
Chapter 2
Fundamentals

Before attempting to develop and apply numerical algorithms for the Euler and
Navier-Stokes equations it is worthwhile to learn as much as possible by studying
the behaviour of such methods when applied to simpler model equations. In this
chapter, we will do just that, using two model equations which are linear, scalar
partial differential equations (PDEs) that represent physical phenomena relevant
to fluid dynamics. This chapter provides a concise summary of our earlier book
Fundamentals of Fluid Dynamics [1], to which the reader is referred for further
details.

2.1 Model Equations

2.1.1 The Linear Convection Equation

The linear convection equation provides a simple model for convection and wave
propagation phenomena. It is given by

∂u

∂t
+ a

∂u

∂x
= 0, (2.1)

where u(x, t) is a scalar quantity propagating with speed a, a real constant which
may be positive or negative. In the absence of boundaries, for example on an infinite
domain, an initial waveform retains its shape as it propagates in the direction of
increasing x if a is positive and in the direction of decreasing x if a is negative. Despite
its simplicity, the linear convection equation provides a stiff test for a numerical
method, as it is difficult to preserve the initial waveform when it is propagated over
long distances.

The linear convection equation is a good model equation in the development
of numerical algorithms for the Euler equations, which include both convection
and wave propagation phenomena. The one-dimensional Euler equations can be

T. H. Pulliam and D. W. Zingg, Fundamental Algorithms in Computational 9
Fluid Dynamics, Scientific Computation, DOI: 10.1007/978-3-319-05053-9_2,
© Springer International Publishing Switzerland 2014

10 2 Fundamentals

diagonalized so that they can be written as three equations in the form of the linear
convection equation, although they of course remain nonlinear and coupled. The
quantities propagating are known as Riemann invariants, and the speeds at which
they propagate are the fluid velocity, the fluid velocity plus the speed of sound, and
the fluid velocity minus the speed of sound. If the fluid velocity is positive but less
than the speed of sound, i.e. the flow is subsonic, then the first two wave speeds will
be positive, and the third will be negative. When using the linear convection equation
as a model equation for the Euler equations, one must therefore ensure that wave
speeds of arbitrary sign are considered.

If one considers a finite domain, say 0 ≤ x ≤ 2π, then boundary conditions
are required. The most natural boundary conditions are inflow-outflow conditions,
which depend on the sign of a. If a is positive, then x = 0 is the inflow boundary,
and x = 2π is the outflow boundary. If a is negative, these roles are reversed. In both
cases, u(t) must be specified at the inflow boundary, but no boundary condition can
be specified at the outflow boundary.

An alternative specification of boundary conditions, known as periodic boundary
conditions, can be convenient for our purpose here. With periodic boundary con-
ditions, a waveform leaving one end of the domain reenters at the other end. The
domain can be visualized as a circle, and the waveform simply propagates repeatedly
around the circle. This essentially eliminates any boundary information from enter-
ing the solution, which is thus determined solely by the initial condition. The use
of periodic boundary conditions also permits numerical experiments with arbitrarily
long propagation distances, independent of the size of the domain. Each time the
initial waveform travels through the entire domain, it should return unaltered to the
initial condition.

2.1.2 The Diffusion Equation

Diffusion caused bymolecularmotion in a continuumfluid is another important phys-
ical phenomenon in fluid dynamics. A simple linear model equation for a diffusive
process is

∂u

∂t
= ν

∂2u

∂x2
, (2.2)

where ν is a positive real constant. For example, with u representing the temperature,
this parabolic PDE governs the diffusion of heat in one dimension. Boundary condi-
tions can be periodic, Dirichlet (specified u), Neumann (specified ∂u/∂x), or mixed
Dirichlet/Neumann. In studying numerical algorithms, it can be useful to introduce
a source term into the diffusion equation as follows:

∂u

∂t
= ν

[
∂2u

∂x2
− g(x)

]
. (2.3)

2.1 Model Equations 11

In this case, the equation has a steady-state solution that satisfies

∂2u

∂x2
− g(x) = 0. (2.4)

2.2 Finite-Difference Methods

2.2.1 Basic Concepts: Taylor Series

We observe that the two model equations contain a number of derivative terms in
space and time. In a finite-difference method, a spatial derivative at a given point
in space is approximated using values of u at nearby points in space. Similarly, a
temporal derivative at a specific point in time is approximated using values of u at
different values of time. This is facilitated by a grid or mesh, as shown in Fig. 2.1,
where the values of x at the grid points are given by xj, and the values of t are given
by tn. Hence j is known as the spatial index and n as the temporal index. For the
present exposition, we will consider equispaced meshes, and hence

x = xj = jΔx (2.5)

t = tn = nΔt = nh, (2.6)

where Δx is the spacing in x, and Δt the spacing in t, as shown in Fig. 2.1. Note that
h = Δt throughout.

Let us consider a spatial derivative initially. Assuming that a function u(x, t) is
known only at discrete values of x, how can one accurately approximate partial
derivatives such as

∂u

∂x
or

∂2u

∂x2
? (2.7)

From the definition of a derivative, or a simple geometric argument related to the
tangent to a curve, one can easily postulate the following approximations for a first
derivative:

(
∂u

∂x

)
j
≈ uj+1 − uj

Δx
or

(
∂u

∂x

)
j
≈ uj − uj−1

Δx
, (2.8)

known respectively as a forward and a backward difference approximation. It is clear
that these can provide accurate approximations if Δx is sufficiently small and that a
suitable choice of Δx will depend on the properties of the function. A particularly
astute reader may even postulate the centered difference approximation given by

12 2 Fundamentals

Fig. 2.1 Space–time grid
arrangement

(
∂u

∂x

)
j
≈ uj+1 − uj−1

2Δx
, (2.9)

which can be justified by a geometric argument or by fitting a parabola to the three
points uj−1, uj, uj+1 and determining the first derivative of the parabola at xj. Find-
ing an approximation to a second derivative is only slightly less intuitive, as one
can apply a first-derivative approximation twice or determine the second derivative
of the unique parabola that goes through the three points to obtain the following
approximation to a second derivative:

(
∂2u

∂x2

)
j
≈ uj+1 − 2uj + uj−1

Δx2
. (2.10)

The above intuitive approach is limited, providing no information about the accu-
racy of these approximations. A deeper understanding of finite-difference approxi-
mations and a general approach to deriving them can be obtained using Taylor series.
Consider the following expansion of u(x + kΔx) = u(jΔx + kΔx) = uj+k about xj,
where we assume that all of the derivatives exist:

uj+k = uj + (kΔx)

(
∂u

∂x

)
j
+ 1

2
(kΔx)2

(
∂2u

∂x2

)
j
+ . . .

+ 1

n! (kΔx)n
(

∂nu

∂xn

)
j
+ (2.11)

For example, substituting k = ±1 into the above expression gives the Taylor series
expansions for uj±1:

uj±1 = uj ± (Δx)

(
∂u

∂x

)
j
+ 1

2
(Δx)2

(
∂2u

∂x2

)
j
± 1

6
(Δx)3

(
∂3u

∂x3

)
j

+ 1

24
(Δx)4

(
∂4u

∂x4

)
j
± (2.12)

2.2 Finite-Difference Methods 13

Subtracting uj from the Taylor series expansion for uj+1 and dividing by Δx gives

uj+1 − uj

Δx
=
(

∂u

∂x

)
j
+ 1

2
(Δx)

(
∂2u

∂x2

)
j
+ (2.13)

This shows that the forward difference approximation given in (2.8) is a reasonable

approximation for
(

∂u
∂x

)
j
as long as Δx is small relative to some pertinent length

scale. Moreover, in the limit as Δx → 0, the leading term in the error is proportional
to Δx. The order of accuracy of an approximation is given by the exponent of Δx
in the leading error term, i.e. the lowest exponent of Δx in the error. Hence the
finite-difference approximation given in (2.13) is a first-order approximation to a
first derivative. If the mesh spacing Δx is reduced by a factor of two, the leading
error term in a first-order approximation will also be reduced by a factor of two.

Similarly, subtracting the Taylor series expansion for uj−1 from that for uj+1 and
dividing by 2Δx gives

uj+1 − uj−1

2Δx
=
(

∂u

∂x

)
j
+ 1

6
Δx2

(
∂3u

∂x3

)
j
+ 1

120
Δx4

(
∂5u

∂x5

)
j

. . . . (2.14)

This shows that the centered difference approximation given in (2.9) is second-order
accurate. If the mesh spacing Δx is reduced by a factor of two, the leading error
term will be reduced by a factor of four. Hence, as Δx is reduced, the second-order
approximation rapidly becomes more accurate than the first-order approximation.
Using Taylor series expansions, one can demonstrate that the approximation to a
second derivative given in (2.10) is also second-order accurate.

Finite-difference formulas can be generalized to arbitrary derivatives and arbitrary
orders of accuracy. A Taylor table provides a convenient mechanism for deriving
finite-difference operators (see Lomax et al. [1]). In each case, the derivative at node
j is approximated using a linear combination of function values at node j and a
specified number of neighbouring nodes, and the Taylor table enables one to find the
coefficients that maximize the order of accuracy. For example, centered fourth-order
approximations to first and second derivatives are given by

(
∂u

∂x

)
j
= 1

12Δx
(uj−2 − 8uj−1 + 8uj+1 − uj+2) + O(Δx4) (2.15)

(
∂2u

∂x2

)
j
= 1

12Δx2
(−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2)

+ O(Δx4). (2.16)

Noncentered schemes can also be useful. For example, the following is a second-
order backward-difference approximation to a first derivative using data from j − 2
to j:

14 2 Fundamentals

(
∂u

∂x

)
j
= 1

2Δx

(
uj−2 − 4uj−1 + 3uj

)+ O(Δx2). (2.17)

A biased third-order approximation to a first derivative using data from j −2 to j +1
is given by:

(
∂u

∂x

)
j
= 1

6Δx
(uj−2 − 6uj−1 + 3uj + 2uj+1) + O(Δx3). (2.18)

Finally, finite-difference schemes can be further generalized to include compact
or Padé schemes that define a linear combination of the derivatives at point j and
a specified number of its neighbours as a linear combination of function values at
node j and a (possibly different) specified number of neighbours. For example, the
operator

(
∂u

∂x

)
j−1

+ 4

(
∂u

∂x

)
j
+
(

∂u

∂x

)
j+1

= 3

Δx
(−uj−1 + uj+1) + O(Δx4). (2.19)

provides a fourth-order approximation to a first derivative. Compact schemes can
also be easily derived using a Taylor table.

2.2.2 The Modified Wavenumber

The leading error term provides a fairly limited understanding of the accuracy
of a finite-difference approximation. More detailed information can be obtained
through the modified wavenumber. We introduce this concept by deriving the modi-
fied wavenumber for a second-order centered difference approximation, given by

(δxu)j = uj+1 − uj−1

2Δx
. (2.20)

First, consider the exact first derivative of the function eiκx:

∂eiκx

∂x
= iκeiκx. (2.21)

Applying the operator given in (2.20) to uj = eiκxj , where xj = jΔx, we get

(δxu)j = eiκΔx(j+1) − eiκΔx(j−1)

2Δx

= (eiκΔx − e−iκΔx)eiκxj

2Δx

2.2 Finite-Difference Methods 15

Fig. 2.2 Modified wavenum-
ber for various schemes

= 1

2Δx
[(cosκΔx + i sin κΔx) − (cosκΔx − i sin κΔx)]eiκxj

= i
sin κΔx

Δx
eiκxj

= iκ∗eiκxj , (2.22)

where κ∗ is the modified wavenumber. The modified wavenumber is so named
because it appears where the wavenumber, κ, appears in the exact expression
(2.21). Thus the degree to which the modified wavenumber approximates the actual
wavenumber is a measure of the accuracy of the approximation.

For the second-order centered difference operator the modified wavenumber is
given by

κ∗ = sin κΔx

Δx
. (2.23)

Equation (2.23) is plotted in Fig. 2.2, along with similar relations for the stan-
dard fourth-order centered difference scheme and the fourth-order Padé scheme.
The expression for the modified wavenumber provides the accuracy with which a
given wavenumber component of the solution is resolved for the entire wavenumber
range available in a mesh of a given size, 0 ≤ κΔx ≤ π. The value of κΔx can be
related to the mesh resolution through the notion of points-per-wavelength, which
is the number of grid cells per wavelength (PPW) with which a given wavenumber
component of the solution is resolved, through the relation PPW = 2π/κΔx. For
example, a value of κΔx equal to π/4 corresponds to 8 points-per-wavelength, and
Fig. 2.2 shows that κ∗ for a second-order centered difference scheme already differs
significantly from κ at this grid resolution. Hence a simulation performed with this
mesh density relative to the spectral content of the function will contain substantial
numerical error.

For centered difference approximations, the modified wavenumber is purely
real, but in the general case it can include an imaginary component as well. Any

16 2 Fundamentals

finite-difference operator can be split into an antisymmetric and a symmetric part.
For example, the operator given in (2.18) can be divided as follows:

(δxu)j = 1

6Δx
(uj−2 − 6uj−1 + 3uj + 2uj+1)

= 1

12Δx
[(uj−2 − 8uj−1 + 8uj+1 − uj+2)

+ (uj−2 − 4uj−1 + 6uj − 4uj+1 + uj+2)]. (2.24)

The antisymmetric component determines the real part of the modified wavenumber,
while the imaginary part stems from the symmetric component of the difference
operator. Centered difference schemes are antisymmetric; the symmetric component
is zero and hence so is the imaginary component of the modified wavenumber. In the
context of the linear convection equation, one can show that a numerical error in the
phase speed is associated with the real part of the modified wavenumber, while an
error in the amplitude of the solution is associated with the imaginary part. Thus the
antisymmetric portion of the spatial difference operator determines the error in speed
and the symmetric portion the error in amplitude.Note that centered schemes produce
no amplitude error. Since the numerical error in the phase speed is dependent on the
wavenumber, this introduces numerical dispersion, and hence phase speed error is
often referred to as dispersive error. Similarly, amplitude error is often referred to
as dissipative error.

2.3 The Semi-Discrete Approach

Based on the discussion in the previous section, one can see that it is possible to
replace both the spatial and temporal derivatives in a PDE by finite-difference expres-
sions and thereby reduce the PDE to a systemof algebraic equations that can be solved
by a computer. For various reasons it can be advantageous to consider the discretiza-
tion of space and time separately. We first discretize in space to reduce the PDE to a
system of ordinary differential equations (ODEs) in the general form

d�u
dt

= �F(�u, t), (2.25)

and then apply a time-marching method to reduce the system of ODEs to a system
of algebraic equations in order to solve them. This is referred to as the semi-discrete
approach, and the intermediate ODE form in which the spatial derivatives have been
discretized but the temporal derivatives have not is known as the semi-discrete form.
It is important to realize that some numerical algorithms for PDEs discretize time
and space simultaneously and consequently have no intermediate semi-discrete form.
However, many of the most widely used algorithms and all of those considered in
subsequent chapters involve a separate and distinct discretization in time and space.

2.3 The Semi-Discrete Approach 17

In the semi-discrete approach, one separates the spatial discretization step that
reduces the PDE to a system of ODEs from the time-marching step that numerically
solves the ODE system. By doing so, we can get a clear understanding of the impact
on accuracy and stability of the spatial discretization and the time-marching method
individually. This approach also enables us to take advantage of the theory asso-
ciated with numerical methods for ODEs. Before we can present the semi-discrete
ODE form for our model equations, we need an understanding of matrix difference
operators.

2.3.1 Matrix Difference Operators

Consider the relation

(δxxu)j = 1

Δx2
(
uj+1 − 2uj + uj−1

)
, (2.26)

which is a point difference approximation to a second derivative. Now let us derive
a matrix operator representation for the same approximation. Consider the mesh
spanning the domain 0 ≤ x ≤ π with four interior points and boundary points
labelled a and b shown below.

a 1 2 3 4 b
x = 0 − − − − π
j = 1 · · M

Mesh with four interior points. �x = π/(M + 1)

Now impose Dirichlet boundary conditions, u(0) = ua, u(π) = ub and use the
centered difference approximation given by (2.26) at every point in the mesh. We
arrive at the four equations:

(δxxu)1 = 1

Δx2
(ua − 2u1 + u2)

(δxxu)2 = 1

Δx2
(u1 − 2u2 + u3) (2.27)

(δxxu)3 = 1

Δx2
(u2 − 2u3 + u4)

(δxxu)4 = 1

Δx2
(u3 − 2u4 + ub).

18 2 Fundamentals

Introducing

�u =

⎡
⎢⎢⎣

u1
u2
u3
u4

⎤
⎥⎥⎦ ,

(�bc
)

= 1

Δx2

⎡
⎢⎢⎣

ua

0
0
ub

⎤
⎥⎥⎦ (2.28)

and

A = 1

Δx2

⎡
⎢⎢⎣

−2 1
1 −2 1

1 −2 1
1 −2

⎤
⎥⎥⎦, (2.29)

we can rewrite (2.27) as

δxx�u = A�u +
(�bc
)
. (2.30)

This example illustrates a matrix difference operator. Each line of a matrix dif-
ference operator is based on a point difference operator, but the point operators used
from line to line are not necessarily the same. For example, boundary conditions may
dictate that the lines at or near the bottom or top of the matrix be modified. In the
extreme case of the matrix difference operator representing a spectral method, none
of the lines is the same. The matrix operators representing the three-point central-
difference approximations for a first and second derivative with Dirichlet boundary
conditions on a four-point mesh are

δx = 1

2Δx

⎡
⎢⎢⎣

0 1
−1 0 1

−1 0 1
−1 0

⎤
⎥⎥⎦, δxx = 1

Δx2

⎡
⎢⎢⎣

−2 1
1 −2 1

1 −2 1
1 −2

⎤
⎥⎥⎦. (2.31)

Each of these matrix difference operators is a square matrix with elements that
are all zeros except for those along bands which are clustered around the central
diagonal. We call such a matrix a banded matrix and introduce the notation

B(M : a, b, c) =

⎡
⎢⎢⎢⎢⎢⎣

b c
a b c

. . .

a b c
a b

⎤
⎥⎥⎥⎥⎥⎦

1

...

M

, (2.32)

where the matrix dimensions are M × M. Use of M in the argument is optional,
and the illustration is given for a simple tridiagonal matrix although any number of

2.3 The Semi-Discrete Approach 19

Fig. 2.3 Eight points on a
circular mesh

bands is a possibility. A tridiagonal matrix without constants along the bands can
be expressed as B(�a, �b, �c). The arguments for a banded matrix are always odd in
number, and the central one always refers to the central diagonal.

If the boundary conditions are periodic, the form of the matrix operator changes.
Consider the eight-point periodic mesh spanning the domain 0 ≤ x ≤ 2π shown
below. This can either be presented on a linear mesh with repeated entries, or more
suggestively on a circular mesh as in Fig. 2.3. When the mesh is laid out on the
perimeter of a circle, it does not matter where the numbering starts, as long as it
“ends” at the point just preceding its starting location.

· · · 7 8 1 2 3 4 5 6 7 8 1 2 · · ·
x = − − 0 − − − − − − − 2π −
j = 0 1 · · · · · · M

Eight points on a linear periodic mesh. �x = 2π/M

Thematrix that represents differencing schemes for scalar equations on a periodic
mesh is referred to as a periodic matrix. A special subset of a periodic matrix is a
circulant matrix, formed when the elements along the various bands are constant.
Each row of a circulant matrix is shifted one element to the right of the one above it.
The special case of a tridiagonal circulant matrix is given by

Bp(M : a, b, c) =

⎡
⎢⎢⎢⎢⎢⎣

b c a
a b c

. . .

a b c
c a b

⎤
⎥⎥⎥⎥⎥⎦

1

...

M

. (2.33)

When the standard three-point central-differencing approximation for a first deriv-
ative (see (2.31)) is used with periodic boundary conditions, it takes the form

20 2 Fundamentals

(δx)p = 1

2Δx

⎡
⎢⎢⎣

0 1 −1
−1 0 1

−1 0 1
1 −1 0

⎤
⎥⎥⎦ = 1

2Δx
Bp(−1, 0, 1).

Notice that there is no boundary condition vector since this information is all interior
to the matrix itself.

2.3.2 Reduction of PDEs to ODEs

Now that we have the concept ofmatrix difference operators, we can proceed to apply
a spatial discretization to reduce PDEs to ODEs. First let us consider the model PDEs
for diffusion and periodic convection described in Sect. 2.1. In these simple cases,
we can approximate the space derivatives with difference operators and express the
resulting ODEs with a matrix formulation. This is a simple and natural formulation
when the ODEs are linear.
Model ODE for Diffusion. For example, using the three-point central-differencing
scheme to represent the second derivative in the scalar PDE governing diffusion leads
to the following ODE diffusion model:

d�u
dt

= ν

Δx2
B(1,−2, 1)�u + �(bc) (2.34)

with Dirichlet boundary conditions folded into the �(bc) vector.
Model ODE for Periodic Convection. For the linear convection equation with peri-
odic boundary conditions, the 3-point central-differencing approximation produces
the ODE model given by

d�u
dt

= − a

2Δx
Bp(−1, 0, 1)�u, (2.35)

where the boundary condition vector is absent because the flow is periodic.
Equations (2.34) and (2.35) are the model ODEs for diffusion and periodic con-

vection of a scalar in one dimension. They are linear with coefficient matrices which
are independent of x and t.
The Generic Matrix Form. The generic matrix form of a semi-discrete approxima-
tion is expressed by the equation

d�u
dt

= A�u − �f (t). (2.36)

Note that the elements in the matrix A depend upon both the PDE and the type of
differencing scheme chosen for the space terms. The vector �f (t) is usually determined
by the boundary conditions and possibly source terms. In general, even the Euler and

2.3 The Semi-Discrete Approach 21

Navier–Stokes equations can be expressed in the form of (2.36). In such cases the
equations are nonlinear, that is, the elements of A depend on the solution �u and are
usually derived by finding the Jacobian of a flux vector. Although the equations are
nonlinear, linear analysis leads to diagnostics that are surprisingly accurate when
used to evaluate many aspects of numerical methods as they apply to the Euler and
Navier–Stokes equations.

2.3.3 Exact Solutions of Linear ODEs

In order to advance (2.25) in time, the system of ODEs must be integrated using a
time-marchingmethod. In order to analyze time-marchingmethods,wewillmake use
of exact solutions of coupled systems of ODEs, which exist under certain conditions.
The ODEs represented by (2.25) are said to be linear if F is linearly dependent on u
(i.e. if ∂F/∂u = A, where A is independent of u). As we have already pointed out,
when the ODEs are linear they can be expressed in a matrix notation as (2.36) in
which the coefficient matrix, A, is independent of u. If A does depend explicitly on
t, the general solution cannot be written, whereas, if A does not depend explicitly on
t, the general solution to (2.36) can be written. This holds regardless of whether or
not the forcing function, �f , depends explicitly on t.

The exact solution of (2.36) can be written in terms of the eigenvalues and eigen-
vectors of A. This will lead us to a representative scalar equation for use in analyzing
time-marching methods. To demonstrate this, let us consider a set of coupled, non-
homogeneous, linear, first-order ODEs with constant coefficients which might have
been derived by space differencing a set of PDEs. Represent them by the equation

d�u
dt

= A�u − �f (t). (2.37)

Our assumption is that the M × M matrix A has a complete eigensystem1 and can
thus be transformed by the left and right eigenvector matrices, X−1 and X, to a
diagonal matrixΛ having diagonal elements which are the eigenvalues of A. Now let
us multiply (2.37) from the left by X−1 and insert the identity combination XX−1 = I
between A and �u. There results

X−1 d�u
dt

= X−1AX · X−1�u − X−1�f (t). (2.38)

SinceA is independent of both �u and t, the elements inX−1 andX are also independent
of both �u and t, and (2.38) can be modified to

1 This means that the eigenvectors of A are linearly independent and thus X−1AX = Λ, where X
contains the right eigenvectors of A as its columns, i.e. X = [�x1 , �x2 . . . , �xM

]
, and Λ is a diagonal

matrix whose elements are the eigenvalues of A.

22 2 Fundamentals

d

dt
X−1�u = ΛX−1�u − X−1�f (t).

Finally, by introducing the new variables �w and �g such that

�w = X−1�u, �g(t) = X−1�f (t), (2.39)

we reduce (2.37) to a new algebraic form

d �w
dt

= Λ �w − �g(t). (2.40)

The equations represented by (2.40) are no longer coupled. They can be written
line by line as a set of independent, single, first-order equations, thus

w′
1 = λ1w1 − g1(t)

...

w′
m = λmwm − gm(t) (2.41)

...

w′
M = λMwM − gM(t).

For any given set of gm(t) each of these equations can be solved separately and then
recoupled, using the inverse of the relations given in (2.39):

�u(t) = X �w(t)

=
M∑

m=1

wm(t)�xm, (2.42)

where �xm is the mth column of X, i.e. the eigenvector corresponding to λm.
We next focus on the important subset of (2.36) when neither A nor �f has any

explicit dependence on t. In such a case, the gm in (2.40) and (2.41) are also time
invariant, and the solution to any line in (2.41) is

wm(t) = cme
λmt + 1

λm
gm,

where the cm are constants that depend on the initial conditions. Transforming back
to the u-system gives

�u(t) = X �w(t)

=
M∑

m=1

wm(t)�xm

2.3 The Semi-Discrete Approach 23

=
M∑

m=1

cme
λmt�xm +

M∑
m=1

1

λm
gm�xm

=
M∑

m=1

cme
λmt�xm + XΛ−1X−1�f

=
M∑

m=1

cme
λmt�xm

︸ ︷︷ ︸
transient

+ A−1�f︸ ︷︷ ︸
steady-state

.

(2.43)

Note that the steady-state solution is A−1�f , as might be expected.
The first group of terms on the right side of this equation is referred to classically

as the complementary solution or the solution of the homogeneous equations. The
second group is referred to classically as the particular solution or the particular
integral. In our application to fluid dynamics, it is more descriptive to refer to these
groups as the transient and steady-state solutions, respectively. An alternative, but
entirely equivalent, form of the solution is

�u(t) = c1e
λ1t �x1 + · · · + cme

λmt �xm + · · · + cMeλM t �xM + A−1�f . (2.44)

2.3.4 Eigenvalue Spectra for Model ODEs

It is instructive to consider the eigenvalue spectra of the ODEs formulated by central
differencing the model equations for diffusion (2.34) and periodic convection (2.35).
For themodel diffusion equation with Dirichlet boundary conditions, the eigenvalues
of A are:

λm = ν

Δx2

[
−2 + 2 cos

(
mπ

M + 1

)]

= −4ν

Δx2
sin2

(
mπ

2(M + 1)

)
, m = 1, 2, . . . , M. (2.45)

These eigenvalues are all real and negative, consistent with the physics of diffusion.
For periodic convection, one obtains

λm = −ia

Δx
sin

(
2mπ

M

)
, m = 0, 1, . . . , M − 1

= −iκ∗
ma, (2.46)

24 2 Fundamentals

where

κ∗
m = sin κmΔx

Δx
, m = 0, 1, . . . , M − 1 (2.47)

is the modified wavenumber, κm = m, and Δx = 2π/M. These eigenvalues are all
pure imaginary, reflecting the fact that the amplitude of a waveform neither grows
nor decays as it convects, a property that is preserved by centered differencing.

2.3.5 A Representative Equation for Studying Time-Marching
Methods

We seek to analyze the accuracy and stability of time-marching methods applied to
the systems of ODEs resulting from applying a spatial discretization to PDEs such
as the Navier-Stokes equations, which take the form:

d�u
dt

= �F(�u, t), (2.48)

To simplify matters, we consider the simpler model equations, which lead to ODE
forms such as (2.34) and (2.35) that have the generic form:

d�u
dt

= A�u − �f (t), (2.49)

where A is independent of u and t. To achieve a further simplification, we exploit
the fact that these equations can be decoupled and study time-marching methods as
applied to the following scalar ODE:

du

dt
= λu + aeμt, (2.50)

where λ, a, and μ are complex constants. The goal in our analysis is to study typical
behavior of general situations, not particular problems. In order to evaluate time-
marching methods, the parameters λ, a, and μmust be allowed to take the worst pos-
sible combination of values that might occur in the ODE eigensystem. For example,
if one is interested in a time-marching method for convection dominated problems,
then one should consider imaginary λs. The exact solution of the representative ODE
is (for μ �= λ)

u(t) = c eλt + aeμt

μ − λ
, (2.51)

where the constant c is determined from the initial condition.

2.4 Finite-Volume Methods 25

2.4 Finite-Volume Methods

2.4.1 Basic Concepts

We saw in Sect. 2.3 that a PDE can be reduced to a system ofODEs by discretizing the
spatial derivatives using finite-difference approximations. A finite-volume method is
an alternative spatial discretization that reduces the integral form of a conservation
law to a system of ODEs. Finite-volume methods have become popular in CFD as
a result, primarily, of two advantages. First, they ensure that the discretization is
conservative, i.e. mass, momentum, and energy are conserved in a discrete sense.
While this property can usually be obtained using a finite-difference formulation, it is
obtained naturally from a finite-volume formulation. Second, finite-volume methods
do not require a coordinate transformation in order to be applied on irregular meshes.
As a result, they can be applied on unstructured meshes consisting of arbitrary poly-
hedra in three dimensions or arbitrary polygons in two dimensions. This increased
flexibility can be advantageous in generating grids about complex geometries.

The PDE or divergence form of a conservation law can be written as

∂Q

∂t
+ ∇ · F = P, (2.52)

where Q is a vector containing the set of variables which are conserved, e.g. mass,
momentum, and energy, per unit volume, F is a set of vectors, or tensor, containing
the flux of Q per unit area per unit time, P is the rate of production of Q per unit
volume per unit time, and ∇ · F is the well-known divergence operator. The same
conservation law can be expressed in integral form as

d

dt

∫
V(t)

QdV +
∮

S(t)
n · FdS =

∫
V(t)

PdV . (2.53)

This equation is a statement of the conservation of the conserved quantities in a finite
region of spacewith volumeV(t) and surface area S(t). In two dimensions, the region
of space, or cell, is an area A(t) bounded by a closed contour C(t). The vector n is a
unit vector normal to the surface pointing outward.

The basic idea of a finite-volume method is to satisfy the integral form of the
conservation law to some degree of approximation for each of many contiguous
control volumes that cover the domain of interest. Hence the function of the grid
is to tessellate the domain into contiguous control volumes, and the volume V in
(2.53) is that of a control volume whose shape is dependent on the nature of the
grid. Examining (2.53), we see that several approximations must be made. The flux
is required at the boundary of the control volume, which is a closed surface in
three dimensions and a closed contour in two dimensions. This flux must then be
integrated to find the net flux through the boundary. Similarly, the source term P

26 2 Fundamentals

must be integrated over the control volume. Next a time-marching method can be
applied to find the value of

∫
V

QdV (2.54)

at the next time step.
Let us consider each of these approximations in more detail. First, we note that

the average value of Q in a cell with volume V is

Q̄ ≡ 1

V

∫
V

QdV , (2.55)

and (2.53) can be written as

V
d

dt
Q̄ +

∮
S

n · FdS =
∫

V
PdV (2.56)

for a control volume that does not varywith time.Thus after applying a time-marching
method,we have updated values of the cell-averaged quantities Q̄. In order to evaluate
the fluxes, which are a function of Q, at the control-volume boundary, Q can be
represented within the cell by some piecewise approximation which produces the
correct value of Q̄. This is a form of interpolation often referred to as reconstruction.
Each cell will have a different piecewise approximation to Q. When these are used
to calculate F(Q), they will generally produce different approximations to the flux at
the boundary between two control volumes, that is, the flux will be discontinuous. A
nondissipative scheme analogous to centered differencing is obtained by taking the
average of these two fluxes. Another approach known as flux-difference splitting is
described in Sect. 2.5.

The basic elements of a finite-volume method are thus the following:

(1) Given the value of Q̄ for each control volume, construct an approximation
to Q(x, y, z) in each control volume. Using this approximation, find Q at the
control-volume boundary. Evaluate F(Q) at the boundary. Since there is a dis-
tinct approximation to Q(x, y, z) in each control volume, two distinct values of
the flux will generally be obtained at any point on the boundary between two
control volumes.

(2) Apply some strategy for resolving the discontinuity in the flux at the control-
volume boundary to produce a single value ofF(Q) at any point on the boundary.
This issue is discussed in Sect. 2.5.

(3) Integrate the flux to find the net flux through the control-volume boundary using
some sort of quadrature.

(4) Advance the solution in time using a time-marchingmethod to obtain new values
of Q̄.

The order of accuracy of the method is dependent on each of the approximations.

2.4 Finite-Volume Methods 27

In order to include diffusive fluxes, the following relation between ∇Q and Q is
sometimes used: ∫

V
∇QdV =

∮
S

nQdS (2.57)

or, in two dimensions, ∫
A

∇QdA =
∮

C
nQdl, (2.58)

where the unit vector n points outward from the surface or contour.

2.4.2 One-Dimensional Examples

We restrict our attention to a scalar dependent variable u and a scalar flux f , as in
the model equations. We consider an equispaced grid with spacing Δx. The nodes of
the grid are located at xj = jΔx as usual. Control volume j extends from xj − Δx/2
to xj + Δx/2, as shown in Fig. 2.4. This is referred to as a node centered scheme
in contrast to a cell-centered scheme, where the control volume would extend from
xj to xj+1. With respect to the discussion in this section, these two approaches are
identical. We will use the following notation:

xj−1/2 = xj − Δx/2, xj+1/2 = xj + Δx/2, (2.59)

uj±1/2 = u(xj±1/2), fj±1/2 = f (uj±1/2). (2.60)

With these definitions, the cell-average value becomes

ūj(t) ≡ 1

Δx

∫ xj+1/2

xj−1/2

u(x, t)dx, (2.61)

and the integral form becomes

d

dt
(Δxūj) + fj+1/2 − fj−1/2 =

∫ xj+1/2

xj−1/2

Pdx. (2.62)

The integral form of the linear convection equation is obtained with f = au and
P = 0, while the integral form of the diffusion equation is obtained with f =
−ν∇u = −ν∂u/∂x and P = 0.
A Second-Order Approximation to the Convection Equation. With a = 1, the
integral form of the linear convection equation becomes

Δx
dūj

dt
+ fj+1/2 − fj−1/2 = 0 (2.63)

28 2 Fundamentals

Fig. 2.4 Control volume in one dimension

with f = u. We choose a piecewise-constant approximation to u(x) in each cell such
that

u(x) = ūj xj−1/2 ≤ x ≤ xj+1/2. (2.64)

Evaluating this at j + 1/2 gives

f Lj+1/2 = f (uLj+1/2) = uLj+1/2 = ūj, (2.65)

where the L indicates that this approximation to fj+1/2 is obtained from the approx-
imation to u(x) in the cell to the left of xj+1/2, as shown in Fig. 2.4. The cell to the
right of xj+1/2, which is cell j + 1, gives

f Rj+1/2 = ūj+1. (2.66)

Similarly, cell j is the cell to the right of xj−1/2, giving

f Rj−1/2 = ūj (2.67)

and cell j − 1 is the cell to the left of xj−1/2, giving

f Lj−1/2 = ūj−1. (2.68)

We have now accomplished the first step from the list in Sect. 2.4.1; we have
defined the fluxes at the cell boundaries in terms of the cell-average data. In this
example, the discontinuity in the flux at the cell boundary is resolved by taking the
average of the fluxes on either side of the boundary. Thus

f̂j+1/2 = 1

2
(f Lj+1/2 + f Rj+1/2) = 1

2
(ūj + ūj+1) (2.69)

and

f̂j−1/2 = 1

2
(f Lj−1/2 + f Rj−1/2) = 1

2
(ūj−1 + ūj), (2.70)

2.4 Finite-Volume Methods 29

where f̂ denotes a numerical flux which is an approximation to the exact flux.
Substituting (2.69) and (2.70) into the integral form, (2.63), we obtain

Δx
dūj

dt
+ 1

2
(ūj + ūj+1) − 1

2
(ūj−1 + ūj)

= Δx
dūj

dt
+ 1

2
(ūj+1 − ūj−1) = 0. (2.71)

With periodic boundary conditions, this point operator produces the following semi-
discrete form:

d �̄u
dt

= − 1

2Δx
Bp(−1, 0, 1)�̄u (2.72)

This is identical to the expression obtained using second-order centered differences,
except it is written in terms of the cell average �̄u, rather than the nodal values, �u.
Hence our analysis and understanding of the eigensystem of the matrix Bp(−1, 0, 1)
is relevant to finite-volume methods as well as finite-difference methods. Since the
eigenvalues of Bp(−1, 0, 1) are pure imaginary, we can conclude that the use of the
average of the fluxes on either side of the cell boundary, as in (2.69) and (2.70), leads
to a nondissipative finite-volume method.
A Fourth-Order Approximation to the Convection Equation. A fourth-order spa-
tial discretization can be obtained by replacing the piecewise-constant approximation
in Sect. 2.4.2 with a piecewise-quadratic approximation as follows

u(ξ) = aξ2 + bξ + c, (2.73)

where ξ is again equal to x −xj. The three parameters a, b, and c are chosen to satisfy
the following constraints:

1

Δx

∫ −Δx/2

−3Δx/2
u(ξ)dξ = ūj−1

1

Δx

∫ Δx/2

−Δx/2
u(ξ)dξ = ūj

1

Δx

∫ 3Δx/2

Δx/2
u(ξ)dξ = ūj+1. (2.74)

These constraints lead to

a = ūj+1 − 2ūj + ūj−1

2Δx2

b = ūj+1 − ūj−1

2Δx

30 2 Fundamentals

c = −ūj−1 + 26ūj − ūj+1

24
. (2.75)

It is left as an exercise for the reader to show that this reconstruction leads to the
following form:

Δx
dūj

dt
+ 1

12
(−ūj+2 + 8ūj+1 − 8ūj−1 + ūj−2) = 0, (2.76)

which is analogous to a fourth-order centered finite-difference scheme.
A Second-Order Approximation to the Diffusion Equation. In this section, we
describe two approaches to deriving a finite-volume approximation to the diffusion
equation. Thefirst approach is simpler to extend tomultidimensions,while the second
approach is more suited to extension to higher-order accuracy.

With ν = 1, the integral form of the diffusion equation is

Δx
dūj

dt
+ fj+1/2 − fj−1/2 = 0 (2.77)

with f = −∇u = −∂u/∂x. Also, (2.58) becomes

∫ b

a

∂u

∂x
dx = u(b) − u(a). (2.78)

We can thus write the following expression for the average value of the gradient of
u over the interval xj ≤ x ≤ xj+1:

1

Δx

∫ xj+1

xj

∂u

∂x
dx = 1

Δx
(uj+1 − uj). (2.79)

The value of a continuous function at the center of a given interval is equal to the
average value of the function over the interval to second-order accuracy. Hence, to
second-order, we can write

f̂j+1/2 = −
(

∂u

∂x

)
j+1/2

= − 1

Δx
(ūj+1 − ūj). (2.80)

Similarly,

f̂j−1/2 = − 1

Δx
(ūj − ūj−1). (2.81)

Substituting these into the integral form (2.77), we obtain

Δx
dūj

dt
= 1

Δx
(ūj−1 − 2ūj + ūj+1) (2.82)

2.4 Finite-Volume Methods 31

or, with Dirichlet boundary conditions,

d �̄u
dt

= 1

Δx2
B(1,−2, 1)�̄u +

(�bc
)

. (2.83)

This provides a semi-discrete finite-volume approximation to the diffusion equation,
and we see that the properties of the matrix B(1,−2, 1) are relevant to the study of
finite-volume methods as well as finite-difference methods.

For our second approach, we use a piecewise-quadratic approximation as in Sect.
2.4.2. From (2.73) we have

∂u

∂x
= ∂u

∂ξ
= 2aξ + b (2.84)

with a and b given in (2.75). With f = −∂u/∂x, this gives

f Rj+1/2 = f Lj+1/2 = − 1

Δx
(ūj+1 − ūj) (2.85)

f Rj−1/2 = f Lj−1/2 = − 1

Δx
(ūj − ūj−1). (2.86)

Notice that there is no discontinuity in the flux at the cell boundary. This produces

dūj

dt
= 1

Δx2
(ūj−1 − 2ūj + ūj+1), (2.87)

which is identical to (2.82).

2.5 Numerical Dissipation and Upwind Schemes

For a given order of accuracy, centered difference schemes produce the lowest
coefficient of the leading truncation error term in comparison with one-sided and
biased schemes. Moreover, a centered difference approximation correctly mimics
the physics of convection and diffusion. In particular, a centered approximation to a
first derivative is nondissipative, i.e. the eigenvalues of the associatedmatrix operator
are pure imaginary. No aphysical numerical dissipation is introduced. Nevertheless,
in the numerical solution ofmany practical problems, a small well-controlled amount
of numerical dissipation is desirable and possibly even necessary for stability.

In a linear problem, there exist modes that are inaccurately resolved, as demon-
strated by themodifiedwavenumbers shown in Fig. 2.2. If thesemodes are introduced
into a simulation somehow, for example by the initial conditions, and there exists
no mechanism to damp them, then they will persist and potentially contaminate

32 2 Fundamentals

the solution. It is preferable to damp these under-resolved solution components. In
processes governed by nonlinear equations, such as the Navier–Stokes equations,
there can be a continual production of high-frequency components of the solution,
leading, for example, to the formation of shock waves. In a real physical problem,
the production of high frequencies is eventually limited by viscosity. However, in
practical simulations, the smallest length scales where the physical damping occurs
are often under resolved. Unless the relevant length scales are resolved, some form of
added numerical dissipation is required. Since the addition of numerical dissipation
is tantamoun to intentionally introducing nonphysical behavior, it must be carefully
controlled such that the error introduced is not excessive.

2.5.1 Numerical Dissipation in the Linear Convection Equation

One means of introducing numerical dissipation is through the use of one-sided
differencing in the inviscid flux terms. For example, consider the following point
operator for the spatial derivative term in the linear convection equation:

− a(δxu)j = −a

2Δx
[−(1 + β)uj−1 + 2βuj + (1 − β)uj+1]

= −a

2Δx
[(−uj−1 + uj+1) + β(−uj−1 + 2uj − uj+1)]. (2.88)

The second form shown divides the operator into an antisymmetric component
(−uj−1 + uj+1)/2Δx and a symmetric component β(−uj−1 + 2uj − uj+1)/2Δx.
The antisymmetric component is the second-order centered difference operator.With
β �= 0, the operator is only first-order accurate. A backward difference operator is
given by β = 1, and a forward difference operator is given by β = −1.

For periodic boundary conditions, the corresponding matrix operator is

−aδx = −a

2Δx
Bp(−1 − β, 2β, 1 − β).

The eigenvalues of this matrix are

λm = −a

Δx

{
β

[
1 − cos

(
2πm

M

)]
+ i sin

(
2πm

M

)}
, m = 0, 1, . . . , M − 1.

If a is positive, the forward difference operator (β = −1) produces �(λm) > 0,
the centered difference operator (β = 0) produces �(λm) = 0, and the backward
difference operator produces �(λm) < 0. Hence the forward difference operator is
inherently unstable, while the centered and backward operators are inherently stable.
If a is negative, the roles are reversed.

2.5 Numerical Dissipation and Upwind Schemes 33

In order to devise a spatial discretization that is stable independent of the sign of
a, we can rewrite the linear convection equation as

∂u

∂t
+ (a+ + a−)

∂u

∂x
= 0, a± = a ± |a|

2
. (2.89)

If a ≥ 0, then a+ = a ≥ 0 and a− = 0. Alternatively, if a ≤ 0, then a+ = 0 and
a− = a ≤ 0. Now we can safely use a backward difference approximation for the
a+ (≥ 0) term and a forward difference approximation for the a− (≤ 0) term. This is
the basic concept behind upwind methods, that is some decomposition or splitting of
the fluxes into terms which have positive and negative characteristic speeds so that
appropriate differencing schemes can be chosen for each.

The above approach can be written in a different, but entirely equivalent, manner.
From (2.88), we see that a stable discretization is obtained with β = 1 if a ≥ 0 and
with β = −1 if a ≤ 0. This is achieved by the following point operator:

− a(δxu)j = −1

2Δx
[a(−uj−1 + uj+1) + |a|(−uj−1 + 2uj − uj+1)]. (2.90)

Any symmetric component in the spatial operator introduces dissipation (or amplifi-
cation). Therefore, one could choose β = 1/2 in (2.88), for example, leading to the
following operator:

− a(δxu)j = −1

2Δx
[a(−uj−1 + uj+1) + 1

2
|a|(−uj−1 + 2uj − uj+1)]. (2.91)

The resulting spatial operator is not one-sided, but it is dissipative.
Similarly, biased schemes use more information on one side of the grid node than

the other. For example, a third-order backward-biased scheme is given by

(δxu)j = 1

6Δx
(uj−2 − 6uj−1 + 3uj + 2uj+1)

= 1

12Δx
[(uj−2 − 8uj−1 + 8uj+1 − uj+2)

+ (uj−2 − 4uj−1 + 6uj − 4uj+1 + uj+2)]. (2.92)

The antisymmetric component of this operator is the fourth-order centered differ-
ence operator. The symmetric component approximates Δx3uxxxx/12. Therefore,
this operator produces fourth-order accuracy in phase, with a third-order dissipative
term. Note that the antisymmetric portion of the first-derivative operator always has
an even order of accuracy, while the symmetric portion always has an odd order.

34 2 Fundamentals

2.5.2 Upwind Schemes

In Sect. 2.5.1, we saw that numerical dissipation can be introduced in the spatial dif-
ference operator by using one-sided difference schemes or,more generally, by adding
a symmetric component to the spatial operator.With this approach, the direction of the
one-sided operator (i.e. whether it is a forward or a backward difference) and the sign
of the symmetric component depend on the sign of the wave speed. When a hyper-
bolic system of equations is being solved, the wave speeds can be both positive and
negative. For example, the eigenvalues of the flux Jacobian for the one-dimensional
Euler equations are u, u + a, u − a, where u is the fluid velocity and a is the speed of
sound.When the flow is subsonic, these are ofmixed sign. In order to apply one-sided
differencing schemes to such systems, some form of splitting is required.
Flux-Vector Splitting. Consider a linear, constant-coefficient, hyperbolic system of
partial differential equations given by

∂u

∂t
+ ∂ f

∂x
= ∂u

∂t
+ A

∂u

∂x
= 0, (2.93)

where f = Au, and A is diagonalizable with real eigenvalues. This system can be
decoupled into characteristic equations of the form

∂wi

∂t
+ λi

∂wi

∂x
= 0, (2.94)

where the wave speeds, λi, are the eigenvalues of the Jacobian matrix, A, and the
wis are the characteristic variables. In order to apply a one-sided (or biased) spatial
differencing scheme, we need to apply a backward difference if the wave speed, λi,
is positive, and a forward difference if the wave speed is negative.

To accomplish this, we split the matrix of eigenvalues, Λ, into two components
such that

Λ = Λ+ + Λ−, (2.95)

where

Λ+ = Λ + |Λ|
2

, Λ− = Λ − |Λ|
2

. (2.96)

With these definitions, Λ+ contains the positive eigenvalues and Λ− contains the
negative eigenvalues. With the additional definitions2

A+ = XΛ+X−1, A− = XΛ−X−1, (2.97)

we can define the split flux vectors as

2 With these definitions,A+ has all nonnegative eigenvalues, andA− has all nonpositive eigenvalues.

2.5 Numerical Dissipation and Upwind Schemes 35

f + = A+u, f − = A−u. (2.98)

Noting that f = f + + f −, we can rewrite the original system in terms of the split flux
vectors as

∂u

∂t
+ ∂ f +

∂x
+ ∂ f −

∂x
= 0. (2.99)

The spatial terms have been split into two components according to the sign of the
wave speeds. A dissipative scheme is obtained by applying backward differencing

to the ∂ f +
∂x term and forward differencing to the ∂ f −

∂x term.
Flux-vector splitting [2, 3] can also beusedwith afinite-volumemethod.Referring

back to Sect. 2.4, recall that in a finite-volume method there exists a discontinuity in
the flux at a control-volume boundary. When we took the average of the two fluxes
at the interface, we obtained a nondissipative finite-volume discretization analogous
to centered differencing. In order to develop a dissipative scheme, we can instead
choose f + from the state to the left of the interface and f − from the right state. This
leads to the following upwind numerical flux:

f̂j+1/2 = (f +)L + (f −)R, (2.100)

which leads to a finite-volumemethod that is analogous to the flux-vector-split finite-
difference scheme described above.

Flux-Difference Splitting. With flux-difference splitting [4], the numerical flux is
given by

f̂j+1/2 = 1

2

(
f L + f R

)
+ 1

2
|A|
(

uL − uR
)
, (2.101)

where

|A| = X|Λ|X−1. (2.102)

It is straightforward to show that in the linear, constant-coefficient case this is entirely
equivalent to (2.100).

2.5.3 Artificial Dissipation

We have seen that numerical dissipation can be introduced by using one-sided dif-
ferencing schemes together with some form of flux splitting. We have also seen that
such dissipation can be introduced by adding a symmetric component to an antisym-
metric (dissipation-free) operator. Thus we can generalize the concept of upwinding

36 2 Fundamentals

to include any scheme in which the symmetric portion of the operator is treated in
such a manner as to be truly dissipative.

For example, consider the operator

δxf = δax f + δsx(|A|u), (2.103)

where δax and δsx are antisymmetric and symmetric difference operators, and |A|
is defined in (2.102). The second spatial term is known as artificial dissipation.
With appropriate choices of δax and δsx , this approach can be identical to the upwind
approach.

It is common to use the following operator for δsx

(
δsxu
)

j = ε

Δx
(uj−2 − 4uj−1 + 6uj − 4uj+1 + uj+2), (2.104)

where ε is a problem-dependent coefficient. This symmetric operator approximates
εΔx3uxxxx and thus introduces a third-order dissipative term. With an appropriate
value of ε, this often provides sufficient damping of high frequency modes without
greatly affecting the low frequency modes. A more complicated treatment of the
numerical dissipation is required near shock waves and other discontinuities; this
subject is dealt with in later chapters.

2.6 Time-Marching Methods for ODEs

2.6.1 Basic Concepts: Explicit and Implicit Methods

After discretizing the spatial derivatives in the governing PDEs (such as the Navier–
Stokes equations), we obtain a coupled system of nonlinear ODEs in the form

d�u
dt

= �F(�u, t). (2.105)

These can be integrated in time using a time-marching method to obtain a time-
accurate solution to an unsteady flow problem. For a steady flow problem, spatial
discretization leads to a coupled system of nonlinear algebraic equations in the form

�F(�u) = 0. (2.106)

As a result of the nonlinearity of these equations, some sort of iterative method is
required to obtain a solution. For example, one can consider the use of Newton’s
method, which is widely used for nonlinear algebraic equations. This produces an
iterative method in which a coupled system of linear algebraic equations must be
solved at each iteration. Alternatively, one can consider a time-dependent path to the
steady state and use a time-marching method to integrate the unsteady form of the

2.6 Time-Marching Methods for ODEs 37

equations until the solution is sufficiently close to the steady solution. The subject of
the present section, time-marching methods for ODEs, is thus relevant to both steady
and unsteady flow problems.When using a time-marchingmethod to compute steady
flows, the goal is simply to remove the transient portion of the solution as quickly
as possible; time-accuracy is not required. This motivates the study of stability and
stiffness, topics which are discussed in the next section.

Applicationof a time-marchingmethod to anODEproduces anordinarydifference
equation (OΔE). Simple OΔEs can be easily solved, so we can develop exact solu-
tions for the model OΔEs arising from the application of time-marching methods to
the model ODEs. Using these exact solutions, we can analyze and understand the
stability and accuracy properties of various time-marching methods.

Based on the discussion in Sect. 2.3, we will consider scalar ODEs given by

du

dt
= u′ = F(u, t), (2.107)

bearing in mind that the analysis applies directly to the solution of systems of ODEs.
As in Sect. 2.2, we use the convention that the n subscript, or the (n) superscript,
always denotes a discrete timevalue, andh represents the time intervalΔt. Combining
this notation with (2.107) gives

u′
n = Fn = F(un, tn), tn = nh.

Often we need a more sophisticated notation for intermediate time steps involving
intermediate solutions denoted by ũ, ū, etc. For these we use the notation

ũ′
n+α = F̃n+α = F(ũn+α, tn + αh).

The methods we study are to be applied to linear or nonlinear ODEs, but the
methods themselves are formed by linear combinations of the dependent variable
and its derivative at various time intervals. They are represented conceptually by

un+1 = f
(
β1hu′

n+1,β0hu′
n,β−1u′

n−1, . . . ,α0un,α−1un−1, . . .
)
. (2.108)

With an appropriate choice of the αs and βs, these methods can be constructed to
give a local Taylor series accuracy of any order. A method is said to be explicit if
β1 = 0 and implicit otherwise. An explicit method is one in which the new predicted
solution is only a function of known data, for example, u′

n, u′
n−1, un, and un−1 for

a method using two previous time levels, and therefore the time advance is simple.
For an implicit method, the new predicted solution is also a function of the time
derivative at the new time level, that is, u′

n+1. As we shall see, for systems of ODEs
and nonlinear problems, implicit methods require more complicated strategies to
solve for un+1 than explicit methods.

Most time-marching methods in current use in CFD fall into one of three
categories: linear multistep methods, predictor–corrector methods, and Runge–

38 2 Fundamentals

Kutta methods. For the purpose of our analysis, we group predictor–corrector and
Runge–Kutta methods together under the heading multi–stage methods.

In a linear multistep method, the solution at the new time level is a linear combi-
nation of the solution and its derivative at various time levels. In other words, (2.108)
becomes

un+1 = β1hu′
n+1 + β0hu′

n,β−1u′
n−1 + · · · + α0un + α−1un−1 + · · · (2.109)

Specific linear multistep methods are associated with specific choices of the αs and
βs. In order to establish the order of accuracy, one can perform a Taylor series
expansion of the right-hand side of (2.109) with particular values of the αs and βs
and compare it to the Taylor series expansion of un+1. The order of accuracy of the
method is the lowest exponent of h in the differenceminus one. Similarly, one can use
a Taylor table to derive a method by choosing which αs and βs will be permitted to
have nonzero values; the Taylor table facilitates the derivation of the α and β values
that maximize the order of accuracy. For example, the most basic time-marching
method, which we will call the explicit Euler method, is found with all αs and βs set
to zero with the exception of α0 and β0. In order to maximize the order of accuracy,
one must choose α0 = β0 = 1, which gives

un+1 = un + hu′
n + O(h2). (2.110)

Since the leading error term is O(h2), this method is first order. This means that if
an ODE is solved with this method over a specific time interval using first a specific
value of h and then with h/2, the error in the solution at the end of the time interval
will be reduced by a factor of two.

Further examples of linearmultistepmethods commonly used inCFDapplications
are given below3:

Explicit Methods.

un+1 = un−1 + 2hu′
n Leapfrog

un+1 = un + 1
2h
[
3u′

n − u′
n−1

]
AB2

un+1 = un + h
12

[
23u′

n − 16u′
n−1 + 5u′

n−2

]
AB3

Implicit Methods.

un+1 = un + hu′
n+1 Implicit Euler

un+1 = un + 1
2h
[
u′

n + u′
n+1

]
Trapezoidal (AM2)

un+1 = 1
3

[
4un − un−1 + 2hu′

n+1

]
2nd-order Backward

un+1 = un + h
12

[
5u′

n+1 + 8u′
n − u′

n−1

]
AM3

3 Where the notation AB2 refers to the 2nd-order Adams-Bashforth method and AM2 refers to the
second-order Adams-Moulton method, etc.

2.6 Time-Marching Methods for ODEs 39

Predictor–corrector methods constructed to time-march linear or nonlinear ODEs
are composed of sequences of linear multistep methods, each of which is referred to
as a family in the solution process. There may be many families in the sequence, and
usually the final family has a higher Taylor-series order of accuracy than the inter-
mediate ones. Their use is motivated by ease of application and increased efficiency.
In a simple two–stage predictor–corrector method, the solution is initially predicted
at the next time level or some intermediate time using a linear multistep method. It
is then corrected by applying another linear multistep method that involves applying
the derivative function F(u, t) at the predicted u and the appropriate value of t. For
example, the second-order predictor–corrector method we will call MacCormack’s
method4 can be written as

ũn+1 = un + hu′
n

un+1 = 1

2
(un + ũn+1 + hũ′

n+1). (2.111)

The predicted solution ũn+1 is obtained at tn+1 using the explicit Euler method, while
the correction is obtained using the implicit trapezoidal method (see examples above)
with u′

n+1 replaced by ũ′
n+1. The method is explicit, since ũn+1 is computed before

ũ′
n+1 is needed. Note that in order to advance one time step, two evaluations of the
derivative function F(u, t) are required, F(un, tn) in the predictor and F(ũn+1, tn+1)

in the corrector. Since evaluating the derivative function is typically the greatest
computing expense in the application of a time-marching method, this means that
the cost per time step of MacCormack’s method is nominally twice that of a linear
multistep method, where only one derivative function evaluation is needed per time
step.5

Runge–Kutta methods are another important subset of multi-stage methods. The
most popular is the classical explicit fourth-order Runge–Kutta method, which can
be written in a notation consistent with the predictor–corrector example as

ûn+1/2 = un + 1

2
hu′

n

ũn+1/2 = un + 1

2
ĥu′

n+1/2

un+1 = un + hũ′
n+1/2

un+1 = un + 1

6
h
[
u′

n + 2
(̂

u′
n+1/2 + ũ′

n+1/2

)
+ u′

n+1

]
. (2.112)

4 Here we discuss only MacCormack’s time-marching method. The method commonly referred to
as MacCormack’s method is a fully-discrete method [5].
5 If a linear multistep method requires, for example, F(un−1, tn−1), this can be calculated at a
previous time step and stored.

40 2 Fundamentals

This method requires four derivative function evaluations per time step. As described
below, the analysis and derivation of multi-stage methods is more involved than that
for linear multistep methods.

2.6.2 Converting Time-Marching Methods to OΔEs

In Sect. 2.3.5 we chose a representative scalar ODE for the study of time-marching
methods given by

du

dt
= λu + aeμt, (2.113)

where λ, a, and μ are complex constants. This equation has the following exact
solution (for μ �= λ):

u(t) = c eλt + aeμt

μ − λ
, (2.114)

where the constant c is determined from the initial condition.Of course, onewould not
normally apply a numerical method to solve an equation for which one can derive the
exact solution. Our purpose here is to analyze and evaluate time-marching methods,
and amodelODEwith a known solution plays an important role in this process.Using
the theory of OΔEs we can obtain a closed form solution for the numerical solution
obtained when a given time-marching method is used to solve the representative
ODE. Rather than having to conduct a series of numerical experiments in order to
understand the properties of a time-marching method, we can use this closed form
solution to obtain these properties as an explicit function of the parameters h, λ,
a, and μ. Hence, the theory of OΔEs provides a powerful tool for analyzing and
deriving time-marching methods.

For example, consider the application of the explicit Euler method (2.110) to the
representative ODE. Noting that tn = hn, one obtains

un+1 = un + h(λun + aeμhn)

= (1 + λh)un + haeμhn. (2.115)

This is a first-order inhomogenous OΔE that can be written in the general form

un+1 = σun + âbn, (2.116)

where σ, â, and b are, in general, complex parameters. The independent variable is
n rather than t, and, since the equations are linear and have constant coefficients, σ
is not a function of either n or u. The exact solution of (2.116) is (for b �= σ):

2.6 Time-Marching Methods for ODEs 41

un = c1σ
n + âbn

b − σ
, (2.117)

where c1 is a constant determined by the initial conditions. That (2.117) is a solution
to (2.116) can be easily verified by substitution, and the reader is encouraged to do so.

Applying the exact OΔE solution (2.117) to the OΔE obtained by applying the
explicit Eulermethod to the representativeODE (2.115), one obtains the exact numer-
ical solution:

un = c1(1 + λh)n + haeμhn

eμh − 1 − λh
. (2.118)

This can be compared directly with the exact ODE solution rewritten as

u(t) = c (eλh)n + aeμhn

μ − λ
. (2.119)

In particular, comparing the homogeneous solutions

c1(1 + λh)n ≈ c (eλh)n, (2.120)

where c1 = c, shows that σ = 1 + λh is an approximation to eλh. Given that the
Taylor series expansion of eλh about λh = 0 is

eλh = 1 + λh + 1

2
λ2h2 + · · · + 1

k!λ
khk + · · · , (2.121)

the error in the approximation is O(h2), consistent with the fact that the explicit
Euler method is a first-order method. With a little more algebra,6 one can readily
show that the particular solution in (2.118) is also a first-order approximation to the
exact particular solution.

Let us examine the homogeneous OΔE solution in more detail. Consider as an
example λ = −1. The exact ODE homogeneous solution is simply ce−t . The homo-
geneous solution for the explicit Euler OΔE is

un = c1(1 − h)n. (2.122)

For small h this is a good approximation, consistent with the fact that σ ≈ eλh.
However, for h = 1, the homogeneous solution becomes un = 0 after one step. This
is completely inaccurate but at least provides the correct homogeneous solution as
n → ∞. With h = 2, the solution oscillates between 1 and −1, and for h > 2,

6 One must expand both the exact ODE particular solution and the exact OΔE particular solution
in Taylor series and compare on a term by term basis starting with the lowest power of h.

42 2 Fundamentals

the solution grows without bound as n → ∞. Generalizing this to arbitrary λ, the
solution grows without bound if |σ| = |1 + λh| > 1.7

Next consider the application of the implicit Euler method

un+1 = un + hu′
n+1 (2.123)

to the representative ODE. The resulting OΔE is

un+1 = 1

1 − λh
un + 1

1 − λh
heμhaeμhn. (2.124)

This can once again be compared to the form (2.116) to obtain the exactOΔE solution

un = c1

(
1

1 − λh

)n

+ aeμhn · heμh

(1 − λh)eμh − 1
. (2.125)

In this case σ = 1/(1− λh). Although again a first-order approximation to eλh, this
leads to quite different behaviour than σ = 1 + λh obtained for the explicit Euler
method. For example, with λ = −1 as in our previous example, the solution will not
become unbounded even as h → ∞.

This approach based on (2.116) and its solution (2.117) enables us to study one-
step linear multistep methods, which are linear multistep methods that use data only
at time levels n + 1 and n. For linear multistep methods of two steps or more and
multistage methods, a more general theory is needed. This is achieved by writing
the OΔE obtained by applying a time-marching method to the representative ODE
in the following operational form:

P(E)un = Q(E) · aeμhn. (2.126)

The terms P(E) and Q(E) are polynomials in E referred to as the characteristic poly-
nomial and the particular polynomial, respectively. The shift operator E is defined
formally by the relations

un+1 = Eun, un+k = Ekun

and also applies to exponents, thus

bα · bn = bn+α = Eα · bn,

where α can be any fraction or irrational number.

7 Recall that λ and hence σ are in general complex.

2.6 Time-Marching Methods for ODEs 43

The general solution of (2.126) can be expressed as

un =
K∑

k=1

ck(σk)
n + aeμhn · Q(eμh)

P(eμh)
, (2.127)

where σk are the K roots of the characteristic polynomial, P(σ) = 0. An important
subset of this solution occurs when μ = 0, representing a time-invariant particular
solution, or a steady state. In such a case

un =
K∑

k=1

ck(σk)
n + a · Q(1)

P(1)
. (2.128)

We shall illustrate the application of (2.126) and (2.127) with two examples, a two-
step multistep method and a multistage method, MacCormack’s predictor-corrector
method (2.111).

Consider first the leapfrog method, a second-order explicit two-step multistep
method given by8

un+1 = un−1 + 2hu′
n. (2.129)

Applying it to the representative ODE gives

un+1 = un−1 + 2h(λun + aeμhn). (2.130)

After rearranging and introducing the shift operator (un+1 = Eun, un−1 = E−1un,)
we obtain

(E − 2λh − E−1)un = 2haeμhn, (2.131)

which is in the form (2.126) with

P(E) = E − 2λh − E−1, Q(E) = 2h. (2.132)

Setting P(σ) = 0 gives the relation

σ2 − 2λhσ − 1 = 0, (2.133)

which produces two σ roots:

σ1,2 = λh ±
√

λ2h2 + 1. (2.134)

8 The reader should observe the relationship between this time-marching method and the second-
order centered difference approximation to a first derivative.

44 2 Fundamentals

Thus the OΔE solution is

un = c1(λh +
√

λ2h2 + 1)n + c2(λh −
√

λ2h2 + 1)n

+aeμhn · 2h

eμh − 2λh − e−μh
. (2.135)

This OΔE solution has an important difference from that obtained for the explicit
and implicit Euler methods: two σ-roots. Only one of them approximates eλh. In this
case σ1 = λh + √

λ2h2 + 1 can be expanded in a Taylor series to show that it is
a second-order approximation to eλh. The root with this property is known as the
principal root, and the other root or roots are known as spurious roots. There are two
constants in the OΔE solution, but only one initial condition. This reflects the fact
that a method requiring data at time level n − 1 or earlier is not self starting. At the
first time step n = 0, un = u0 is known from the initial condition, but un−1 is not
known. Therefore, such methods are normally started using a self-starting method
for the first step or steps, as required, and this provides the second necessary constant.
If the method is started in this manner, the coefficients of the spurious roots will have
small (but not zero) magnitudes.

As our final example, we will derive the solution to the OΔE obtained by apply-
ing MacCormack’s explicit predictor–corrector method (2.111) to the representative
ODE. This methodology can be followed to analyze Runge-Kutta methods as well.9

Applying MacCormack’s method to the representative equation gives

ũn+1 − (1 + λh)un = aheμhn

− 1
2 (1 + λh)ũn+1 + un+1 − 1

2un = 1
2aheμh(n+1),

(2.136)

which is a coupled set of linear OΔEs with constant coefficients. The second line in
(2.136) is obtained by noting that

ũ′
n+1 = F(ũn+1, tn + h)

= λũn+1 + aeμh(n+1). (2.137)

Introducing the shift operator E, we obtain

[
E −(1 + (eμh))

− 1
2 (1 + (eμh))E E − 1

2

] [
ũ
u

]
n

= h ·
[

1
1
2E

]
ũ. (2.138)

This system has a solution for both the intermediate family ũn and the final family
un. Since we are interested only in the final family, we can use Cramer’s rule to obtain
the operational form (2.126) as follows:

9 In fact, MacCormack’s method can be considered a second-order Runge-Kutta method.

2.6 Time-Marching Methods for ODEs 45

P(E) = det

⎡
⎣E −(1 + λh)

− 1
2 (1 + λh)E E − 1

2

⎤
⎦ = E

(
E − 1 − λh − 1

2
λ2h2

)

Q(E) = det

⎡
⎣E h

− 1
2 (1 + λh)E 1

2hE

⎤
⎦ = 1

2
hE(E + 1 + λh).

The σ-root is found from

P(σ) = σ

(
σ − 1 − λh − 1

2
λ2h2

)
= 0,

which has only one nontrivial root

σ = 1 + λh + 1

2
λ2h2. (2.139)

The complete solution can therefore be written

un = c1

(
1 + λh + 1

2
λ2h2

)n

+ aeμhn ·
1
2h
(
eμh + 1 + λh

)
eμh − 1 − λh − 1

2λ
2h2

. (2.140)

The σ-root is clearly a second-order approximation to eλh, and the particular solution
can also be shown to be a second-order approximation of the particular solution in
(2.114). This example provides a template that can be used for the derivation and
analysis of predictor–corrector and Runge-Kutta methods up to third order. Runge-
Kutta methods of order four and higher must be derived based on a nonlinear ODE.

Weare now in a position to generalizewhatwehave learned about theσ-roots asso-
ciated with a time-marching method. Recall that we intend to apply time-marching
methods to systems of ODEs generated by discretizing the spatial derivatives in a
PDE. For the linear, constant-coefficient systems of ODEs associated with our model
equations, which are in the form (2.36), the solution can be written in the form (2.44),
which we rewrite here as follows, noting that t = nh:

�u(t) = c1
(
eλ1h

)n �x1 + · · · + cm

(
eλmh

)n �xm + · · · + cM

(
eλM h

)n �xM + P.S., (2.141)

where the λm and �xm are the eigenvalues and eigenvectors of the A matrix in the
ODE system, and for the present we are not interested in the form of the particular
solution (P.S.).

Both the explicit Euler and MacCormack methods are one-root methods; they
produce one σ-root for each λ-root. If we use such a method to time march the
system of ODEs, the solution of the resulting OΔEs is

46 2 Fundamentals

�un = c1(σ1)
n �x1 + · · · + cm(σm)n �xm + · · · + cM(σM)n �xM + P.S., (2.142)

where the cm and the �xm in the two equations are identical, andσm is an approximation
to eλh that depends on the specific time-marching method. If the method produces
one or more spurious σ-roots for each λ, as in our example of the leapfrog method,
then the OΔE solution is

�un = c11(σ1)
n
1 �x1 + · · · + cm1(σm)n

1 �xm + · · · + cM1(σM)n
1 �xM + P.S.

+ c12(σ1)
n
2 �x1 + · · · + cm2(σm)n

2 �xm + · · · + cM2(σM)n
2 �xM

+ c13(σ1)
n
3 �x1 + · · · + cm3(σm)n

3 �xm + · · · + cM3(σM)n
3 �xM

+ etc., if there are more spurious roots. (2.143)

The σ-root that approximates eλmh is referred to as the principal σ-root, and desig-
nated (σm)1. Application of the same time-marchingmethod to all of the equations in
a coupled system of linear ODEs in the form of (2.36) always produces one principal
σ-root for every λ-root that satisfies the relation

σ = 1 + λh + 1

2
λ2h2 + · · · + 1

k!λ
khk + O

(
hk+1

)
, (2.144)

where k is the order of the time-marching method. This property can be stated
regardless of the details of the time-marching method, knowing only that its leading
error is O

(
hk+1

)
. Thus the principal root is an approximation to eλh up to O

(
hk
)
.

Spurious roots arise if a method uses data from time level n − 1 or earlier to
advance the solution from time level n to n + 1. Such roots originate entirely from
the numerical approximation of the time-marching method and have nothing to do
with the ODE being solved. However, generation of spurious roots does not, in
itself, make a method inferior. In fact, many very accurate methods in practical
use for integrating some forms of ODEs have spurious roots. Based on the starting
technique, the magnitudes of the coefficients of the spurious roots will be small but
nonzero. If the spurious roots themselves have amplitudes less than unity, they will
not grow and hencewill not contaminate the solution. Thuswhile spurious rootsmust
be considered in stability analysis, they play virtually no role in accuracy analysis.
Table 2.1 shows the λ–σ relations for various methods.

2.6.3 Implementation of Implicit Methods

Although the approach we have presented for analyzing time-marching methods
based on the representative ODE is a powerful means of understanding the behaviour
of time-marchingmethods, it obscures someaspects of the implementation of implicit
methods to systems of nonlinear ODEs. These are introduced here.

2.6 Time-Marching Methods for ODEs 47

Table 2.1 Some λ–σ relations

1. σ − 1 − λh = 0 Explicit Euler
2. σ2 − 2λhσ − 1 = 0 Leapfrog
3. σ2 − (1 + 3

2λh)σ + 1
2λh = 0 AB2

4. σ3 − (1 + 23
12λh)σ2 + 16

12λhσ − 5
12λh = 0 AB3

5. σ(1 − λh) − 1 = 0 Implicit Euler
6. σ(1 − 1

2λh) − (1 + 1
2λh) = 0 Trapezoidal

7. σ2(1 − 2
3λh) − 4

3σ + 1
3 = 0 2nd-order backward

8. σ2(1 − 5
12λh) − (1 + 8

12λh)σ + 1
12λh = 0 AM3

9. σ2 − (1 + 13
12λh + 15

24λ2h2)σ + 1
12λh(1 + 5

2λh) = 0 ABM3

10. σ3 − (1 + 2λh)σ2 + 3
2λhσ − 1

2λh = 0 Gazdag

11. σ − 1 − λh − 1
2λ2h2 = 0 RK2

12. σ − 1 − λh − 1
2λ2h2 − 1

6λ3h3 − 1
24λ4h4 = 0 RK4

13. σ2(1 − 1
3λh) − 4

3λhσ − (1 + 1
3λh) = 0 Milne 4th

Application to Systems of Equations. Consider the application of the implicit Euler
method to our generic system of equations given by

�u′ = A�u − �f (t), (2.145)

where �u and �f are vectors, and we still assume that A is not a function of �u or t.
One obtains the following system of algebraic equations that must be solved at each
time step:

(I − hA)�un+1 − �un = −h�f (t + h) (2.146)

or

�un+1 = (I − hA)−1[�un − h�f (t + h)]. (2.147)

The inverse is not actually performed; rather we solve (2.146) as a linear system of
equations. For our one-dimensional examples, the system of equations which must
be solved is tridiagonal (e.g. for periodic convection, A = −aBp(−1, 0, 1)/2Δx),
and hence its solution is inexpensive, but in multiple dimensions the bandwidth can
be very large. In general, the cost per time step of an implicit method is thus larger
than that of an explicit method. The primary area of application of implicit methods
is in the solution of stiff ODEs; this is further discussed in Sect. 2.7.
Application to Nonlinear Equations. Now consider the general nonlinear scalar
ODE given by

du

dt
= F(u, t). (2.148)

48 2 Fundamentals

Application of the implicit Euler method gives

un+1 = un + hF(un+1, tn+1). (2.149)

This is a nonlinear difference equationwhich requires a nontrivialmethod to solve for
un+1. There are several different approaches one can take to solving this nonlinear
difference equation. An iterative method, such as Newton’s method, can be used.
Other alternatives include local linearization and dual time stepping.

In order to implement a local linearization, we expand F(u, t) about some refer-
ence point in time. Designate the reference value by tn and the corresponding value
of the dependent variable by un. A Taylor series expansion about these reference
quantities gives

F(u, t) = Fn +
(

∂F

∂u

)
(u − un) +

(
∂F

∂t

)
(t − tn) + O(h2). (2.150)

This represents a second-order, locally-linear approximation to F(u, t) that is valid
in the vicinity of the reference station tn and the corresponding un = u(tn). With this
we obtain the locally (in the neighborhood of tn) linear representation of (2.148),
namely

du

dt
=
(

∂F

∂u

)
n
u +

[
Fn −

(
∂F

∂u

)
n
un

]
+
(

∂F

∂t

)
n
(t − tn) + O(h2). (2.151)

As an example of how such an expansion can be used, consider the mechanics of
applying the trapezoidal method for the time integration of (2.148). The trapezoidal
method is given by

un+1 = un + 1

2
h(Fn+1 + Fn). (2.152)

Using (2.150) to evaluate Fn+1 = F(un+1, tn+1), one finds

un+1 = un + 1

2
h

[
Fn +

(
∂F

∂u

)
n
(un+1 − un) + h

(
∂F

∂t

)
n
+ O(h2) + Fn

]
. (2.153)

Note that theO(h2) termwithin the brackets (which is due to the local linearization) is
multiplied by h and therefore preserves the second-order accuracy of the trapezoidal
method.The local time linearization updated at the endof each time step and the trape-
zoidal time-marching method combine to make a second-order-accurate numerical
integration process. There are, of course, other second-order implicit time-marching
methods that can be used. The important point to be made here is that local lineariza-
tion updated at each time step has not reduced the order of accuracy of a second-order

2.6 Time-Marching Methods for ODEs 49

time-marching process. Extension to systems of equations is straightforward, with(
∂F
∂u

)
n
representing a Jacobian matrix.

A useful reordering of the terms in (2.153) results in the expression

[
1 − 1

2
h

(
∂F

∂u

)
n

]
Δun = hFn + 1

2
h2
(

∂F

∂t

)
n
, (2.154)

which is known as the delta form. In many fluidmechanics applications the nonlinear
function F is not an explicit function of t. In such cases the partial derivative of
F(u) with respect to t is zero, and (2.154) simplifies to the second-order-accurate
expression

[
1 − 1

2
h

(
∂F

∂u

)
n

]
Δun = hFn. (2.155)

Following the same steps with the implicit Euler method and again assuming that F
is not an explicit function of time, we arrive at the form

[
1 − h

(
∂F

∂u

)
n

]
Δun = hFn. (2.156)

We see that the only difference between the implementation of the trapezoidalmethod
and the implicit Euler method is the factor of 1/2 in the brackets of the left side of
(2.155) and (2.156). While a method of second-order accuracy or higher is preferred
for unsteady problems, the first-order implicit Euler method is an excellent choice
for steady problems.

Consider the limit h → ∞ of (2.156) obtained by dividing both sides by h and
setting 1/h = 0. There results

−
(

∂F

∂u

)
n
Δun = Fn (2.157)

or

un+1 = un −
[(

∂F

∂u

)
n

]−1

Fn. (2.158)

This is thewell-knownNewtonmethod for finding the roots of the nonlinear equation
F(u) = 0.

Finally, we illustrate the dual time-stepping approach by applying it to the trape-
zoidal method. The algebraic equation that must be solved at each time step is given
by (2.152). Hence un+1 is the solution to

G(u) = 0, (2.159)

50 2 Fundamentals

where

G(u) = −u + un + 1

2
h (F(u) + F(Un)) . (2.160)

While Newton’s method provides one option for solving such an equation, another
approach is to consider un+1 to be the steady solution of the following ODE:

du

dτ
= G(u), (2.161)

where τ is often referred to as pseudo time.One can use an appropriate time-marching
method to solve thisODE, and typically themethodwould be optimized for obtaining
steady solutions efficiently. Note thatΔτ can be selected for rapid convergence to the
steady solution of (2.161), while h determines the time accuracy of the trapezoidal
method. If an explicit time-marching method is used to solve (2.161) for a system
of equations, then one has an implementation of an implicit method that does not
require the solution of a linear system of algebraic equations at each time step.

2.7 Stability Analysis

Stability of numerical algorithms for the solution of PDEs is an important and com-
plex topic. Here we will simplify matters and consider only time-dependent ODEs
and OΔEs in which the coefficient matrices are independent of both u and t. We
will refer to such matrices as stationary. In the preceding sections, we developed the
representative forms of ODEs generated from the basic PDEs by the semi-discrete
approach, and then the OΔEs generated from the representative ODEs by application
of time-marching methods. These are represented by

d�u
dt

= A�u − �f (t) (2.162)

and

�un+1 = C�un − �gn, (2.163)

respectively. For a one-step method, the latter form is obtained by applying a time-
marching method to the generic ODE form in a fairly straightforward manner. For
example, the explicit Euler method leads to C = I + hA, and �gn = h�f (nh). Methods
involving two or more steps can always be written in the form of (2.163) by intro-
ducing new dependent variables. Note also that only methods in which the time and
space discretizations are treated separately can be written in an intermediate semi-
discrete form such as (2.162). The fully-discrete form, (2.163), and the associated
stability definitions and analysis are applicable to all methods.

2.7 Stability Analysis 51

Our definitions of stability are based entirely on the behavior of the homogeneous
parts of (2.162) and (2.163). The stability of (2.162) depends entirely on the eigen-
system10 of A. The stability of (2.163) can often also be related to the eigensystem
of its matrix. However, in this case the situation is not quite so simple since, in our
applications to partial differential equations (especially hyperbolic ones), a stability
definition can depend on both the time and space differencing. Analysis of these
eigensystems has the important added advantage that it gives an estimate of the rate
at which a solution approaches a steady-state if a system is stable. We will consider
only systems with complete eigensystems; for a discussion of defective systems, see
Lomax et al. [1]. Note that a complete system can be arbitrarily close to a defective
one, in which case practical applications can make the properties of the latter appear
to dominate.

If A and C are stationary, we can estimate their fundamental properties. For exam-
ple, in Sect. 2.3.4, we found from ourmodel ODEs for diffusion and periodic convec-
tion what could be expected for the eigenvalue spectra of practical physical problems
containing these phenomena. They are important enough to be summarized by the
following:

• For diffusion-dominated flows, the λ-eigenvalues tend to lie along the negative
real axis.

• For convection-dominated flows, the λ-eigenvalues tend to lie along the imaginary
axis.

2.7.1 Inherent Stability of ODEs

Here we state the standard stability criterion used for ordinary differential equations:

For a stationary matrix A, (2.162) is inherently stable if,

when �f is constant, �u remains bounded as t → ∞. (2.164)

Note that inherent stability depends only on the transient solution of the ODEs.
If a matrix has a complete eigensystem, all of its eigenvectors are linearly inde-

pendent, and the matrix can be diagonalized by a similarity transformation. In such
a case it follows at once from (2.141), for example, that the ODEs are inherently
stable if and only if

�(λm) ≤ 0 for all m. (2.165)

This states that, for inherent stability, all of the λ eigenvalues must lie on, or to the
left of, the imaginary axis in the complex λ plane. This criterion is satisfied for the
model ODEs representing both diffusion and periodic convection.

10 This is not the case if the coefficient matrix depends on t, even if it is linear.

52 2 Fundamentals

2.7.2 Numerical Stability of OΔEs

The OΔE companion to (2.164) is:

For a stationary matrix C, (2.163) is numerically stable if,

when �g is constant, �un remains bounded as n → ∞. (2.166)

We see that numerical stability depends only on the transient solution of the OΔEs.
This definition of stability is sometimes referred to as asymptotic or time stability.

Consider a set of OΔEs governed by a complete eigensystem. The stability
criterion, according to the condition set in (2.166), follows at once from a study
of (2.142) and its companion for multiple σ-roots, (2.143). Clearly, for such systems
a time-marching method is numerically stable if and only if

∣∣(σm)k

∣∣ ≤ 1 for all m and k. (2.167)

This condition states that, for numerical stability, all of the σ eigenvalues (both
principal and spurious, if there are any) must lie on or inside the unit circle in the
complex σ-plane.

The most important aspect of numerical stability occurs under conditions when:

• one has inherently stable, coupled systems with λ-eigenvalues having widely sep-
arated magnitudes,

or

• we seek only to find a steady-state solution using a path that includes the unwanted
transient.

In both of these cases there exist in the eigensystems relatively large values of
|λh| associated with eigenvectors that we wish to drive through the solution process
without any regard for their individual accuracy. This situation is themajormotivation
for the study of numerical stability and leads to the subject of stiffness discussed later
in this section.

2.7.3 Unconditional Stability, A-stable Methods

A numerical method is unconditionally stable if it is stable for all ODEs that are
inherently stable. A method with this property is said to be A-stable. It can be proved
that the order of an A-stable linear multistep method cannot exceed two, and, further-
more that of all 2nd-order A-stable methods, the trapezoidal method has the smallest
truncation error.

2.7 Stability Analysis 53

2.7.4 Stability Contours in the Complex λh Plane.

A convenient way to present the stability properties of a time-marching method is to
plot the locus of the complex λh for which |σ| = 1, such that the resulting contour
goes through the point λh = 0. Here |σ| refers to the maximum absolute value of
any σ, principal or spurious, that is a root to the characteristic polynomial for a given
λh. It follows from Sect. 2.7.2 that on one side of this contour the numerical method
is stable, while on the other, it is unstable. We refer to it, therefore, as a stability
contour.

Consider, for example, the explicit Euler method, for which

σ = 1 + λh = 1 + λrh + iλih, (2.168)

where λr and λi denote the real and imaginary parts of λ. Setting |σ| = 1 leads to

(1 + λrh)2 + (λih)2 = 1, (2.169)

which is the equation of a unit circle in the complex λh plane centered at (−1, 0).
The explicit Euler method is stable for λh values on or inside this circle. This means
that it is unstable for the model periodic convection ODE and convection-dominated
problems in general. For the model diffusion ODE it is conditionally stable. The time
step must be chosen such that the eigenvalue of largest magnitude, which is given by

λ = ν

Δx2

[
−2 + 2 cos

(
Mπ

M + 1

)]
(2.170)

lies on or inside the unit circle. This gives

h ≤ Δx2

ν
[
1 − cos

(
Mπ

M+1

)] ≈ Δx2

2ν
, (2.171)

or

νh

Δx2
≤ 1

2
, (2.172)

where νh/Δx2 is often referred to as the Von Neumann number.
The stability contour of the explicit Eulermethod is typical of all stability contours

for explicit methods in the following two ways:

(1) The contour encloses a finite portion of the left-half complex λh-plane.
(2) The region of stability is inside the boundary, and therefore, it is conditional.

54 2 Fundamentals

Fig. 2.5 Stability contours for
explicit Runge–Kutta methods

Stability contours for explicit Runge-Kutta methods of orders one through four are
shown in Fig. 2.5.11 Notice that the contours of the third- and fourth-order Runge–
Kutta methods include a portion of the imaginary axis out to ±1.9i and ±2

√
2i,

respectively, and hence are suitable for convection-dominated problems.
The eigenvalues of the ODE system arising from the application of second-order

centered differencing to the periodic convection PDE are given in (2.46). The max-
imum magnitude is |a|/Δx, which leads to the following time step restriction when
this system is solved using the fourth-order Runge-Kutta method:

|a|h
Δx

≤ 2
√
2, (2.173)

where |a|h/Δx is known as the Courant or CFL number.
For the implicit Euler method, one can easily show that the stability contour is

a unit circle centered at (1, 0) with the unstable region being inside the circle. This
means that the method is numerically stable even when the ODEs that it is being
used to integrate are inherently unstable and is typical of many stability contours
for unconditionally stable implicit methods. For the trapezoidal method, the stability
boundary is the imaginary axis, so it is stable for λh lying on or to the left of this
axis. Hence its stability condition precisely mimics that of the ODE system.

11 The method labelled RK1 is the explicit Euler method.

2.7 Stability Analysis 55

2.7.5 Fourier Stability Analysis

The most popular form of stability analysis for numerical schemes is the Fourier or
Von Neumann approach. This analysis is usually carried out on point operators, and
it does not depend on an intermediate stage of ODEs. Strictly speaking it applies
only to difference approximations of PDEs that produce OΔEs which are linear,
have no space or time varying coefficients, and have periodic boundary conditions.
In practical application it is often used as a guide for estimating the worthiness of a
method for more general problems. It serves as a fairly reliable necessary stability
condition, but it is by no means a sufficient one.

One takes data from a “typical” point in the flow field and uses this as constant
throughout time and space according to the assumptions given above. Then one
imposes a spatial harmonic as an initial value on the mesh and asks the question:
Will its amplitude grow or decay in time? The answer is determined by finding the
conditions under which

u(x, t) = eαt · eiκx (2.174)

is a solution to the difference equation, where κ is real and κΔx lies in the range
0 ≤ κΔx ≤ π. Since, for the general term,

u(n+�)
j+m = eα(t+�Δt) · eiκ(x+mΔx) = eα�Δt · eiκmΔx · u(n)

j ,

the quantity u(n)
j is common to every term and can be factored out. In the remaining

expressions, we find the term eαΔt , which we represent by σ, thus

σ ≡ eαΔt .

Then, since eαt = (eαΔt
)n = σn, it is clear that:

For numerical stability |σ| ≤ 1 (2.175)

and the problem is to solve for the σs produced by any given method and, as a
necessary condition for stability, make sure that, in the worst possible combination
of parameters, (2.175) is satisfied.

The procedure can best be explained by an example. Consider the following fully-
discrete point operator for the model diffusion equation:

u(n+1)
j = u(n−1)

j + ν
2Δt

Δx2

(
u(n)

j+1 − 2u(n)
j + u(n)

j−1

)
, (2.176)

which is obtained by combining second-order centered differencingwith the leapfrog
method. Substitution of (2.174) into (2.176) gives the relation

56 2 Fundamentals

σ = σ−1 + ν
2Δt

Δx2

(
eiκΔx − 2 + e−iκΔx

)

or

σ2 +
[
4νΔt

Δx2
(1 − cosκΔx)

]
︸ ︷︷ ︸

2b

σ − 1 = 0. (2.177)

Thus (2.174) is a solution of (2.176) if σ is a root of (2.177). The two roots of (2.177)
are

σ1,2 = −b ±
√

b2 + 1,

fromwhich it is clear that one |σ| is always> 1.We find, therefore, that by the Fourier
stability test, this method is unstable for all ν, κ and Δt. The same conclusion can
be gleaned from a knowledge of the stability contour for the leapfrog method and
the eigenvalues of the diffusion ODE system. The leapfrog method is stable only for
pure imaginary eigenvalues with amplitude less than or equal to unity. The diffusion
ODE eigenvalues are strictly real and hence cannot be brought into the stable region
of the leapfrog method by any choice of h.

2.7.6 Stiffness of Systems of ODEs

The concept referred to as “stiffness” comes about from the numerical analysis of
mathematicalmodels constructed to simulate dynamic phenomena containingwidely
different time scales. The difference between the dynamic scales translates into a
difference in the magnitudes of the eigenvalues of the ODE system. The concept
of stiffness in CFD arises from the fact that we often do not need accurate time
resolution of eigenvectors associated with the large |λm| in the transient solution,
although these eigenvectors must remain coupled into the system to maintain the
accuracy of the spatial resolution. For example, recall the modified wavenumber for
a second-order centered difference approximation of a first derivative depicted in Fig.
2.2. For wavenumbers κΔx greater than unity the approximation is very inaccurate.
Therefore there is no reason to time-march the eigenvectors associated with these
wavenumbers with a high degree of accuracy. However, these components of the
solution must be time-marched in a stable manner so that they do not contaminate
the solution.

This situation is depicted graphically in Fig. 2.6 for the explicit Euler method. All
eigenvalues, whether they must be accurately time resolved or not, must lie within
the stable region of the time-marching method. In addition, those eigenvalues that
correspond to eigenvectors for which accurate time resolution is required must lie
within a region near the origin where the principal σ-root is a sufficiently accurate
approximation to eλh for the purposes of the specific simulation (labelled the accurate

2.7 Stability Analysis 57

Fig. 2.6 Stable and accurate
regions for the explicit Euler
method

region). In the figure, the time step has been chosen so that time accuracy is given to
the eigenvectors associatedwith the eigenvalues lying in the small circle, and stability
without time accuracy is given to those associated with the eigenvalues lying outside
of the small circle but still inside the large circle.

We term the eigenvalues corresponding to eigenvectors for which time accuracy
is required the driving eigenvalues, and those for which only stability is required are
termed parasitic eigenvalues. Unfortunately, although time accuracy requirements
are dictated by the driving eigenvalues, numerical stability requirements are dictated
by the parasitic ones. If a time step h chosen on the basis of stability requirements is
sufficiently small that the driving eigenvalues fall within the accurate region, then the
time step choice is described as stability limited. Similarly, if a time step h chosen on
the basis of accuracy requirements is sufficiently small that the parasitic eigenvalues
fallwithin the stable region, then the time step choice is described as accuracy limited.

The stiffness of anODEsystem is related to the ratio of themagnitude of the largest
parasitic eigenvalue to that of the largest driving eigenvalue. If this ratio is large, the
system is stiff, and, if a conditionally stable time-marching method is used, the time
step selection will be severely constrained by stability requirements. In other words,
the time step necessary for stability is much smaller than that required for accuracy of
the driving eigenvalues, and the simulation can be inefficient, requiring many more
time steps than are actually needed for accurate resolution of the driving modes. In
such instances, unconditionally stable implicit methods become preferable, as the
time step can be selected solely on the basis of the accuracy requirements. Since
implicit methods typically require more computation per time step, the comparison
depends on the degree of stiffness of the problem.As the degree of stiffness increases,
the advantage tilts toward implicit methods, as the reduced number of time steps
begins to outweigh the increased cost per time step.

58 2 Fundamentals

References

1. Lomax, H., Pulliam, T.H., Zingg, D.W.: Fundamentals of Computational Fluid Dynamics.
Springer, Berlin (2001)

2. Steger, J.L., Warming, R.F.: Flux vector splitting of the inviscid gas dynamic equations with
applications to finite difference methods. J. Comput. Phys. 40, 263–293 (1981)

3. VanLeer, B.: Flux vector splitting for the Euler equations. In: Proceedings of the 8th International
Conference on Numerical Methods in Fluid Dynamics, Springer-Verlag, Berlin (1982)

4. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput.
Phys. 43, 357–372 (1981)

5. MacCormack, R.W.: The effect of viscosity in hypervelocity impact cratering, AIAA Paper
69-354 (1969)

http://www.springer.com/978-3-319-05052-2

	2 Fundamentals
	2.1 Model Equations
	2.1.1 The Linear Convection Equation
	2.1.2 The Diffusion Equation

	2.2 Finite-Difference Methods
	2.2.1 Basic Concepts: Taylor Series
	2.2.2 The Modified Wavenumber

	2.3 The Semi-Discrete Approach
	2.3.1 Matrix Difference Operators
	2.3.2 Reduction of PDEs to ODEs
	2.3.3 Exact Solutions of Linear ODEs
	2.3.4 Eigenvalue Spectra for Model ODEs
	2.3.5 A Representative Equation for Studying Time-Marching Methods

	2.4 Finite-Volume Methods
	2.4.1 Basic Concepts
	2.4.2 One-Dimensional Examples

	2.5 Numerical Dissipation and Upwind Schemes
	2.5.1 Numerical Dissipation in the Linear Convection Equation
	2.5.2 Upwind Schemes
	2.5.3 Artificial Dissipation

	2.6 Time-Marching Methods for ODEs
	2.6.1 Basic Concepts: Explicit and Implicit Methods
	2.6.2 Converting Time-Marching Methods to OEs
	2.6.3 Implementation of Implicit Methods

	2.7 Stability Analysis
	2.7.1 Inherent Stability of ODEs
	2.7.2 Numerical Stability of OEs
	2.7.3 Unconditional Stability, A-stable Methods
	2.7.4 Stability Contours in the Complex λh Plane.
	2.7.5 Fourier Stability Analysis
	2.7.6 Stiffness of Systems of ODEs

	References

