Preface

This is not a philosophical, theoretical or motivational book, but a practical one. Its pur-
pose is to enable readers — software developers, managers involved in IT, and educators
— to benefit from the good ideas in agile methods and stay away from the bad ones.

Agile methods are undeniably one of the important recent developments in software
engineering. They are also an amazing mix of the best and the worst. This is an extraor-
dinary situation: usually, when a new set of concepts bursts forth, one can quickly assess
its overall contribution as beneficial, neutral or detrimental. Agile texts, however, defy
such a simple judgment: you may find in one paragraph a brilliant insight, in the next
paragraph a harmless platitude, and in the one after some freakish advice guaranteed to
damage your software process and products.

No wonder then that practitioners have massively disregarded injunctions to use this
or that agile method — such as Scrum, Extreme Programming, Lean Software and Crys-
tal, the most prominent ones today — in its entirety. Industry knows better, and every
agile team in the field makes up its own cocktail of agile practices, rejecting the ones that
do not fit. Until now, however, each organization and project has had to repeat for itself
the process of sorting out the gems from the gravel. What a waste of effort. This book
spares you the trouble by presenting a comprehensive description and assessment of the
key agile ideas.

DESCRIPTION AND ASSESSMENT

The first goal is description: you can use this book as a primer on agility, presenting the
approach concisely, coherently and comprehensively. If agile development is new for
you, this presentation will, I hope, teach you what it is about, enable you to apply to your
own projects the agile ideas you decide to retain, and prepare you if you wish to read the
more specialized literature (such as the texts advocating a particular agile method) in the
most effective and profitable way. If you have already read about agile methods, and per-
haps practiced them, I hope it will help you put all the concepts in place, understand them
in depth, and apply them better.

viii PREFACE

What makes this descriptive component of the book necessary is that until now, in spite
of the already enormous literature on agile methods, there was no place, as far as I know,
where you could find a complete yet concise presentation of the essential agile ideas and
techniques, not tied to a particular agile method, not drowned under anecdotes, and not
interspersed with a constant exhortation to join the cult. Sermons have a role, but for most
people, I think, it is more interesting to find out what exactly is meant by “velocity”, “con-

G LEINNT3

tinuous integration”, “user story”, “self-organizing team”, “sprint review”, “planning
29 ¢

game”, “mob programming” and so on. That is what I have tried to provide —in 162 pages.

The second goal is assessment: we take an even-handed look at agile methods and sort
out what helps, what is not worth the attention, and what harms — the good, the hype
and the ugly. The assessment is unbiased (I have no horse in this race) but that does not
mean it is the only possible one, since empirical software engineering, the objective
study of software processes, is still a science in progress. So you will not necessarily
agree with all the conclusions, but I think you will agree with most, and where you dis-
agree you will be able to appreciate rational arguments on both sides.

The two aspects — “news” and “editorial”— are separated: you are entitled to know
at any stage whether you are reading the factual presentation of an agile technique or a g
discussion of its merit. Judgmental elements are marked by the icon shown here on the
right. The scope of its application will be clear from its position: at the start of a paragraph,
it generally applies to the remaining part of the current section; at the start of a section, to
the full section; and in the case of the final assessment, to the full chapter.

-~

KEEPING A COOL HEAD

Anyone trying to gain a clear, cool-headed understanding and appreciation of agile meth-
ods has, so far, faced three difficulties that I hope this book removes: partisanship, intim-
idation and extremism.

Most of the existing texts are partisan. At issue here is not just the normal phenom-
enon of inventors arguing for their inventions, but a lack of restraint that sometimes bor-
ders on religious fervor and demands from the reader a suspension of disbelief. The first
presentations of structured programming, object technology and design patterns — to
cite three earlier developments that each imprinted a durable mark on how the world
builds software, as agile methods have already started to do — were enthusiastically pro-
moting new ideas, but did not ignore the rules of rational discourse. With agile methods
you are asked to kneel down and start praying. This is not the right way to approach solu-
tions to engineering problems involving difficult technical and human aspects.

The agile literature is often intimidating. It dismisses previous approaches as passé,
scornfully labeling them “waterfall” (even though no company applies a strict waterfall
process), and leaving the impression that anyone supporting them is a rigid,
pointy-hair-boss type. We will encounter the typical example of an author for whom any — See “/nzimi-
objection to agile methods is a mark of “bureaucracy”, “incompetence” and “medioc- dation”, 2.2.3,
rity”. The very name for the approach, “agile”, a brilliant marketing decision — no, a 7%

stroke of genius! —, is enough to make any would-be skeptic think twice: who wants to

PREVIOUS ATTEMPTS

ix

be cast as not agile? If you search the dictionary for antonyms to “agile”, you will find
such niceties as “awkward”, “lumbering” and “ungraceful ”. If those are the alternatives,
you, I and everyone else want to be agile! This name is just a name, however; we must
unemotionally assess, one by one, the concrete principles and practices that it covers.

Clear, no-nonsense assessment is also complicated by extremism: the insistence of
some method designers that you must apply their prescriptions entirely. There are excep-
tions; Crystal, for example, is more of a flexible, your-mileage-may-vary approach. But
the prevalence of the all-or-nothing view in many of the foundational texts further com-
plicates the task of identifying which techniques will work for your own project, and
which will not.

PREVIOUS ATTEMPTS

Among the many books on agile methods, I know of only three that have not taken an
adoring tone. The first is McBreen’s Questioning Extreme Programming, whose “ques-
tioning” is plaintive, leaving the reader uncertain about any serious problems with XP.
Extreme Programming Refactored: The Case Against XP by Stephens and Rosenberg
does not suffer from such angst; it is a pamphlet, both funny and enlightening, but like
any pamphlet it does better at highlighting absurdity than at performing a fair
pro-and-con analysis. The book that made the most serious attempt at such an analysis,
Boehm and Turner’s Balancing Agility with Discipline, contrasts agile approaches with
traditional plan-driven software engineering techniques. Its great strength is that it relies
on empirical data from studies comparing the effectiveness of agile techniques to their
classical counterparts. For my taste it tilts a trifle too much to the side of cautiousness;
perhaps because Boehm is such a respected figure in software engineering and feared
being branded as a proponent of the old order, the authors avoid sounding too critical.

Do not expect such timidity in the present book (mentioning this just in case you were
worried). Respect yes, deference no. It will highlight and praise the good ideas, and when
it encounters balderdash it will call it balderdash.

STRUCTURE OF THE BOOK

The book has a simple structure and is intended for sequential reading.

The opening chapter, entitled “overview”, presents a summary of agile ideas and a
first overall assessment. It sets the stage for the rest of the book and serves as a summary
of it.

The second chapter is a short foray into the style of agile descriptions, serving as a
form of immunization against the risk of unjustified generalization. Working from exam-
ples in the agile literature, it analyzes the intellectual devices that agile authors use to
convince the world.

Chapter 3 is a sketch of everything that agile methods do not want to be and agile texts
love to lambast: traditional plan-based software engineering methods, including the
derided “waterfall”.

[McBreen 2002].

[Stephens 2003].

[Boehm 2004].

PREFACE

The next five chapters, the core of the book, review agile ideas: principles in chapter
4, roles (in the sense of personnel roles, such as managers and users) in chapter 5, prac-
tices in chapters 6 and 7, and artifacts, both material and virtual, in chapter 8. Here we
do not focus on any specific method but look instead at the concepts and tools shared by
all or most. This approach illuminates the many commonalities between the various
methods. It will allow you to examine agile ideas by themselves, in a non-denomina-
tional way, so that you can decide which ones are suitable for your context. When some
of them apply more specifically to one method, the discussion points this out, and
includes in the margin one of the icons shown here on the right. The focus in those chap-
ters remains, however, on individual methodological concepts and techniques.

That focus moves to the methods themselves in chapter 9, which studies four of the
principal agile methods in existence today, the four already cited: Scrum, Lean, XP and
Crystal. Since the constituent ideas have been presented in the preceding chapters, 4 to
8, we can in the presentation of each method concentrate on the particular combination
of principles, roles, practices and artifacts that it has chosen, and just as importantly on
the characteristic spirit of that method. The analysis shows that each of them has “one
big idea” that sets it apart, supported by a number of auxiliary concepts.

Chapter 10 is brief; it describes precautions that organizations should take when
adopting agile methods, in particular when some are more agile than others. It warns that
the laws of software engineering continue to apply, and cautions against the
“either-what-or-when” fallacy that works well for consultants but not for their clients.

Chapter 11 is the final assessment: an overall examination of the agile canon, apprais-
ing which ideas stand up and which just do not make sense. It shows indeed that, as the
book’s subtitle indicates, agile ideas can be classified into three categories:

* The good (including the “brilliant”): principles and practices — some new, some not
— that agile authors rightly present as helpful to software quality and productivity.

» The hype: widely touted ideas that will make little difference, good or bad, to the
resulting software.

» The ugly: agile-recommended techniques that are just plain wrong, contradicting
proven rules of good software engineering, jeopardizing the success of projects, and
harming the quality of the resulting software.

PERSPECTIVE AND SCOPE

Any book is colored by its author’s experience. What mostly characterizes mine is the
mix of industrial practice (for most of my career) and academic work (for the past decade).

It is also useful to note what this book does not include: a comprehensive approach to
software development. My previous books describe techniques of quality software
development and argue for specific approaches, particularly object technology, formal
specification and Design by Contract. This one, in contrast, studies other people’s work.
Even when I felt that my own work is relevant to the discussion or predates some of the
successful agile ideas I have (except for a hint or two) refrained from talking about it.

)

X

These symbols
were designed

for the present

book and are not

official logos of
the methods.

ANALYSIS: INSTINCTIVE, EXPERIENTIAL, LOGICAL OR EMPIRICAL?

xi

ANALYSIS: INSTINCTIVE, EXPERIENTIAL, LOGICAL OR EMPIRICAL?

Software methodology is a tricky business because it is difficult to prove anything. Many
ideas get adopted on the strength of an author’s powers of conviction. It does not mean
they are good, or bad.

Authors use four kinds of argument: gut feeling, experience, logical reasoning and
empirical analysis.

Do not laugh at gut feeling as a means of persuasion; after all, the mother of all soft-
ware methodology texts, Dijkstra’s 1968 Go To Statement Considered Harmful, largely
relied on it:

Recently I discovered why the use of the go to statement has such disastrous
effects, and I became convinced that it should be abolished from all higher-level
programming languages.

But if you are not Dijkstra your gut feeling will not take you very far in a quest to con-
vince the community.

Experience was also part of Dijkstra’s rationale:

For a number of years I have been familiar with the observation that the quality
of programmers is a decreasing function of the density of go to statements in the
programs they produce.

Experiential arguments are among the favorite tools of agile authors. The typical agile
book is a succession of alternating general observations and personal anecdotes of
project rescues (rescued, remarkably, by the author) and project failures (failed, remark-
ably, after not following the author’s advice). These anecdotes are usually entertaining
and sometimes enlightening, but a case study is only a case study, and we never know
how much we can generalize. One can, after all, summon an experience in support of
almost any recommendation.

Anecdotes and individual cases, by the way, can have force of proof, but only in one case:
disproving a general law. If such a law has been proposed, it suffices of a single experiment
to negate it (the technical term is “falsify”). For example if someone — say, Aristotle —
told you that bodies fall at a rate that depends on their mass, just go up that tower in Pisa,
drop a light ball and a heavy ball, and see them reach the ground at the same time.

Logical reasoning is a powerful tool; it played a significant role in Dijkstra’s advocacy
(and for Galileo too, who according to some authors proved his hypothesis solely by
thought experiment). But it is only as convincing as the hypotheses from which it starts,
and there is the risk that it will remain academic.

[Dijkstra 1968],
emphasis added.

xii

PREFACE

Ideally, we should use empirical analysis. Does pair programming lead to better
results than code inspections? Is constant customer interaction preferable to a solid
requirements process? Credible answers to questions of software methodology require
systematic, rigorous, realistic studies of projects. This book relies on such results when
available, but there are not enough of them; the burgeoning field of empirical software
engineering has not yet provided answers to many fundamental issues. This has been
perhaps the biggest obstacle in the preparation of the book. Where not enough empirical
evidence was available, the discussion largely relies on analytical reasoning.

I have not completely avoided anecdotes and personal experience, but have tried to
confine them to the illustration of points supported by logical argument and to the task,
mentioned above, of disproving undue generalizations.

FREE CRITICAL INQUIRY

Given that this work includes critical comments, a word is in order to explain the spirit
in which it has been written.

Progress in science and engineering relies on free, critical inquiry of previous work.
In reviewing the agile literature, I have found a number of reasons to disagree with its
authors, and a few reasons to be shocked; I have not been coy about taking their claims
to task. I have also, however, found elements to admire, and learned new insights about
software development. This observation is worth remembering whenever you encounter
criticism in the following pages.

I would not have spent a good part of my last three years immersing myself in agile
methods and the supporting texts if I had not felt that I had something important to learn.
The path has been tortuous at times; with this book I hope to spare you the path and share
the lessons.

In no case does the criticism mean disrespect; the agile pioneers are experienced pro-
fessionals, passionate about software. Even when I find them to be wrong, I value their
views and share the passion. We are all in the same boat.

Bertrand Meyer
January 2014

ACKNOWLEDGMENTS

xiii

ACKNOWLEDGMENTS

Since this book makes a number of judgments, the customary caveat that its content commits only the
author is more than perfunctory: by acknowledging sources of influence and help I do not mean to
imply that anyone listed endorses the views expressed. This caveat particularly applies to the first
group of people to be thanked, some of whom may be expected to disagree: the authors of the best
agile books. I have learned a lot from reading about agile methods, and am particularly indebted to
the books and articles of Kent Beck, Barry Boehm with Richard Turner, Alistair Cockburn, Mike
Cohn, Craig Larman, Mary and Tom Poppendieck, and Ken Schwaber with Mike Beedle. I credit my
first encounter with agile ideas to a presentation of Extreme Programming by Pete McBreen at the Le
Bréau EDF/CEA summer school in 1999. I am grateful to Mike Cohn for clarification of the origin of
two of his citations. I also benefited from a lively Scrum workshop by Jeff Sutherland in Moscow,
enabling me to become a proud Certified Scrum Master.

I have given several industry seminars at ETH on the theme of this book and gained from the par-
ticipants’ comments. I am grateful for the advice of Ralf Gerstner at Springer on refining the focus
of the book, and am also indebted to his colleague Viktoria Meyer. Patrick Smacchia brought some
recent agile practices to my attention. Claude Baudoin, Kent Beck, Judith Bishop, Michael Jackson
and Ivar Jacobson were kind enough to encourage me after seeing a draft. Paul Dubois and Mark
Howard sent me important comments which helped focus and refine the text. Claudia Giinthart and
Annie Meyer helped with editing. Carroll Morgan sent me particularly perceptive comments on both
form and content. [have a special debt to Raphaél Meyer’s for his thorough reading of the text, which
led to essential improvements.

If I ever felt like pontificating abstractly about software engineering, I would quickly be brought
back to earth by the development group at Eiffel Software; we are fighting the battle every day.
Together we have seen it all: successes as well as those less glorious moments, the development iter-
ation that seemingly will never end, the critical bug that surfaces two days after a release, the amo-
rously crafted feature that turns out to interest nary a user. We are agile, in the best sense of the term,
but we are learning all the time.

I have drawn on some material published on my personal blog, at bertrandmeyer.com, and on my
blog at Communications of the ACM (cacm.acm.org/blogs/blog-cacm). I am grateful for reader com-
ments on blog articles.

I am indebted to members of the Chair of Software Engineering at ETH Zurich for many discus-
sions on software engineering issues. I cannot cite everyone but should mention that a remark by Till
Bay was the spark that led to switching the EiffelStudio development to an agile-style time-boxed
release process, and that Marco Piccioni first brought Scrum to my attention. He also made a number
of important suggestions on the draft of the present book. In the ETH course “Distributed Software
Engineering Laboratory”, where students from a dozen universities around the world work together
on a challenging distributed project, my co-instructors of many years, Peter Kolb and Martin Nordio,
contributed numerous insights, as did the assistants (Roman Mitin, Julian Tschannen, Christian
Estler) and the students and instructors from the participating universities. The course led to a number
of published empirical studies which significantly helped my understanding of the field.

se.ethz.ch/dose.

http://bertrandmeyer.com
http://cacm.acm.org/blogs/blog-cacm
http://se.ethz.ch/dose

2 Springer
http://www.springer.com/978-3-319-05154-3

Agile!

The Good, the Hype and the Ugly

Meyer, B.

2014, XX, 170 p. 15 illus. in color., Softcover
ISEM: 978-3-319-03154-3

