Chapter 2
Neural Network Tree for Identification

of Splice Junction and Protein Coding
Region in DNA

2.1 Introduction

The internetworked society has been experiencing an explosion of biological data.
However, the explosion is paradoxically acting as an impediment in acquiring knowl-
edge. The meaningful interpretation of this large volume of biological data is increas-
ingly becoming difficult. Consequently, researchers, practitioners, and entrepreneurs
from diverse fields are trying to develop sophisticated techniques to store, analyze,
and interpret this biological data for knowledge extraction, which leads to evolve
the new field called bioinformatics. This field has arised in parallel with the devel-
opment of automated high-throughput methods of pattern recognition and machine
learning. The development of high-throughput methods for biological and biochem-
ical discovery yields a variety of experimental data such as DNA sequences, gene
expression patterns, chemical structures, and so forth. Hence, bioinformatics encom-
passes everything from data storage and retrieval to the identification and presentation
of features within data such as finding genes within DNA sequence, finding simi-
larities between sequences, structural predictions, and correlation between sequence
variation and clinical data [1, 4-6, 25].

Two of the important problems in bioinformatics are splice-site or splice-junction
prediction and identification of protein coding regions in DNA sequences. Genes
contain their information as a specific sequence of nucleotides or bases that are
found in DNA molecules. These specific sequences of bases encode instructions on
how to make proteins. The regions of a gene that code for proteins are termed as
exons . These exons occupy only a small region of the gene. Whereas in prokaryotic
gene, the mRNA (messenger ribonucleic acid) is a mere transcribed copy of the
DNA, in eukaryotic gene, the RNA copy of the DNA contains noncoding segments,
which are termed as introns, and they should be precisely spliced out to produce
the mRNA. This means that introns are parts of a gene that are not used in protein
synthesis and exons are the protein coding regions in that gene. The points at which
DNA is removed are known as splice sites. The splice-site identification problem is
to determine into which of the following three categories a specified location in a
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DNA sequence falls: (1) exon/intron borders, referred to as donors; (2) intron/exon
borders, referred to as acceptors; and (3) neither. Another important problem is the
identification of protein coding region, that is, exon in anonymous sequences of DNA.
Identifying the coding regions and splice sites is of vital importance in understanding
the processing of genes.

Many new mathematical or computational approaches are being introduced as well
as existing ones getting refined, but the search for new and better solutions continues
specifically to analyze large volume of DNA data sets generated in the internetworked
society of cyber-age. To address these problems, a new neural network tree (NNTree)
based pattern classifier [11, 12] is presented in this chapter for finding the splice-site
and protein coding regions in DNA sequences. The idea of this new method is to use
the framework of decision tree and neural network.

Over the years, the decision trees (DT) are successfully used in many diverse areas
such as radar signal classification, character recognition, remote sensing, medical
diagnosis, expert system, speech recognition, and also in other different fields [18].
The decision tree classifier is one of the possible approaches in multistage decision
making. The most important feature of DT is their capability to break up a complex
decision into a union of several simpler decisions hoping the final solution obtained
this way would resemble the intended desired solution. On the other hand, the subject
of artificial neural network (ANN) has become very popular in many areas such
as signal processing and pattern recognition [8, 10, 23, 26]. Additionally, neural
networks are models of nonsymbolic approaches. However, nonsymbolic learners
are usually black boxes. It is not known what has been learned ever if correct answers
are got. Another key problem in using neural networks is that the number of free
parameters is usually too large to be determined efficiently.

Even though neural networks and DT are two very different techniques for pat-
tern recognition or classification, both are capable of generating arbitrarily complex
decision boundaries from a given set of training samples or training examples, and
usually neither has to make any assumptions about the distribution of the underlying
processes. The neural networks are usually more capable of providing incremental
learning than DT, whereas decision trees are sequential in nature, compared to mas-
sive parallelism usually present in neural networks. Thus, DT are typical models for
symbolic approaches, and neural networks are models for nonsymbolic approaches.
Basically, symbolic approaches can provide comprehensive rules but cannot adapt
to changing environments efficiently. On the contrary, nonsymbolic approaches can
adapt to changing environments but cannot provide comprehensible rules.

In this background, many pattern classifiers have been proposed, integrating the
advantages of decision tree and neural network. One of the early pattern classifiers
based on this concept is Entropy Nets due to Sethi [20]. It derives a multilayer
feedforward neural network from a decision tree. The knowledge represented by the
decision tree is translated into the architecture of a neural network whose connections
can be retrained by a back propagation algorithm. On the other hand, the ANN-DT
[19] uses neural network to generate outputs for examples interpolated from the
training data set and then extracts a univariate binary decision tree from the network.
Another method which also extracts decision tree from neural network is reported



2.1 Introduction 47

in [24]. The design of a tree-structured neural network using genetic programming
is proposed in [9]. In [7, 22, 27-29], designs of NNTrees have been introduced. The
NNTree is a decision tree with each nonterminal node being a neural network. In [21],
Sethi and Yoo have proposed a decision tree whose hierarchy of splits is determined
in a global fashion by a neural learning algorithm. Recently, Zhou and Chen [30]
have introduced a hybrid learning approach named HDT that embeds neural network
in some leaf nodes of a binary decision tree.

To design an NNTree, the most important and time-consuming step is splitting
the nonterminal nodes of the tree. There are many criteria for splitting nonterminal
nodes. One of the most popular criteria is the information gain ratio which is used
in C4.5 [18]. Designs of NNTree have so far mostly concentrated around binary tree
with information gain ratio used to partition the available data set at each nonterminal
node [7, 22, 27-29]. However, this structure generates larger height of the tree. In
effect, it increases classification time and error rate in classifying test samples. Also
none of the work has so far dealt with the application of the NNTree to biological
data set.

In the above background, this chapter presents the design and applications of an
NN-based tree-structured pattern classifier (NNTree) to address the problem of find-
ing splice-site and protein coding region in DNA sequences [11, 12]. The NNTree
reported here adopts an approach which is completely different from the methods
mentioned in [7, 22, 24, 27-30]. The neural networks used in this design are mul-
tilayer perceptrons (MLP) with m output nodes; m being the number of classes in
the given data set. Unlike [7, 22, 27-30], the NNTree designed here splits each
nonterminal node by maximizing (respectively, minimizing) classification accuracy
(respectively, classification error) of the MLP rather than using information gain ratio.
So, the current design always generates a reduced height m-ary tree. The backprop-
agation algorithm is used recursively at each nonterminal node to find a multilayer
perceptron. The effectiveness of the new algorithm, along with a comparison with
individual components of the hybrid scheme as well as other related algorithms, has
been demonstrated on several benchmark data sets.

The structure of the rest of this chapter is as follows: Sect. 2.2 presents the design of
aneural network based tree-structured pattern classifier, called NNTree. Sections 2.3
and 2.4 present the application of the NNTree in splice-junction and protein coding
region identification problems, respectively. In order to validate the design of current
model, extensive experimental results are also reported in these sections. Concluding
remarks are given in Sect.2.5.

2.2 Neural Network Based Tree-Structured Pattern Classifier

A neural network tree (NNTree) is a decision tree with each intermediate or nonter-
minal node being a MLP. It is constructed by partitioning the training set consisting
of feature vectors and their corresponding class labels in such a way as to recursively
generate the tree. This procedure involves three steps: splitting nodes, determining
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Fig. 2.1 MLP-based tree-structured pattern classifier

which nodes are terminal nodes, and assigning class labels to terminal nodes. In this
tree, a leaf or terminal node covers the set or subset of elements of only one class.
By contrast, an intermediate node covers the set or subset of elements belonging to
more than one class. Thus, the NNTrees are class discriminators which recursively
partition the training set to get nodes belonging to a single class. Figure2.1 shows
an MLP-based NNTree.

To classify a training set S = {S1,..., Si, ..., S} consisting of m classes, an
MLP has to be designed with m neurons in output layer. If a pattern belongs to ith
class, ith output neuron is selected. That is, the content of the ith neuron is 1. At this
moment, the content of all other output neurons are Os. So, the output layer represents
m distinct m-dimensional vectors, each representing a unique location or node. Thus,
the training set S gets distributed into m locations or nodes using an MLP.

Let, S be the set of elements in a node. If S belongs to only one class, then label
that node as that class. Otherwise, this process is repeated recursively for each node
until all the patterns in each node or location belong to only one class. Single or
multiple nodes of the tree may form a leaf or terminal node representing a class, or it
may be an intermediate or nonterminal node. A leaf node represents a location that
contains the set or subset of elements of only one class. By contrast, an intermediate
node refers to a location that contains the elements belonging to more than one class.
In effect, an intermediate node represents the decision to build a new MLP for the
elements of multiple classes covered by the location of the earlier level. The above
discussions are formalized next.

Input: TrainingsetS = {S1,...,Si, ..., Sn}
Output: NNTree (set of MLPs)

Partition(S, m);

Partition(S, /)
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. Generate an MLP with 7 output neurons.

. Distribute the training set S into i locations (nodes).

. Evaluate the distribution of patterns in each node.

. If all the patterns (S ) of a location (node) belong to one particular class, then label
the location (leaf node) for that class.

. If for the set of patterns (S‘) of a location belonging to m classes, Partition(S” ,m).

6. End.

BN =

9]

In Fig.2.1, the node A is the root node. So, the MLP; corresponding to node
Aqo distributes the training set § = {S1, ..., S, ..., Sn} into m locations denoted
by A1, A12, ..., Aim- Now, Ajj is an intermediate node as the elements covered
by this location belong to multiple classes (here m) which are distributed again by
MLP; into m number of locations - A>y, A2, ..., Ay,. Aq3 is also an intermediate
node, but it covers the elements of classes II and III only. So, MLP3 corresponding
to node A3 generates two locations or nodes to distribute these elements. Whereas
A1y is aleaf or terminal node as it contains the elements of only one class (here class
ID). Similarly, A2y, A2y, A31, A32, ..., are the leaf or terminal nodes as they cover
the elements of single class.

In designing an NNTree for a given data set, there are two options:

1. design an NNTree that correctly classifies all the training samples (referred to as
a perfect tree), and select the smallest perfect tree; and

2. construct an NNTree that is not perfect but has the smallest possible error rate in
classification of test samples.

The second type of tree is of greater interest for real life pattern recognition task.
Regardless of the type of tree (perfect or otherwise), it is usually desirable to keep
the size of the tree as small as possible. Because, smaller trees are more efficient
both in terms of tree storage requirements and test time; and tend to generalize better
for the unseen test samples that are less sensitive to the statistical irregularities and
idiosyncrasies of the training data. So, the basic criteria for the NNTree design are
as follows:

1. minimize error rate that would lead to maximum classification accuracy;

2. less number of nodes in the tree, that is, minimum number of locations of the
selected NNTree; and

3. least height of the NNTree.

2.2.1 Selection of Multilayer Perceptron

Following two steps are implemented at each intermediate node to pick up the best
possible NNTree:

1. evaluation of candidate MLPs, that is, evaluation of distribution of the elements
of different classes in different locations of an MLP; and
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2. selection of a location using the best distribution in the intermediate nodes ensur-
ing maximum classification accuracy.

The complexity lies in determining the best distribution for each intermediate node.
The optimal NNTree is evolved through the application of back propagation algo-
rithm [8, 10] recursively at each intermediate node.

2.2.2 Splitting and Stopping Criteria

Splitting an intermediate node involves the design of a new MLP to classify the subset
of input elements of different classes covered by the node or location of the MLP
of earlier level of the tree. A location is considered as a leaf node if all the training
examples falling into the current location belong to the same class. In other words,
a node (location) is split as long as there are class elements that belong to different
classes.

To avoid overfitting, a prepruning strategy is needed. Let, C;; be the number
of elements of class j covered by ith location, where i = 1,2,...,m and j =
1,2,...,m; and B; indicates the uniformity of the distribution of class elements in
the ith location. The value of §; corresponding to ith node (location) is given by

o

Bi = 7 2.1)

m
where &/ = max;{C;;}; and Z = Z Cij. (2.2)

j=1

The diversity of the current node is measured as
o

3i=1—ﬂi=1—§. (2.3)

When current node (location) is to split, its B; value is measured and compared with
a threshold value ¢ (= 0.9988).

1. If B; < e, then current node is split. That is, partition the examples of i th location.

2. If B; > e, thatis, §; >~ 0, then the learning process terminates and the ith location
indicates the class j for which C;; is maximum. The future class elements falling
into current node (location) are classified to the most probable class of current
node, that is, the class that has the maximum number of training examples in
current location.

3. In some cases, even fB; < ¢, there exists a possibility where desired MLP is not
available. That is, it is not possible to find an MLP which can distribute the given
training examples into multiple locations. This occurs when the training examples
of different classes are highly correlated. In that case, the learning process is
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terminated. The future class elements are classified as class j for which C;; is
maximum, that is, the most probable class of the current node.

Suppose, after evaluating the distribution of patterns of each class, the pattern set
S is partitioned into S, and Sp, where S, and S, represent the pattern set belonging
to leaf nodes and intermediate nodes, respectively. The goodness of the splitting or
partition is given by the figure of merit (FM), where

(2.4)

where S, U S, = S and | S | represent the cardinality of the set S. The value of FM
indicates the classification accuracy of an intermediate or nonterminal node.

For ease of discussions, in the rest of the chapter, following terminologies are
used:

e 71 and o represent the learning rate and momentum constant of back propagation
algorithm.

e H, is the number of neurons in the hidden layer of MLP.

e L is the depth of the NNTree, which is equal to the number of levels from the root
to the leaf nodes.

e B represents the breadth of the NNTree, which is the number of intermediate nodes
in each level of the tree.

e Classification accuracy is defined as the percentage of samples that are correctly
classified.

e Classification time is defined as the time required to classify all the samples.

The NNTree is implemented in C language and run in LINUX environment having
machine configuration Pentium IV, 3.2 GHz, 1 MB cache, and 1 GB RAM.

2.3 Identification of Splice-Junction in DNA Sequence

In this section, the application of the NNTree in finding the splice junction in anony-
mous sequences of DNA is presented. The performance of the NNTree is evaluated
for benchmark data set analyzing classification accuracy.

In bioinformatics, one of the major tasks is the recognition of certain DNA subse-
quences those are important in the expression of genes. Basically, a DNA sequence
is a string over alphabet D = {A, C, G, T}. DNA contains the information by which
a cell constructs protein molecules. The cellular expression of protein proceeds by
the creation of a messenger ribonucleic acid (mRNA) copy from the DNA template.
This mRNA is then translated into a protein. One of the most unexpected findings in
molecular biology is that large pieces of the mRNA are removed before it is translated
further [2]. The utilized sequences are known as exons while the removed sequences
are known as introns, or intervening sequences. The points at which DNA is removed
are known as splice junctions. The splice-junction problem is to determine into which
of the following three categories a specified location in a DNA sequence falls: (1)
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Table 2.1 Classification accuracy for n = 0.50 and « = 0.70

Depth of Tree H, =10 H, =15

Training Testing Breadth Training Testing Breadth
1 99.2 914 1 98.7 91.6 1

99.6 93.5 3 99.7 94.2 2
3 99.9 93.5 1 99.9 94.2 2

Table 2.2 Classification accuracy for @ = 0.70

Depth of Tree n=0.90and H, = 10 n=0.80and H, = 15
Training Testing Breadth Training Testing Breadth

1 84.2 81.6 1 82.3 82.6 1
2 89.3 84.3 3 87.6 84.9 3
3 91.7 84.6 6 90.3 85.6 6
4 93.7 84.8 8 93.5 85.6 8
5 95.0 84.9 5 95.3 85.7 8
6 96.4 85.1 6 96.5 85.7 7

exon/intron borders, referred to as donors; (2) intron/exon borders, referred to as
acceptors; and (3) neither.

2.3.1 Description of Data Set

The data set used in this problem is a processed version of the Irvine Primate splice-
junction database [14]. Each of the 3,186 examples in the database consists of a
window of 60 nucleotides, each represented by one of four symbolic values ({A, C,
G, T}) and the classification of the middle point in the window as one of intron—exon
boundary, or neither of these. Processing involved the removal of four examples,
conversion of the original 60 symbolic attributes to 180 binary attributes and the
conversion of symbolic class labels to numeric labels. The training set of 2,000 is
chosen randomly from the data set and the remaining 1,186 examples are used as the
test set.

2.3.2 Experimental Results

The experimental results on data set reported in earlier subsection are presented in
Tables2.1, 2.2, 2.3, 2.4, Figs. 2.2, 2.3. Tables 2.1 and 2.2 represent the classification
accuracy of both training and test samples for different values of
n, «, and H,. The classification accuracy of training and testing confirms that the
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Table 2.3 Performance of

NNTree and C4.5 on Algorithms/ Classification Total Height Classification

splice-junction database methods accuracy (%) nodes oftree time(ms)
NNTree 94.2 5 3 517
C4.5 93.3 127 12 655
Table 2.4 Clas§1ﬁc'at10n' Algorithms Accuracy (%)
accuracy for splice-junction
database NNTree 94.2
MLP 91.4
Bayesian 90.3
C4.5 93.3
CA 87.9

NNTree can generalize the splice-junction database irrespective of the values of 1, «,
and H,. From Figs.2.2 and 2.3, it is seen that the standard deviations of both training
and testing accuracy reduce with the increase in L.

For splice-junction database, at n = 0.50 and o = 0.70, most of the nodes of the
NNTree have B; values greater than €. So, the learning process terminates at L = 3
irrespective of the value of H,. Whereas, for other values of 1 and «, the values of
Bi for most of the nodes of the NNTree are less than € when L < 6. So, for L < 6,
most of the nodes are intermediate nodes. At L = 7, though §; < & for most of
the nodes, the training examples of different classes are so correlated that an MLP
cannot be found corresponding to each node, which can classify the data set present
at that node. Hence, the NNTree stops to grow.

Table 2.3 compares the performance of the NNTree with C4.5, a popular decision
tree algorithm [ 18], with respect to classification accuracy, total number of intermedi-
ate nodes, height of the tree, and classification time. For splice-junction database, the
classification accuracy of the NNTree is higher than that of the C4.5, while the num-
ber of intermediate nodes, height of the tree, and classification time of the NNTree
are significantly smaller than C4.5.

Finally, Table 2.4 compares the classification accuracy of the NNTree with that of
different classification algorithms, namely, Bayesian [3], C4.5 [18], MLP [8, 10], and
cellular automata (CA) [13]. The experimental results of Table 2.4 clearly establish
the fact that the classification accuracy of the NNTree is higher than that of several
other classification algorithms.

2.4 Identification of Protein Coding Region in DNA Sequence

This section presents the application of the NNTree for finding protein coding (exon)
regions in anonymous sequences of DNA. The performance of the NNTree is evalu-
ated for few sequences and an analysis regarding the accuracy of the method is also
presented.
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Fig. 2.2 Performance of
NNTree on splice-junction
database for n = 0.50 and
a =0.70.a H, = 10; b
H, =15
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Over the past 20 years, researchers have identified a number of features of exonic
DNA that appear to be useful in distinguishing between coding and noncoding regions
[1, 4, 5, 25]. These features include both statistical and information-theoretic mea-
sures, and in many cases are based on knowledge of the biology underlying DNA
sequences and transcription processes. These features are summarized in a survey
by Fickett and Tung [6], who also have developed several benchmark features and
databases for future experiments on this problem.
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Fig. 2.3 Performance of the
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Previous research on automatic identification of protein coding regions has con-
sidered methods such as linear discriminants [5, 6] and neural networks [4, 25].
These systems have used measures such as codon frequencies, dicodon frequencies,
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Table 2.5 Benchmark data

. Data Set Human 54 Human 108 Human 162
sets proposed by Fickett and
Tung Training set—coding 20,456 7,086 3,512
Training set—noncoding 125,132 58,118 36,502
Training set total 145,588 65,204 40,014
Test set—coding 22,902 8,192 4,226
Test set—noncoding 122,138 57,032 35,602
Test set total 145,040 65,224 39,868

fractal dimensions, repetitive hexamers, and other features to identify exons in rel-
atively short DNA sequences. The standard experimental study considers a limited
window (that is, a subsequence) of a fixed length, for example 100 base pairs, and
computes features based on that window alone. The goal is to identify the window
as either all-coding or all-noncoding.

2.4.1 Data and Method

The data used for this study are the human DNA data collected by Fickett and Tung
[6]. All the sequences are taken from GenBank in May 1992. Fickett and Tung
have provided the 21 different coding measures that they surveyed and compared.
The benchmark human data includes three different data sets. For the first data
set, nonoverlapping human DNA sequences of length 54 have been extracted from
all human sequences, with shorter pieces at the ends discarded. Every sequence is
labeled according to whether it is entirely coding, entirely noncoding, or mixed, and
the mixed sequences (that is, overlapping the exon—intron boundaries) are discarded.
The data set also includes the reverse complement of every sequence. This means
that one-half of the data is guaranteed to be from the nonsense strand of the DNA,
which makes the problem of identifying coding regions somewhat harder. For the
current study, the same division into training and test data have been used as in the
benchmark study [6]. The training set is used exclusively to construct an MLP-based
tree-structured pattern classifier (NNTree), and the tree is then used to classify the test
set. In addition to the 54-base data set, the data sets containing 108 and 162 bases
have been used. The sizes of these data sets are shown in Table2.5, which gives
the number of nonoverlapping windows in each set. No information about reading
frames is used in this study. Every window is either all-coding or all-noncoding, but
the reading frame of each window is unknown. This choice of window length and
experimental method follows that used by Fickett and Tung [6] and the problem here
is what they defined as a protein coding region.
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2.4.2 Feature Set

All of the features that have been used are derived from the 21 protein coding mea-
sures, which are proposed by Fickett and Tung [6]. A single coding measure is not
necessarily the same thing as a single measure. Typically, a coding measure is a
vector of measurements on a DNA subsequence.

2.4.2.1 Dicodon Measure

A dicodon is a subsequence of six consecutive nucleotides such as TAGGAC. The
dicodon measure is the list of the 4,096 frequencies of every possible dicodon (six
consecutive bases from the 4 letter alphabet). The dicodon frequency feature is a
vector of the 4,096 dicodon frequencies across the input sequence, where the dicodon
counts are accumulated only at locations whose starting point is a multiple of 3 (that
is, starting at the Oth, 3rd, 6th, . . . nucleotides in the sequence). To convert the dicodon
measure to a single number, the 4,096 dicodon frequencies are computed on each
window and plugged into the hyperplane equation. This gives a single number that
becomes the dicodon discriminant.

2.4.2.2 Hexamer-1 and Hexamer-2 Measures

The hexamer-1 and hexamer-2 measures are identical to dicodons, except that 1 and 2
offsets them. The hexamer-1 frequency feature is likewise a vector of 4,096 dicodon
frequencies, except that the counts are accumulated at positions 1,4,7,....; the
hexamer-2 frequency feature is defined analogously.

2.4.2.3 Open Reading Frame Measure

The open reading measure is simply the longest sequence of codons in the window
that does not contain a stop codon. That is, the open reading frame feature is the
length, in codons, of the longest sequence of codons (aligned with locations 0, 3,
...) in the data string which does not contain a stop codon.

2.4.2.4 Run Measure

The run measure is a vector of length 14; for each nontrivial subset S C {A, C, T,
G}, the run feature contains an entry that gives the length of the longest contiguous
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subsequence having all entries from S. For example, if the entry of the run feature,
which corresponds to {C, G}, is 4, then it means that the longest consecutive substring
containing only C and G is of length 4. The run measure counts the number of repeats
or runs of a single base or any set of bases from the set (A, C, T, G). Thus, it includes
14 nontrivial subsets of the four bases, and for each subset runs are counted separately.

2.4.2.5 Position Asymmetry Measure

The asymmetry feature is a vector of length four which measures, for each nucleotide
A, C, G, and T, the extent to which the nucleotide is asymmetrically distributed over
the three codon positions. The position asymmetry measure counts for each of the
four bases, the frequency of the base in each of the three codon positions. Thus,
f(b, 1) is the frequency of base b in position i and

y
nb)y = % (2.5)

1

Asymmetry is then defined as

asymm(b) = D" (f(b. ) — (b)), 2.6)

2.4.2.6 Codon Usage Measure

The codon usage feature is a vector of the 64 codon frequencies. The codon usage
measure is simply the frequencies of the 64 possible codons in the test window. The
counts are accumulated only at locations 0, 3, . . ..

2.4.2.7 Diamino Acid Usage Measure

The diamino acid frequency is a vector of the 441 amino acid frequencies which are
obtained by translating from the nucleotide sequence to an amino acid string (stop
codons are treated as a 21st amino acid); like the dicodon frequency feature, counts
are accumulated only at locations 0, 3, .. ..

2.4.2.8 Fourier Measure

Let E(x, y) be the equality predicate that has value 1 if x = y and 0 otherwise. The
nth Fourier coefficient for a window W of length 2M is then defined as:
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Table 2.6 Human DNA 54bp at n = 0.50 and « = 0.70

Depth of tree H, =10 H, =15

Training Testing Breadth Training Testing Breadth
1 57.2 54.7 1 57.5 54.9 1
2 84.6 82.5 2 84.5 81.8 2
3 85.2 82.6 4 85.4 82.0 4
4 86.0 82.7 8 86.0 82.1 8
5 86.5 82.9 16 86.4 82.2 16
6 86.5 82.9 16 86.7 82.4 32

[linp
F(n) = ;%zs(wm, Wanp)exp (= 2.7)

where W,, represents the mth base in the window. The Fourier measure is then just
F(2M/2), F2M/3), ..., F(2M/9), which corresponds to the Fourier coefficients
for periods 2 through 9.

After generating all protein coding measures, all the attributes in a data set are
normalized to facilitate the NNTree learning. Suppose, the possible value range of
an attribute .o is (.97 min, %% max ), and the real value that class element j takes at .o
is 7, then the normalized value of .7; is given as follows:

_ i — o mi
o jj = —_ T (2.8)

M,max — & min

Next subsection presents extensive experimental analysis regarding the classifi-
cation accuracy of the NNTree, an MLP-based tree-structured classifier.

2.4.3 Experimental Results

In this subsection, the results of the NNTree for three Fickett and Tung’s data sets are
presented. Values are given for the percentage accuracy on both training and test set.
Results of the NNTree on each of the data set are given in Tables 2.6, 2.7. 2.8, 2.9,
2.10, and 2.11. The mean accuracy of training and testing confirm that the evolved
NNTree can generalize the data sets presented in Table 2.5 irrespective of the number
of attributes, tuples, «, n, and H,.

In case of Fickett and Tung database, for L < 6, the values of g; for all possible
nodes or locations of the NNTree are less than €. So, all the nodes are intermediate or
nonterminal nodes for L < 6. Hence, the NNTree has been grown by splitting all these
nonterminal nodes. At L = 7, though the value of 8; < & for each nonterminal node,
the training samples of two classes in each nonterminal node are highly correlated.
So, at L = 7, an MLP cannot be found, corresponding to an intermediate node,
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Table 2.7 Human DNA 54bp at n = 0.70 and « = 0.70

Depth of tree H, =10 H, =15
Training Testing Breadth Training Testing Breadth

1 55.6 53.2 1 53.6 50.2 1

2 77.3 75.5 2 76.1 71.3 2

3 80.0 78.0 4 83.3 78.7 4

4 82.2 79.9 8 85.2 82.4 8

5 83.5 80.9 16 85.3 82.4 16

6 84.4 81.3 32 85.7 82.6 32

Table 2.8 Human DNA 108bp at n = 0.50 and « = 0.70

Depth of tree H, =10 H, =15
Training Testing Breadth Training Testing Breadth

1 58.4 55.7 1 59.0 56.1 1

2 86.8 82.5 2 87.1 81.0 2

3 88.3 82.6 4 87.8 81.8 4

4 89.6 82.7 8 89.3 82.9 8

5 90.2 82.8 16 90.1 83.5 16

6 90.7 83.1 32 92.2 83.5 32

Table 2.9 Human DNA 108bp at n = 0.70 and « = 0.70

Depth of tree H, =10 H, =15
Training Testing Breadth Training Testing Breadth

1 553 52.5 1 574 55.0 1

2 78.9 76.3 2 77.6 74.4 2

3 82.5 79.7 4 85.2 79.3 4

4 84.9 81.9 8 90.8 82.7 8

5 86.5 82.6 16 93.5 82.9 16

6 87.7 83.4 32 93.7 83.5 32

Table 2.10 Human DNA 162bp at = 0.50 and « = 0.70

Depth of Tree H, =10 H, =15
Training Testing Breadth Training Testing Breadth

1 59.1 56.9 1 61.0 57.5 1

2 83.5 71.3 2 81.1 71.5 2

3 85.1 78.8 4 84.9 79.6 4

4 88.0 82.9 8 89.9 83.7 8

5 91.4 84.2 16 91.2 84.3 16

6 91.7 84.4 32 91.3 84.3 32




2.4 Identification of Protein Coding Region in DNA Sequence

Table 2.11 Human DNA 162bp at = 0.70 and « = 0.70
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Depth of tree H, =10 H, =15
Training Testing Breadth Training Testing Breadth

1 552 533 1 583 52.8 1
2 82.8 72.5 2 77.8 70.1 2
3 88.1 71.6 4 85.9 76.8 4
4 90.9 83.9 8 89.9 82.3 8
5 93.1 84.2 16 92.7 84.0 16
6 93.1 84.2 32 93.2 84.2 32
Fig. 2.4 Performance of (a) Mean Accuracy with Error Bars
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Fig. 2.5 Performance of Mean Accuracy with Error Bars
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which can classify the training samples. So, the learning process terminates at this
stage, and the nodes are considered as leaf nodes indicating the class that has the
maximum number of training examples in the current location.

Figures2.4, 2.5, and 2.6 show the classification accuracy with error bar of the
NNTree on different DNA sequences. All the results reported in Figs.2.4,2.5,and 2.6
establish the fact that the NNTree can generalize a DNA sequence data set irrespective
of its sequence length. Also, the standard deviations of training and testing accuracy
are very small.
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Fig. 2.6 Performance of Mean Accuracy with Error Bars
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Finally, Table 2.12 compares the classification accuracy of the NNTree with that
of OCI1 [15, 16], MLP, and other related algorithms. The OC1, proposed by Murty
et al. [15, 16], is an oblique decision tree algorithm that combined deterministic
hill-climbing with two forms of randomization to find a good oblique split at each
intermediate node of a decision tree. All the results reported in Table 2.12 establish
the fact that the classification accuracy of the NNTree is higher than that of existing
algorithms. Also, the results reported here establish the fact that the NNTree can
generalize a DNA data set irrespective of its sequence length.
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Table 2.12 Classification

accuracy for human DNA 54, Algorithms 54bp 108bp 162bp

108, and 162bp NNTree 82.9 83.5 84.4
OC1 73.9 83.7 84.2
MLP 54.9 56.1 57.5
Position asymmetry 70.7 77.6 81.7
Fourier 69.5 77.4 82.0
Hexamer 69.8 71.4 73.8
Dicodon usage 69.8 71.2 73.7

2.5 Conclusion and Discussion

This chapter presents the design of a hybrid learning algorithm, termed as an NNTree.
It uses MLP for designing a tree-structured pattern classifier. Instead of using the
information gain ratio as a splitting criterion, a new criterion is presented in this
chapter for the NNTree design. This criterion captures well the intuitive goal of
reducing the rate of misclassification.

The performance of the NNTree is evaluated through its applications in splice-
junction and protein coding region identification. Experimental comparisons with
other related algorithms provide better or comparable classification accuracy with
significantly smaller trees and fast classification times. Extensive experimental results
reported in this chapter confirm that the NNTree is crucial over conventional tech-
niques for classification. Also, the sizes of the trees produced by both C4.5 and
NNTree have been compared in terms of total number of nodes and height of the
trees. A smaller tree is desirable since it provides more compact class descriptions,
unless the smaller tree size leads to a loss in accuracy. The results show that the
NNTree achieves trees that are significantly smaller than the trees generated by the
C4.5.

However, both DNA and protein sequences are nonnumeric variables as they
are strings of nucleotides and amino acids, respectively. Hence, for most pattern
recognition algorithms, they cannot be used as direct inputs. They, therefore, have
to be encoded prior to input. To convert a DNA sequence into numeric values, two
methods are reported in this chapter: one is distributed encoding method [17] and
the other one is the feature extraction method proposed by Fickett and Tung [6]. In
the next chapter, a new encoding method is reported to encode the DNA or protein
sequences into numeric values for directly applying different pattern recognition
algorithms on them.
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