how the adder can be
tested.

Nested generates are also allowed and many examples of networks created with
the aid of nested generates will be discussed in the next chapter. Any VHDL com-
ponent may be generic and the default generic parameters can be replaced with
new values by supplying a generic map construction. We have already explained
such an opportunity when described the entity NowForNexys4Board above. For exam-
ple, we can consider the following higher level component:

entity higher_level is

generic(New_N sinteger := 3);
port(A »in std_logic_vector(New_N-1 downto 0);
B - in std_logic_vector(New_N-1 downto 0);
result - out std_logic_vector(New_N downto 0));

end higher_level;

architecture Behavioral of higher_level is

begin

-- other statements

h_level: entity work.Top -~ generic map permits default generics to be replaced with new generics
generic map(N=> New_N) -~ now N = New_N =3
port map(Op1=>A, Op2=>B, led=>result);

-- other statements

end Behavioral;

The construction generic map permits the default generic (N = 4 in our
example for the Top entity) to be replaced with the new generic (New_N = 3 in our
example).

76 2 Synthesizable VHDL for FPGA-Based Devices

g = s g s = g =
a2 9 5 3 9@ 5 T 2 2 2
© o = © ~ k=2 © o E=2 o ° led <= carry_out(N-1) & sum;
Llelle]|
z l f
g g g
carry_in(0)='0' U U 3 carry_out(3)
—>| FULLADD [=>| FULLADD [—=>{ FULLADD [—=>{ FULLADD [—>
K > K
S S
sum(0) sum(1) sum(2)

c
<«
c

«

f =

3 <]

w

Result:
led <= carry_out(N-1) & sum;

NET "Op1<0>"
{ NET "Op1<1>"

OO0O0Oe OeeO NET "led<0>" LOC = "U18"; | NET "Op1<2>"
NET "led<1>" LOC = "M14"; | | NET "Op1<3>"
E E E E E E NET "led<2>" LOC = "N14"; | NET "0p2<0>"
\ X 4 B | NET "led<3>" LOC = "L14"; | NET "0p2<1>"
Y f

NET "led<4>" LOC = "M13"; NET "Op2<2>"
Oop2 Op1 { NET "Op2<3>"

Fig. 2.9 Functionality of the ripple adder
2.6 Libraries, Packages, and Files

A library is a location with project’s design units (entities or architectures and
packages). The default library has the name work and contains all synthesizable
source files of the project. For example, for the last project of the previous section
the work panel displays the following five files: Atlys.ucf, Full_adder.vhd, Half
adder.vhd, higher_level.vhd, and Top.vhd. For the entity TestGenerics1Top, consid-
ered in the previous section, four files are displayed and one of them contains
schematic: Atlys.ucf, Clock_divider.vhd, DistTop.sch, and GenericsAndAssert.vhd.
If required, a user-defined library can be created, for example, with the name
MyLibrary. In this case in the ISE the following steps can be done: (1) select
Project — New VHDL library — < specify the name MyLibrary and location
(directory) of the library >; (2) move necessary files to the MyLibrary (select the
module and options Source — Move to Library — MyLibrary). Now the new
library MyLibrary needs to be declared, for example:

library MyLibrary; -- the default library work does not need to be declared
use MyLibrary.all;

and the library work in the line like: h_level: entity work.Top needs to be replaced
with a new line: h_level: entity MyLibrary.Top.

A package permits functions, procedures, constants, types, and components to
be described in a (shared) separate file. It provides a way of grouping a collection
of related declarations that serve a common purpose [1]. We consider the follow-
ing three groups: (1) predefined standard packages; (2) predefined IEEE pack-
ages; and (3) user-defined packages. The group (1), included by default, is defined

2.6 Libraries, Packages, and Files 77

in the std and IEEFE standard libraries and describes the basic types: bit, bit_vector,
integer, natural, real (real is frequently not fully supported by synthesis tools), and
boolean. The group (2) is defined in the IEEE packages (that have to be declared)
and describes common data types, functions, and procedures. We consider here the
following packages supported by the XST [3]: std_logic_1164 (describing std_logic,
std_ulogic, std_logic_vector, and std_ulogic_vector types and the relevant conversion func-
tions); std_logic_arith (describing unsigned and signed vectors based on the std_logic
type and the relevant arithmetic operations and functions); std_logic_unsigned
(describing unsigned arithmetic operators for the std_logic and std_logic_vector types);
std_logic_signed (describing signed arithmetic operators for the std_logic and std_
logic_vector types); and std_logic_textio (providing support for text-based file input/
output). Note, that another available package numeric_std is similar to the std_
logic_arith. The package std.textio (defined in the std standard library) provides
support for a simple text-based file input/output.

A user-defined package (group 3) enables access to shared definitions from pro-
ject’s modules. A simplified syntax rule is given in Appendix A. A package needs
to be declared and its body needs to be defined. Let us consider an example:

library |EEE;

use |[EEE.STD_LOGIC_1164.all;

package MyPackage is - declarative part of the package MyPackage
constant limit s integer := 10;

type my_array is array (0 to limit-1) of std_logic_vector(1 downto 0);
function HammingWeight (input: std_logic_vector) return integer;
component clock_divider

port(clk : in std_logic; divided_clk : out std_logic);
end component;

end MyPackage;

package body MyPackage is - body of the package MyPackage
-- code of the function HammingWeight given above in section 2.4

end MyPackage;

The package is created selecting a new source in the ISE (Project — New
Source...) and then VHDL Package. Now the package can be used in other mod-
ules something like the following:

library |EEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use work.MyPackage.all; -~ this line is required

entity UsesPackage is -- we would like to use MyPackage from the work library
port (clk -in std_logic;

sw - in std_logic_vector(7 downto 0);

led - out std_logic_vector(7 downto 0));
end UsesPackage;

78 2 Synthesizable VHDL for FPGA-Based Devices

architecture Behavioral of UsesPackage is
signal divided_clk - std_logic;
begin
- other eventual statements that might use objects declared in the MyPackage
led <= conv_std_logic_vector(HammingWeight(sw),8) when divided_clk =
else (others =>'0";
my_divider : clock_divider port map (clk, divided_clk); -- positional association

end Behavioral;

Since the component clock_divider is declared in the MyPackage, an explicit library
indication (such as my_divider : entity work.clock_divider) is now not needed.

In Sect. 1.7 we described an interaction of the Atlys board with a host computer
using the /OExpansion component from Digilent [4]. The module /OExpansion
can be taken either from a library, for example:

|O_interface : entity work.IOExpansion
port map(EppAstb, EppDstb, EppWr, EppDB, EppWait, MyLed,
MyLBar, MySw, MyBtn, data_from_PC, data_to_PC);

or, alternatively, be declared in a package, for instance:

package InteractionWithPC is
component [OExpansion is -- all the names have to be taken from the I0Expansion [4]
port (EppAstb: in std_logic; EppDstb: in std_logic; EppWr : in std_logic;
EppDB : inout std_logic_vector(7 downto 0); EppWait: out std_logic;

Led :instd_logic_vector(7 downto 0); -- 8 LEDs on the PC side
LBar :in std_logic_vector(23 downto 0); - 24 light bars on the PC side
Sw :out std_logic_vector(15 downto 0); -- 16 switches on the PC side

Btn :out std_logic_vector(15 downto 0); -- [6 buttons on the PC side
dwOut : out std_logic_vector(31 downto 0); -- 32-bit user-data from PC side
dwin :in std_logic_vector(31 downto 0)); -- 32-bit user-data to PC side

end component;
end InteractionWithPC;

package body InteractionWithPC is - the package body is empty
end InteractionWithPC;

Let us demonstrate the same interactions as shown in Fig. 1.27 (see Sect. 1.7):

use work.InteractionWithPC.all;
entity TestIntPC is

port (sw - in std_logic_vector(7 downto 0); -- onboard switches
led - out std_logic_vector(7 downto 0); -- onboard LEDs
EppAstb : in std_logic; -- signals for the 10Expansion component

EppDstb : in std_logic;
EppWr :in std_logic;
EppDB : inout std_logic_vector(7 downto 0);

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1

2.6 Libraries, Packages, and Files 79

EppWait : out std_logic);

end TestIntPC;
architecture Behavioral of TestIntPC is
signal MyLed - std_logic_vector(7 downto 0); -- declarations of user signals
signal MyLBar - std_logic_vector(23 downto 0);
signal MySw - std_logic_vector(15 downto 0);
signal MyBtn - std_logic_vector(15 downto 0);
signal data_to_PC - std_logic_vector(31 downto 0);
signal data_from_PC : std_logic_vector(31 downto 0);
begin
data_to_PC <=data_from_PC; -- data received from the host PC are sent back to the PC
MyLed <=sw; -- onboard switches are displayed on virtual LEDs (PC side)
led <= MySw(7 downto 0); -- 8 switches (PC side) are displayed on the board LEDs

MyLBar <= MySw(15 downto 8) & MyBtn; -- 8 switches and MyBtn are displayed

|O_interface : I0Expansion
port map(EppAstb, EppDstb, EppWr, EppDB, EppWait, MyLed,
MyLBar, MySw, MyBtn, data_from_PC, data_to_PC);

end Behavioral;

Alternatively the line use work.InteractionWithPC.a11 can be removed and the line 10_
interface : IOExpansion needs to be replaced with: 10_interface : entity work.IOExpansion.

The XST (Xilinx Synthesis Technology) provides a limited support for working
with files, which is described in [3]. We consider here only one example demon-
strating how to read 8-bit words from a file data.txt and to record these words in
an array my_array.

use std.textio.all; -- this package has to be used

use ieee.std_logic_textio.all; -- this package has to be used

entity TestTextFile is - text file data.txt has to be recorded in the same directory
port (ck :in std_logic; - ports can be initialized if required (see below)

led :out std_logic_vector(7 downto 0) := (others=>'0"));
end TestTextFile;
architecture Behavioral of TestTextFile is
type my_array is array(0 to 15) of std_logic_vector(7 downto 0);
impure function read_array (input_data : in string) return my_array is
file my_file s text is in input_data;
variable line_name : ling;
variable a_name :my_array;
begin
for i in my_array'range loop
readline (my_file, line_name); -- reading a line from the file my_file
read (line_name, a_name(i)); -- reading std_logic_vector from the line line_name
end loop;
return a_name;
end function;

80 2 Synthesizable VHDL for FPGA-Based Devices

signal array_name : my_array:=read_array("data.txt"); -- initializing the signal array_name
signal divided_clk : std_logic; - a low-frequency clock

begin
process(divided_clk) - changes are done with a low frequency and can be appreciated visually
variable address : integer range 0 to 15 := 0;
begin
if rising_edge(divided_clk) then
led <= array_name(address); -- displaying on the LEDs lines from the file data.txt
address := address+1; - incrementing the address to get the next vector
end if;
end process;
divider: entity work.clock_divider ~port map (clk, divided_clk);

end Behavioral;

The file my_file is declared as follows: file myfile : text is in input_data; where
input_data is a string with the file name (data.txt in our example) supplied to the
function read_array as an argument (see: signal array_name:my_array: = read_array
(“data.txt”);). Two functions readline (text, line) (defined in the package std.textio) and read
(line, std_logic_vector) (defined in the package std_logic_textio) are used to get data from
the file data.txt, where the variables my_file and line_name have the types text and line,
respectively. The variable a_name is an array of 16 vectors of type std_logic_vector(7
downto 0). Thus, firstly a line line_name is read: readline (my_file, line_name); and then
a vector a_name(i) of type std_logic_vector(7 downto 0) is taken by the function read
(line_name, a_name(i)); and returned from the function read_array. A similar technique
is used in [3] to initialize embedded memories from files like data.zxt. Figure 2.10
shows how the TestTextFile can be tested in the Atlys prototyping board (the file
data.txt can be prepared in any text editor and saved in the same directory with the

project). Additional examples are given in Appendix A (see file).

'data'tXt: States of the LEDs: Initial state for the LEDs is all zeros (see
11111111 — @0 0 @ @ 1s declarations for the entity TestTextFile)
01111110 —> O @

0 (XXX
5000 8800
00111100 —> A
00011000 —> 0 0O 0O ® ® 00 O process(divided_clk)
00000000 —> 0O OO0 O 00O variable address : integer range 0 to 15 := 0;
00011000 —> O OO ® ® OO O begin
2 o o e e i rising_edge(divided_clk) then
S — 0000 0000 led <= array_name(address);
S | 00000000 — QOO0 O 000 address := address+1;
10000001 —> @ O OO O OO @ end if;
01000010 — O @ OO O 0O @O0 .
00100100 — >0 O @O O @0 O end process;
00011000 —Q O O ® ® OO O .)
00000000 —>0Q O 0O O 00O Data are displayed repeatedly, i.e. thg addresses are
15| 10101010 >0 000 @000 changed from 0 to 15 and then again from 0 to 15

Fig. 2.10 Testing the project, which reads data from the file data.txt

2.6 Libraries, Packages, and Files 81

Reading from a file can be useful to fill in a memory/array during synthesis
which is similar to initialization. Writing to a file cannot be done from a working
project (since it is done during synthesis). It may be used for debugging, writing
specific constants or generic values [3]. Some examples can be found in [3] and
one example is given in Appendix A (see file).

2.7 Behavioral Simulation

This section presents a brief introduction to a behavioral (functional) simulation
that can be done before an implementation of the project to verify that the logic in
the project modules is correct. Additional details can be found in [5, 6]. We will
use the Xilinx ISim simulator which is automatically installed with the ISE (and
selected when needed in the Design Properties dialog box of the ISE).

Figure 2.11 explains how a behavioral simulation is organized for which two
types of files are required: (1) the modules which we would like to examine
(VHDL or schematic for our examples); (2) a test bench file created for the mod-
ules. Besides, simulation libraries for environment specific components (such as
libraries for Xilinx primitives and IP cores) have to be included if the primitives/
cores are used in the design. A test bench file is created for a particular project and
supplies stimulus to the modules. The creation can be done in the ISE by adding a
new source (of type VHDL Test Bench) and associating it with the verified module.

We consider below three examples. The first one demonstrates behavio-
ral simulation for the full adder (FULLADD) described in VHDL in Sect. 2.1,
which is a combinational circuit. The second example illustrates simulation of a
sequential circuit that is an up/down binary counter with clock enable and syn-
chronous active-high reset. The counter was taken from the ISE templates avail-
able through selection Edit — Language Templates... — VHDL — Synthesis
Constructs — Coding Examples — Counters — Binary — Up/Down Counters.
The last example enables the behavior of the circuit created in the ISE schematic
editor (see Fig. 1.6 in Chap. 1) with Xilinx library primitives to be tested.

All the steps (a, b, and c), needed for the first example, are shown in Fig. 2.11. At
the first step (a) we create a project for simulation, i.e. we add a test bench (named
TestBenchFA) and associate the test bench with the FULLADD module described in
Sect. 2.1. A template for the test bench is proposed by the ISE but we will change the
code as it is shown at the right-hand part of Fig. 2.11. The entity FULLADD is instanti-
ated in the architecture and the project structure is shown in Fig. 2.11 near the label
a. There is one process (stim_proc) in the architecture body which generates stimulus
(inputs of the FULLADD that are changed every 50 ns until the final wait statement is
reached). At the second step b the test bench is checked for errors. In our case there is
no error and we proceed to the last step ¢ where the Simulate Behavioral Model option
is activated. As a result, the ISim window with simulation waveforms is opened. For
better analysis the waveforms need to be zoomed (see Fig. 2.11). A cursor permits to
check values in a particular time (after 77 ns in our example depicted in Fig. 2.11).

http://dx.doi.org/10.1007/978-3-319-04708-9_1

82 2 Synthesizable VHDL for FPGA-Based Devices

The test bench module is (2 .)
The tested | created for the tested module | Test bench Ilbrqry leee; .
use ieee.std_logic_1164.all;
module Project structure on m?\dme entity TestBenchFA is
example of FULLADD end TestBenchFA;

architecture behavior of TestBenchFA is
. . signal A : std_logic :='0';
Simulation signal B : std_logic f

[xc6slx45-3csg324
= TestBenchFA

5

uut - FULLADD ; ; signal carry_in :std_logic :='0%;
1— half add libraries for K il o
Y at_acaer primitives signal carry_out : std_logic;

u2 — half_adder and IP cores begin

-- instantiate the Unit Under Test (UUT) below
73,00 e uut: entity work.FULLADD port map
(A=>A, B=>B, carry_in =>carry_in,
sum =>sum, carry_out => carry_out);
: stim_proc: process -- Stimulus process
B anmye o " begin --note, that not all input vectors are tested
1
o

50 re. 0 150ns 200 ns.

A<="0";B<="0"; carry_in <='0";
wait for 50 ns; - suspends the process for 50 ns

A<='0"; B<="1"; carry_in <="'0';
L — - J -)\ - J wait for 50 ns;
A<="1";B<="1"; carry_in <="'0';
wait for 50 ns;
A<='1";B<="1"; carry_in <="1";
wait for 50 ns;
A<="'1"; B<="0'"; carry_in <='0";
wait for 50 ns;
wait; -- suspends the process
end process stim_proc;
end behavior;

=k
=
2,
24,

-0

J
. . T
@ Simulation — Behavioral Check Syntax — @

A<='0;B<="0'; carry_in <

A<='0'; B<="1"; carry_in <='0;
A<='1";B<="1'; carry_in <="'0';
A<='1; B<="1"; carry_in <="'1';|

Simulate Behavioral Model
wait for 50 ns;
wait for 50 ns;
wait for 50 ns;
wait for 50 ns;

Simulation —

Fig. 2.11 An example of behavioral simulation for the full adder

The following module will be simulated in the second example:

entity Counter is
port (reset, clock . in std_logic;
clock_enable -in std_logic;
inc_dec -in std_logic;
outputs :out std_logic_vector (3 downto 0));

end Counter;

architecture Behavioral of Counter is
signal count : std_logic_vector(3 downto 0);

begin
process (clock)
begin
if rising_edge(clock) then
if reset="1" then count <= (others =>"0'); -- synchronous reset

elsif clock_enable="1" then
if inc_dec="1"then count <= count + 1; -- if inc_dec=1 then increment the counter
else count <=count - 1; -- if inc_dec=0 then decrement the counter
end if;
end if;
end if;
end process;

outputs <= count;

end Behavioral;

2.7 Behavioral Simulation 83
The following test bench for_counter is added and associated with the Counter:

entity for_counter is
end for_counter;

architecture behavior of for_counter is

signal reset 2 std_logic := '0°;
signal clock 2 std_logic := 0",
signal dock_enable 2 std_logic := 0",
signal inc_dec 2 std_logic := 0",
signal outputs : std_logic_vector(3 downto 0);

constant clock_period : time := 30 ns; -~ clock period definitions (valid for simulation only)
begin
uut: entity work.Counter port map -- instantiate the unit under test (uut)

(reset => reset, clock => clock, clock_enable => clock_enable,
inc_dec => inc_dec, outputs => outputs);

dock_generator : process - clock process definitions
begin -- the process generates clock pulses
clock <="0",
wait for dock_period/2; - duty cydle for the clock is 50%
cdock <="1I",

wait for dock_period/2;
end process clock_generator

stim_proc: ~ process -- stimulus process
begin
reset <="I"; - the first line **reset<="|"*
wait for 30 ns; -- set the reset signal to 'I' and wait for 30 ns
reset <= "0'; clock_enable <= "0'; inc_dec <="1";
wait for 20 ns; -- change signals as it is indicated above and wait for 20 ns
reset <= "0"; clock_enable <= "I"; inc_dec <= "I,
wait for 150 ns; -- change signals as it is indicated above and wait for 150 ns
reset <= "0"; clock_enable <= "I"; inc_dec <="0";
wait for 550 ns; - change signals as it is indicated above and wait for 550 ns
end process; - begin from the line **reset<="1"* after 30+20+150+550=750 ns

end behavior;

Since the Counter is a sequential circuit the test bench needs to supply clock
signal and it is done in the clock_generator process. The simulation results with addi-
tional details are given in Fig. 2.12.

The last simulation is done for the circuit in Fig. 1.6 from which the clock_divider
has been removed (see Fig. 2.13). Indeed, for simulation purposes a low frequency
clock is not needed. All the required steps are exactly the same as for VHDL mod-
ules (see Fig. 2.11). The only difference is the association of the added test bench
with the top-level schematic entity (DistTop.sch in our example).

http://dx.doi.org/10.1007/978-3-319-04708-9_1

84 2 Synthesizable VHDL for FPGA-Based Devices

For synchronous reset the outputs are uninitialized before the first TR
rising edge of the clock
PR PR PR, e, R R P PR R

i
F=

FLALFL AL PR mL R P LU PR R PP PR mL T
| | I | | T] L]

1
0
1
3

> W oovipetspy |3 [
a

i | —
s
oese pa | T]

e,‘&'o o Clock period is 30 ns = 30 000 ps
05, e
G\ i Re-initialization after 30 + 20 + 150 + 550 = 750 ns

O Simulation Run Time was set to 900 ns (see Process
Properties for Simulate Behavioral Model)

Fig. 2.12 Simulation results for the Counter with additional details

INIT=010f0FOfOIOfO R0 FO 0 A0 ANIN0MNT0301013731

ROM256x1 € SRLC32E
o
QO)y—— A0 [o) D
Q(ty——ro Al high CE Q
Q@2y———-{ A2 clock PCLK Q3tf—e
Q@E——/ A3
Qay—— Ad
vee Q(5)——| A5 —
CBSCE a1
Q(7y—— AT
high Q0] =——a({:0)
CE CEO —a
c TCt+—a
CLR
[BTHD> | Swid:0)

Fig. 2.13 The circuit in Fig. 1.6 without the clock_divider

The following test bench is created:

library unisim; -- include other libraries before this line
use unisim.Vcomponents.all; - this package is needed for Xilinx primitives used in the schematics

entity DistTop_DistTop_sch_tb is
end DistTop_DistTop_sch_tb;

architecture behavioral of DistTop_DistTop_sch_tb is

signal s_in, s_out :std_logic;
signal sw :std_logic_vector (4 downto 0);
signal BTND :std_logic;
signal clock :std_logic;
constant clock_period : time := 30 ns;
begin

module_to_test: entity work.DistTop port map
(s_in=>s_in, sw =>sw, s_out => s_out, BTND => BTND, clock => clock);

http://dx.doi.org/10.1007/978-3-319-04708-9_1

2.7 Behavioral Simulation 85

clock_generation: process -~ clock process definitions

begin -- the process generates clock pulses
clock <='0%
wait for clock_period/2;
clock <="1"

wait for clock_period/2;
end process clock_generation;

-~ a stimulus process is not needed because we would like the values

- of sw and BTND to be permanently assigned in the line below

sw <= (4 downto 3 =>'0', others=>'1"); BTND <="0'; -- settings are the same as in Fig. I.7
-- if required the values of sw and BTND may be changed in the relevant stimulus process, which

- will be used instead of the line above

end behavioral;

clock ill |2l l3| i4| |S| |6I 1?' I8 IQl i10| |ll| I12| 113 ﬁlll Ilﬂ ﬁﬁl

L
;L arro=2 | “r00="%€
|l |l

[) I

‘tooo=""1 , . ‘1100=""¢
0) $

s_out Shift 8 clock cycles (Sw4,...,.Sw0="00111")

50 ne |00 s ilmm :mm 250 s 300 ns |350ns 400 ne. S0
clock _T11_ TpL I3 |74 15 _T6._ 7. 18l |19 110 /a1l 112l 113l 14l 115 116
Ss,(l)r:nlt_ o l0o 0. T I'Lo 047 T T TL_0_NT T L0 0
o =g : ——Tlo-—9g 0 TT Tl 0 0/
BTND I J J 1 Y
Shift 8 clock cycles

Fig. 2.14 Comparing the results of physical tests in Fig. 1.7 (the upper part) and behavioral
simulation (the lower part)

The results of simulation are exactly the same as in Fig. 1.7. To show it clearer
Fig. 2.14 depicts the waveforms from Fig. 1.7 and the results of behavioral simula-
tion that uses the test bench given above.

There are many options and modes of simulation which are not described here
and can be found in [5, 6].

2.8 Prototyping

The majority of the considered in this chapter examples can be implemented and tested
in different prototyping boards described in Sect. 1.6. Clearly, the user constraints file
(i.e. pin assignments) and the FPGA part number have to be changed properly.

The following example has been tested in the DE2-115 board (the Xilinx user
constraints file has been changed to the proper Altera setting file [7]):

http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1
http://dx.doi.org/10.1007/978-3-319-04708-9_1

86 2 Synthesizable VHDL for FPGA-Based Devices

library |EEE;
use |IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_ARITH.all;

entity AlteraProject is - all names (except clock and reset) are the same as in [7]
generic(size s integer := 18;-- the size of vectors for the HammingWeight function
n_LEDs s integer := 5);-- the number of the used LEDs
port (clock - in std_logic; - PIN_Y2
reset »in std_logic; -- PIN_M23 for key0
sw :in std_logic_vector(size-1 downto 0);
ledr : out std_logic_vector(n_LEDs-1 downto 0);
ledg : out std_logic_vector(n_LEDs-1 downto 0));
end AlteraProject;

architecture Behavioral of AlteraProject is
- code of the function HammingWeight from section 2.4 without any change

signal count » integer range 0 to size-1;

signal divided_clk : std_logic;
begin
process (divided_clk)
begin
if rising_edge(divided_clk) then
if not reset ='1' then count <= 0; - when the key0 is pressed then count is zero
else - if HammingWeight(sw)>0 then count is changed from | to HammingWeight(sw)
count <= (count mod HammingWeight(sw))+1; -- mod is the VHDL modulo operator
end if;
end if;
end process;

ledr <= conv_std_logic_vector(count, n_LEDs);
ledg <= conv_std_logic_vector(HammingWeight(sw), n_LEDs);

divider: entity work.clock_divider
port map (clock, divided_clk);

end Behavioral;

If one or more switches are ON (HammingWeight(sw) > 0) then the count is changed
cyclically from 1 to the HammingWeight(sw). If reset is active (keyO button is pressed)
then count = 0. The value of the HammingWeight(sw) is displayed on green LEDs
(ledg) and the value of count is displayed on red LEDs (ledr). The reset signal is
active low (that is why the not operation is applied to this signal).

Some projects of the book use vendor-specific libraries and technology-depend-
ent components. The following VHDL code gives an example:

library IEEE; - Xilinx LUT-based computation of the Hamming weight (see
use [EEE.STD_LOGIC_1164.all; - the simplest Hamming weight counter in section 3.9)
library UNISIM; - Xilinx library UNISIM for LUT primitives that are used below

2.8 Prototyping 87

use UNISIM.VComponents.all;
entity LUT_6to3 is
port (SixBitinput - in std_logic_vector (5 downto 0); - ¢é-bit input vector

ThreeBitOutput : out std_logic_vector (2 downto 0)); -- 3-bit Hamming weight
end LUT_6to3;
architecture Behavioral of LUT_6t03 is - Xilinx LUTs below are configured in such a way that

begin -- permits the Hamming weight of 6-bit input vector to be produced in a combinational circuit
LUT6_inst1 : LUT6 - Xilinx LUT primitive LUT6
generic map (INIT => X"fee8e880e8808000") - LUT Contents

port map (ThreeBitOutput(2), SixBitinput(0), SixBitinput(1), SixBitinput(2),
SixBitlnput(3), SixBitlnput(4), SixBitlnput(5));
LUT6_inst2 : LUT6 — Xilinx LUT primitive LUT6
generic map (INIT => X"8117177e177e7ee8") — LUT Contents
port map (ThreeBitOutput(1), SixBitinput(0), SixBitinput(1), SixBitinput(2),
SixBitinput(3), SixBitlnput(4), SixBitlnput(5));
LUT6_inst3 : LUT6 - Xilinx LUT primitive LUT6
generic map (INIT => X"6996966996696996") — LUT Contents
port map (ThreeBitOutput(0), SixBitlnput(0), SixBitlnput(1), SixBitinput(2),
SixBitInput(3), SixBitlnput(4), SixBitInput(5));

end Behavioral;

The code above cannot be synthesized in the Quartus environment for Altera
FPGAs. However, an alternative code below that uses constants instead of the Xilinx
LUT®6 primitive can be synthesized and works fine for both Altera and Xilinx FPGAs:

library IEEE; - the code below is tested in the DE2-115 board
use |[EEE.STD_LOGIC_1164.all; - with the Altera Cyclone-IVE FPGA
use IEEE.STD_LOGIC_UNSIGNED.all; -- this package is needed for type conversions below

entity LUT_6to3 is
port (SixBitinput »in std_logic_vector (5 downto 0);
ThreeBitOutput : out std_logic_vector (2 downto 0));
end LUT_6to3;

architecture Behavioral of LUT_6to3 is

type LUT is array (2 downto 0) of std_logic_vector(63 downto 0);

-- array below contains the same constants as used in the INIT statements in the code with LUTs above

constant conf_LUT : LUT:=(X"fee8e880e8808000", -- array of constants
X"8117177e177e7ee8", - is used here
X"6996966996696996");

begin - Hamming weight is found in the statements below

ThreeBitOutput <= conf_LUT(2)(conv_integer(SixBitinput)) &
conf_LUT(1)(conv_integer(SixBitinput)) &
conf_LUT(0)(conv_integer(SixBitinput));

-- alternatively the following generate statement can be used:
- gen: for i in conf_LUT'range generate

ThreeBitOutput(i) <= conf_LUT(i)(conv_integer(SixBitinput));
--end generate gen;

end Behavioral; -- the same code can be used for Xilinx FPGAs without any change

88 2 Synthesizable VHDL for FPGA-Based Devices

The two given above VHDL codes describe similar functionalities and permit
the Hamming weight of 6-bit input vectors to be calculated in combinational
circuits. The first code explicitly configures the Xilinx LUTs and the second code
implicitly configures actually the same LUTs but without the need for vendor-
specific libraries. The circuit built by Altera Quartus occupies 8 logic elements and
the circuit built by Xilinx ISE for the Nexys-4 board occupies 3 LUTs. Such way
enables the projects of the book to be also implemented and tested in FPGAs of
other companies.

Similarly the majority of other modules described in this chapter have been
tested in the DE2-115 board.

Many additional examples can be found in [8, 9].

References

—

. Ashenden PJ (2008) The designer’s guide to VHDL, 3rd edn. Morgan Kaufmann

2. Ashenden PJ (2008) Digital design: an embedded systems approach using VHDL. Morgan
Kaufmann

3. Xilinx Inc (2013) XST wuser guide for Virtex-6, Spartan-6, and 7 series devices.
http://www.xilinx.com/support/documentation/sw_manuals/xilinx 14_7/xst_v6s6.pdf. Accessed
17 Nov 2013

4. Digilent Inc (2009) Adept I/O expansion reference design. http://www.digilentinc.com/
Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT?2. Accessed 9 Nov 2013

5. Xilinx Inc (2011) ISE In-Depth Tutorial. http://www.xilinx.com/support/documentation/sw_
manuals/xilinx13_1/ise_tutorial_ug695.pdf. Accessed 17 Nov 2013

6. Xilinx Inc (2009) Synthesis and simulation design guide. http://www.xilinx.com/support/
documentation/sw_manuals/xilinx 11/sim.pdf. Accessed 17 Nov 2013

7. Altera Inc (2013) Quartus II setting file with pin assignments for DE2-115.
http://www.altera.com/education/univ/materials/boards/de2-115/unv-de2-115-board.html.
Accessed 17 Nov 2013

8. Skliarova I, Sklyarov V, Sudnitson A (2012) Design of FPGA-based circuits using hierarchical
finite state machines. TUT Press, Tallinn

9. Sklyarov V, Skliarova I (2013) Parallel processing in FPGA-based digital circuits and systems.

TUT Press, Tallinn

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/xst_v6s6.pdf
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/ise_tutorial_ug695.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/ise_tutorial_ug695.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/sim.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/sim.pdf
http://www.altera.com/education/univ/materials/boards/de2-115/unv-de2-115-board.html

2 Springer
http://www.springer.com/978-3-319-04707-2

Synthesis and Optimization of FPGA-Based Systems
Sklyarov, V.; Skliarova, |.; Barkalov, &,; Titarenko, L.
2014, XX, 432 p. 235 illus., Hardcover

ISBN: 278-3-319-04707-2

	2 Synthesizable VHDL for FPGA-Based Devices
	Abstract
	2.1 Introduction to VHDL
	2.2 Data Types, Objects and Operators
	2.3 Combinational and Sequential Processes
	2.3.1 Combinational Processes
	2.3.2 Sequential Processes

	2.4 Functions, Procedures, and Blocks
	2.5 Generics and Generates
	2.6 Libraries, Packages, and Files
	2.7 Behavioral Simulation
	2.8 Prototyping
	References

