
Building Large Compressed PDBs
for the Sliding Tile Puzzle

Robert Döbbelin, Thorsten Schütt(B), and Alexander Reinefeld

Zuse Institute Berlin, Berlin, Germany
schuett@zib.de

http://www.zib.de

Abstract. The performance of heuristic search algorithms depends cru-
cially on the effectiveness of the heuristic. A pattern database (PDB) is
a powerful heuristic in the form of a pre-computed lookup table. Larger
PDBs provide better bounds and thus allow more cut-offs in the search
process. We computed 9-9-6, 9-8-7, and 8-8-8 PDBs for the 24-puzzle
that are three orders of magnitude larger (up to 1.4 TB) than the 6-6-6-
6 PDB. This was possible by performing a parallel breadth-first search
in the compressed pattern space. Our experiments indicate an average
8-fold improvement of the 9-9-6 PDB over the 6-6-6-6 PDB on the 24-
puzzle. Combining several large PDBs yields a 13-fold improvement.

1 Introduction

Heuristic search algorithms are widely used to solve combinatorial optimization
problems. While traversing the problem space, the search process is guided by a
heuristic function that provides a lower bound on the cost to a goal state. This
allows to prune large parts of the search space and thus reduces the overall search
effort. The more accurate the heuristic is, the more states can be pruned in the
search. Pattern Databases (PDBs) are powerful heuristic functions in form of a
lookup table. They store the exact solution of a relaxed version of the problem.
The less the original problem is relaxed the larger is the size of the PDB and
thereby the tighter are its bounds.

In this paper we present for the first time very large complete PDBs for the
24-puzzle: a 8-8-8 PDB with 122 GB, a 9-8-7 PDB with 733 GB, and a 9-9-6
PDB with 1381 GB. The largest one gave node savings by up to a factor of 37
compared to the 6-6-6-6 PDB [11].

We present a parallel algorithm that performs a breadth-first search in the
compressed pattern space and thereby allows to compute very large PDBs on
compute clusters with a modest amount of memory. The application of such
large PDBs in heuristic search, however, requires a computer that allows to load
the whole PDB into main memory. This can be as much as 1.4 TB for the 9-9-6
PDB, for example. While systems with more than 1 TB of main memory are not
yet common, we believe that our work will help in studying the pruning-power
of large PDBs.

T. Cazenave et al. (Eds.): CGW 2013, CCIS 408, pp. 16–27, 2014.
DOI: 10.1007/978-3-319-05428-5 2, c© Springer International Publishing Switzerland 2014



Building Large Compressed PDBs for the Sliding Tile Puzzle 17

The remainder of this paper is structured as follows. Section 2 sets the context
of our work by reviewing relevant literature. Thereafter, PDBs are introduced in
Sect. 3 and the algorithms and compressed data structures for generating large
PDBs are presented in Sect. 4. In Sect. 5 we provide a statistical and empirical
analysis and we summarize our work in Sect. 6.

2 Background

PDBs were first mentioned by Culberson and Schaeffer [3] and have been
improved by several researchers. For instance, Felner et al. [8] presented additive
PDBs in which the heuristic estimate is computed as the sum of the values of
several smaller PDBs. The same authors also proposed a method for compressing
a PDB for sliding tile puzzles by disregarding the blank tile and by computing
the minimum distance over all possible blank positions. PDBs can be built with
a backward breadth-first search over the complete state space. Large breadth-
first searches have been used by Korf and Schultze [12] to expand the complete
graph of the 15-puzzle for the first time. This was achieved by keeping the search
front on disks and hiding the disk latency with multiple threads.

Orthogonal to additive PDBs is the idea of Holte et al. [9] to take the max-
imum h-value from several smaller PDBs instead of a single large one. They
show that the accuracy of small h-values is especially important for reducing the
number of expanded nodes.

Felner and Adler [6] use instance dependent PDBs to utilize large PDBs
without completely creating them. They build on the observation of Zhou and
Hansen [13] that only the nodes generated by the best-first search algorithm
A* are needed in the pattern space to solve an individual instance. For each
pattern of the given instance, Felner and Adler perform an A* search from the
goal pattern towards the start pattern until the available memory is exhausted.
This database is then used for the forward search. When h-values are missing,
several smaller PDBs are used instead.

Breyer and Korf [1] apply a dense representation for problem spaces [2] to
pattern databases. They store the heuristic estimates modulo three and restore
the actual h-value during search. This results is a new compression technique
using 1.6 bits per entry in the PDB.

Edelkamp et al. [4] created large symbolic pattern databases using an external
breadth-first search with Binary Decision Diagrams (BDDs). They built a set of
7-tile PDBs for the 35-puzzle with a total size of 195 GB.

3 Pattern Databases

In this paper we are concerned with sliding tile puzzles. An instance of the
(n−1)-puzzle can be described by n state variables, one for each tile. Each state
variable describes the position of one specific tile in the tray. A pattern considers
only a subset of the state variables; the remaining state variables are ignored.
Hence, patterns abstract from the original problem by mapping several states to



18 R. Döbbelin et al.

the same point in the pattern space. The number of ignored state variables can
be used to control the information loss.

In the (n−1)-puzzle, a pattern is defined by a subset of the tiles. The position
of the pattern tiles, the pattern tile configuration, and the blank defines a node in
the pattern space. Move operations in the original problem can be analogously
applied to nodes in the pattern space by moving either a pattern tile or a non-
pattern tile, i.e. a don’t care tile. Although we count the moves of don’t cares,
they are indistinguishable from each other. The size of the pattern space for a
pattern with k tiles for the (N − 1)-puzzle is N !

(N−k−1)! .
The number of moves needed to reach the goal in the pattern space can

be used as an admissible heuristic for the move number in the original space.
Because of the don’t care tiles, a path in the original search space can only be
longer than the corresponding path in the pattern space and hence the heuristic
is admissible, i.e. non-overestimating.

To compute a PDB, we perform a backward breadth-first search from the
goal to the start node and record for each visited node the distance from the
goal.

3.1 Additive Pattern Databases

Because of space limitations, only small PDBs can be built. To get better heuris-
tic estimates, several PDBs must be combined. However, with the above method,
which also counts the movements of don’t care tiles, we cannot simply add the
h values of PDBs, even when the patterns are disjoint, because the same move
would be counted several times. For additive PDBs [7] we only count the moves
of pattern tiles.

The search space is mapped to the pattern space in the following way. Two
states of the original space map to the same state in the pattern space, if the
pattern tiles are in the same position and the two blank positions can be reached
from each other by moving only don’t care tiles. There is an edge between two
nodes a and b in the pattern space if and only if there are two nodes c and d
in the puzzle space where c maps to a and d maps to b and there is an edge
between c and d.

Figure 1 shows an example for the 8-puzzle. Positions (a) and (b) map to the
same state in the pattern space, because the blank positions are reachable from
each other without moving pattern tiles. Positions (a) and (c), in contrast, do
not map to the same state in the pattern space, because at least one pattern tile
must be moved to shift the blank to the same position.

To further reduce the memory consumption, we compress the databases by
the blank position as described in [7]. This is done by storing for any pattern-
tile configuration, independent of the different blank positions, only the minimal
distance from the goal node. For the three examples shown in Fig. 1 we only
store one (the smallest) distance g in the PDB.



Building Large Compressed PDBs for the Sliding Tile Puzzle 19

1

4

7

1

4

7

1

4

7

(a) (b) (c)

Fig. 1. Patterns with different blank positions (8-puzzle).

4 Building Compressed PDBs

When building large PDBs we ran into two limits: space and time. Not only
do we need to keep the PDB itself in main memory, but also the Open and
Closed lists must be stored. In Sect. 4.1 we describe a sequential algorithm and a
compressed data structure for computing large PDBs. In Sect. 4.2 we describe a
parallel implementation that uses the combined memory and compute capacity
of a cluster as a single resource.

4.1 Sequential Algorithm

Our algorithm for building PDBs builds on ideas of [2]. To store the k-tile PDB,
we use an array of N !

(N−k)! elements, one entry for each state of the compressed
pattern space. For our 9-tile PDB this results in 25!

16! = 741 · 109 entries. We
use a perfect hash function to map a configuration of the pattern to this array.
The hash function is reversible so that we can map an array index back to its
pattern tile configuration. Each entry in the array is made up of three values: g,
open list and closed list.

struct {
byte g ;
byte o p e n l i s t ;
byte c l o s e d l i s t ;

} a r ray ent ry ;

The variable g in Algorithm 1 stores for each entry the minimum g in which
we found that state. Additionally, we need to store for each tuple of a pattern
tile configuration and blank position whether it is in the Open or in the Closed
list. This could be done by simply storing two bit strings of length N − k in
each PDB entry and setting the responsible bit whenever a new blank position
is visited.

However, this simple approach can be improved to achieve a further data
compression. A blank partition is a set of blank positions with a common pattern
tile configuration where all blank positions are reachable from each other by
only moving don’t care tiles [5]. This is shown in Fig. 1: (a) and (b) belong to
the same blank partition, while (a) and (c) do not. For patterns with 9 tiles,
the pattern tile configurations have no more than 8 blank partitions. We can
simply enumerate the blank partitions and only store one bit for each partition



20 R. Döbbelin et al.

Algorithm 1 BFS in compressed, indexed PDB space.
1: PDBArray A
2: initialize array
3: expandedNodes = −1;
4: g = 1;
5: while expandedNodes �= 0 do
6: expandedNodes = 0;
7: for i = 0 → A.size − 1 do
8: if A[i].open list = ∅ then
9: continue;

10: end if
11: expandedNodes++;
12: pattern = unindex(i);
13: blanks = unpackBlanks(A[i].open list);
14: succs = genSuccs(pattern, blanks);
15: for j = 0 → succs.size − 1 do
16: sIndex = index(succs[j]);
17: rBlanks = reachableBlanks(succs[j]);
18: pBlanks = packBlanks(rBlanks);
19: pBlanks −= A[sIndex].closed list;
20: A[sIndex].open list += pBlanks;
21: A[sIndex].g = min(A[sIndex].g, g);
22: end for
23: A[i].closed list += A[i].open list;
24: A[i].open list = ∅;
25: end for
26: g++;
27: end while

in the open list or closed list. In the backward breadth-first search we used
pre-computed lookup tables to map the blank positions to blank partitions. To
build a PDB with up to 9 tiles, this scheme requires 3 bytes per state, one for
g, open list, and closed list, respectively.

The breadth-first search over the pattern space is performed as follows (Algo-
rithm 1): All open lists and closed lists are initialized with zeroes. The g for
each state is set to the maximum value. For the initial state, the blank partition
of the initial position is set in the open list.

Then the array is scanned repeatedly (line 4). For each entry, we check if the
Open list is empty (line 7). If not, we create the pattern tile configuration (line
11), extract all blank positions from the Open list (line 12) and finally generate
the successors (line 13). For each successor, we calculate the index in the PDB
(line 15), compress the blank positions (line 16-17) and update the successor’s
entry in the PDB (line 18–20). Note that backward steps are eliminated with
the update. Finally, we update the open list and closed list of the current
position. This is repeated until the complete pattern space has been visited. Note
that the final PDB is stored using one byte per entry. The two bytes used for
open list and closed list can be discarded.



Building Large Compressed PDBs for the Sliding Tile Puzzle 21

generate
successors

shuffle data

update PDB

CPU A CPU B CPU C CPU D

Fig. 2. Workflow of the parallel implementation.

4.2 Parallel Algorithm

For the parallel algorithm, we distribute the array (in disjoint partitions) over
all compute nodes. To avoid imbalances in the work load, we do not assign
contiguous parts to the nodes but use a hash function for assigning partitions of
the array to the compute nodes. The parallel algorithm has the same structure
as the sequential algorithm (see Fig. 2) but it needs additional communication
to move the results to remote compute nodes.

For each g, first each node scans its part of the array and generates the
successors as described in Algorithm 1. But instead of directly updating the
PDB, each node collects the successors locally. In the shuffle phase (Fig. 2),
these successors are sent to the nodes storing the corresponding partitions in the
PDB. Finally, the PDB is updated locally.

Dealing with Memory Limitations. The parallel implementation requires
more memory than the sequential algorithm, because successors are cached
locally before they are stored in the array. The generated successors in a large
search front could exceed the available memory of a compute node. Thus, we
implemented the following scheme to bound the overall memory consumption.
If a processor is about to run out of memory, it stops scanning the array and
raises a flag. In this case all processor mark updates to the Open lists in the
BFS array as new, g is not incremented and the array is scanned again. Then
only those Open lists are considered, which are not marked as new. Once all
processors succeeded scanning the array, the flag is removed from all Open lists
and the algorithm proceeds with the next g.

5 Evaluation

We used the presented parallel algorithm to build three large PDBs, 8-8-8, 9-
8-7, and 9-9-6, with sizes of 122 GB, 733 GB and 1381 GB, respectively. For
comparison, the 6-6-6-6 PDB has a size of only 488 MB.



22 R. Döbbelin et al.

(a) 6-6-6-6 (b) 8-8-8 (c) 9-8-7 (d) 9-9-6

In our cluster, each compute node has 2 quad-core Intel Xeon X5570 with
48 GB of main memory. It took about 6 hours to build a single 9-tile PDB on
255 nodes. The maximum amount of memory required to build such a PDB was
3 TB. For the empirical analysis we used an SGI UV 1000, a large shared-memory
machine with 64 octo-core Intel Xeon X7560 and 2 TB of main memory.

In the following, we first present a statistical analysis of the performance of
our PDBs on a large number of randomly generated positions. Thereafter we
show the performance on Korf’s set of random 24-puzzle instances [12]. In both
cases, we used mirroring [3] to improve the accuracy of the heuristics.

5.1 Statistical Evaluation

We created 100,000,000 random instances of the 24-puzzle and recorded the h-
values obtained with the 6-6-6-6, 8-8-8, 9-8-7, and 9-9-6 PDB. Figure 3 shows the
cumulative distribution, i.e. the probability P (X ≤ h), that the heuristic value
for a random state is less or equal to h. The higher the h-value, the better the
pruning power of the heuristic. This is because all heuristics are admissible, i.e.
they never overestimate the goal distance. Higher h-values represent therefore
tighter bounds on the true value. As can be seen in Fig. 3, all graphs lie close
together and their order corresponds to the size and pruning power of the PDBs.
Interestingly, the new PDBs are distinctively better than the 6-6-6-6 PDB (see
the dashed line).

Note that the increased number of small h-values is especially important for
the performance of the heuristic [9]. Figure 4 shows a magnification of the lower
left corner of the data in Fig. 3. It can be seen that all curves are clearly distinct
and that the large PDBs provide a considerable improvement over the 6-6-6-6
PDB.

Table 1 lists the average, minimum, and maximum values. In accordance with
Fig. 3, larger PDBs return on average a higher h-value. Checking the extreme
values reveals an interesting fact: While the minimum value of the 9-9-6 PDB is
4 moves higher than the lowest value of the 6-6-6-6, its maximum value is only

Table 1. Average, minimum and maximum h-values of 100,000,000 random instances.

PDB Size [GB] Avg.h Min.h Max.h

6-6-6-6 0.488 81.85 40 115
8-8-8 122 82.84 40 116
9-8-7 733 83.10 43 116
9-9-6 1381 83.56 44 116



Building Large Compressed PDBs for the Sliding Tile Puzzle 23

Fig. 3. Cumulative distribution of h-values of 100,000,000 random samples.

Fig. 4. Magnification of the lower left corner of Fig. 3.

8−8−8

9−8−7

9−9−6

max−of

0 10 20 30 40 50 60

Fig. 5. Reduction factors compared to 6-6-6-6 PDB.



24 R. Döbbelin et al.

increased by one. Thus, the large PDBs return fewer small values but they do
not provide a significantly higher maximum.

5.2 Empirical Evaluation

For the second set of experiments, we used Korf’s fifty random instances and
solved them optimally. We present data on the breadth-first iterative deepening
A* algorithm (BF-IDA*) [14], a breadth-first variant of IDA* [10]. We chose BF-
IDA* over IDA* because its performance does not depend on the node ordering
and it therefore allows to better assess the performance of the heuristic. We
sorted the 50 instances by the number of expanded nodes with BF-IDA* using
the 6-6-6-6 PDB.

Figure 6 shows the reduction of node expansions in comparison to the 6-6-6-6
PDB. For each bar we divided the nodes expanded by the 6-6-6-6 PDB by that
of the other PDBs. In general, larger PDBs tend to perform better than smaller
ones and the gain seems to be independent from the problem difficulty. However,
there are a number of outliers in both directions.

Figure 5 summarizes Fig. 6 and groups the reduction factors by PDB. For the
max-of line on the top, the maximum of the 6-6-6-6, 8-8-8, 9-8-7 and 9-9-6 PDBs
for the heuristic. The memory consumption is only marginally larger because of
the overlapping partitions. The four PDBs reduce the number of expanded nodes
by a median factor of 2.16, 3.86, 6.81 and 9.36. However, there are some outliers
towards both ends of the scale. For some instances the number of expanded
nodes was higher compared to the 6-6-6-6 PDB. On the other hand, it could be
reduced by a factor of up to 10 with the 8-8-8 PDB and up to 40 with the 9-8-7

Fig. 6. Reduction factor to 6-6-6-6 PDB on Korf’s random set (ordered by IDA* nodes)
using BF-IDA*.



Building Large Compressed PDBs for the Sliding Tile Puzzle 25

and 9-9-6 PDBs. The standard deviation seems to slightly increase with the size
of the heuristic.

Table 2 in the Appendix shows the detailed results for each problem instance.
The first column gives the Id used in [12] and the second column states the length
d of the shortest path. The number of expanded nodes with the individual PDBs
are listed in columns three to seven. Columns eight to eleven give the reduction
factor of the 8-8-8, 9-8-7, 9-9-6, and max-of PDBs relative to the 6-6-6-6 PDB.

6 Conclusion

We presented an efficient parallel algorithm and a compact data structure that
allowed us to compute for the first time very large compressed PDBs. The par-
allel algorithm utilizes the aggregated memory of multiple parallel computers to
compute and store the PDB in the main memory.

We computed three additive PDBs for the 24-puzzle, an 8-8-8, 9-8-7 and 9-
9-6 PDB. To the best of our knowledge, these are the largest PDBs reported for
this domain.

The 9-9-6 PDB gives on average an 8-fold node reduction compared to a
6-6-6-6 PDB on Korf’s random instances of the 24-puzzle. We observed a high
variance on the reduction rate, which ranges from 2x to 37x savings (Table 2).
Hence, we suggest to use the maximum over several additive PDBs in practice.
This is feasible, because multiple additive PDBs do not proportionally increase
the memory consumption. This is because the same PDB can be utilized by
multiple additive PDBs. As an example, the same 9 PDB can be used in both
of our 9-9-6 PDB and the 9-8-7 PDB.

Acknowledgments. This work was partly supported by the EU project CONTRAIL,
the DFG project FFMK and the North German Supercomputer Alliance HLRN.

Appendix

Table 2. Expanded nodes of all 50 random instances (r1: 6-6-6-6 / 8-8-8, r2: 6-6-6-
6 / 9-8-7 , r3: 6-6-6-6 / 9-9-6, r4: 6-6-6-6 / max-of).

Id d 6-6-6-6 8-8-8 9-8-7 9-9-6 max-of r1 r2 r3 r4

40 82 26,320,497 49,291,000 26,655,910 10,486,000 7,166,383 0.53 0.99 2.51 3.67
38 96 58,097,633 9,577,883 3,573,949 1,906,127 1,638,334 6.07 16.26 30.48 35.46
25 81 127,949,696 118,780,897 85,141,009 17,658,986 15,217,162 1.08 1.50 7.25 8.41
44 93 181,555,996 37,853,812 11,869,090 7,686,937 5,547,600 4.80 15.30 23.62 32.73
32 97 399,045,498 281,515,091 232,222,028 117,317,314 67,570,393 1.42 1.72 3.40 5.91
28 98 450,493,295 114,571,662 36,263,727 25,552,985 19,743,793 3.93 12.42 17.63 22.82
22 95 581,539,254 82,503,279 88,652,504 81,038,427 37,858,513 7.05 6.56 7.18 15.36

(continued)



26 R. Döbbelin et al.

Table 2. (continued)

Id d 6-6-6-6 8-8-8 9-8-7 9-9-6 max-of r1 r2 r3 r4

36 90 603,580,192 408,261,989 252,309,866 133,482,919 95,563,302 1.48 2.39 4.52 6.32
30 92 661,835,606 256,431,250 158,409,200 99,557,684 52,338,447 2.58 4.18 6.65 12.65
1 95 1,059,622,872 199,198,406 163,950,295 133,060,463 63,948,759 5.32 6.46 7.96 16.57
29 88 1,090,385,785 128,886,129 34,814,333 59,609,938 21,223,415 8.46 31.32 18.29 51.38
37 100 1,646,715,005 628,890,120 725,323,664 542,573,720 331,223,844 2.62 2.27 3.04 4.97
16 96 1,783,144,872 1,729,554,795 966,783,772 387,360,939 296,519,726 1.03 1.84 4.60 6.01
5 100 1,859,102,197 3,125,977,623 1,078,990,063 905,861,248 565,263,022 0.59 1.72 2.05 3.27
13 101 1,979,587,555 1,181,771,575 690,327,991 444,476,728 268,475,464 1.68 2.87 4.45 7.37
47 92 4,385,270,986 3,825,636,827 4,520,442,316 1,479,759,728 960,463,883 1.15 0.97 2.96 4.57
3 97 4,805,007,493 5,699,072,723 6,731,407,433 2,146,564,697 1,113,194,453 0.84 0.71 2.24 4.32
4 98 5,154,861,019 1,361,290,863 581,368,420 632,299,449 370,467,747 3.79 8.87 8.15 13.91
26 105 6,039,700,647 4,993,857,550 2,525,926,189 1,337,993,889 955,364,988 1.21 2.39 4.51 6.32
31 99 7,785,405,374 3,653,831,114 2,058,364,161 1,622,465,469 992,726,542 2.13 3.78 4.80 7.84
27 99 7,884,559,441 1,415,859,414 611,960,188 432,345,846 337,466,232 5.57 12.88 18.24 23.23
41 106 8,064,453,928 1,737,010,534 1,123,917,776 561,944,277 455,028,148 4.64 7.18 14.35 17.72
43 104 8,816,151,498 4,378,714,353 3,498,876,258 1,532,474,999 1,090,696,435 2.01 2.52 5.75 8.08
6 101 9,810,208,759 2,397,434,227 1,982,606,973 2,739,184,006 1,053,141,115 4.09 4.95 3.58 9.32
49 100 11,220,738,849 5,526,627,744 4,160,235,910 2,792,736,271 1,587,674,537 2.03 2.70 4.02 7.07
45 101 17,068,061,084 5,614,562,048 2,909,124,921 2,408,543,192 1,339,279,458 3.04 5.87 7.09 12.74
20 92 20,689,215,063 9,014,702,404 4,354,383,611 1,615,310,063 1,378,812,797 2.30 4.75 12.81 15.01
46 100 21,674,806,323 9,872,851,915 10,304,210,129 8,017,940,089 3,402,288,275 2.20 2.10 2.70 6.37
19 106 22,761,173,348 6,759,987,121 4,019,764,127 2,836,304,399 2,125,081,076 3.37 5.66 8.02 10.71
35 98 23,049,423,391 8,584,994,059 4,998,934,055 3,208,321,325 2,369,834,229 2.68 4.61 7.18 9.73
7 104 27,686,193,468 26,781,188,637 19,232,502,973 6,429,879,587 4,395,653,789 1.03 1.44 4.31 6.30
8 108 29,575,219,906 4,318,849,565 4,366,429,730 2,609,051,057 1,727,994,805 6.85 6.77 11.34 17.12
39 104 34,198,605,172 22,810,919,845 6,881,101,921 2,912,577,301 2,428,595,642 1.50 4.97 11.74 14.08
42 108 37,492,323,962 9,339,335,844 7,508,532,598 3,490,897,448 2,697,310,294 4.01 4.99 10.74 13.09
24 107 38,272,741,957 25,802,863,114 15,170,752,402 4,724,091,699 3,837,236,834 1.48 2.52 8.10 9.97
2 96 40,161,477,151 29,318,072,174 28,011,360,591 14,446,211,551 8,963,348,921 1.37 1.43 2.78 4.48
15 103 52,178,879,610 26,951,022,561 18,771,225,751 9,741,418,794 8,075,823,446 1.94 2.78 5.36 6.46
23 104 54,281,904,788 36,611,741,317 32,729,241,923 11,103,574,065 8,930,804,356 1.48 1.66 4.89 6.08
48 107 58,365,224,981 99,614,525,233 68,013,167,519 19,890,964,633 12,563,246,704 0.59 0.86 2.93 4.65
34 102 59,225,710,222 49,923,377,951 24,336,781,035 7,384,409,074 5,346,161,078 1.19 2.43 8.02 11.08
12 109 76,476,143,041 43,132,155,298 14,260,876,794 5,820,163,959 4,265,458,902 1.77 5.36 13.14 17.93
21 103 98,083,647,769 25,411,173,479 18,746,227,139 13,731,206,789 8,402,416,300 3.86 5.23 7.14 11.67
18 110 126,470,260,027 18,375,847,744 18,999,810,842 15,070,620,942 7,809,249,544 6.88 6.66 8.39 16,19
9 113 132,599,245,368 82,839,919,151 33,749,539,711 22,489,080,304 16,927,179,096 1.60 3.93 5.90 7.83
33 106 134,103,676,989 77,163,409,262 57,402,766,270 42,219,474,099 25,271,466,707 1.74 2.34 3.18 5.31
17 109 143,972,316,747 49,516,974,145 25,000,824,805 20,405,484,237 15,304,298,302 2.91 5.76 7.06 9.41
11 106 309,253,017,124 22,602,670,676 7,683,989,291 8,343,197,181 4,678,739,173 13.68 40.25 37.07 66.10
14 111 312,885,453,572 419,699,251,120 360,169,788,945 74,779,904,961 63,056,188,490 0.75 0.87 4.18 4.96
10 114 525,907,193,133 207,752,246,775 192,243,603,386 105,311,763,457 63,629,118,230 2.53 2.74 4.99 8.27
50 113 1,067,321,687,213 334,283,260,227 168,384,195,109 152,720,707,871 100,026,128,248 3.19 6.34 6.99 10.67

Average 71,004,578,707.12 33,908,766,050.50 23,611,990,572.06 11,599,129,942.46 7,794,424,738.66 3.00 5.74 8.37 12.85
Median 14,144,399,966.50 5,570,594,896.00 4,257,309,760.50 2,508,797,124.50 1,359,046,127.50 2.16 3.86 6.81 9.36

References

1. Breyer, T.M., Korf, R.E.: 1.6-bit pattern databases. In: AAAI (2010)
2. Cooperman, G., Finkelstein, L.: New methods for using Cayley graphs in intercon-

nection networks. Discrete Appl. Math. 37, 95–118 (1992)
3. Culberson, J.C., Schaeffer, J.: Pattern databases. Comput. Intell. 14(3), 318–334

(1998)
4. Edelkamp, S., Jabbar, S., Kissmann, P.: Scaling search with pattern databases. In:

Peled, D.A., Wooldridge, M.J. (eds.) MoChArt 2008. LNCS, vol. 5348, pp. 49–64.
Springer, Heidelberg (2009)



Building Large Compressed PDBs for the Sliding Tile Puzzle 27

5. Felner, A.: Improving search techniques and using them on different environments.
Ph.D. thesis (2001)

6. Felner, A., Adler, A.: Solving the 24 Puzzle with instance dependent pattern data-
bases. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI), vol. 3607,
pp. 248–260. Springer, Heidelberg (2005)

7. Felner, A., Korf, R.E., Hanan, S.: Additive pattern database heuristics. J. Artif.
Intell. Res. 22, 279–318 (2004)

8. Felner, A., Meshulam, R., Holte, R.C., Korf, R.E.: Compressing pattern databases.
In: AAAI, pp. 638–643 (2004)

9. Holte, R.C., Newton, J., Felner, A., Meshulam, R., Furcy, D.: Multiple pattern
databases. In: Proceedings of the Fourteenth International Conference on Auto-
mated Planning and Scheduling (ICAPS-04), pp. 122–131 (2004)

10. Korf, R.E.: Depth-first iterative-deepening an optimal admissible tree search. Artif.
Intell. 27(1), 97–109 (1985)

11. Korf, R.E., Felner, A.: Disjoint pattern database heuristics. Artif. Intell. 134(1–2),
9–22 (2002)

12. Korf, R.E., Schultze, P.: Large-scale parallel breadth-first search. In: Proceedings
of the National Conference on Artificial Intelligence, vol. 20, pp. 1380–1385. AAAI
Press/MIT Press (2005)

13. Zhou, R., Hansen, E.A.: Space-efficient memory-based heuristics. In: Proceedings of
the National Conference on Artificial Intelligence, pp. 677–682. AAAI Press/MIT
Press (2004)

14. Zhou, R., Hansen, E.A.: Breadth-first heuristic search. Artif. Intell. 170(4–5), 385–
408 (2006)



http://www.springer.com/978-3-319-05427-8


	Building Large Compressed PDBs for the Sliding Tile Puzzle
	1 Introduction
	2 Background
	3 Pattern Databases
	3.1 Additive Pattern Databases

	4 Building Compressed PDBs
	4.1 Sequential Algorithm
	4.2 Parallel Algorithm

	5 Evaluation
	5.1 Statistical Evaluation
	5.2 Empirical Evaluation

	6 Conclusion
	References


