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Abstract We give an introduction into the method of quantum molecular dynamics
simulations which combines density functional theory with classical molecular
dynamics. This method has demonstrated its predictive power in determining the
thermophysical properties of matter under extreme conditions as found, e.g., in
astrophysical objects like giant planets and brown dwarfs. Such extreme states
of matter can also be probed by state-of-the-art shock wave experiments in the
laboratory. We give exemplary ab initio results for the behavior of the simplest
and most abundant elements hydrogen and helium under extreme conditions.
In addition, we also show results for more complex molecular systems such as water.
The light elements H and He, the hydrides of C (CH4), N (NH3), and O (H2O) and, in
particular, mixtures of these systems have rich high-pressure phase diagrams which
are important for the structure, evolution and magnetic field of gas giant planets like
Jupiter and ice giant planets like Neptune. Finally, we describe the impact of these
results on the design of advanced interior, evolution, and dynamo models and give
exemplary results for solar and extrasolar giant planets.

1 Introduction

1.1 Warm Dense Matter

The properties of warm dense matter (WDM) are of lively interest [1–3]. As an
intermediate state between cold condensed matter and hot plasmas, WDM is
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characterized by high densities as typical for condensed matter and temperatures of
several eV (1 eV OD11;604:5 K). Partial ionization, strong correlations and quantum
effects are important under such conditions so that WDM is a perfect test case
for new concepts of many-particle theory. On the other hand, the implementation
of new experimental high-pressure platforms that launch strong shock waves by
using, e.g., high-power lasers, gas guns, pulsed power or chemical explosions, and
the availability of intense x-ray sources, in particular of free electron lasers (FEL),
allows to probe and diagnose WDM states with better and better accuracy [4].

The strongest and perhaps most sustaining influence on WDM research origi-
nates from problems in astrophysics [5,6]. For instance, the interior of giant planets
(GPs) such as Jupiter and Saturn is in WDM states [7, 8]. The detection of a great
number of extrasolar planets (exoplanets) since 1995 has boosted the interest in
WDM as well [9–12]. The formation, evolution, interior structure, and magnetic
field configuration of planets is intimately connected with the equation of state
(EOS), the phase diagram, the transport and optical properties of planetary materials
at extreme conditions of pressure and temperature, i.e. in WDM states. Interesting
phenomena such as demixing [13, 14] and nonmetal-to-metal transitions [15, 16]
are of fundamental interest in this context but also new and exotic phases such as
proton conductors might be important in the deep interior of, e.g., Neptune-like
planets [17–19].

An adequate theoretical treatment of WDM faces enormous computational
challenges which are caused by inherent strong correlation and quantum effects.
This prevents the application of methods of perturbation theory using effective
pair potentials or of corresponding cross sections. Therefore, and also due to the
huge progress in computational power, ab initio simulation techniques have been
developed. Both Path Integral Monte Carlo (PIMC) simulations and Quantum
Molecular Dynamics simulations, based on density functional theory (DFT-MD),
have demonstrated their ability to determine thermophysical properties of WDM
accurately.

The key elements of PIMC simulations are the representation of the density
matrix via a path-integral and the evaluation of the corresponding integrals via
Monte Carlo methods; for details, see [20]. In DFT-MD simulations, the elec-
tronic structure is determined via finite-temperature density functional theory at
every timestep of a classical molecular dynamics simulation for the ions; see
e.g. [21, 22].

In this paper we give a brief introduction into the DFT-MD method and present
exemplary results for the most abundant planetary materials, especially hydrogen
and helium, covering equation of state (EOS) data, the phase diagram, and the
electrical conductivity. We discuss the impact of these ab initio data on state-
of-the-art models of planetary interiors, evolution scenarios, and magnetic fields
configurations.
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Fig. 1 Standard three-layer
structure model assumed for
the solar GPs with
observational constraints
(blue), variable parameters
(yellow) and results from the
modeling procedure (red)

1.2 Giant Planets in the Solar System

Our solar system consists of four rocky planets (Mercury, Venus, Earth, and Mars)
and four GPs (Jupiter, Saturn, Uranus, and Neptune). In this paper we focus
on the behavior of the lightest elements hydrogen and helium, their mixtures,
and of hydrides such as water under conditions as relevant for the interior of
GPs. Figure 1 gives a schematic representation of the interiors of the solar GPs
within a standard three-layer model [7]: a central rocky core is surrounded by
two fluid envelopes which are assumed to be fully convective so that the pressure-
temperature profile follows an adiabat. The mass fractions of hydrogen (X ), helium
(Y ), and of all heavier elements (i.e. metals, Z) can be different in each layer.
From observations we know for the solar GPs the mass M , radius R, surface
pressure P.R/ and temperature T .R/, the mean helium mass fraction Y and the
atmospheric helium mass fraction Y1, the atmospheric metallicity Z1, the period of
rotation, the lowest-order gravitational moments J2i , the age of the planet and its
luminosity L. These observational constraints are used to infer details about the
interior structure, see Sect. 4.1. The interior of the solar GPs is in WDM states, see
Fig. 1: the boundary between the fluid envelopes is at about P12 � .0:1 � 10/ Mbar
and T12 � .2;000 � 11;000/ K, while the core-mantle boundary is predicted at
about PCMB � .5 � 40/ Mbar and TCMB � .6;000 � 20;000/ K. Therefore, the
thermophysical properties of WDM are an essential ingredient in planetary physics
studies. Some fundamental problems in this context are

• The number and composition of the layers (e.g. less or more than three?),
• The physical origin of the layer boundaries (e.g. due to metallization of hydrogen

or due to demixing of helium from hydrogen?),
• Their stability and location inside the planet (e.g. does vertical mass transport

and/or core erosion occur?),
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• The size and thermodynamic state of the core (e.g. is there a core at all and, if
yes, is it solid or liquid?),

• The derivation of mass-radius relations for GPs dependent on their composition,
• The origin of the planetary dynamo and the shape of the magnetic field (i.e.

dipolar field or higher multipole moments, axisymmetric or tilted?),
• The understanding of the formation process of GPs (i.e. core accretion or disk

instability?),
• The presence of internal heat sources such as helium settling, and the heat

transport mechanisms (i.e. convection only or semi-convection?).

1.3 Extrasolar Giant Planets

The number of extrasolar GPs is rapidly increasing, with already hundreds of
detected planets around other stars [9–12]. Therefore, planetary physics has been
revolutionized since the discovery of the first exoplanet around a solar-like star
in 1995 (51 Pegasi [23]). The most successful observational techniques are the
radial velocity (RV) and the transit method. The first one investigates variations of
spectral lines emitted by the star via the Doppler effect. These change periodically
due to the star’s motion around the common center-of-mass if the star has one or
more planetary companions. The RV method gives information on the minimum
mass of the accompanying planet. The transit method yields the mean radius of
the planet eclipsing its host star since the decrease of the apparent stellar flux is
proportional to the size of the planet, i.e. � R2

P . Most important in this context is
that the CoRoT [24] and Kepler [25] missions were designed in order to detect a
large number of transiting planets, among them hopefully the first Earth-like planet
in the habitable zone of its parent star. Today, the sample size of exoplanets with
known masses and radii for which their bulk density can be derived is exceeding
200 [26, 27]. Based on this data, new models for their composition and interior
structure, their formation and evolution can be made which are in many aspects
very different from the assumptions that have been proposed for the solar GPs
until 1995. Other methods to detect exoplanets are pulsar timing, direct imaging,
and microlensing, see [9, 12]. Further substantial progress in planetary physics is
expected since the number of exoplanets and, therefore, the sample size, is rapidly
increasing.

All known exoplanets detected by these methods (color coded) are shown in
Fig. 2 together with the solar system planets. We display their mass with respect to
the orbital distance to their host stars (semi-mayor axis). Since transiting probability
and frequency decrease with increasing distance from the star, most of the detected
transiting planets are very close to their host stars. On the other hand, large planetary
masses lead to stronger Doppler shifts in the star spectrum and, thus, to a better
detectability so that most of the detected RV planets so far have Jupiter-like masses.

The two big arrows in Fig. 2 indicate that the closer a planet orbits its host star the
hotter is its interior. Simultaneously, the density in the interior of a planet increases
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Fig. 2 The mass of
exoplanets versus their
semi-major axis (data taken
from [28]). The color code
represents the detection
method: dark blue – RV
method, red – transit method,
light blue – pulsar timing,
green – imaging, magenta –
microlensing. The solar
system planets are shown for
comparison (size not true to
scale)

with the total mass of the planet. Therefore, the solar GPs and the rapidly growing
sample of exoplanets represent a perfect laboratory to scan the density-temperature
plane and, therefore, to study correlation and quantum effects as inherent in WDM.

As of April 2013, there are about 850 confirmed exoplanet candidates. A further
2,000 candidates were detected by the Kepler mission [25, 29]. Their statistics
indicates that most exoplanets are of Neptune-size or smaller which leads to a
classification depending on their mass and radius (and hence their density) in
Earth-like, Neptune-like, Jupiter-like planets and Super-Earths. The latter planetary
class has no representative in the solar system, an example is GJ 1214b [30, 31].
Another interesting planet is Kepler 22 with a radius of 2.4 RE (1 RE D 6;378 km)
and a mass of 10–35 ME (1 ME D 5:974 � 1024 kg) – the first detected exoplanet
in the habitable zone of its host star [32]. The Kepler 11 system [33] consists of at
least six transiting planets, the inner five have radii of few Earth radii and masses
between that of Earth and Neptune, i.e. (1–18) ME . Their mean densities imply that
planets b and c are Super-Earths and d-f represent perhaps small gaseous planets,
i.e. planets with no analog in our solar system. The region of detected exoplanets
has been extended recently to objects even smaller than Mercury: the Kepler 37
system [34] consists of three transiting planets, the innermost having a radius of
only �0.3 RE and thus its size is similar to that of the Moon. The first exoplanet
observed by direct imaging is Formalhaut b, a Jupiter-like planet orbiting its host
star in an eccentric orbit with a mean distance of 115 AU within a dust ring [35].
A catalogue of confirmed exoplanets can be found at [28]. The classification of
exoplanets is shown in Fig. 3 by means of a mass-radius relation.

Some points are important for the future development of this field. First, the
rapidly growing number of exoplanets will have a strong impact on astrophysics
and, simultaneously, will initiate further interest in WDM research. Second, new
high-pressure platforms such as NIF and diagnostic methods implemented at FELs
will lead to breakthroughs in dense plasma experimental research. Third, the
ongoing increase of computing power will promote the development and application
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Fig. 3 Classification of
exoplanets with respect to
Earth-like, Neptune-like and
Jupiter-like planets and
Super-Earths (e.g.
GJ 1214b) [36]

of ab initio methods in WDM research. These trends will advance a much stronger
overlap and interplay between plasma, planetary, and computational physics in the
future.

2 DFT-MD Simulations

As outlined in the introduction, DFT-MD simulations combine quantum mechanical
DFT calculations for the electrons with a classical MD simulation for the ions.
The basic workflow is shown in Fig. 4, and the constituents, especially the DFT
part, are explained in the following sections. This method has first been applied
to plasma physics and WDM in the 1990s [40, 41]. Other chapters in this book
deal with special aspects of this method. New developments for higher accuracy
and predictability (e.g. deriving better XC functionals) and more efficient methods
to solve the Kohn-Sham equations (see Sect. 2.1, e.g. using plane-waves [22] or
localized orbitals [42] as basis sets) will trigger future progress in this area.

2.1 Kohn-Sham Equations

The solution of the many-particle Schrödinger equation requires an enormous
amount of dimensions which is not feasible for more than a few (<10) electrons.
This problem can be circumvented by density functional theory, which deals with
the quantum mechanical description of electrons in an external potential. It is based
on the theorems of Hohenberg and Kohn [43] which state:
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Fig. 4 DFT-MD workflow as implemented in VASP [22, 37–39]. The central part of the method
is the DFT calculation (blue) which is performed for each MD step (red). Basic input for the DFT
calculation is the XC functional

1. If two (electron) systems with an external potential v1.r/ and v2.r/ have the same
ground state density n.r/, then the potentials can only differ by a constant.

2. The density functional EŒn.r/� has its minimum at the ground state density.

This was generalized to finite temperatures by Mermin [44] where a functional
˝Œn.r/�, corresponding to the grand potential or, more relevant for DFT-MD simu-
lations, a free energy functional F Œn.r/� is used instead of EŒn.r/�. These theorems
have a huge advantage over the usual formulation of quantum mechanics, because
they basically say that we do not need to solve the many-particle Schrödinger
equation, we “only” need to find the electron density which yields the minimum
energy. The difficult part is, how to find the “correct” energy functional EŒn.r/� and
how to calculate from this the ground state energy and density.

The basis of DFT is the energy functional EŒn.r/�. While Hohenberg and Kohn
and Kohn and Sham proposed functionals for constant and slowly varying density,
the search for accurate functionals is still ongoing and the results of the calculations
can depend heavily on the used functional [45]. Formally, the energy functional can
be written in the form

EŒn.r/� D VextŒn.r/� C UHŒn.r/� C TsŒn.r/� C EXC; (1)

where

Vext D
Z

vext.r/n.r/d 3r (2)
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is the energy due to the external potential vext.r/,

UHŒn.r/� D 1

2

Z Z
n.r/n.r0/
jr � r0j d 3rd 3r 0 (3)

is the Hartree energy,

TsŒn.r/� D
NX
i

Z
��

i .r/

�
�1

2
r2

�
�i .r/d 3r (4)

is the Kohn-Sham kinetic energy, and EXC is the so-called exchange-correlation
(XC) functional. Note that Hartree atomic units are used throughout this chapter. In
this XC functional all unknown properties of the interacting system are gathered,
and this functional is the central ingredient for DFT calculations.

The simplest approximation is the local density approximation (LDA) [46–48]
where the XC contribution is calculated for a homogeneous electron gas at the
local density n.r/. This treatment is correct for slowly varying electron densities
and yields the correct limiting case for very high densities. Generalized gradient
approximations (GGA) are a better approach, where the XC functional depends
not only on the electron density, but also on its gradient. The GGA by Perdew,
Burke, and Ernzerhof (PBE) [49] is used for most results shown in Sect. 3, except
for few calculations with the hybrid functional proposed by Heyd, Scuseria, and
Ernzerhof (HSE) [50, 51]. Even better XC functionals are computationally much
more demanding, and up to now not feasible for large-scale simulations.

Since the beginning of DFT in 1965 up till now more than 50 XC functionals
have been developed, partly based on empirical data and partly based on ab initio
theory. Several works are dedicated to benchmarking different functionals for e.g.
lattice constants [45, 52–56], bulk moduli [52, 53], bond lengths [57–59], and band
gaps [53,54]. In general, there is no XC functional which performs equally well for
all properties and all elements.

The PBE functional yields often not the most accurate results, but for many appli-
cations it performs quite well compared to its computational demands. Additionally,
it is an ab initio functional in the sense that it is nonempirical. One of the main
problems of the PBE functional (and other LDA and GGA functionals as well) is
the self-interaction error, i.e. they are not self-interaction free, leading to too small
band gaps [60, 61]. In principle, this can be improved by better functionals like
HSE [53, 61] or EXX-LDA [62], however, with much higher computational costs.

The Hohenberg-Kohn theorems were used by [46] to derive a set of equations

�
�1

2
r2 C veff.r/

�
�i .r/ D "i �i .r/ ; (5)

n.r/ D
NX
i

j�i .r/j2 ; (6)
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veff D vext.r/ C
Z

n.r0/
jr � r0jd

3r 0 C ıExc

ın.r/
; (7)

which have to be solved self-consistently, thus reformulating the many-body Schrö-
dinger equation into a set of effective one-particle Schrödinger equations. Hereby, an
iterative recipe to solve the problem is available, by starting from a guessed ground
state density n.r/, constructing the effective potential veff (Eq. 7), solving Eq. 5, and
calculating the new density n.r/ (Eq. 6). This iteration has to be performed until the
energy is converged, see also Fig. 4.

2.2 Numerics and Convergence

For the evaluation of the Kohn-Sham equations, one has to represent the wavefunc-
tions in a convenient way. Many available codes use an expansion into plane waves,
which have useful features for calculations, e.g. the implementation of periodic
boundary conditions is straightforward and Fourier transformations can easily be
done. One problem of plane waves is the representation of the wavefunctions near
the ions, since the Coulomb potential leads to strong oscillations. To represent
these oscillations many plane waves are needed, which make calculations very
demanding. To circumvent this problem, pseudopotentials were introduced. The
general idea is to replace the wavefunctions inside a sphere around the ions
with smooth functions, without changing the physical outcome of the calcula-
tions. The first pseudopotentials introduced where the so-called norm-conserving
pseudopotentials [63, 64], which conserved the norm of the wavefunctions at the
sphere boundary. But still, for some elements, e.g. transition-metal elements or
elements with d or f electrons, very “hard” pseudopotentials, i.e. small sphere
cutoff radii, are needed, which still leads to high plane wave cutoffs. This could
be solved by ultrasoft pseudopotentials [65] which relaxed the norm-conserving
condition at the cost of a more involved pseudopotential generation. However, these
generated pseudopotentials have to be tested extensively [66]. A better approach is
the projector augmented wave (PAW) method [66, 67] which is based on a linear
transformation between the all-electron and pseudo-wavefunctions. In principle,
all these techniques are only of technical nature, i.e. they should only reduce the
computational costs without changing the physical outcome. This has to be checked
carefully in convergence tests with respect to plane wave cutoff (number of plane
waves), and the radial augmentation cutoff.

Due to the periodic boundary conditions it is necessary to perform some of the
calculations in reciprocal space by integrating over the Brillouin zone. However,
for DFT-MD simulations it is not possible (and usually not needed) to sample
the Brillouin zone with a very fine grid, so that the integration is replaced by a
summation over some special k points. In fact, often only one special k point is
needed, but obviously this calls for convergence tests with respect to the k-point
sampling. There are several possibilities to sample the Brillouin zone. One very
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Fig. 5 Convergence of the pressure with respect to the particle number for the � point (� ), the
BMVP (B), and a 3 � 3 � 3 Monkhorst-Pack grid (3). Shown are results for liquid hydrogen at a
density of 1 g/cm3 (red) and 4 g/cm3 (black) and a temperature of 1,000 K

common way for DFT-MD simulations is to use only the � point. Choosing this
point has (apart from being only one point) the advantage that the wavefunctions
have real values and the code does not need to deal with complex numbers, which
can speed up the calculations. However, one has to check very carefully if the
results are converged, which is sometimes only the case for higher particle numbers
compared to other choices.

A common method for choosing more k points is the method of Monkhorst and
Pack [68] where a discrete grid of k points is generated. Another special point that
can be used instead is the so called “Baldereschi mean-value point” (BMVP) [69].
It has the advantage that many quantities converge very fast with respect to higher
k-point sets. An example for convergence tests with respect to k-point sampling and
particle number is shown in Fig. 5, where the good convergence of the BMVP for
hydrogen simulations can be seen.

By using the Born-Oppenheimer approximation, one can perform classical MD
simulations for the ions, and use DFT for the electrons. The basic principle
is illustrated in Fig. 4. Like the classical MD simulations it starts with an ion
configuration inside a simulation box. These ions provide the external potential
for the DFT calculations for the electron system. With a (guessed) initial electron
density n.r/ the Kohn-Sham equations are solved, and from the Kohn-Sham
eigenvalues and wavefunctions a new electron density and the resulting energy
functional can be calculated. This procedure can be repeated with the new electron
density, until the energy functional reaches its minimum. Afterwards the forces on
the ions are calculated from the Hellmann-Feynman theorem [70] and, as in the
classical MD simulations, the ions are moved in a finite timestep. In this way the
forces are calculated ab initio for each timestep and the fundamental problem of
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classical MD simulations (knowing the potential) can be solved. This workflow is
implemented in several codes such as VASP [22, 37–39] and abinit [71, 72].

2.3 Electrical Conductivity

Within DFT the dynamic electrical conductivity can be calculated with the
Kubo-Greenwood formula [73–78]

� .!/ D 2�

3V!

X
k

wk

NbX
j D1

NbX
iD1

�
fj;k � fi;k

�
(8)

� ˇ̌h�j;kj Opj�i;kiˇ̌2 ı
�
"i;k � "j;k � !

�
;

where V is the volume of the simulation box and ! the frequency. The summation
over the matrix elements of the Kohn-Sham orbitals with the momentum operator
Op, weighted with the difference of the Fermi occupation numbers fi;k, is performed
over all Nb bands. This is, however, very time consuming and needs much disk
space. Therefore, it cannot be calculated for each timestep of the simulation, but
only for snapshots of the simulation. Convergence tests have to be done with respect
to the k-point sum [79]. Additionally, it is possible within the Kubo theory to derive
the thermal conductivity and the thermopower [78]. While it is possible to calculate
optical properties like the reflectivity from the dynamic conductivity [78, 80], only
results for the static limit (! ! 0) are shown in Sect. 3.

Since the Kubo-Greenwood formula evaluates transitions between discrete
energy eigenvalues obeying energy conservation via ı

�
Ei;k � Ej;k � !

�
, the elec-

trical conductivity is zero most of the time and has only finite values when the
frequency ! is equal to an exact energy difference between two bands. However,
since the simulation can only be performed for a given number of electrons in a finite
box, the bands form a discrete spectrum while they lie energetically very close for a
real system. To circumvent this (unphysical) problem, the ı-function is replaced by
a Gaussian with a finite width. Depending on this width the dynamical conductivity
will be more or less smooth.

But still, the conductivity would drop down for small !, approximately when
! is smaller than the mean band distance. In general this effect can be reduced
with higher particle numbers, since then the mean band distance gets smaller.
Nevertheless, the direct limit of ! D 0 cannot be reached. Two approaches are
possible for obtaining this limit. In the first approach, the width of the Gaussian can
be increased, until smooth functions up to ! D 0 are obtained. But especially for
small particle numbers the resulting static conductivity would depend very much
on the chosen width and the results would be to some extent arbitrary. A better
approach is to perform a regression (either a linear or an exponential function) in
the area of small frequencies which are still higher than the mean band distance.
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By this approach the unphysical drop in the conductivity due to the finite system
size is ignored, but a reasonable limit can be obtained.

Note that this Kubo-Greenwood formalism applies only to the electronic con-
tribution to the conductivity. In principle it is possible to calculate the ionic
conductivity from DFT-MD simulations [81], but the effective charges carried by
each ion have to be known, which is very involved for complex mixtures [82].

3 Ab Initio Results for WDM

3.1 Hydrogen

Hydrogen as the simplest element is an ideal test case for WDM research. At the
same time it is the most abundant element in the universe and the largest constituent
of GPs. Especially for modeling GPs, the EOS for hydrogen is needed, which
was therefore the aim of many studies, see e.g. [78, 83–85]. However, the main
uncertainty and the main discrepancy between chemical models and the DFT-MD
simulations was the existence of a first-order liquid-liquid phase transition from a
nonmetallic molecular fluid to a dissociated metallic fluid (PPT). With the recent
progress of ab initio simulations the existence of this phase transition seems to be
clear [86, 87] and the problem is now reduced to determining the exact location of
the transition. However, the experimental validation is still missing. An anomaly in
the heating curve of liquid hydrogen was obtained recently [88] using pulsed lasers
at static pressures in the Mbar region; this feature is closely correlated with our
theoretical predictions for the PPT.

In Fig. 6 the high pressure phase diagram of hydrogen is shown. At temperatures
below 1,000 K solid hydrogen occurs in various phases which are also of great
interest, see [84, 85]. At higher temperatures, but still below 2,000 K, the above
mentioned first-order phase transition is found. This liquid-liquid transition is
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characterized by pressure dissociation as derived from the abrupt vanishing of the
molecular peak, see Fig. 7. Simultaneously, a nonmetal-to-metal transition occurs
which is reflected in the electrical conductivity data, see Fig. 8. The strong increase
in the molecular phase (semiconducting fluid) is followed by a jump over 1–2 orders
of magnitude when crossing the coexistence line. An almost temperature and density
independent behavior is observed in the dense metallic fluid. The jump disappears
above the critical point and the increase is steep but continuous there.

However, as can be seen from Fig. 6, the XC functional used in the DFT-MD
simulations has an influence on the location of the liquid-liquid phase transition
since the underlying nonmetal-to-metal transition is induced by bandgap closure.
The PBE XC functional is known to yield too small bandgaps so that the transition
pressure is underestimated (green line with crosses and blue line with triangles).
More reliable results are expected using the HSE nonlocal XC functional (prelimi-
nary results are shown by the green dotted line with stars) and CEIMC simulations
(blue line with diamonds). The impact of nuclear quantum effects and of van der
Waals corrections in addition to that of a nonlocal XC functional as shown above
has been studied recently [91].

3.2 Hydrogen-Helium Mixtures

A prominent example for a mixture in WDM is hydrogen and helium. This mixture
is especially important for astrophysical objects, since hydrogen is in principle
always accompanied by helium. Most of the modeling so far applies mixing rules
to describe the properties of the mixture, especially for the EOS. However, more
and more studies are devoted to the real mixture, see e.g. [92, 93]. An important
effect which cannot be explained with mixing rules is the demixing of hydrogen
and helium at high pressures. In particular, this process has been predicted to occur
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in Saturn which would influence the thermal evolution of this planet strongly, see
Sect. 4.3. To calculate this effect, one has to evaluate the Gibbs free energy of mixing

�G.x/ D �U.x/ C P�V.x/ � T�S.x/ ; (9)

where G is the Gibbs free energy, U the internal energy, P the pressure, V the
volume, T the temperature, and S the entropy. The � denotes the difference between
the mixed state and a linear mixing of the pure systems, e.g. �U.x/ D U.x/ �
xU.1/ � .1 � x/U.0/. Whenever the system can minimize its Gibbs free energy
by demixing into two phases with different helium fractions x, demixing occurs.
The only problem in DFT-MD calculations is the difficulty to access the entropy of
mixing. The simplest approach is to use the ideal entropy of mixing

�Sid.x/ D �kB Œx ln x C .1 � x/ ln.1 � x/� ; (10)

while in principle better results can be obtained with thermodynamic integration
techniques [94]. Two recent results for conditions in the interior of Jupiter and
Saturn are shown in Fig. 9, in comparison to the phase diagrams of pure hydrogen
and helium. The isentropes of both Jupiter and Saturn enter the demixing region
at about 1 Mbar. While the jovian isentrope leaves the demixing region again at
about 2.5 Mbar, and therefore has only a small fraction of its interior inside this
region, the whole interior of Saturn is in the demixing region. This implies only
a small effect on the structure and evolution of Jupiter, but has drastic effects on
the evolution of Saturn, see Sect. 4.3. New results for lower pressures, i.e. in the
molecular phase of hydrogen are in preparation [104]. All recent ab initio results
reduced the uncertainty in the demixing temperatures drastically compared with
previous predictions [13, 105, 106].
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Fig. 9 Demixing region (yellow area) for a helium fraction of x D 0:086, i.e. the mean helium
fraction in the planetary interiors, in comparison with the isentropes of Jupiter [95] (solid black)
and Saturn (dashed black), see [96]. The filled circles are the calculated data from the Gibbs free
energy, the open circle at 2 Mbar is extracted from conductivity data. The line is a fit to these points.
The results of Morales et al. [94] for the demixing line are also shown (squares). We compare
with the phase diagram of pure hydrogen (red). The melting line is taken from Ref. [86] and the
coexistence line of the liquid-liquid phase transition with its critical point from Ref. [87]. For
helium we show the melting line (blue; Kechin-type fit [97] to experimental data [98–102]) and
our recent high-pressure prediction [103]

3.3 Equation of State and Shock Wave Experiments
for Hydrogen

Probing the EOS in the WDM regime is a challenging task. Sophisticated experi-
ments have to be performed to reach such extreme conditions. Pressures of several
megabar can be generated using static diamond anvil cells or dynamic compression
methods. Drivers for strong shock waves are, e.g., high-power lasers [107,108], gas
guns [109, 110], pulsed power [111, 112], or chemical explosions [113, 114]. For
instance, all final states of single shock experiments performed with deuterium are
located on the principal Hugoniot curve for a given initial state in the cryogenic liq-
uid at 20 K and 0.17 g/cm3. Recent experiments indicate a maximum compression of
about 4.25–4.5 [108,111,115,116]. States off the principal Hugoniot can be reached
by varying the initial condition, e.g. by using a precompressed sample [117], by
applying reverberation techniques [109,111,116], or by generating quasi-isentropic
compression paths [118,119]. All techniques but the last one yield the thermal EOS
P.�; T / or at least P.�/. Up to now, quasi-isentropic experiments only measure the
compression ratio and determine pressures and temperatures via an EOS that is used
in a hydrocode in order to reproduce the same compression.

Ab initio EOS data are benchmarked by shock wave experiments measuring
P.�; T / or P.�/. In Fig. 10 experimental data for the principal Hugoniot (orange
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circles [117] and diamonds [111]) and Hugoniot curves for precompressed states of
deuterium (blue and green circles [117]) are shown as well as a point representing a
108-fold compression of gaseous deuterium [119]. The DFT-MD Hugoniot curves
for different initial conditions fixed by the experiment are derived from our ab initio
EOS data [120] which coincide with another ab initio data set [84]. Both reproduce
the experimental pressures very well while they underestimate the temperature
onset of dissociation slightly [117]. This is again due to the bandgap problem
when using the GGA-PBE functional. Note that higher precompression leads to
smaller compression ratios. This has been shown earlier for hydrogen [84, 121] and
helium [122].

Quasi-isentropic compression paths can be reconstructed evaluating Eq. (12)
in Sect. 4.1 with a given EOS. We calculate the compression paths of deuterium
starting from an initial temperature of 283 K and a density of 0.04 g/cm3 [119]
using our DFT-MD data [120]. For the measured compression ratio we expect a final
pressure of �13 Mbar at 1,500 K, significantly lower than the predicted 18 Mbar at
3,500 K as derived from a semi-empirical EOS used in the hydrocode. However, the
data point is located on a quasi-isentrope, see Fig. 10, illustrating impressively that
high pressures and low temperatures as relevant for states deep in planetary interiors
can be reached in the laboratory today. More accurate experiments should be
performed to discriminate between competing interior models and, thus, competing
EOS data; see next Sect. 3.4.
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3.4 Water

After hydrogen and helium, carbon, nitrogen and oxygen (and neon) are the next
abundant elements. Thus, the high-pressure behavior of their hydrides CH4, NH3

and H2O, and that of their mixtures, is of great interest in planetary physics,
especially for Uranus and Neptune in the solar system [123]. This is further
highlighted by the fact that Neptune-like exoplanets might be very common, see
Fig. 3. We review here some new results for warm dense water as a prototypical
example for molecular systems. A better knowledge of their high-pressure behavior
is a prerequisite for an advanced understanding of the structure and evolution of
such exoplanets.

Extensive DFT-MD simulations were performed to determine the EOS and the
transport properties of warm dense water [21, 81, 124, 125]. We show in Fig. 11 the
high-pressure phase diagram as predicted in Ref. [17]. Increasing the temperature
in the liquid phase transforms water continuously from a molecular through a
dissociated (ionic) to a plasma region (with free electrons). At high pressures we
find various solid (ice) phases and, most interestingly, also an exotic superionic
phase as predicted earlier [21, 124]. This phase consists of an oxygen lattice but
mobile protons which would represent a proton conductor. The type the oxygen
lattice under these conditions is still under debate, whether or not it retains the bcc
structure of the high-pressure ice VII and ice X phases, or transforms to a fcc lattice
with a slightly higher melting line [19].

The total electrical conductivity of warm dense water is shown in Fig. 12. The
electronic contribution is calculated via the Kubo-Greenwood formula (8) using the
HSE XC functional in order to obtain correct bandgaps [81]. The ionic contribution
is determined by assigning an effective charge to the protons, see [21]. This analysis
based on the diffusion coefficients can be improved by applying, e.g., polarization
theory within each MD timestep in order to determine the effective charge of the
proton rigorously which is, however, numerically very demanding [82]. It turns out
that both methods agree well for warm dense water but not for the superionic phase
where cross correlation terms (which are neglected in the diffusion analysis) have
to be considered.

The curves show a systematic increase of the total conductivity with density
and temperature. In the fluid phase below 4,000 K, the conductivity is mostly
due to protons while the electronic contribution dominates at higher temperatures.
Interestingly, the conductivity drops slightly (factor two) along the plasma-to-
superionic phase transition (dotted lines). This is due to an increased localization of
the electrons which stabilizes the oxygen lattice. At higher densities the conductivity
increases again so that a nonmetal-to-metal transition is predicted in the superionic
phase, simultaneously with a proton rearrangement. Protons occupy ice X sites more
frequently at lower densities but favor octahedral sites in the high-density regime.

Shock-wave experiments with a so far unprecedented accuracy were performed
recently at the Sandia Z machine that allow us to benchmark the high-pressure
water EOS. We show the corresponding Hugoniot data for water (red symbols)
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Fig. 11 High-pressure phase diagram of water [17]. The liquid phase includes a molecular, a
dissociated (ionic) and a plasma region at higher temperatures. Besides the various solid phases
(shown are ice VII and ice X), an exotic superionic phase is predicted. see also [19, 21, 124]. For
comparison the theoretical isentropes of the water-rich planets Uranus (grey solid) and Neptune
(black solid) are shown as well
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Fig. 12 Total electrical conductivity of water, i.e. electron plus proton contribution [81]. The
dotted lines indicate the location of the phase transition between the plasma and the superionic
phase, see Fig. 11

in Fig. 13 [126]. The Z data are in good agreement with gas gun data [128] and
explosively driven shock data [129] but indicate a significantly lower compressibil-
ity than laser-driven shock data [130]. The vastly reduced uncertainty in the new
Z data (roughly an order of magnitude), strongly suggests that water is much less
compressible than the standard Sesame model predicts, and that water is instead very
accurately described by ab initio EOS data [125, 131]. Furthermore, the reanalyzed
ultra-high pressure point [132] is also in very good agreement with the ab initio
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EOS. Thus, with the exception of the laser data, the EOS based on DFT-MD
for water matches all experimental Hugoniot data up to 1.4 TPa. Furthermore,
very good agreement is also achieved for second shock data and the reflectivity
along the principal Hugoniot curve, see [126] for details. We conclude that this ab
initio EOS can now be used to construct more reliable interior models for Uranus
and Neptune [8, 17, 133], see also Sect. 4.2 and Fig. 17, but also for water-rich
exoplanets, e.g., for GJ 436b [31] and the Super-Earths and Sub-Neptunes in the
Kepler 11 system [18].

Similar experimental and theoretical studies are performed for ammonia [124,
134–141] and methane [134, 142–144] which have a rich phase diagram as well.
Of central importance in this context is the treatment of multi-component C-N-O-
H-He mixtures. Corresponding EOS data would serve as a new and more realistic
data base for interior, evolution, and dynamo models of Neptune-like planets. These
studies are closely connected with high-pressure chemistry since chemical equilibria
are shifted at extreme conditions and new reaction channels might occur which
are not important at ambient conditions. Interesting effects such as demixing and
polymerization might occur as well. First promising results were obtained for a
synthetic Uranus composition of H:O:C:N = 28:7:4:1 [145] and mixtures of CH4

and H2O [146].

3.5 Other Materials

The detection of Super-Earths has enhanced the interest in geophysics and initiated
studies of the high-pressure behavior of typical mantle materials like MgO, SiO2,
MgSiO3, CaSiO3 etc. on a large scale; for reviews, see [147–150]. For instance,
new predictions for the melting line based on ab initio simulations [151, 152]
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and a first-order liquid-liquid phase transition in silicate melts derived from laser-
driven shock compression experiments were given [153] which could be important
for stabilizing convective layering and compositional stratification in Super-Earths.
These data are needed to predict, e.g., accurate mass-radius relationships for
exoplanets [154] and the interior structure of Super-Earths [155].

Furthermore, extended data sets are generated for warm dense Fe, Ni, and Fe-
Ni alloys which are expected to be the dominant core materials of rocky, ice-giant
and gas-giant planets, including exoplanets. Of central importance in this context
is the phase diagram of iron. Various phases transformations are predicted in the
solid up to 1 Gbar (bcc-hcp-fcc-bcc) [156]. The slope of the high-pressure melting
line is important for deciding whether or not the inner core of Super-Earths is solid
(as in the Earth) or liquid [157, 158]. Solidification of iron at the boundary between
the inner (solid) and outer (liquid) core is critical for the planetary magnetic field
because most of the lighter elements are excluded from the inner core upon freezing
into the corresponding lattice structure which releases most of the energy that drives
convection and, thus, the planetary dynamo. The strength of the planetary magnetic
field also depends on the electrical conductivity of solid and liquid iron under such
conditions [159]. The influence of lighter elements on the electrical conductivity
of, e.g., liquid Fe-Si and Fe-O alloys is also crucial [160]. For instance, the slope
of the high-pressure melting line of iron decides whether or not Super-Earths are
just up-scaled Earths (with an outer liquid core above an inner solid core) or
solid bodies [161–163]. This is of paramount importance for the generation of
possible magnetic fields and, thus, for the existence of even simplest life-forms on
exoplanets.

4 WDM and Giant Planets

In this section we outline how giant planets serve as astrophysical laboratories
for WDM calculations since typical parameters for their deep interior cover
pressures of several ten Mbar and moderate temperatures of few eV, see Sect. 1. In
particular, we discuss the influence of the plasma phase transition (PPT) in hydrogen
(Sect. 3.1) and of demixing in hydrogen-helium systems (Sect. 3.2) on the interior
and evolution of GPs, especially of Jupiter and Saturn.

4.1 Interior Models for Jupiter and Saturn

Interior structure models for Jupiter and Saturn have been calculated for decades,
see e.g. [7, 89, 95, 164–169]. Those models have to reproduce all observational
constraints, see Sect. 1.2, especially the shape of the gravity field. Caused by the
rather rapid rotation of the planet (for Jupiter and Saturn, the rotational period is
�10 h, for Uranus and Neptune �17 h) its gravitational field departs from a purely
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spherical function. To describe these deviations the field is expanded into Legendre
polynomials P2i .cos 	/ with the polar angle 	,
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with the gravitational constant G and the equatorial radius Req . The gravitational
moments J2i can be measured through the analysis of the orbits of planetary
satellites and of the trajectories of spacecraft flybys. These constraints have to
be matched by any theoretical interior model that uses EOS data for the relevant
planetary materials at WDM conditions. This is realized in the standard three-layer
model by redistributing the amount of heavy elements within both adiabatic layers,
see [170]. For a corresponding multi-layer approach including double-diffusive
convection and compositional gradients, see [171].

A central goal of these efforts is the determination of the size of the planetary
cores which would give valuable information on the formation process of planets,
i.e. either via core accretion [172, 173] or via disk instability [174, 175]. Even for
Jupiter, the prototypical and best studied GP in the solar system, the predictions vary
from light cores (8.3 ME [165], 5 ME [166], (3–3.5) ME [167], (0–14) ME [168],
(0–8) ME [89]) to massive ones (14–18) ME [169], see Fig. 14. Obviously there is
still a big uncertainty whether Jupiter has a core or not. In contrast Saturn’s core
mass can be as high as 20 ME [176, 177].

While interior models based on the EOS for hydrogen and helium within a
chemical picture proposed by Saumon, Chabrier, and van Horn [178] (SCvH-EOS)
agree in predicting a rather small core for Jupiter, the first Jupiter models that used
an ab initio EOS differed significantly in their core mass prognosis, as can be seen
in Fig. 14. The underlying planetary models are a three-layer model in case of
Nettelmann et al. [89], using LM-REOS and fitting the gravity data by choosing
corresponding metallicities in the two envelopes, and a two-layer model in the
approach of Militzer et al. [169] who also use a DFT-MD based EOS and assume
deep zonal winds to fit J4. This discrepancy was resolved recently by Militzer [182]
who showed that linear mixing of separate ab initio EOS for hydrogen and helium,
as performed by Nettelmann et al., leads to the same results for an adiabat under
Jovian conditions as derived from a real mixture of hydrogen and helium via
thermodynamic integration.

A three-layer interior model (see Fig. 1) of Jupiter that fulfills all observational
constraints is shown in Fig. 15. The model shown here has a transition pressure
of 8 Mbar between the two adiabatic layers at 0.629 of Jupiter’s radius, a core of
3.56 ME , a metallicity of 0.038 (�2.5 Zsolar) in the outer layer, and of 0.128 in the
inner layer. The core-mantle boundary is characterized by a pressure of 42 Mbar at
moderate temperatures of 19,500 K. Former models based on the SCvH-EOS [166]
argue that the interior of Jupiter is influenced by the PPT in hydrogen with a critical
point at Tc D 15;300 K, Pc D 0:614 Mbar and �c D 0:35 g/cm3 leading to a jump in
entropy at 1.17 Mbar and 6,880 K. Their prediction for the critical point was shown
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Fig. 14 Core mass vs. metallicity for Jupiter using different EOS data and interior models [170].
Shown are results using the H- and He-Sesame-92 EOS [179] and a modified version of Kerley
(K04) [180]. LM-REOS results use a scaled He-EOS (left quad) and the H2O-REOS (right quad)
as a representative for metals. The other DFT-MD EOS [169] assumes Y1 D Y throughout the
envelope. The SCvH-I models taken from [181] (SG04) assume Z1 D Z2 and those from [168]
(G99) Z1 ¤ Z2

Fig. 15 Jupiter model based on LM-REOS and a three-layer structure with a transition pressure
P12 D 8 Mbar at 0.629 of the Jovian radius [89, 186]. At the core-mantle boundary we find a
temperature of 19,500 K and a pressure of 42 Mbar. The mass of the core amounts in this model
3.56 ME . The fraction of metals in the fluid layers is Z1 D 0:038 and Z2 D 0:128

in Fig. 6 (phase diagram of hydrogen) together with the Jovian isentrope according
to Fig. 15. The isentrope, however, is not influenced by the PPT as we conclude
from the available ab initio calculations, but by the continuous transition from the
molecular to the conducting fluid which still occurs above the critical point. The red
line taken from Tamblyn and Bonev [90] indicates 50 % dissociation in hydrogen
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for a given P-T value. It intersects the isentrope just in the region where it flattens.
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with the Grüneisen parameter 
 . The change of temperature T with density � at
constant entropy S is governed by the absolute values of T and � and the derivatives
of the pressure P and the specific internal energy u D U=m with respect to T at
constant �. The flattening of the isentrope is driven by the additional energy required
to break the hydrogen bonds leading to an increasing denominator, namely cv. This
dissociation is accompanied by a sharp rise in electrical conductivity, see Fig. 16.
It is calculated applying the Kubo-Greenwood formula (8) on VASP simulations
using the HSE functional, see Sects. 2.3 and 3.1. The results are in very good
agreement with a semiconductor model of Liu et al. [183] for the conductivity in
the outer regions of Jupiter. It fits a linear decrease of the band gap with density
according to shock wave data [109,184,185]. The conductivity and further material
properties along the Jovian adiabat were calculated by French et al. [186]. These
data will serve as a more realistic input in future dynamo simulations for planetary
magnetic fields [187] that so far assume a superexponential behavior of the electrical
conductivity (orange line in Fig. 16).

4.2 Interior Models for Uranus and Neptune

Jupiter and Saturn, which are mainly composed of hydrogen and helium have a
mean density of 1.33 g/cm3 and 0.69 g/cm3, respectively. However, Uranus and
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Fig. 17 Three-layer interior models of Uranus and Neptune (a rocky core is surrounded by two
adiabatic fluid H-He-H2O envelopes, larger pie charts on the right) [17] compared with predictions
from magnetic field simulations (smaller pie charts on the left) [189, 190]

Neptune whose radii are only �35 % of the Jovian one have mean densities of
1.27 g/cm3 and 1.64 g/cm3, which implies that they must contain a larger fraction
of heavy elements (metals) than Jupiter and Saturn. State-of-the-art interior models
usually assume a rocky core surrounded by two adiabatic fluid envelopes composed
of hydrogen, helium and water [8, 133, 188]. Water serves as representative for
metals or, more specifically, represents the real C-N-O-H mixture inside these
planets. This underlines the great need for accurate EOS and conductivity data for
this prototypical molecular system or molecular mixtures at WDM conditions, see
Sect. 3.4.

Interestingly, predictions for the interior of Uranus and Neptune were derived
from three-dimensional magnetic field simulations [189,190]. Their non-dipolar and
non-axisymmetric magnetic fields are perhaps generated in a fairly thin layer of
at most 0.3 planetary radii surrounding a conducting core that is fluid but stably
stratified. In Fig. 17, these results (small pie charts) are compared with three-layer
interior models described above [8, 17]. Numbers given on the left are the radius
coordinates, numbers on the right denote pressure and temperature values. Below
an envelope of helium and molecular hydrogen, water is the main constituent in
its ionic phase (yellow) and, for more extreme conditions, in its superionic phase,
see Fig. 11. A remarkable agreement of the interior composition of both planets
which stem from two different modeling strategies (based solely on gravity data
or the shape of the magnetic field) can be stated. However, the conditions for the
occurrence of stably stratified layers in the deep interior have to be checked in more
detail, e.g. by considering further properties of the superionic phase and possible
demixing processes. A detailed analysis of the interior structure of both planets
based on new gravity data is performed in Ref. [133].
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4.3 Evolution of Giant Planets

After formation in the disk around a young star, the initially warm, luminous and
extended planets cool down and contract in a radiative quasi-equilibrium determined
by the received radiation flux from the parent star and the emitted radiation of the
planet. The received radiation, with a maximum in the visible range, is characterized
by the equilibrium temperature Teq, the temperature a black body would have solely
exposed to the flux of the star, without internal sources. However, Jupiter and
Saturn are observed to emit almost twice the energy they receive from the sun,
suggesting intrinsic sources of energy. These sources are addressed via the effective
temperature Teff, the temperature of a hypothetical black body emitting the same
total radiation as the observed planet does. The evolution of the planet, which is
in principal the change of Teff with time, can then be calculated using the cooling
equation:

4�R2
p.T 4

eff � T 4
eq/ D �

Z M

0

dm
T .m; t/ds.m; t/

dt
: (13)

The left-hand side maps the intrinsic radiation source of the planet with radius
Rp , since Teq accounts for the influence of the pure solar radiation and Teff that of
the reflected solar radiation and the intrinsic planetary radiation sources. Knowing
Teq the evolution of Teff is determined by the evolution of the total planetary heat
content, given on the right-hand side of the cooling equation. The second law
of thermodynamics relates the heat content to the entropy s D S=m, which is
determined for the planet by Teff, since the layers are isentropic. Integration of the
heat content T .m; t/ds.m; t/ of each mass shell over the whole planet leads to the
total heat content. Its change with time yields the change of Teff with time and hence
the evolution of the planet by integrating the cooling equation backward in time,
starting from a present model. The age of the solar system and thus the age of the
planets is 4.56 billion years (Gyr). Accurate planetary models should reproduce this
age for solar system planets in the associated evolution calculations.

If the amount of helium Yn and heavy elements Zn as well as the mass Mn of each
mass shell (with index n) are assumed to remain constant during time, the evolution
is called homogeneous. On the contrary, a change of the particle concentration with
time, see [191], leading to a change in Yn or Zn, or an extended inhomogeneous
region in the planet, see [192], lead to an inhomogeneous evolution of a planet. The
homogeneous evolution within one-layer models for Jupiter was first calculated by
Hubbard predicting an age of 4–8 Gyr [193] and 5.1 Gyr [193]. Further calculations
using the SCvH-EOS [178] with different model assumptions (see references) yield
results of 5.2–5.3 Gyr [194], 4.2–5.2 Gyr [195], 4.7 Gyr [196], and 4.66 Gyr [89].
An example cooling curve for Jupiter is shown in Fig. 18. Obviously, homogeneous
evolution models are suited to reproduce the correct age of Jupiter, which is also true
for Neptune, predicting an age of 4.3–4.8 Gyr [133]. However, similar homogeneous
evolution models for Saturn lead to an age of only 2–3 Gyr [194–198], suggesting
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Fig. 18 Homogeneous
evolution for Jupiter (solid)
and Saturn (dotted) and
inhomogeneous evolution for
Saturn with respect to the
H-He demixing calculations
of Hubbard and DeWitt [202]
(dashed) and Pfaffenzeller et
al. [106] (solid) taken
from [203]

an additional internal energy source, and of 6.8–10 Gyr [133,198] in case of Uranus,
indicating a retarding effect of ineffective cooling.

The issue of Saturn’s short cooling time is closely related to the process of
phase separation of hydrogen and helium at high pressures, see Sect. 3.2. First
extensive studies on the “helium rain” in Saturn have been performed by Stevenson
and Salpeter [191]. In the demixing region, helium is assumed to form droplets
with a higher density than their surrounding so that they sink into deeper layers
of the planet, thereby releasing gravitational energy and increasing the intrinsic
luminosity. There is observational evidence that this process has been occurring
in Saturn already for a long time (see Fig. 18) and that it has started in Jupiter
as well. For instance, the protosolar He/H-ratio amounts 0.086. In case of Jupiter
the Galileo entry probe measured a lower ratio of 0.079 [199], and infrared
spectra measurements of Saturn’s atmosphere indicate a ratio between 0.055 and
0.08 [200]. In addition, the theoretical isentrope of Saturn above 1 Mbar proceeds
well through the theoretical demixing region predicted by Lorenzen et al. [103]
and by Morales et al. [94], see Fig. 9. The intersection of the Jovian isentrope
with the demixing region indicates that demixing might occur in Jupiter as well.
Alternatively, Leconte and Chabrier [201] demonstrated that multi-layer models for
Saturn containing compositional gradients and double diffusive convection lead to
a considerably slower cooling of the planet.

For illustration, we show here previous results of Fortney and Hubbard [196]
in Fig. 18. Homogeneous evolution yields an age of only �2 Gyr (dotted line).
An inhomogeneous evolution using the demixing calculations of Hubbard and
DeWitt [202] would lead to an age of �3 Gyr (dashed line). Assuming that H-He
separation is the most important additional intrinsic heat source, they modified the
phase diagram of Pfaffenzeller et al. [106] in order to reproduce the correct age
of Saturn (solid line). These calculations have been extended to extrasolar giant
planets [203], where demixing should occur as well. Evolution calculations for
Saturn based on the ab initio H-He EOS of Lorenzen et al. [103] are in progress.
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5 Conclusions

In this chapter we have outlined the method of ab initio simulations that is perfectly
suited to determine the thermophysical properties of WDM. Various fundamental
problems such as the shape of the high-pressure phase diagram (i.e. location of
the melting line and of solid-solid transitions, existence of a first-order liquid-
liquid phase transition in hydrogen or of a superionic phase in water or ammonia),
the consequences of a pressure-driven nonmetal-to-metal transition in molecular
systems, and the demixng of hydrogen and helium can be addressed consistently.
The corresponding EOS and conductivity data are essential for the development
of advanced interior and dynamo models for solar and extrasolar GPs. The ab
initio data can be benchmarked by state-of-the-art shock wave and x-ray Thomson
scattering experiments, and excellent agreement is usually achieved. Furthermore,
new observations for solar (e.g. via the Juno mission to Jupiter) and extrasolar GPs
(e.g. via the Kepler and other planned space missions) will substantially extend
our so far limited and perhaps not representative data base for planetary physics.
We conclude that a better understanding of WDM is a key element for the future
development of planetary physics which is fortunately accompanied by the rapid
and coincidental progress in ab initio simulations and shock wave experimental
technique.
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