Chapter 2
Tetris-like Items

The packing of tetris-like items, i.e. clusters of mutually orthogonal rectangular
parallelepipeds, inside a given domain, is discussed here; see Fig. 2.1. Orthogonal
rotations are admitted and additional conditions can be present. Before introducing
the general problem and its mathematical formulation, the following definition is
provided as a fundamental concept.

Definition 2.1 A tetris-like item is a set of rectangular parallelepipeds positioned
orthogonally, with respect to an (orthogonal) reference frame. This is called ‘local’
and each parallelepiped ‘component’.

In the following, ‘tetris-like item’ will usually be simply denoted as ‘item’, if
no ambiguity occurs. Similarly, ‘rectangular parallelepipeds’ are indicated as
‘parallelepipeds’.

The term ‘domain’ refers to a subset of the three-dimensional Euclidean space R°.
Convex domains are mainly considered, providing the proper specifications
explicitly, when otherwise. The general problem is examined first (Sect. 2.1),
discussing some possible criticalities (Sect. 2.2), before investigating the issue of
modelling a set of additional conditions (Sect. 2.3).

2.1 General Problem Statement and Mathematical
Model Formulation

This section looks upon a first basic statement of the tetris-like packing issue, as an
extension of the classical single container loading problem. The issue of placing
small boxes into a big one has consolidated mathematical models. The formulation
usually referred to as space-indexed is based on the container discretization
(e.g. Beasley 1985; Hadjiconstantinou and Christofides 1995). The relative MIP
model provides very strong bounds (see Allen et al. 2012), as it also occurs for
similar discretized formulations for scheduling problems (corresponding to
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8 2 Tetris-like Items

Fig. 2.1 Tetris-like item
packing into a convex
domain (polyhedron)

one-dimensional packing, e.g. Pan and Shi 2007). This characteristic, in several
cases, greatly makes up for the discretization. This holds, in particular, when all the
items involved have integer side lengths (e.g. unit squares/cubes). The extension of
this space-indexed formulation to the accommodation of the tetris-like items issue
discussed in this chapter would be quite straightforward.

A non-space-indexed paradigm is considered in this work. A corresponding
mathematical model, expressed in terms of mixed-integer linear programming
(MILP), is formulated (it is usually denoted as the general MIP model, when no
ambiguity occurs, omitting the specification ‘linear”).

To state the problem, we shall consider a set of N items, each identified by an
associated local reference frame. This set is denoted by /. A (bounded) convex
domain D, consisting of a polyhedron (see Fig. 2.1), is considered. It is associated to
a given orthogonal reference frame, denoted in the following as main. The problem
is that of placing items into D, maximizing the loaded volume (or mass), with the
following positioning rules:

e Each local reference frame axis has to be positioned orthogonally, with respect
to the main frame (orthogonality conditions).

e For each item, each component has to be contained within D (domain
conditions).

e Components of different items cannot overlap (non-intersection conditions).

This problem can easily be formulated as an MIP (Fasano 2008). When dealing
with tetris-like items, each one consisting of a single component only and a domain
consisting of a parallelepiped, the tetris-like item general problem stated above
reduces to the classical container loading issue (e.g. Bortfeldt and Wischer 2012).
Its MIP formulation can be found, with possible variations, in some previous works
(e.g. Chen et al. 1995; Fasano 1989, 1999, 2003, 2004; Padberg 1999; Pisinger and
Sigurd 2005).

To formulate the general MIP model in question, the main orthogonal reference
frame, with origin O and axes wg, f = {1, 2, 3} = B, is defined. Each local
reference frame, associated to every item i, is chosen, without loss of generality,
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Fig. 2.2 Tetris-like item
rotations around a
single axis

so that all item components lie within its first octant. Its origin coordinates, with
respect to the main reference frame, are denoted in the following by 0. We shall
then introduce the set £2 of all possible orthogonal rotations, admissible for any
local reference frame, with respect to the main one. It is easily seen that they are
24 in all, since items are, in general, asymmetric objects.

This is illustrated by Fig. 2.2, where an item, consisting of three mutually
orthogonal components, is considered. The components have lengths of 1, 3 and
9 units respectively. The component of length 3 units is parallel to the vertical axis
of the observer reference frame. Two sub-cases are considered: in one
(corresponding to the four images above) the item is up-oriented, whilst in the
other (corresponding to the four images below) it is down-oriented. As can be seen
from the figure, four orthogonal (clockwise) rotations (around the vertical axis) are
associated to each sub-case, so that when the component of length 3 units is vertical
(either up-oriented or down-oriented), eight relative rotations have to be taken into
account. The same holds when either the component of length 1 unit or the one of
length 9 units assumes the vertical position, so that the total number of orthogonal
orientation is 24.

In the following, the set of components associated to the generic item i is denoted
by C;. We shall introduce, for each item i, the set E,; of all (eight) vertices
associated to each of its component h. An extension of this set is obtained by adding
to E;; the geometrical centre of component h. This extended set is denoted in the

following by Ej;. For each item i and each possible orthogonal orientation ® € (2,
we define the following binary (0—1) variables:

X € {0, 1}, with ¥; = 1 if item i is picked, X; = O otherwise;

dui € {0, 1}, withd,,; = 1 ifitem i is picked and has the orthogonal orientation
w € Q,9,; =0 otherwise.

The above orthogonality conditions can be expressed as follows:

Viel Y 8. =y, (2.1)
wEQ
VBEB,Yi E1,YhE C;,Vn E Ep

Wenhi = Opi + Z Wm/inhi'gwi-

wEN
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Here wg,,; (Vi € Ey;) are the vertex coordinates, with respect to the main reference
frame, of component h, or its geometrical centre (7 = 0), relative to item i; W,
are the projections on the axes wy of the coordinate differences between points

n € Ep; and the origin of the local reference frame, corresponding to orientation
o of item i.
The domain conditions are expressed as follows:

VBE B, Vi€ 1,Yh e C;,Vn € Ey

Woni = > Vigrhpphis (23)
rev
ViELVhEC,NEE > A = Xi- (2.4)
eV

Here wg,,; (n € Ej;) are the vertex coordinates, with respect to the main reference
frame, of component h relative to item i; V is the set of vertices delimiting D and Vg,
are their coordinates (assumed as non-negative, with no loss of generality) and 4,,,;
are non-negative variables. These conditions correspond to the well-known neces-
sary and sufficient conditions for which a point belongs to a convex domain.

The non-intersection conditions are represented by the constraints below:

VBEB,Vi,jE1/i < j,YhEC;,VkEC;

: 2.5
Wgon — Wpokj = 3 Z (LopniSoi + LopiiS0;) — D (1 _ G}Lhkij), (2.5a)
wE N
VBEB,Vi,j€1/i < j,YhE C,VkEC;
1 - 2.5b
Wooiy = Wons 2 5 >, (LopniSoi + LapiiSer) = Dp (1 - oﬂhkii>, (2.50)
w<E
Vi,jEI1/i < j,YhE C;,VkEC;
4] 2.6
Z (G,Z‘_hktj + Gﬁhkij> >xitx— 1, (2.6)

pEB

where Dy are the sides (parallel to the main reference frame) of the parallelepiped,
of minimum dimensions, containing D (minimum enclosing parallelepiped); wgop;
and wyy; are the centre coordinates, with respect to the main reference frame, of
components h and k of items i and j respectively; L,g;; and Lz, are their side
projections on axes wp, corresponding to orientation w; a;hklj and O ki e {0, 1}.
Inequalities (2.5a) and (2.5b) state that if, for any pair of components h (of i) and
k (of j), a variable o is equal to one, then the corresponding non-intersection constraint
is made active; otherwise it becomes redundant. The condition aghkij = 1 means that
k precedes h, with respect to the axis wy and vice versa if o5, = 1. When both i and j
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are picked, the relative inequality (2.6) guarantees that at least one o is equal to one,
and this means that, at least, one non-intersection constraint holds.
The objective function has the following expression:

maxz Kiy;, (2.7)

i€l

where K; is either the volume V; or the mass M; of item i. The total volume loaded is

denoted by v, with v = Z Vix;» whilst analogously, m, with m = ZM > refers
iel iel

to the overall mass.

Remark 2.1 The constants Dy can be interpreted as the classical big-Ms of the
mathematical programming literature and the inequalities (2.5a) and (2.5b) as
big-M constraints. It is indeed quite easy to rearrange each of them in the more

usual general form ZK[M/ <Ko+ (1 —¢)K, where K;, K, are constants, u; are
I

continuous variables, ¢ € {0, 1} and K is the corresponding big-M. Each big-M
could be theoretically substituted with any constant, sufficiently big to make the
relative constraint redundant when the corresponding ¢ is zero. In the whole MIP/
MINLP context, it is, however, well known that there is computational advantage in
making each big-M as small as possible, without excluding any integer-feasible
solutions (e.g. Williams 1993).

A property of interest, dealing with the issue of tightening the big-Ms appearing
in (2.5a) and (2.5b), is briefly looked upon here below. Prior to introducing
Proposition 2.1, we shall define the concept of external component, i.e. a component
with, at least, one side adjacent to the minimum enclosing parallelepiped,
enveloping the corresponding tetris-like item.

Proposition 2.1 Given that the domain D is a parallelepiped, for any pair of external
components h and k, belonging to two different tetris-like items, the (big-M) terms Dy,
appearing in (2.5a) and (2.5b), cannot be further tightened.

Proof Consider any two items i, j and any relative external components /4 and
k respectively. We shall write constraints (2.5a) and (2.5b) in the form

VBEB,Vi,jE1/i < j,YhEC;, Yk EC;

1
Wponi = Wpokj = 5 Z (Lopniai + LopiiSaj) — Kjjuii (1 - UthiJ-)’

wER

VBEB,Vi,jE1/i < j,YhE C;, Yk EC;

1 _ -
Wi = Wponi 2 5 Z (Lopniai + LopiiSaj) — Kpuii (1 - dﬂhkij)’

wER
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+
where Ky, and Ky, are positive constants. If aﬁhku = 1, the non-intersection

constraint between 4 and &, w1th respect to the corresponding axis w; becomes
active, as the multiplier of K, reduces to zero. If, instead, oy, = 0, the
inequality below must hold for any possible position of i and j in D:

K/}hkl] = —Wgohi + WR0kj += Z a)/ihi&(ui + La)/}kj&agj) .

wE.Q

To prove the proposition, it is therefore sufficient to consider the extreme case,
where item j minimum enclosing parallelepiped, is, with respect to the corresponding
side Dy, at its upper bound and item i minimum enclosing parallelepiped at the lower
one. Denoting, for any rotation w and @’ of i and j, respectively, by Za]ﬁ, and Lw/ s
the side projections of their minimum enclosing parallelepipeds on wy, the following
inequality must hold:

1
A Lmﬁhi .

1 _
Kiii > Dp — Loy + W o pois ELw’/}k,- — Logi + Waponi + 3

As this is requested for any @ and @', the condition is true, in particular, also
when  —L i+ W, /500 + L, o Lopi + Weponi + % Lopni = 0, occurring when
both / and k attain the contact condition (with respect the domain sides perpendic-
ular to Dg). The same reasoning occurs, obviously, for O ks SO that neither K/;W nor
K can be smaller than Dy. O

Phkij

Remark 2.2 The proof of Proposition 2.1 suggests how to determine, albeit in a
much more complicated way, the smallest big-Ms when the domain D is not just a
parallelepiped but a more general polyhedron. For this purpose, let us introduce the
terms W 00> , representing the minimum value that w,, can attain (in D) when item

i has the orientation w, and Wwﬂom, representing the maximum value that wp,,; can
attain (in D) when item i has the orientation w.

The minimum K;hkij is hence determined by the expression
1
E;;w = max {Wwﬂom +W o poig T > (L,,,/,v/" +L /ﬁk])} and analogously for
w,0 EQ

the corresponding minimum K/;hkl.j. The above considerations hold both for

external and non-external components, including, for these, the case when D is a
parallelepiped.

Special case of single parallelepipeds (single-component items)

The special case concerning single-component items is introduced here. The
resulting single parallelepipeds are assumed to be of homogeneous density, so
that the problem is greatly simplified, as six orthogonal rotations, with respect
to the main reference frame, are sufficient to determine their actual orientation.
A further simplification is carried out, restricting the domain D to be a parallelepiped.
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Posing a € {1, 2,3} = A, for each parallelepiped i, denote by L, its
sides, supposing, with no loss of generality, L,; < L,; < Lz; (as this assumption
can be of use in extended versions of this model). The coordinates of its centre,
with respect to the main reference frame, are indicated as wy,. The domain D is a
parallelepiped with sides D parallel to the main reference frame axes wp, respec-
tively. A vertex of D is, moreover, supposed to be coincident with its origin O
and D lies within the first octant. For each item i, the binary variables 6,5 € {0, 1}
are introduced, with the meaning 6,45 = I if L,; is parallel to the axis wy and
Ogpi = 0 otherwise.

The general objective function (2.7) is kept unchanged, whilst the overall
conditions are rewritten as follows:

Orthogonality constraints:

VaEANIEL > Sui = 1, (2.8a)
PEB
VBEBNIEL > Supi =1 (2.8b)
aEA
Domain constraints:
VBEB,VIiEI
1 1 2.9
0 < wp — 3 Z Libopi < wgi +§ ZLm5a i < Dgy;. (29)
aSEA aEA

Non-intersection constraints:

VBEB,Vi,jE1/i <j

: (2.10a)
Wpi — Wgj Z 5 ZA (Laiaa i +Laj5aﬂj) — <1 _ UEJ)D/}’
aEe
VBEB,VI,jEI]i <
1 - 2.10b
Wgi — Wpi > 5 z; (Lai5a/3i + qufsa/ij) — (1 — ()'ﬂij) Dy, ( )
ae
Vi,jEI/i<j
> (ofy+ o) 22 +2- 1, 2.11)
PEB

where ()'E.j and o5 € {0, 1}.
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2.2 Excluding Non-realistic Solutions

The general MIP model discussed in Sect. 2.1 can be subject to criticism, whenever
some practical aspects cannot be neglected. First of all, it does not include constraints
that prevent items to assume a ‘floating’ position within the container. This flaw is
scarcely influential in some contexts, such as that of bag loading in space logistics,
where the internal empty spaces are usually filled with packaging material (e.g. bubble
wrap or foam). Nonetheless, it can be non-negligible in several different applications.
For the sake of simplicity, referring to the case of single parallelepipeds, a ‘trick’
to overcome this difficulty in practice can easily be adopted. To this purpose, it is
sufficient to carry out a two-step optimization process, the first aimed at finding
what the maximum cargo (in terms of volume or mass) is and the second at
lowering the position of the items towards the container floor, as much as possible.
Let us suppose that the general MIP model is aimed at maximizing the loaded
volume (similar considerations would hold in the case of the mass) and denote by v
the (optimal) value, obtained at the first step. The second is executed by adopting
a variation of the general MIP. The constraintzvixi, =7V is therefore added,
iel
imposing that the total volume must be equal to that obtained (as an optimal solution)
in the first step. The objective function min Zw;i, replaces (2.7) (axes ws is
i€l
assumed as the vertical one). This will lower the position of each item, reducing, as a
consequence, the undesired ‘floating’ position effect (if an optimal solution, in
particular, is found, no item can stay totally suspended any longer).

Remark 2.3 1f, in the first step, only a suboptimal (or a nonproven optimal) solution

is found, the inequality Z Vixi» > Vv can substitute the corresponding equation.
=

As an alternative to what is outlined above, a more sophisticated approach could be

followed. This may be done by providing the main general MIP model with further

constraints, to make the packing solutions as realistic as possible, taking into

account both layer and stability conditions (see Sect. 2.3.5).

In addition to the criticality due to the aforementioned ‘floating’ positions, a
non-trivial issue may arise when in the presence of ‘closed’ tetris-like items, as shown
in Fig. 2.3. In some cases, to exclude solutions that are not feasible from the practical
point of view, particular precautions should be taken. This may be done by stating
special constraints not contemplated by the general MIP model of Sect. 2.1.

To explain the concept, let us consider a very simple example (see Fig. 2.3), by
introducing a pair of (identical) items i and j, each composed of four parallelepipeds
(components) forming a ‘squared’ ring (homeomorphic to the classical topological
figure of the torus).

As is immediately gathered, the non-intersection conditions (2.5a), (2.5b) and
(2.6), reported in Sect. 2.1, are not sufficient to avoid situations such as the one
illustrated in Fig. 2.3. They, indeed, prevent the intersection of each component
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Fig. 2.3 Concatenated
‘squared’ rings

Fig. 2.4 ‘Squared’ ring
(left) with additional
(zero-mass internal)
component (right)

Fig. 2.5 Acceptable
solution

of i with every one of j, and this holds also for the situation represented in the figure,
as a matter of fact.

Nonetheless, in most real-world frameworks, a similar result would not be
acceptable. In the case under consideration, in particular, to overcome this stum-
bling block, it would be sufficient to represent the empty space (internal ‘hole’)
associated to item 7 as an equivalent (zero mass) additional component (see Fig. 2.4)
and include it in the non-intersection conditions between items i and j.

It is understood that the additional components have to be neglected when not
necessary, as in the case, for instance, of the items represented in Fig. 2.5. The
presence of additional components should indeed be considered, case by case, for
each pair of items, depending on the specific context under analysis. Of course,
much more tricky situations could also occur, even if they are not considered here.
As is easily understood, however, the approach proposed above could simply be
extended, to tackle adequately the specific cases under consideration.
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2.3 Additional Conditions

The MIP approach introduced in Sect. 2.1, differently from other packing method-
ologies (especially the ones based on sequential placement algorithms), is quite
suitable for treating a number of additional conditions. A survey of cases, quite
frequent in practice, is reported hereinafter. Before going on with this part, it is
however useful to introduce, for each pair of items 7 and j, the variable y; € [0, 1]
(implicitly binary, i.e. y; € {0, 1}), with the following conditions:

Vi,jel/i<j ){US)(,', (2.123.)
VijEIi<] Xi <X (2.12b)
Vi,jE1/i <] Xizxitxi—L (2.13)

2.3.1 Conditions on Item Position and Orientation

Specific loading conditions, such as those concerning the pre-fixed position and
orientation of some items, are straightforward. Indeed this task, from the modelling
point of view adopted, simply consists of fixing the relative variables og; at the desired
values and setting to one the 9, corresponding to the orientation that is targeted.

Weaker conditions on the item position can easily be introduced, if necessary, by
posing lower and upper bounds on its local reference frame origin or even on the
centre of each single component. Some orientations can be inhibited simply by
setting to zero the corresponding 9, this allows, for instance, to force a local
reference frame axis to be parallel to a particular direction (i.e. parallel to an axis of
the main reference frame).

Similarly, (pairwise) ‘parallelism’ conditions can be taken into account, by
acting properly on the relevant variables 9. Given, for instance, two identical
items i and j, the constraints below state that if both of them are loaded, they
must have the same orientation: V @ € £, 0,,; > 0,,; + y;; — 1.

2.3.2 Conditions on Pairwise Relative Distance

In some practical applications, either minimum or maximum distance conditions,
involving pairs of components, belonging to different items, can be posed. From a
general point of view, constraints like the following can thus be required for
components h and k of item i and j, respectively:

2
> (wponi = wpor)” > Dyt (2.14)
=
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> (wponi — wpoig)” < Eikij)(ij +( > Dfi) (1= xy), (2.15)
BEB €B

where Qhklj and Dy; are the given lower and upper bounds for their relative

distance, respectively, whilst the other terms have already been defined. Clearly,
inequality (2.14) expresses the minimum distance condition, whilst (2.15) the one
on the maximum, holding if both items are loaded. Inequalities (2.14) and (2.15)
become redundant, otherwise, if at least one of the items is not loaded, i.e. y;; = 0.

Constraint (2.14) coincides (when y;; = 1) with the classical one that guarantees
the non-intersection between two spheres. This is notoriously non-convex and well
known for being very difficult to deal with, as results from the specialist literature
on circle/sphere packing (e.g. Addis et al. 2008a, b; Castillo et al. 2008; Gensane
2004, Kampas and Pintér 2005; Locatelli and Raber 2002; Stoyan and Yaskov
2008; Stoyan et al. 2003; Sutou and Dai 2002). Constraint (2.15), on the contrary, is
convex and, as such, much easier to treat, even if still nonlinear (it could be
observed that tighter big-Ms could be profitably chosen).

. 2 =2 . .

Remark 2.4 To show that the constraint Z (WﬁOhi — w,;()kj) < thii is convex, it
BEB '

suffices to observe that, for any B, each quadratic form (wgon; — Wﬁij)z is obviously

positive semi-definite and the first member of the inequality above is thus a sum

(with positive coefficients) of convex functions (e.g. Minoux and Vajda 1986).

In order to remain within an MIP framework, a piecewise linear approximation
(e.g. Williams 1993) can easily be applied both to (2.14) and (2.15). To this purpose, it
is useful to pose egpi;; = Wponi — Wpoiy» With eg; € [—Dp, Dgl. Adopting an obvi-
ous simplification of the symbols, constraints (2.14) and (2.15) hence assume the form

> ep > D, (2.16)
=

Ze§§52x+ <ZD§>(1—;{). (2.17)
PEB

SEB

For the sake of simplicity, focusing just on constraint (2.16), we shall then discretize

the interval [-Dg, Dg] in Ng subintervals, i.e. [—D/;,Dﬁ] = UED [D},_l,Dy], with
Y=Ly s

Dy, =10, ...,7, ..., Ng}. The terms 6[2, can then be approximated by piecewise linear
functions ([—Dg, Ds] — [0, D/zi]) simply by posing

VBEB ep= Y AyDy, (2.18)
yEDs
VBEB ey Y AyD7, (2.19)

7Y€ Ds
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> =1, (2.20)

yEDs

where the 44, are non-negative variables and such that at most two adjacent can be
non-zero (adjacency condition). Indeed, this restriction has to be added in order to

guarantee that for each ey € [—Dg, D], the point (e/;, Z Aﬁny}) ER? actually
Yy EDs
lies on a segment of the corresponding piecewise linear function.

Variables subject to the adjacency condition stated above are said to determine a
special ordered set of variables of type 2 (SOS2, e.g. Williams 1993). It is well
known that such a condition (or, more in general, special ordered sets of the various
types) can be tackled either algorithmically (most MIP solvers have dedicated
features) or by introducing additional binary variables and proper constraints in
the model (an highly efficient formulation for the SOS2 case can be found in
Vielma and Nemhauser 2009).

Piecewise linear approximation (and the SOS2 approach) is directly applicable
to separable functions in general, but also more complex classes can be considered
(e.g. Williams 1993). Here it is worth pointing out that when convex constraints
(expressed by separable functions) are concerned, as, for instance, (2.17), it can
easily be shown that the adjacency condition may be dropped, without bringing in
any undesirable solution (e.g. Williams 1993). In the specific case in question,
(2.18), (2.19) and (2.20) are indeed sufficient, per se, to guarantee that each point

eg, Z /%,Df belongs to the convex domain (in R?) delimited by the vertices
rEDs

(D,, Dﬁ), forall y € Dyg. This way, the convex constraint (2.17) is always satisfied,
since, for any values assumed by the variables Az, it is never underestimated
(similar considerations hold when the minimization of a separable convex objective
function is concerned, e.g. Williams 1993).

In addition to what is discussed above, very simple indirect conditions on the
relative distance between components of two different items can be obtained as
variations of (2.5a) and (2.5b):

VBEB.Vi,jE1/i < j,YhEC;, Yk EC
1
Wgoni — Wpokj = 3 Z (Lwﬁhiﬁwi + Lwﬂkj19wj) + Gij — (D/; + thij) (1 — G/Thk,;,),
w<EQ
(2.21a)
VBEB,Vi,jE1/i <, YhECVkEC,

1
Wgokj — Wpohi = 2 Z (Lopnidwi + Lopiid0j) + Guiij — (Dp + Gy (1 - %};«y)-

wEQR

(2.21b)
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Fig. 2.6 Non-convex domain (/eft) approximated with forbidden zones (right, 2D representation)

Here Gy are given constants. Inequalities (2.21a) and (2.21b) thus guarantee a
minimum gap between components h of i and k of j, respectively, along the axis
corresponding to the active non-intersection condition. Of course, more compli-
cated gap conditions could be stated similarly, but are not reported here.

Remark 2.5 Ttis, instead, worth mentioning that close-related topics come up in the
context of the electronic design automation (EDA) and very large scale integration
(VLSI), when dealing with the issue of minimizing the total wire length. Depending
on the specific framework to look upon, the wire-length objective function terms
are expressed by linear, quadratic or, more in general, nonlinear functions
(e.g. Kahng and Wang 2005; Kim and Kim 2003; Kleinhans et al. 1991).

2.3.3 Conditions on Domains

Quite often in practice one has to take into account domains that are not convex,
owing to the presence of forbidden zones, e.g. due to clearance requirements or
actual ‘holes’. This makes the domain non-convex, as a matter of fact.

If the forbidden zones and ‘holes’ are tetris-like-shaped (or properly approximated
as such), they can easily be treated by the model reported in Sect. 2.1. They may indeed
simply be considered as zero-mass items with given position and orientation. Analo-
gous considerations hold also if the domain external shape is not convex, since it can
easily be approximated by introducing forbidden zones, as appropriate, see Fig. 2.6.

A similar approach can be adopted, in the presence of structural elements that
can be taken account of in terms of non-zero-mass items with fixed position and
orientation: see Fig. 2.7.

Further conditions, quite useful in practice, can be introduced to deal with separa-
tion planes, partitioning the whole domain in sectors. They can simply be represented
as ‘flat’ parallelepipeds: their bases are assumed to be parallel to one of the planes
of the main reference frame and cover the whole domain sections they cut; their
position (distance with respect to the parallel plane of the main reference frame) is
allowed to vary within a given range. An alternative formulation can be applied by
introducing, for each item, a set of binary variables, one per sector, that are equal to
one if the item belongs to the corresponding sector and zero otherwise (Fasano 2003).
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Fig. 2.7 Domain with structural elements (/ef) and items packed around (right)

2.3.4 Conditions on the Total Mass
Loaded and Its Distribution

In several real-world applications, such as aerospace engineering and transportation
systems in general, quite demanding requirements on the total mass or its distri-
bution inside the domain have to be taken into account. Restrictions on the overall
load are simply posed as follows:

M<> My <M, (2.22)

i€l

where M and M are the given lower and upper mass bounds, respectively. Some
insights concerning balancing conditions are provided next.

2.3.4.1 Static Balancing Restriction

The problem of loading a set of single parallelepipeds inside a convex domain, each
with a given mass, so that the overall centre of mass lies within a given convex
subdomain (inside the container), has been previously discussed (Fasano 2004,
2008). This restriction is denoted in the following by static balancing.

To generalize this issue to the case of tetris-like items, we shall firstly introduce
for each one of them the terms W ,.. These represent the projections, on the axes
wy, of the coordinate differences between item i centre of mass and the origin of the
local reference frame, corresponding to orientations @. With w/*ﬁ we shall denote,
for each item i, its centre of mass coordinates, with respect to the main reference
frame. Conditions (2.2), (2.3) and (2.4) are then properly adapted to take into
account also this point (so that, in particular, w;i = 0 if y; = 0). Let us indicate
with D* the convex subdomain in which the overall centre of mass must stay, in
compliance with the static balancing restriction. Denoting with V" the set of



2.3 Additional Conditions 21

vertices delimiting D" and with V/’;,y their coordinates, with respect to the main
reference frame, the proposition stated below holds.

Proposition 2.2 Static balancing necessary and sufficient conditions are as
follows:

VBEB Y Mwy= > Vi, (2.23)
i€l yEV*
> v =m, (2.24)
rEV”

where m = ZM,;(,- andVy € V*y; =y,m, withy, > 0.

=
Proof To prove this proposition, it can simply be observed that the following
conditions are necessary and sufficient for the overall centre of mass staying inside

MiW*,‘ .
the given (sub)domain (supposingm > 0):V f € B Z A Z Vi w,, with
iel yEV*

M,‘W;}l-

Z w, =1 and y; > 0. Indeed they state that point Z
yev i€l

centre of mass, lies inside the convex (sub)domain D" of vertices V; e V.

, 1.e. the overall

The above conditions are obviously equivalent to (2.23) and (2.24), by using
u/; = ml,T/; (If m =0, (2.23) and (2.24) are trivially satisfied, as, by (2.2), for
each non-picked item i, the variables w}‘ﬁ become zero). O

Remark 2.6 Tt is important to point out that the correlations V y € V" v, = ﬁ;m,
1/7; > 0 can simply be substituted withV y € V* w, 2> 0 (as the variables &; only
play an ‘ancillary’ role, having no ‘physical’ meaning in the model). This way,
conditions (2.23) and (2.24) are linear (as the nonlinear ones 1//; = mlf/; are omitted
tout court). Moreover, the above balancing conditions are simplified when the centre
of mass (sub)domain is a parallelepiped, i.e. defined, for each axis wy, by the

intervals [g;,f;} In such a case, they have the simpler form V j

Q;m < ZM iw;i < E;m. It is gathered that (2.23) and (2.24) do not take account
icl

of the mass of the container. An appropriate modification of them can easily be

attained, in order to include it and its contribution to the overall centre of mass.

Remark 2.7 An item consisting of a single nonhomogeneous parallelepiped can
simply be considered as composed of two elements: one parallelepiped with zero
mass, geometrically identical to the item itself and its centre of mass. The composed
item can hence be treated as a (degenerate) tetris-like item, whose components are
the parallelepiped with zero mass and this point.

An interesting issue arises when looking upon the presence of a filling material
of non-negligible density. This situation can occur, for instance, in the space
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engineering context, when quite dense protective foam has to fill every gap between
the loaded items. To formulate the related model, it is sufficient to consider the
whole domain D as if it were entirely filled with the filling material and replace all
the mass associated to the volumes occupied by each item, with their actual one.
Recalling the general definition of centre of mass, its coordinates wj are expressed

by the following equations:

Ju/;r(u)duﬁ
D

VBEB w;= (2.25)

m

Here m represents the total mass contained in D (referring both to the items loaded
and the filling material), whilst 7(u) its relative density function (that in the specific
case under consideration is a constant). The following equations hold:

VFEB mw;‘, = Juﬂrduﬁ + ZMiw;i =MW, + z; (M,- — M,-)w;i. (2.26)
2 = i€

D

Here D is the subdomain of D corresponding to the volume not occupied by the

items (and thus occupied by the filling material); ]\V/Ii denotes the mass each item

~— *

i would assume if its density were the same of the filling material; M and W indicate
the total mass of the filling material and its relative centre of mass, respectively, if it
filled the whole domain D (i.e. with no items inside). Thus, the following conditions
extend the static balancing conditions (2.23) and (2.24):

VPEB MW, + > (M,» - Mi)w;;,. =S v (2.27)
i€l eV
Syr=m-Y (IT/II- - Mi))(i’ (2.28)
yeV* iel

VyEVY, y; >0.
2.3.4.2 Dynamic Balancing Restrictions

Quite demanding requirements, involving inertia properties of the whole system,
may be posed (e.g. Egeblad 2009; Limbourg et al. 2012). In space engineering, for
instance, quite frequently, specific conditions on the spacecraft inertia matrix are set
to address fuel consumption or attitude control concerns. Assuming the items as
point masses, we shall introduce the following constraints:

VB.f EB/B<f

’ZMiW/*fiW;'i

i€l

(2.29)

<1y (m),
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VB.B.8 EB/B< BB #P
2.30.
;Mi (W}},z + w;/zl) > [ﬁv (m), ( a)
VB.B.B EBIB<B.B.F #P
_ 2.30b
ZM,- (w;,z + w;/zl) <Iy (m), ( )

i€l

where I, (m), Iy

mass m.

(m) and I  (m) are (non-negative) functions of the total loaded

Remark 2.8 Tt is immediately gathered that (2.29), (2.30a) and (2.30b) are
nonlinear constraints, giving rise to an MINLP model. In these constraints, the
inertia characteristics of each single item have been neglected, considering, for
the sake of simplicity, just simple point masses, but more precise formulations
could be looked into.

Itis of particular interest when 1, (m) ~ I\ (m) ~ I,(m) ~ I,(m)(and y (m) ~ 0).
With an appropriate setting of the szatic balancing conditions, indeed, this case
makes the system mass distribution assume, at a certain grade of approximation,

the dynamic properties of a homogeneous cylinder.

2.3.5 Further Loading Restrictions

A significant number of further restrictions could be added, depending on the
specific framework. Conditions concerning the relative position between items,
such as, for instance, ‘item i must stay over or under j°, would also be treated easily,
simply by acting properly on the relevant variables .

Much more demanding scenarios are, instead, tackled in the specialist packing
literature, looking upon further additional loading conditions such as stability, load
bearing and multi-dropping (e.g. Bischoff 2006; Bortfeldt and Gehring 2001;
Christensen and Rousge 2009; Eley 2002; Junqueira et al. 2011; Junqueira
et al. 2012; Lai et al. 1998; Morabito and Arenales 1994; Moura and Oliveira
2005; Pisinger 2002; Ratcliff and Bischoff 1998; Silva et al. 2003).

These can be defined as follows (Junqueira et al. 2013): ‘Cargo stability refers
to the support of the bottom faces of boxes, in the case of vertical stability (i.e., the
boxes must have their bottom faces supported by other box top faces or the container
floor), and the support of the lateral faces of boxes, in the case of horizontal stability.
Load bearing strength refers to the maximum number of boxes that can be stacked
one above each other, or more generally, to the maximum pressure that can be applied
over the top face of a box. Multi-dropping refers to cases where boxes that are
delivered to the same customer (destination) must be placed close to each other inside
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the container and the loading pattern must take into account the delivery route
of the vehicle and the sequence in which the boxes are unloaded’.

Dealing with such additional conditions, an interesting approach has been
suggested (Junqueira et al. 2013). It develops a ‘grid-based position paradigm’
(i.e. space-indexed formulation, e.g. Allen et al. 2012), as opposed to the ‘position
free’ one, i.e. the MIP model of Sect. 2.1 (or equivalent versions), that instead
allows for continuous item positions.

Extensions of the single parallelepiped MIP model (Sect. 2.1), aimed at tackling
a number of additional conditions, are taken into account by Pesch (working paper).
Those, for instance, denoted by layer constraints consider the presence of incom-
patibility relations of the type: item i cannot be positioned ‘on the top’ of item j.
As pointed out in this work, they can be represented by a directed graph G, where
arc(i, j) € G if and only if item i cannot be placed on item j. Moreover, if an item
is not placed on the floor, it has to be supported by at least another item.

Whilst such additional conditions can be expressed by an MINLP formulation
(Pesch, working paper), an alternative MIP model is briefly discussed here, also
referring, for the sake of simplicity, to the case of single parallelepipeds.

To this purpose, we shall introduce, firstly, the binary variables X, and ;?i, with

the meaning:
x. = 1 if item i lies on the container basis; y = 0 either if it is not loaded or it is
—1 —1

supported by (at least) another item.

xi =1 if item i is supported by (at least) another item; y; = O either if it is not
loaded or it lies on the container basis.
These have the task of controlling the status of possible contact, for each item i,

with respect to the lower basis of the container (floor). They are linked, in a
mutually exclusive mode, to the corresponding variables y; as follows:

Viel ;_(i—|—)?i =

This way, if item i is picked, then one and only one of the two related statuses is
admissible. Thus, assuming that the axis w3 of the main reference frame is the
‘vertical’ one, the conditions below hold:

, 1 1
VieEl wy > iszﬁam‘ **in(l *)L.),

aEA 2
1
Viel wsy < 5 ZLmtSa.%i + (D3 _Lli)<1 _Jﬁi)'
aEA

These constraints force item [ to lie on the container base, when the
corresponding condition is active, i.e. y = 1, and become redundant otherwise,
)

i.e. when X = 0.
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In addition to this, the case corresponding to 7i =1, i.e. when item i is picked
but it is supported by (at least) another item, has to be properly examined. Before

going ahead with this point, however, we shall introduce the binary variables Ezj
and 33’,-1-, with the meaning:
E;rij = 1 if item / is placed on the top of j and zero otherwise.

E;il. = 1 if item j is placed on the top of i and zero otherwise.

The inequalities below are thus added to (2.10a) and (2.10b), respectively:

o 1 -
ViJEL)i<] wy—wy >3 (Ladwi+Laday) — (1 - 0% )Ds.

aEA
.. . 1
Vi,jE1/i <] w3 —ws < 3 Z (LaiSa3i + Lajba3j) + (1 - Ug,‘j)DS,
aEA
.. .. 1 —~
Vi,jEIfi <] wij—ws3 > = Z (LaiSa3i + LajOusj) — (1 -0 ,j)D3,
2a€A
.. . 1 ~
Vl,]el/l <J w3 —ws; < E Z (Lm‘(say +Laj5a3j) + (1 — 0 U)D3'

aEA

1
They imply, as is immediately seen, that w3; = ws; + 3 Z (L,,iéagi + L,,j503j)

a€A

~ 1
(i.e. i lies on the top of j), when O';:-j =1, and w3 = w3 + E Z (Lai6a3i + qu5a3/)
a<A
(i.e. j lies on the top of i), when E;jj = 1. The first pair of inequalities becomes
redundant otherwise when Egj = 0 and, similarly for the second one, when E;U =0.
Inequalities (2.11) are then extended as follows:

Vijel/i<j (o,j,j + a,;,.j) ‘ol oyt aty -1,
BEB
where the terms g;ij are set, a priori, to zero if arc(i, j) € G and, analogously, for

23_0" if arc(j, i) € G. The conditions stated below imply that if ;?i =1, item
i has to be positioned on the top of (at least) another one:

1 n< Y oY o

viel y; < o3+ oy
JEl i1/
i<j i <i
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Further conditions can be taken into account to include the szability requirements
(e.g. Pesch, working paper). This way, it is guaranteed that when item i is on the
top of item j, the projection of its centre of mass, on the ‘horizontal’ plane,
i.e. (O, wy, wy), lies inside the rectangle determined by the projection of item j.
The following conditions (or more refined ones, with tighter big-Ms) can thus be
added:

R 1 -
PEL2YViJEI)i <) wyi Swy+5 D Luibay + (1 - "%)Dﬂ’

a€A

.. . 1 ~
PE{L2}VVILJEII <] wpg > wp _EZL"f(s“ﬁj - (1 — a;j)Dﬂ.

a€A

The layer and stability additional conditions can efficiently be tackled algorith-
mically, by means of a dedicated heuristic (Pesch, working paper). The (non-trivial)
computational aspects, related to the extended MIP model discussed above
(or possible alternative formulations), could, nevertheless, represent an interesting
line for further in-depth investigation.
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