Linear Toric Fibrations

Sandra Di Rocco

1 Introduction

These notes are based on three lectures given at the 2013 CIME/CIRM summer
school Combinatorial Algebraic Geometry.

The purpose of this series of lectures is to introduce the notion of a toric fibration
and to give its geometrical and combinatorial characterizations.

Toric fibrations f : X — Y, together with a choice of an ample line bundle L
on X are associated to convex polytopes called Cayley sums. Such a polytope is a
convex polytope P C R” obtained by assembling a number of lower dimensional
polytopes R;, whose normal fan defines the same toric variety Y. Let R" = M @ R,
for a lattice M. The building-blocks R; are glued together following their image
via a surjective map of lattices w : M — A, see Definition 3.7. In particular the
normal fan of the polytope 7 (P) defines the generic fiber of the map f. We will

denote Cayley sums by Cayley(Ry, . . ., R;)r.y. Our aim is to illustrate how classical
notions in projective geometry are captured by certain properties of the associated
Cayley sum.

When the image polytope 7 (P) is a unimodular simplex Ay the generic fiber
of the fibration f is a projective space P¥ embedded linearly, i.e. L|z = Opi(1).
For this reason the fibration is called a linear toric fibration. The following picture
illustrates a linear toric fibration and the representation of the associated polytope
as a Cayley sum.
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Section 3 will be devoted to define these concepts and to give the most relevant
examples. In the following two sections we will present two characterizations of
Cayley sums corresponding to linear toric fibrations. In both cases there are rich
and interesting connections with classical projective geometry.

Section 4 discusses discriminants of polynomials. A polynomial supported on a
subset &/ C Z" is a polynomial in n variables x = (xy,..., x,) of the form p, =
D e Cax®. The of -discriminant is again a polynomial in |.o7| variables, A . (c,),
vanishing whenever the corresponding polynomial has at least one singularity in
the torus (C*)". Understanding the existence and in that case the degree of the
discriminant polynomial, for given classes of point-configurations <7, is highly
desirable. Finite subsets o/ C Z" define toric projective varieties, X, C PI*/I=1,
It is classical in Algebraic Geometry to associate to a given embedding, X C P,
the variety parametrizing hyperplanes singular along X. This variety is called the
dual variety and it is denoted by X V. Understanding when the codimension of the
dual variety is higher that one and giving efficient formulas for its degree is a long
standing problem. We will see that projective duality is a useful tool for describing
the discriminants A ,, when the associated polytope Conv(./) is smooth or simple.
In fact the case when A, = 1 is completely characterized by Cayley sums and thus
by toric fibrations.

In the non singular case the following holds.

Characterization 1. If P,; = Conv(/) is a smooth polytope then the following
assertions are equivalent:

(a) Py = Cayley, y(Ro,...,R,) witht = max(2, ”gl).

(b) codim(X},) > 1.
© Ay =1.

When the codimension of X Y, is one then its degree is given by an alternating
sum of volumes of the faces of the polytope P.. We will see that this formula
corresponds to the top Chern class of the so called first jet bundle. This interpretation
has a useful consequence. When the codimension of X, is higher than one this
Chern class has to vanish. This leads to another characterization of Cayley sums.

Characterization 2. If P,, = Conv() is a smooth polytope then the following
assertions are equivalent:

(@) Py = Cayley, y(Ro.....R,) witht > max(2, atly,

®) > gir<p, (=1)cdimF) (dim(F) + 1)! Vol(F) = 0.
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In Sect. 5 we discuss the problem of classifying convex polytopes and algebraic
varieties. A classification is typically done via invariants. In recent years much
attention has been concentrated on the notion of codegree of a convex polytope.

codeg(P) = minz{t|tP has interior lattice points}

The unimodular simplex for example has codeg(A,) = n + 1. Batyrev and Nill
conjectured that imposing this invariant to be large should force the polytope to be
a Cayley sum.

It turned out that a Q-version of this invariant, what we denote by u(P),
corresponds to a classical invariant in classification theory of algebraic varieties,
called the log-canonical threshold. Let (X p, Zp) be the toric variety and ample line
bundle associated to the polytope P. The canonical threshold p(.Zp) and the nef-
value 7(£p) are the invariants used heavily in the classification theory of Gorenstein
algebraic varieties. In particular Beltrametti-Sommese-Wisniewski conjectured that
imposing w(-Zp) to be large should force the variety to have the structure of a
fibration.

Again in the toric setting we will see that these two stories intersect making it
possible to prove the above conjectures, at least in the smooth case, and leading to
yet another characterization of Cayley sums.

Characterization 3. Let P be a smooth polytope. The following assertions are
equivalent:

(a) codeg(P) = (n + 3)/2.

(b) P is isomorphic to a Cayley sum Cayley(Ry,..., R/)ry where t + 1 =
codeg(P) withk > 7.

© (L) =1(Lp) = (n +3)/2.

In fact the characterizations above extend to more general classes of polytopes,
not necessarily smooth, as we explain in Sects. 4 and 5. Section 6 is devoted to give
a complete proof of these characterizations.

2 Conventions and Notation

We assume basic knowledge of toric geometry and refer to [EW, FU, ODA] for the
necessary background on toric varieties. We will moreover assume some knowledge
of projective algebraic geometry. We refer the reader to [HA, FUb] for further
details. Throughout this paper, we work over the field of complex numbers C. By a
polarized variety we mean a pair (X, L) where X is an algebraic variety and L is an
ample line bundle on X.
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2.1 Toric Geometry

In this note a toric variety, X, is always assumed to be normal and thus defined by
afan ¥y C N ® R for a lattice N. By X (¢) we will denote the collection of
t-dimensional cones of X x. The invariant sub-variety of codimension ¢ associated
to a cone o0 € X(¢) will be denoted by V(o).

For a lattice A we set Ag = A ®z R. We denote by AY = Hom(A, Z) the dual
lattice. If 7 : A — I is a morphism of lattices we denote by nig : Ag — I'r the
induced R-homomorphism. By a lattice polytope P C Ar we mean a polytope with
vertices in A.

Let P C R”" be alattice polytope of dimension n. Consider the graded semigroup
I1p generated by ({1} x P)N (N x Z"). The polarized variety (Proj(C[I1p]), O(1))
is a toric variety associated to the polytope P. It will be sometimes denoted by
(Xp, Lp). Notice that the toric variety X p is defined by the (inner) normal fan of
P. Vice versa the symbol Px ;) will denote the lattice polytope associated to a
polarized toric variety (X, L).

Two polytopes are said to be normally equivalent if their normal fans are
isomorphic.

The symbol A, denotes the smooth (unimodular) simplex of dimension n. Recall
that an n-dimensional polytope is simple if through every vertex pass exactly n
edges. A lattice polytope is smooth if it is simple and the primitive vectors of the
edges through every vertex form a lattice basis. Smooth polytopes are associated
to smooth projective toric varieties. Simple polytopes are associated to Q-factorial
projective toric varieties.

When the toric variety is defined via a point configuration o C Z" we will
use the symbol (X, .%Z,,) for the associated polarized toric variety and P, =
Conv (/) for the associated polytope. The corresponding fan is denoted by X ;.

2.2 Vector Bundles

The notion of Chern classes of a vector bundle is an essential tool in some of the
proofs. Let E be a vector bundle of rank k over an n-dimensional algebraic variety
X . Recall that the i -th Chern class of E, ¢; (E), is the class of a codimension i cycle
on X modulo rational equivalence. The top Chern class of a rank k = n vector
bundle is ¢, (E). The same symbol ¢, (E) will be used to denote the degree of the
associated zero-dimensional subvariety.

The projectivization of a vector bundle plays a fundamental role throughout these
notes. Let S/ (E) denote the /-th symmetric power of a rank r + 1 vector bundle E.
The projectivization of E is P(E) = Proj(@j’ioSl (E)). It is a projective bundle
with fiber F = P(E), = P(E,) = P". Let & : P(E) — Y be the bundle map.
There is a line bundle £ on P(E), called the tautological line bundle, defined by the
property that £ =~ Opr(1). When E is a vector bundle on a toric variety Y then



Linear Toric Fibrations 123

the projective bundle P(E) has the structure of a toric variety if and only if E =
L ®...® L, [DRS04, Lemma 1.1.]. When the line bundles L; are ample then the
tautological line bundle £ is also ample.

We refer to [FU] for the necessary background on vector bundles and their
characteristic classes.

3 Toric Fibrations

Definition 3.1. A roric fibration is a surjective flat map f : X — Y with connected
fibers where

(a) X is a toric variety
(b) Y is anormal algebraic variety
(¢) dim(Y) < dim(X).

Remark 3.2. A surjective morphism f : X — Y, with connected fibers between
normal projective varieties, induces a homomorphism from the connected compo-
nent of the identity of the automorphism group of X to the connected component of
the identity of the automorphism group of Y, with respect to which f is equivariant.
It follows thatif f : X — Y is a toric fibration then Y and a general fiber F admit a
toric structure with respect to which f becomes an equivariant morphism. Moreover
if X is smooth, respectively QQ-factorial, then Y and F are also smooth, respectively
Q-factorial.

Example 3.3. Let Ly, ..., Li be line bundles over a toric variety Y. The total space
P(Ly @ ... & Ly) is a toric variety, Lemma 1.1, and the projective bundle 7 :
P(Ly® ... Ly) — Y is a toric fibration.

3.1 Combinatorial Characterization

A toric fibration has the following combinatorial characterization, see [EW, Chapter
VI] for further details. Let N =~ Z" be alattice, ¥ C N ® Rbeafanand X = X5,
the associated toric variety. Leti : A < N be a sub-lattice.

Proposition 3.4 ((EW]). The inclusion i induces a toric fibration, f : X — Y

if and only if:

(a) A is a primitive lattice, ie. (AQR)NN = A.

(b) Foreveryo € X(n),o0 =t +1n,wheret € AandnN A = {0} (i.e. X isa
split fan).

We briefly outline the construction. The projection 7 : N — N/ A induces a map
of fans ¥ — 7(X) and thus a map of toric varieties f : X — Y. The general fiber
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F is a toric variety defined by the fan Xy = {o € ¥ N A}. The invariant varieties
V(r) in X, where t € X is a maximal-dimensional cone in X, are called invariant
sections of the fibration. The subvariety V'(7) is the invariant section passing through
the fixed point of F corresponding to the cone t € X . Observe that they are all
isomorphic, as toric varieties, to Y.

Example 3.5. In Example 3.3 let I' C R” be the fan defining Y, and let Dy, ..., Dy
be the generators of Pic(Y) associated to the rays 7;,...,ns C I'. The line bundle
L; can be written as L; = ) ¢;(n;)D; where ¢; : I'r — R are piecewise linear
functions. Let ey, ..., e; € ZF be a lattice basis and let ¢y = —e; — ... — e;. One
can define a map:

¥R - R as v (v) = (v, Zd),-(v)ei).

Consider now the fan ¥’ C R"*X given by the image of I' under ¥, X' =
{¥(0),0 C T}. Let IT C ZF be the fan defining P*. The fan ¥ = {0’ + 7|0’ €
%', t € I1} is a split fan, defining the toric fibration 7 : P(Lo & ... & L) — Y.
See also [ODAD, Proposition 1.33].

Definition 3.6. A polarized toric fibration is a pair (f : X — Y, L), where f is a
toric fibration and L is an ample line bundle on X.

Observe that for a general fiber F, the pair (F, L|f) is also a polarized toric
variety. It follow that both pairs (X, L) and (F, L|f) define lattice polytopes
Px.1), Per 1)z The polytope P(x 1) is in fact a “twisted sum” of a finite number of
lattice polytopes fibering over Pr 1|,).

Definition 3.7. Let Ry,..., Ry C Mg be lattice polytopes and let k > 1. Let
w : M — A be a surjective map of lattices such that 7g(R;) = v; and such that
vg, -+ , Ui are distinct vertices of Conv(vo, . .., v;). We will call a Cayley m-twisted
sum (or simply a Cayley sum) of Ry, ..., Ri a polytope which is affinely isomorphic
to Conv(Ry, ..., Ry).

We will denote it by: [Rg * ... *x Ry],.

If the polytopes R; are additionally normally equivalent, i.e. they define the same
normal fan Xy, we will denote the Cayley sum by:

Cayley(Ro, ..., Ri).v)-

We will see that these are the polytopes that are associated to polarized toric
fibrations.

Proposition 3.8 ((CDRO08]). Let X = X5 be a toric variety of dimension n, where
X C Nr =R" andleti : A — N be a sublattice. Let L be an ample line bundle
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on X. Then the inclusion i induces a polarized toric fibration (f : X — Y, L)
if and only if Pix 1y = Cayley(Ry,..., Ri)xy), where Ry, ..., Ry are normally
equivalent polytopes on Y and & : M — A is the lattice map dual to i.

Proof. We first prove the implication “=>".

Assume that i: A < N induces a toric fibration f: X — Y and consider the
polarization L on X. We will prove that P(x ;) = Cayley(Ry, ..., Rr)(x,y) for some
normally equivalent polytopes Ry, ..., R.

Notice first that the fact that A is a primitive sub-lattice of N implies that the
dual map 7 : M — A is a surjection. Let F be a general fiber of f, and let
S = P(F,L|p) C Ag. Denote by vy, ..., v the vertices of S. Every v; corresponds
to a fixed point of F; call ¥; = V(t;) the invariant section of f passing through
that point. Note that 7; € ¥y, dimt7; = dim F and 7; C Ag. Let R; be the face of
P(x 1) corresponding to ;.

Observe that Aff (t;) = Ag, so that Aﬁ‘(til) = Afkg = ker 7. Then there exists
u; € M such that:

* Aff(R)) + u; = ker(mr);
* Ri+u =Py,

This says that Ry, ..., Ry are normally equivalent (because every Y; is isomorphic
to Y'), and that g (R;) is a point. Since the Y;’s are pairwise disjoint, the same holds
for the R;’s. If s is the number of fixed points of Y, then each R; has s vertices. On
the other hand, we know that F has (k + 1) fixed points, and therefore X must
have s(k + 1) fixed points. So P(x 1) has s(k + 1) vertices, namely the union of all
vertices of the R;’s. We can conclude that

P(XA,L) = COIIV(RQ, ey Rk)

Let D = erz(l) a, D, be an invariant Cartier divisor on X suchthat L = O (D).
Since F is a general fiber, we have D, N F # @ ifand only if x € A, and D\ =
> vea xDyr. This implies that 7 (R;) = v; and wr(Px,1)) = S. We conclude
that P(X.L) = Cayley(R(), ceey Rk)(”’y).

We now show the other direction: “<=".

Assume that Px ;) = Cayley(Rq. ..., Rr)y). We will prove that the associ-
ated polarized toric variety is a polarized toric fibration. First observe that the fact
that the dual map  is a surjection implies that the sublattice A is primitive. Since
v; is a vertex of mr(P(x,1)), R; is a face of Px 1) foreveryi =0,...,k.LetY be
the projective toric variety defined by the polytopes R;. Observe that Aff(R;) is a
translate of ker g, and (ker 7)¥ = N/A. So the fan Xy is contained in (N/A)g.

Let y € Ey(dim(Y)) and for every i = 0,...,k let w; be the vertex of R;
corresponding to y. We will show that Q := Conv(wy, ..., wy) is a face of Px ).

Observe first that (mr)ap(0): Aff(Q) — Ar is bijective. Let H be the linear
subspace of My which is a translate of Aff(Q). Then we have Mr = H & ker ng.
Dually Nz = Ar @ HL, where H+ projects isomorphically onto (N/A)g.
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Let u € H' be such that its image in (N/ A)q is contained in the interior of y.
Then for every i = 0, ...,k we have that (see [FU, §1.5]):

(u, x) = (u,w;) forevery x € R;,
(u, x) = (u,w;) if and only if x = w;.

Moreover u is constant on Aff (Q), namely there exists m, € Q such that (i, z) = my
forevery z € Q.

Any z € P can be written as 7 = Zﬁ:] Aizi, with z; € R;, A; = 0 and
Z£=0 Ai = 1. Then

i 1 I}
,2) =Y Ai(wz) =Y Ailu,wi) = Y Aimg = mo.

i=1 i=1 i=1

Moreover, (u,z) = my if and only if A; > 0 for every i such that (u,z;) = (u,w;),
and A; = 0 otherwise. This happens if and only if z € Q, implying that Q is a face
of P(X,L)'

Let 0 € X be a cone of maximal dimension, and let w be the corresponding
vertex of P(x ;). Then m(w) is a vertex, say v;, of mg(Px 1)) and hence w
lies in R;. Since R; is also a face of P(x ), w is a vertex of R; and hence it
corresponds to a maximal dimensional cone in Xy. In each R;, consider the vertex
w; corresponding to the same cone of ¥y. We set w; = w. We have shown that
Q = Conv(wy, ..., wx) isaface of Py ), andw = Q N R;. Now call T and 7 the
cones of Xy corresponding respectively to Ry and Q. It follows that 0 = 7 + 7,
T C Ag, and n N Ag = {0}. This concludes the proof. O

The previous proof shows the following corollary.

Corollary 3.9. Let (f : X — Y, L) be a polarized toric fibration and let P(x 1) =
Cayley(Ro, . .., Ri),y) be the associated polytope. Let F be a general fiber of
the fibration, Yy, ..., Yy be the invariant sections and w(R;) = v;. The following
holds.

(a) The polarized toric variety (F, L|r) corresponds to the polytope P 1|,y =
Conv(vy, ..., k).
(b) The polarized toric varieties (Y;, Ly,) correspond to the polytopes

Ry —ug, -, R — uy,

where u; € M is a point such that 7w(u;) = 7(R;).

Example 3.10. The toric surface obtained by blowing up P? at a fixed point has
the structure of a toric fibration, P(Gp1 @ Op1(1)) — P!. It is often referred to as
the Hirzebruch surface IF;. Consider the polarization given by the tautological line
bundle § = 2¢*(Op2(1)) — E where ¢ is the blow-up map and E is the exceptional
divisor. The associated polytope is P = Cayley(Ay,2A), see the figure below.
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Remark 3.11. The following are important classes of polarized toric fibrations,
relevant both in Combinatorics and Algebraic Geometry.

Projective Bundles. When m(P) = A, the polytope Cayley(Ro,..., R/)xy)
defines the polarized toric fibration (P(Lo @ ... ® L;) — Y,§), where the L;
are ample line bundles on the toric variety Y and £ is the tautological line bundle.
In particular L|r = Op:(1). These fibrations play an important role in the theory of
discriminants and resultants of polynomial systems. See Sect. 4 for more details.

Mori Fibrations. When 7 (P) is a simplex (not necessarily smooth) the Cayley
polytope Cayley(Ry. ..., Rk)(r.y) defines a Mori fibration, i.e. a surjective flat map
onto a Q-factorial toric variety whose generic fiber is reduced and has Picard number
one. This type of fibrations are important blocks in the Minimal Model Program for
toric varieties. See [CDROS8] and [Re83] for more details.

P*-Bundles. When 7(P) = kA, then again the variety has the structure of a [P'-
fibration whose general fiber F is embedded as an k-Veronese variety: (F, L|f) =
(P*, Op: (k)). These fibrations arise in the study of k-th toric duality, see [DDRP12].

In the polarized toric fibration (P(Ly & ... & L;),&) the fibers are
embedded as linear spaces. For this reason the associated Cayley polytopes
Cayley(Ro, . .., R/)(xy) can be referred to as linear toric fibrations.

Remark 3.12. For general Cayley sums, [Rg . ..x Ri],, one has the following geo-
metrical interpretation. Let (X, L) be the associated polarized toric variety and let Y
be the toric variety defined by the Minkowski sum Ry+-. ..+ Ry. The fan defining Y
is a refinement of the normal fans of the R; fori = 0, ..., k. Consider the associated
birational maps ¢; : Y — Y;, where (Y;, L;) is the polarized toric variety defined
by the polytope R;. The line bundles H; = ¢*(L;) are nef line bundles on Y and
the polytopes Py ;) are affinely isomorphic to R;. In particular [Ry * ... * Ry],
is the polytope defined by the tautological line bundle on the toric fibration
P(Hy®...® Hy) — Y. Notice that in this case the line bundle £ may not be ample.
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If we want to relate [Ry % ... x Ry], to a polarized toric fibration we need
to enlarge the polytopes R; is order to get an ample tautological line bundle.
Consider the polytopes P; = Pypu,) + Zg R;. The normal fan of P; is
isomorphic to the fan defining the common resolution, Y, for i = 0,...,k.
Hence the polytopes P; are normally equivalent. Let (Y, M;) be the polarized
toric variety associated to the polytope P;. One can then define the Cayley sum
Cayley(Po, ..., Pr)(ry), whose normal fan is in fact a refinement of the one
defining [Ro * ... x Ry],. Let P(My & ... ® My) — Y, &) be the polarized toric
fibration associated to Cayley(Py, ..., Px)(ry). There is a birational morphism
¢ PMyd... 0 M) > X.

Example 3.13. Consider the polytopes Ry = A;, Ry = A1 XA in Q?. Consider the
projection onto the first component 77 : Z> — Z and P = Conv(Ryx {0}, Ry x{1}).
The polytope P is then isomorphic to [Ry * Ri],, and mg(P) = A;. The common
refinement defined by Ry + R is the fan of the blow up of P? at two fixed points,
¢ : Y — P2, The polytopes P, defines the polarized toric variety (Y, ¢*(Tp2(4)) —
E| — E,) and the polytope P, the pair (Y, p*(Op2(5)) —2E, — 2E,), where E; are
the exceptional divisors. The polarized toric fibration (P(My @ M) — Y, §) is then

P([¢"(Or(4) — E1 — Ex] ® [¢" (O (5)) — 2E1 — 2E3]) — Y. §).

R i
: Po P | ‘
: Ro+R; /
Ro
[RO*RI]H: Cayley(P07Pl)(n.Y)

3.2 Historical Remark

The definition of a Cayley polytope originated from what is “classically” referred
to as the Cayley trick, in connection with the Resultant and Discriminant of a
system of polynomials. A system of n polynomials in n variables x = (xy, ..., Xp),
fi(x), ..., fu(x), is supported on (A, %, ..., H,), where o, C Z" if f; =
Mgjeacjx.

The (@, @b, ..., ,)-resultant is a polynomial, R(...,c;,...), in the coeffi-
cients ¢, which vanishes whenever the corresponding polynomials have a common
Zero.

The discriminant of a finite subset &/ C Z", Ay, is also a polynomial
Ay(...,cj,...) in the variables c;, which vanishes whenever the corresponding
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polynomial supported on <7, f = Il ewrc; X%, has a singularity in the torus
(G

Theorem 3.14 ([GKZ] Cayley Trick). The (o, <, ..., ,)-resultant equals the
o -discriminant where

o = (o x{0)) U (e x {e}) U... U (e x {e,—1}) C 22"

where (e1, . .., e,_1) is a lattice basis for Z"~".

Let R; = N(f;) C R" be the Newton polytopes of the polynomials f; supported
on 7. The Newton polytope of the polynomial f supported on .o/ is the Cayley
sum

N(f) =[Ri *... % Rylx.

where 7 : Z?"~! — Z"~! is the natural projection such that 7 ([R; * ... * R,];) =
An—l-

4 Toric Discriminants and Toric Fibrations

The term “discriminant” is well known in relation with low degree equations or
ordinary differential equations. We will study discriminants of polynomials in n
variables with prescribed monomials, i.e. polynomials whose exponents are given
by lattice points in Z".

Polynomials in n-variables describe locally the hyperplane sections of a pro-
jective n-dimensional algebraic variety, ¢ : X <> P”. The monomials are
prescribed by the local representation of a basis of the vector space of global sections
H(X, ¢*(Opn(1))). For this reason the term discriminant has also been classically
used in Algebraic Geometry.

In what follows we will describe discriminants from a combinatorial and
an algebraic geometric prospective. The two points of view coincide when the
projective embedding is toric.

4.1 The <« Discriminant

Let o = {ay,...,a,} be a subset of Z". The discriminant of ./ (when it exists)
is an irreducible homogeneous polynomial A . (cy,...,c,) vanishing when the
corresponding Laurent polynomial supported on </, f(x) = »_ . ¢;x“, has
at least one singularity in the torus (C*)". Geometrically, the zero-locus of the
discriminant is an irreducible algebraic variety of codimension one in the dual
projective space P, called the dual variety of the embedding X ,; <> P™.
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Example 4.1. Consider the point configuration
= {(0,0),(1,0), (0, 1), (1, 1)} C Z*.

The discriminant is given by an homogeneous polynomial A . (ag,a;,asz,as)
vanishing whenever the quadric ao+a,x +a, y +asxy has a singular point in (C*)2.
It is well known that this locus correspond to singular 2 x 2 matrices and it is thus
described by the vanishing of the determinant: A o/ (ag,a;, as,as) = apaz — aa;.
Similarly, one can associate the polynomials supported on o7 with local expansions
of global sections in H°(P! x P!, & (1, 1)) defining the Segre embedding of P! x P!
in P3.

Example 4.2. The 2-Segre embedding v, : P> < P° defined by the global
sections of the line bundle &p2(2) can be associated to the point configuration
% = {aO, ai,dar,das,dy, Cls} = {(0» 0)7 (O’ 1)7 (19 0)7 (O’ 2)9 (19 1)7 (29 O)}

Cp C1 C2
A simple computation shows that A, = det | ¢ ¢35 ¢4
Cy C4 C5

Projective duality is a classical subject in algebraic geometry. Given en embed-
dingi : X < P of an n-dimensional algebraic variety, the dual variety,
XY C (P™)V is defined as the Zariski-closure of all the hyperplanes H C P"
tangent to X at some non singular point. We can speak of a defining homogeneous
polynomial A(co,...,cy), and thus of a discriminant, only when the dual variety
has codimension one. Embeddings whose dual variety has higher codimension are
called dually defective and the discriminant is set to be 1. Finding formulas for the
discriminant A and giving a classification of the embeddings with discriminant 1 is
a long standing problem in algebraic geometry. In the case of a toric embedding
defined by a point-configuration, X,; < PI¥I=1  the problem is equivalent
to finding formulas for the discriminant A, and giving a classification of the
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dually defective point-configurations, i.e. the point-configurations with discriminant
Ay =1

Dickenstein-Sturmfels [DS02] characterized the case when m = n + 2, Cattani-
Curran [CCO07] extended the classification to m = n + 3,n + 4. In these cases the
corresponding embedding is possibly very singular and the methods used are purely
combinatorial. In [DiR06] and [CDRO08] we completely characterize the case when
P, = Conv(&) is smooth or simple. The latter characterisation relies on tools
from Algebraic Geometry which will be explained in the next paragraph.

4.2 The Dual Variety of a Projective Variety

The dual variety corresponds to the locus of singular hyperplane sections of a
given embedding. By requiring the singularity to be of a given order, one can
define more general dual varieties. Singularities of fixed multiplicity k correspond
to hyperplanes tangent “to the order k.” Consider an embedding i : X — P”
of an n-dimensional variety, defined by the global sections of the line bundle
% = i*(0Opn(1)). For any smooth point x of the embedded variety let:

jet - HO(X, %) — H'(X, 2 ® Oy /mETh)
be the map assigning to a global section s in H(X, %) the tuple

jeth(s) = (s(x), ..., (3"s/dx")(x), .. i<k

where x = (xi,...,x,) is a local system of coordinates around x. The k-th
osculating space at x is defined as ©SC§ = P(Im(jet{fc)). As the map jet; is
surjective, the first osculating space is always isomorphic to P and it is classically
called the projective tangent space. The jet maps of higher order do not necessarily
have maximal rank and thus the dimension of the osculating spaces of order bigger
than 1 can vary. The embeddings admitting osculating space of maximal dimension
at every point are called k-jet spanned.

Definition 4.3. A line bundle . on X is called k-jet spanned at x if the map jet*
is surjective. It is called k-jet spanned if it is k-jet spanned at every smooth point
x e X.

Example 4.4. A line bundle . = Opnx(a) on P" is k-jet spanned for all ¢ = k. In
fact the map

jet : HO(P", Opi (a)) — Ji(Opn (@)

is surjective for all x € P?, as a local basis of the global sections of &« (a) consists
of all the monomials in n variables of degree up to a and we are assuming a = k.
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Example 4.5. Let . be a line bundle on a non singular toric variety X. Then the
following statements are equivalent, see [DiRO1]:

(a) .Z is k-jet spanned.
(b) all the edges of P have length at least k.
(¢) Z-C = k for every invariant curve C on X.

As an example consider the polytope P in figure below. The associated torc embed-
ding is the embedding of the blow up of P? at the three fixed points, ¢ : X — P2,
defined by the anticanonical line bundle ¢* (&2 (3))— E| — E;— E5. Here E; denote
the exceptional divisors. The embedded variety is a Del Pezzo surface of degree 6.
Let F' be the set of the 6 fixed pointson X and E = {¢p*(Op2(3))—E;—E;,i #i}U
{E\, E;, E;5} be the set of invariant curves. The osculating spaces can easily seen
to be:

P = < jety (1), jety (x). et} (). jet}, (xy) >
ifx € F.
Ose2 = VBV = <iery (1), jer, (x). jery (). jery (xy), et} (x*y) >
p ifxe E\F.
P> = < jery (1), et} (x). jety (v). ety (xy), jety (x*y). jety (xy?) >

at a general point p € X \ E.

The embedding defined by P is not 2-jet spanned on the whole X. It is 2-jet spanned
at every pointin X \ E.

[ [ ]
[ ] [ [ ]
P
[ [

Definition 4.6. A hyperplane H C P™ is tangent at x to the order k if it contains
the k-th osculating space at x: (O)scﬁ C H.

Definition 4.7. The k-th order dual variety X* is:

X*¥ = {H e P"* tangent to the order k to X at some non singular point}.

Notice that X' = XV and that X? is contained in the singular locus of XV.
General properties of the higher order dual variety have been studied by S. Kleiman
and R. Piene. Because the definition is related to local osculating properties and
generation of jets, it is useful to introduce the sheaf of jets, J; (£), associated to a
polarized variety (X, .Z). In the classical literature it is sometime referred to as the
sheaf of principal parts.

Consider the projections m; : X x X — X and let .75, be the ideal sheaf of the
diagonal in X x X. The sheaf of k-th order jets of the line bundle .# is defined as
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J(Z) = mou(w] (L) ® (Oxxx [/ Ix).

When the variety X is smooth Ji (%) is a vector bundle of rank (":k), called the
k-jet bundle.

Example 4.8. 1f £ # Oy is a globally generated line bundle then J; (%) splits as
a sum of line bundles only if X = P" and .£ = Opn (). In fact:

)
T (O (@) = @D Opr(a—k)
1

See [DRSO1] for more details.

It is important to note that when the map jetffc is surjective for all smooth points
x, properties of the higher dual variety X* can be related to vanishing of Chern
classes of the associated k-th jet bundle, Ji(.Z). We start by identifying the k-th
dual variety with a projection of the conormal bundle. Let X be a smooth algebraic
variety and let .2 be a k-jet spanned line bundle on X. Consider the following
commutative diagram.

Sk-‘rleX R

Jk4+1(Z2)

jett
0 —> Ky —#—> XXH'(X, ) —> Jh(¥) —— 0

The vertical exact sequence is often called the k-jet sequence. The map jer* is
defined as jer* (s,x) = jetfc (s). The vector bundle K} is the kernel of the map jer*
(which has maximal rank!). The induced map II,\(/ can be identified with the dual
of the k-th fundamental form. See [L94, GH79] for more details. By dualizing the
map By and projectivizing the corresponding vector bundles one gets the following
maps:
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P(K}) 2

pr: \*
1 pry
X = XxPH(X,L)Y) — (P")Y

It is straightforward to see that X¥ = Im(ay). A simple dimension count shows that
when the map jer* has maximal rank one expects the codimension of the k-th dual
variety to be codim(X*) = (" Jkrk ) —n. Notice that this is equivalent to requiring that
the map o is generically finite. When the codimension is higher than the expected
one the embedding is said to be k-th dually defective.

The commutativity in diagram (1) has the following useful consequence.

Lemma 4.9. Let (X,.Z) be a polarized variety, where X is smooth and the line
bundle & is (k + 1)-jet spanned. Then the dual variety X* has the expected
dimension.

Proof. We follow diagram (1). Because the line bundle .Z is (k + 1)-jet ample
the map 177} is surjective. This means that for every x € X and for every monomial
Iy, =k+1xil .-+ x[n there is an hyperplane section that locally around x is defined as

C- HZz,-=k+1xil -+-x/" + higher order terms = 0, where C # 0

In other words, hyperplanes tangent at a point x to the order k are in one-to-
one correspondence with elements of the linear system |&p—1 (k + 1)|. The map o
having positive dimensional fibers is equivalent to saying that hyperplanes tangent
at a point x to the order k are also tangent to nearby points y # x, which in turn
implies that the linear system |Op.—1 (k 4 1)| has base points. This is a contradiction
as the linear system is k + 1-jet spanned and thus base-point free. O

When k& = 1 the contact locus of a general singular hyperplane H, y (oz,:1 (H))
is always a linear subspace. This implies that if finite then deg(cz;) = 1. For higher
order tangencies, k > 1, the degree can be higher. When the map o is finite we set
ni = deg(o).

Lemma 4.10 ([LMO00,DDRP12]). Let X be a smooth variety and let £ be a k-jet
spanned line bundle. Then codim(X*) > (":k) —n if and only if ¢,(Jx (L)) = 0.

Moreover when codim(X*) = (" :k) —n the degree of the k-dual variety is given by:

ny deg(X*) = ¢, (Ji(£)).

Proof. Observe first that because the map jet, is of maximal rank the vector bundle
Jr(Z) is spanned by the global sections of the line bundle .#. This implies
that, after fixing a basis {s;,...,Sn+1} of H'(X,.#) = C"*!, the Chern class
cn(Jix ((Z)) is represented by the set:
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{x € X|dim(Span(jert (s,). jet“(52))) < 1}

Notice that an hyperplane in the linear span P = (s1,...,s,+1) is tangent at a point
X to the order k exactly when dim(Span(jet’;(sl), .. ,jet’;(s,ﬂ))) =t + 1. The
n+k

map Y in diagram (2) defines a projective bundle of rank m — ( M ) The statement
cn (i (L)) = 0is then equivalent to o (¥~ (x)) N P! = @ for every x € X and
for a general P! = (s, 5). By Bertini this is equivalent to codim(X*) > ("1*) —n.
Assume now that ¢, (J;(-Z)) # 0 and thus that the generic fiber of the map oy is
finite. The degree of X* = im(ay) times the degree of the map «y is given by the
degree of the line bundle «; (&, (1)) which corresponds to the tautological line
bundle Op Kkv)(l).

* m+n—("Fk m4n—("T*
ni deg(X¥) = c1 (e (Gemy D)™~ = ¢ (Gpgpey, (1)~

From diagram (1) we see that
an(Je (D)) = ea(K) ™ = su(KY)

Finally let 7 : P(K,’) — X be the bundle map. By relating the Segre class s, (K}")
to the tautological bundle [FU, 3.1] 5,(K}) = n*(cl(ﬁP(K;)(I))’"“_(ﬂ#)) =
cl(ﬁp(,(kv)(l))er”_(’Tk) we conclude that: n; deg(X*) = ¢, (Jx (Z)). O

The case of k = 1 is referred to as classical projective duality. When the
codimension of the dual variety is one, the homogeneous polynomial in m + 1
variables defining it is called the discriminant of the embedding. For a polarized
variety the discriminant, when it exists, parametrizes the singular hyperplane
sections.

4.3 The Toric Discriminant

In the case of singular varieties the sheaves of k-jets are not necessarily locally free
and thus it is not possible to use Chern-classes techniques.

For toric varieties however estimates of the degree of the dual varieties are
possible, even in the singular case, and rely on properties of the associated polytope.
In the classical case k = 1 there is a precise characterization in any dimension.
For higher order duality, results in dimension 3 and for k = 2 can be found
in [DDRP12]. A generalization to higher dimension and higher order is an open
problem.

Proposition 4.11 ((GKZ, DiR06, MT11]). Let (X, L) be a polarized toric
variety associated to the polytope P . Set
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5=y <—1>°°dim(F>{(dim(f)“) (=171 — D} Vol(F) Eu(V(F)).

P#F=<P

Then codim(X )) = r = min{i,8; # 0} and deg(X,) = §,.

The function Eu : {invariant subvarieties of X4} — Z in the above proposition
assigns an integer to all invariant subvarieties. Its value is different from 1 only when
the variety is singular. In particular, when X ;s is smooth we have:

codim(Xy) > 1 ¢ > (=)™ (dim(F) + 1)! Vol(F) = 0
B#F=<P

In fact in the smooth case one can prove this characterization using the vector bundle
of 1-jets.

Proposition 4.12. Let (X, L o) be an n-dimensional non singular polarized toric
variety associated to the polytope P.s. Assume of = P N Z". Then

(L) = Y (DO dim(F) + DIVoI(F)
P#F=<P

Proof. Chasing the diagram (1) one sees:

(L) =) (n+ 1= (R - L

i=0

Consider now the generalized Euler sequence for smooth toric varieties [BC94,
12.1]:

0>k — P Or,VE) - oy P S0
€y (1)

Where V(£) is the invariant divisor associated to the ray § € X/ (1). It follows that:

Ci (Qﬁw)) = (=1) Z&#z#...#&[v(&)] - ...+ [V(&)]- Recall that the intersection
products [V(&1)] - ... - [V(&)] correspond to codimension i invariant subvarieties
and thus faces of P, of dimension n — i. Moreover the degree of the embedded

subvariety [V(£))] - ... - [V(&)] is equal to 2"~ - ([V(§)] - ...~ [V(£)]) = (n —
i)! Vol(F), where F is the corresponding face. We can then conclude:

(N L) = Ygppp, 0+ 1—i)(n —i)/(=1) VoI(F) =
=Y prr<p, (=DM E (dim(F) + 1)! Vol(F)
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Example 4.13. Consider the simplex 2A, in Example 4.2. All the edges have length
equal to two and therefore the toric embedding is 2-jet spanned. The dual variety is
then an hypersurface and the degree of the discriminant is given by ¢, (J1(Op2(2)) =
2 (Op2(1) ® Op2(1) ® Op2(1)) = 3. The volume formula gives in fact:

3
e2(J1(0p2(2)) = 6V0I(28,) =2 ) Vol(2A1) +3 = 12— 12 +3 = 3.
1

Example 4.14. Consider the Segre embedding P! x P? < P, associated to the
polytope Q. Then ¢3(J;(.£)) = 411 =311+ 1+ 1 + 4 + 1) +2(9) — 6 = 0. This
embedding is therefore dually defective.

The following is an amusing observation, which is a simple consequence of the
previous characterization.

Corollary 4.15. Let P.s be a smooth polytope such that & = P, N Z". Then

> (=D (dim(F) + 1)!'Vol(F) = 0
@#F<Pp{

Proof. Because the associated line bundle .Z,, defines an embedding of the variety
Xy, the map jer' has maximal rank and thus the vector bundle J;(.Z,,) is spanned
(by the global sections of .Z,,). It follows that the degree of its Chern classes must
be non negative which implies the assertion. O

Now we can state the characterization of Q-factorial and non singular toric
embeddings admitting discriminant A, = 1. The theorem will include the
combinatorial characterization and the equivalent algebraic geometry description.
The proof in the non singular case will be given in Sect. 6.

Theorem 4.16 ([DiR06, CDROS8]). Let o = P, N 7Z" and assume that X ./ is
Q-factorial. Then the following equivalent statements hold.

(a) The point-configuration <7 is dually defective if and only if P, is a Cayley
sum of the form P = Cayley(Ro, ..., R/)x,y), where w(P) is a simplex
(not necessarily unimodular) in R' and Ry, ..., R, are normally equivalent
polytopes with t > 2. If moreover Py is smooth then w(P) is a unimodular

2
simplex.
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(b) The projective dual variety of the toric embedding X s — PI¥N'1=1 pgg
codimension s = 2 if and only if X is a Mori-fibration, Xoy — Y and
dim(Y) < dim(X)/2. If moreover X, is non singular then (X, Loy) =
(P(Ly & --- & L;),&), where L; are line bundles on a toric variety Y of
dimensionm < t.

Proposition 4.16 provides a characterization of the class of smooth polytopes
achieving the minimal value 0.

Corollary 4.17. Let P be a convex smooth lattice polytope. Then

> (dim(F) + D=1 Vol(F) = 0
PF#F <Py

If and only if P = Cayley(Ry,..., R;) for normally equivalent smooth lattice
polytopes R; with dim(R;) < t.

5 Toric Fibrations and Adjunction Theory

The classification of projective algebraic varieties is a central problem in Algebraic
Geometry dating back to early nineteenth century. The way one can realistically
carry out a classification theory is through invariants, such as the degree, genus,
Hilbert polynomial. Modern adjunction theory and Mori theory are the basis for
major advances in this area.

Let (X, %) be a polarized n-dimensional variety. Assume that X is Gorenstein
(i.e. the canonical class Ky is a Cartier divisor). The two key invariants occurring in
classification theory, see [Fuj90], are the effective log threshold () and the nef
value 1( %) :

w(Z) ;= supp{s € Q : dim(H(Ky + 5.%)) = 0}
(%) := ming{s € R : Ky + s.Z is nef}.

Both invariants are at most equal to n + 1. Kawamata proved that u(.%) is indeed
a rational number and recent advances in the minimal model program establish the
same for £ (.Z). They can be visualized as follows.

Traveling from .Z in the direction of the vector Kx in the Neron-Severi space
NS(X) ® R of divisors, .Z + (1/u(Z)) Ky is the meeting point with the cone of
effective divisors Eff(X) and .£ + (1/7(’)) K x is the meeting point with the cone
of nef-divisors Nef(X), see Fig. 1.

A multiple of the nef line bundle Ky + 7% defines a morphism X — P which
can be decomposed (Remmert-Stein factorization) as a composition of a morphism
¢, : X — Y with connected fibers onto a normal variety ¥ and finite-to-one
morphism ¥ — PM. The map ¢, is called the nef-value morphism. Kawamata
showed that if one writes rt = u/v for coprime integers u, v, then:



Linear Toric Fibrations 139

Fig. 1 Illustrating ©(¢) and
(%)

Ample

Eff

u<r(l+ ma;c(dim(d%_l(J’)))-
Y€

Corollary 5.1. Let (X,.Z) be a polarized variety. Then the nef-value achieves the
maximum value ©(£) = n + 1 if and only if (X, L) = (P", Opn(1)).

Proof. Consider the nef value morphism ¢, : X — Y and observe that
(n+1) < (1 + max(dim($; (7))
y

This implies that the dimension of a fiber of ¢, must be n and thus that the morphism
contracts the whole space X to a point. By construction, the fact that ¢, contracts the
whole space implies that Ky + (n+1).% = Ox. A celebrated criterion in projective
geometry, called the Kobayashi-Ochiai theorem, asserts that if L is an ample line
bundle such that Ky + (n + 1).Z = Oy then (X, %) = (P", Op:(1)). O

Remark 5.2. Recall that the interior of the closure of the effective cone is the cone
of big divisors, (Eff(X))° = Big(X), and that the closure of the ample cone is the
nef cone, Ample(X) = Nef(X). In particular the equality (%) = u(£) occurs if
and only if the line bundle Kx + t(.%).Z is nef and not big, which implies that ¢,
defines a fibration structure on X.

A fibration structure on an algebraic variety is a powerful geometrical tool as
many invariants are induced by corresponding invariants on the (lower dimensional)
basis and generic fiber. Criteria for a space to be a fibration are therefore highly
desirable. Beltrametti, Sommese and Wisniewski conjectured the if the effective log
threshold is strictly bigger than half the dimension then the nef-value morphism
should be a fibration.

Conjecture 5.3 ([BS94]). If X is non singular and u(¥) > (n + 1)/2 then
(L) = t(2).

Let us now assume that the algebraic variety is toric. In this case it is
immediate to see that the defined invariants are rational numbers as the cones
Eff(X), Big(X), Ample(X), Nef(X) are all rational cones.
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We have seen in Sect. 3 that toric fibrations are associated to certain Cayley
polytopes. Analogously to the classification theory of projective algebraic varieties
it is important to find invariants of polytopes that would characterize a Cayley
structure. One invariant which has attracted increasing attention in recent years is
the codegree of a lattice polytope:

codeg(P) = min{t € Z-( such that tP contains interior lattice points}.

Via Ehrhart theory one can conclude that codeg(P) < n + 1 and that codeg(P) =
n + lif and only if P = A,. This is in fact a simple consequence of our previous
observations.

Corollary 5.4. Let P be a Gorenstein lattice polytope. Then codeg(P) = n + 1
ifand only if P = A,,.

Proof. Let (X,.%) be the Gorenstein toric variety associated to P. Notice that,
because Ky = —Y_ D; where the D; are the invariant divisors, the polytope defined
by the line bundle Ky + t.% is the convex hull of the interior points of tP. The
equality codeg(P) = n + 1is equivalent to H*(Ky +t.%) = 0 fort < n. Because
nef line bundles must have sections (in particular being nef is equivalent to being
globally generated on toric varieties) we have 7(.Z) = codeg(P) = n+1. It follows
from Corollary 5.1 that (X, %) = (P", Op: (1)) and thus P = A,,. O

Let us now examine the class of Cayley polytopes we encountered in the
characterization of dually defective toric embeddings. We will see that this is a
class of polytopes satisfying the strong lower bound codeg(P) = d'mz(P) + 1 and
the equality codeg(P) = u(2).

Lemma 5.5. Let P = Cayleyh,y(RO, . R) witht > % then:

3
t(Lp) = w(Lp) = codeg(P) =1+ 1> S

Proof. Observe that Xp = P(Lo & ... & L,) for ample line bundles L; on the
toric variety ¥ and . = £ is the tautological line bundle. Consider the projective
bundle map 7w : Xp — Y. The Picard group of Xp is generated by the pull back of
generators of Pic(Y) and by the tautological line bundle £. Moreover the canonical
line bundle is given by the following expression:

Kx, =7"(Ky + Lo+ ...+ L;) — (t + 1)&.

The toric nefness criterion says that a line bundle on a toric variety is nef if and
only if the intersection with all the invariant curves is non-negative, see for example
[ODA]. On the toric variety P(Lo & ... & L,) there are two types of rational
invariant curves. The ones contained in the fibers F = P’ and the pull back of
rational invariant curves in ¥ which will be denoted by 7*(C); when contained in
the invariant section defined by the polytope R;. For any rational invariant curve
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C C F,itholds that §|¢c = Opi(1) and 7*(D) - C = 0, for all divisors D on Y.
For every curve of the form 7*(C); it holds that 7*(C); - #*(D) = C - D and
&-7*(C); = L; - C. See [DiR06, Remark 3] for more details. We conclude that
Ky, + 5.2 is nef if the following is satisfied:

[7*(Ky + Lo+...+ L)+ (s —t—1E[C=5s—t—1=20 ifCCF
(Ky +Lo+...+(s—8Li+...+L)-C=0 if C = n*(C);

In [MUOQ2] Mustata proved a toric-Fujita conjecture showing that if for a line bundle
H on an n-dimensional toric variety, H - C = n for every invariant curve C, then
the adjoint bundle K + H is globally generated, unless H = Opn (n). Because

[Lo+...+G6—0)L;+...+L]-C=(s—1)+1t

it follows that (Ky + Lo+...+(s—¢)L; +...+ L;)-C = 0 for all invariant curves
C = 7*(C); if s = ¢t. This implies that Ky, + s.Z isnef if and only if s = ¢ + 1
and thus t(§) =1 + 1.

Consider now the projection 2 : R" — R’ such that A(P) = A,. Under
this projection interior points of a dilation sP are mapped to interior points of
the corresponding dilation sA,. This implies that codeg(P) = ¢t + 1. Notice that
w(Z) < codeg(P) =t + 1 as interior points of sP correspond to global sections
of Kx, + s.Z. On the other hand, see [HA, Ex. 8.4]:

Ho'(u(n*(Ky + Lo+ ...+ L)) + (v —u(t + 1))§) =
= H(mu(u(m*(Ky + Lo+ ...+ L)) + (v —u(t + 1))§)) =
=H'uKy + Lo+ ...+ L) +m((u—v@ + 1)) =0ifv—u(r +1) <O0.

This implies that u(.Z) = t + 1, which proves the assertion. O

Recently Batyrev and Nill in [BNO8] classified polytopes with codeg(P) = n
and conjectured the following.

Conjecture 5.6 ([BNO8]). There is a function f(n) such that any n-dimensional
polytope P with codeg(P) = f(n) decomposes as a Cayley sum of lattice
polytopes.

The above conjecture was proven by Haase, Nill and Payne in [HNPO9]. They
showed that f(n) is at most quadratic in n. It is important to observe that, as interior
lattice points of #P correspond to global sections of Ky + ¢.Z for the associated
toric embedding, codeg(P) can be considered as the integral variant of (1 (.£). This
observation, techniques from toric Mori theory and adjunction theory led to prove a
stronger version of Conjectures 5.3 and 5.6 for smooth polytopes giving yet another
characterization of Cayley sums.

Theorem 5.7 ((IDDRP09, DN10]). Let P C R" be a smooth n-dimensional
polytope. Then the following statements are equivalent.



142 S. Di Rocco

(a) codeg(P) = (n + 3)/2.

(b) P is affinely isomorphic to a Cayley sum Cayley(Ro, ..., R;),y wheret +1 =
codeg(P) witht > 7.

(© w(ZLp)=1(Lp)=t+1landt > 3.

d (Xp,Zp)=P(LoD---®L,),E&) for ample line bundles L; on a non singular
toric variety Y.

Notice that Theorem 5.7 proves the reverse statement of Lemma 5.5.

Conjectures 5.3 and 5.6, made independently in two apparently unrelated fields,
constitute a beautiful example of the interplay between classical projective (toric)
geometry and convex geometry. In view of the results above one could hope that in
the toric setting the conjectures should hold in more generally.

Conjecture 5.8. Let (X,.Z) be an n-dimensional toric polarized variety (not
necessarily smooth or even Gorenstein), then w(%) > (n + 1)/2 implies that
wZ) = 1(2).

The invariants ©(.Z), 1(.Z) in the non Gorenstein case can be defined using
corresponding invariants, u(P), t(P) of the associated polytope, see below for a
definition.

Conjecture 5.9. 1f an n-dimensional lattice polytope P satisfies codeg(P) > (n +
2)/2, then it decomposes as a Cayley sum of lattice polytopes of dimension at most
2(n + 1 — codeg(P)).

Conjecture 5.8 is a toric version of Conjecture 5.3, extending the statement
to possibly singular and non Gorenstein varieties. Conjecture 5.9 states that the
function f(n) in Conjecture 5.6 should be equal to (n + 2)/2. An important step to
prove these conjectures is to define the convex analog of u(%p).

Let P € R” be a rational polytope of dimension 7. Any such polytope P can be
described in a unique minimal way as

P={xeR":{(a,x)=b,i=1,...,m}

where the a; are the rows of an m X n integer matrix 4, and b € Q™.
For any s > 0 we define the adjoint polytope P®) as

PO :={xeR": Ax = b + s1},

where1 = (1,...,DT.
We call the study of such polytopes P*) polyhedral adjunction theory (Fig.2).

Definition 5.10. We define the Q-codegree of P as

w(P) = (sup{s >0 : PO £ gH~!

and the core of P to be core(P) := P1/1(P),



Linear Toric Fibrations 143

Fig. 2 Two examples of polyhedral adjunction

Fig. 3 P® C P for a three-dimensional lattice polytope P

Notice that in this case the supremum is actually a maximum. Moreover, since P
is a rational polytope, i (P) is a positive rational number.
One sees that for a lattice polytope P

w(P) < codeg(P)<n+1
Definition 5.11. The nef value of P is given as
T(P) := (sup{s >0 : A (PYW) =4 (P))™" € Ry U {0}

where .4/ (P) denotes the normal fan of the polytope P.

Note that in contrast to the definition of the Q-codegree, here the supremum is
never a maximum.

Figure 3 illustrates a polytope P with 7(P)~! = 2 and w(P)~! = 6. In this case
core(P) is an interval.

In [DRHNP13] the precise analogue of Conjecture 5.9 for the Q-codegree is
proven.

Theorem 5.12 ([DRHNP13]). Let P be an n-dimensional lattice polytope. If n is
odd and (P) > (n + 1)/2, or if n is even and w(P) = (n + 1)/2, then P is a
Cayley polytope.

Results from [DRHNP13] show Conjecture 5.9 in two interesting cases: when
[(P)] = codeg(P) and when the normal fan of P is Gorenstein and u(P) =
©(P).
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6 Connecting the Three Characterizations

In Sect. 4 we have seen that a certain class of Cayley polytopes characterizes
dually defective configuration points. Moreover this class corresponds to the
polytopes achieving the equality in Corollary 4.15. In Sect. 5 the same class of
Cayley polytopes was characterized as corresponding to smooth configurations with
codegree larger than slightly more that half the dimension. We will here assemble
the three characterizations and provide proofs in the non singular case.

Theorem 6.1. Let &/ C 7" be a point configuration such that Py N 7" = &,
dim(Py) = n and such that P, is a smooth polytope. Then the following
statements are equivalent.

(a) Py is affinely isomorphic to a Cayley sum Cayley(Ry, ..., R;),y where t +
1 = codeg(Py) andt > 3.

(b) codeg(Py) =" + 1 and 1(Pey) = p(Poy).

(¢) The discriminant A o7 = 1.

@ > gip<p, (dim(F) + 1)!(=1)cedim(®) \ol(F) = 0

Proof. [(d) < (c)]. The implication (d) ~> (c) follows from Lemma 4.10 and
Proposition 4.12. The reverse implication follows from Corollary 4.17.

[(c) = (b).] Assume now (c), i.e. assume that the configuration is dually defective.
Consider the associated polarized toric manifold (X, Z,). It is a classical result
that the generic tangent hyperplane is in fact tangent along a linear space in X .
Therefore if codim(X ) = k > 1 then there is a linear IP* through a general point
of X.,. By linear P* we mean a subspace ¥ = IP’" such that jfmy = Ow(1).

Moreover, by a result of Ein [E86] Npt/y = (EB1 3 Opr) ® (EB1 13 Opr (1)). Observe
that if we fix a point x € X/, a sequence { F; } of general linear subspaces F; = P*
can be chosen so that x € lim(F};). Since the F; are all linear the limit space has to
be also a linear PX. We can then assume that there is a linear P* through every point
of X ;. Let L now be an invariant line in one of the P through a fixed point. Then:

Kx +t L = Op((—n —2—k)/2+1)

which implies 1(Zy) = # + 1. Assume now that 7 (%) > # +1 and let L be
again a line in the family of linear spaces covering X. The quantity —Ky-L—2 = v
is called the normal degree of the family. In our case v = (n + k)/2 — 1 > n/2.
By a result of Beltrametti-Sommese-Wisniewski [BSW92], this assumption implies
v =1 — 2, proving t(Zy) = ’% + 1. Notice that the nef-morphism ¢, contracts
all the linear P* of the covering family and thus it is a fibration. As a consequence
the line bundle Kx_, + t.Z. is not big and thus t(Z) = u(Le). The inequality

n+k

1
> +

codeg(Py) = u(ZLy) = (L) =

shows the implication (c¢) ~> (b).
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[(b) = (a)]. Assume now (b). The nef-value morphism is then a fibration and
n
(L) > codeg(Pyy) — 1 > 3

Notice that the nef-morphism ¢, contracts a face of the Mori-cone and thus faces of
the lattice polytope P, i.e. all the invariant curves with O-intersection with the line
bundle Ky, + 7.7, . Let now C be a generator of an extremal ray contracted by
the morphism ¢,. If £, - C = 2, then —Kx - C > n + 1 which is impossible. We
can conclude that C is aline and t1(Zy) = —Kx_, - C is an integer. It follows that
(ZLy) = % + 1. This inequality implies that ¢, is the contraction of one extremal
ray, by [BSW92, Cor. 2.5]. These morphisms are analyzed in detail in [Re83].
Because X, is smooth and toric and this contraction has connected fibres, the
general fiber F of the contraction is a smooth toric variety with Picard number one.
It follows that F is a projective space and thus ¢, is a P’ bundle. Let L|r = Opt (a).
Observe that by construction Ky, |r = Kr. Consider a line / C F. It follows that

0=(Kx,+t%y)l=Kp-l+1Ly -l =—t—1+ar
and thus t = % > % + 1 which impliesa = 1 and t > % Since a = 1
the fibers are embedded linearly and thus (X, L) = (P(Lo D ... D L)), &),
for ample line bundles L; on a smooth toric variety Y. This proves the implication
(b) ~ (a).
[(@) = (c¢)]. Assume now (a). Using notation as in (2), consider the commutative
diagram:

a” ' (P(E)y,)
/ \
P(E) B(E)Y,
\ /
Y

where E = Lo®...® L; and (Y, L;) is the smooth polarized variety associated to
the polytope R;. The commutativity of the diagram and the existence of f follows
from [DeBO1, Lemma 1.15]. Let y € ¥ and let F =~ P' c PII=! be the fiber
7~ !(y). Commutativity of the diagram implies that the contact locus y (o~ (H)) is
included in F for all H € f~'(y). Moreover Osc, C Oscpg), C H implies
that H belongs to the dual variety F, with contact locus at least of the same
dimension. Because the map f is dominant we can conclude that: dim(FY) =
dim(P(E)Y) — dim(Y), which implies
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codim(P(E)") = codim(F") — dim(Y).

Recall that the fibers F are embedded linearly and thus codim(FY) = dim(F) + 1.
It follows that codim(P(E)Y) = dim(F) + 1 —dim(Y) > 1 and thus A = 1. This
proves (a) ~ (¢). O
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