
Contents

Preface vii
Description and assessment vii

Keeping a cool head viii

Previous attempts ix

Structure of the book ix

Perspective and scope x

Analysis: instinctive, experiential, logical or empirical? xi

Free critical inquiry xii

Acknowledgments xiii

Contents xv

1 OVERVIEW 1
1.1 VALUES 2

1.2 PRINCIPLES 4
Organizational principles 5

Technical principles 6

1.3 ROLES 7

1.4 PRACTICES 8
Organizational practices 8

Technical practices 9

1.5 ARTIFACTS 10
Virtual artifacts 10

Material artifacts 11

1.6 A FIRST ASSESSMENT 12
Not new and not good 12

New and not good 13

Not new but good 14

New and good! 14

CONTENTSxvi

2 DECONSTRUCTING AGILE TEXTS 17
2.1 THE PLIGHT OF THE TRAVELING SEMINARIST 17

Proof by anecdote 18
When writing beats speaking 19
Discovering the gems 20
Agile texts: reader beware! 21

2.2 THE TOP SEVEN RHETORICAL TRAPS 22
Proof by anecdote 22
Slander by association 23
Intimidation 23
Catastrophism 26
All-or-nothing 27
Cover-your-behind 27
Unverifiable claims 28

Postscript: you have been ill-served by the software industry! 30

3 THE ENEMY: BIG UPFRONT ANYTHING 31
3.1 PREDICTIVE IS NOT WATERFALL 31
3.2 REQUIREMENTS ENGINEERING 32

Requirements engineering techniques 32
Agile criticism of upfront requirements 32
The waste criticism 33
The change criticism 35
The domain and the machine 36

3.3 ARCHITECTURE AND DESIGN 37
Is design separate from implementation? 37
Agile methods and design 39

3.4 LIFECYCLE MODELS 41
3.5 RATIONAL UNIFIED PROCESS 42
3.6 MATURITY MODELS 43

CMMI in plain English 44
The Personal Software Process 46
CMMI/PSP and agile methods 46
An agile maturity scale 47

4 AGILE PRINCIPLES 49
4.1 WHAT IS A PRINCIPLE? 49
4.2 THE OFFICIAL PRINCIPLES 50
4.3 A USABLE LIST 51
4.4 ORGANIZATIONAL PRINCIPLES 51

CONTENTS xvii

Put the customer at the center 51
Let the team self-organize 53
Work at a sustainable pace 56
Develop minimal software 58
Accept change 68

4.5 TECHNICAL PRINCIPLES 70
Develop iteratively 70
Treat tests as a key resource 75
Do not start any new development until all tests pass 76
Test first 77
Express requirements through scenarios 77

5 AGILE ROLES 79
5.1 MANAGER 79
5.2 PRODUCT OWNER 80
5.3 TEAM 80

Self-organizing 80
Cross-functional 81

5.4 MEMBERS AND OBSERVERS 82
5.5 CUSTOMER 82
5.6 COACH, SCRUM MASTER 84
5.7 SEPARATING ROLES 86

6 AGILE PRACTICES: MANAGERIAL 89
6.1 SPRINT 89

Sprint basics 89
The closed-window rule 90
Sprint: an assessment 91

6.2 DAILY MEETING 91
6.3 PLANNING GAME 93
6.4 PLANNING POKER 94
6.5 ONSITE CUSTOMER 96
6.6 OPEN SPACE 96
6.7 PROCESS MINIATURE 97
6.8 ITERATION PLANNING 98
6.9 REVIEW MEETING 99
6.10 RETROSPECTIVE 99
6.11 SCRUM OF SCRUMS 99
6.12 COLLECTIVE CODE OWNERSHIP 100

CONTENTSxviii

The code ownership debate 100
Collective ownership and cross-functionality 102

7 AGILE PRACTICES: TECHNICAL 103
7.1 DAILY BUILD AND CONTINUOUS INTEGRATION 103
7.2 PAIR PROGRAMMING 105

Pair programming concepts 106
Pair programming versus mentoring 107
Mob programming 107
Pair programming: an assessment 107

7.3 CODING STANDARDS 109
7.4 REFACTORING 109

The refactoring concept 109
Benefits and limits of refactoring 110
Incidental and essential changes 112
Combining a priori and a posteriori approaches 113

7.5 TEST-FIRST AND TEST-DRIVEN DEVELOPMENT 113
The TDD method of software development 113
An assessment of TFD and TDD 115

8 AGILE ARTIFACTS 117
8.1 CODE 117
8.2 TESTS 117
8.3 USER STORIES 119
8.4 STORY POINTS 121
8.5 VELOCITY 123
8.6 DEFINITION OF DONE 125
8.7 WORKING SPACE 125
8.8 PRODUCT BACKLOG, ITERATION BACKLOG 126
8.9 STORY CARD, TASK CARD 127
8.10 TASK AND STORY BOARDS 127
8.11 BURNDOWN AND BURNUP CHARTS 128
8.12 IMPEDIMENT 129
8.13 WASTE, TECHNICAL DEBT, DEPENDENCY, DEPENDENCY CHARTS 129

9 AGILE METHODS 133
9.1 METHODS AND METHODOLOGY 133

Terminology 133
The fox and the hedgehog 133

9.2 LEAN SOFTWARE AND KANBAN 134

CONTENTS xix

Lean Software’s Big Idea 134
Lean Software’s principles 134
Lean Software: an assessment 135
Kanban 136

9.3 EXTREME PROGRAMMING 137
XP’s Big Idea 137
XP: the unadulterated source 137
Key XP techniques 138
Extreme Programming: an assessment 139

9.4 SCRUM 139
Scrum’s Big Idea 139
Key Scrum practices 140
Scrum: an assessment 140

9.5 CRYSTAL 141
Crystal’s Big Idea 141
Crystal principles 141
Crystal: an assessment 142

10 DEALING WITH AGILE TEAMS 145
10.1 GRAVITY STILL HOLDS 145
10.2 THE EITHER-WHAT-OR-WHEN FALLACY 146

11 THE UGLY, THE HYPE AND THE GOOD:
AN ASSESSMENT OF THE AGILE APPROACH 149
11.1 THE BAD AND THE UGLY 149

Deprecation of upfront tasks 149
User stories as a basis for requirements 150
Feature-based development and ignorance of dependencies 150
Rejection of dependency tracking tools 150
Rejection of traditional manager tasks 150
Rejection of upfront generalization 151
Embedded customer 151
Coach as a separate role 151
Test-driven development 151
Deprecation of documents 151

11.2 THE HYPED 152
11.3 THE GOOD 153
11.4 THE BRILLIANT 154

Bibliography 155

Index 163

http://www.springer.com/978-3-319-05154-3

