Chapter 2
Fuzziness and Induction

This chapter examines the foundations of IFC by analyzing the concepts of deduc-
tion, fuzziness, and induction. The first subsection explains the classical concepts of
sharp and deductive logic and classification; in this section, it is presupposed that all
terms are clearly defined. The second section explains what happens when those
definitions have fuzzy boundaries and provides the tools, fuzzy logic and fuzzy
classification, to reason about this. However, there are many terms that do not only
lack a sharp boundary of term definition but also lack a priori definitions. Therefore,
the third subsection discusses how such definitions can be inferred through induc-
tive logic and how such inferred propositional functions define inductive fuzzy
classes. Finally, this chapter proposes a method to derive precise definitions of
vague concepts—membership functions—from data. It develops a methodology for
membership function induction using normalized likelihood comparisons, which
can be applied to fuzzy classification of individuals.

2.1 Deduction

This subsection discusses deductive logic and classification, analyzes the classical
as well as the mathematical (Boolean) approaches to propositional logic, and shows
their application to classification. Deduction provides a set of tools for reasoning
about propositions with a priori truth-values—or inferences of such values. Thus, in
the first subsection, the concepts of classical two-valued logic and algebraic Bool-
ean logic are summarized. The second subsection explains how propositional
functions imply classes and, thus, provide the mechanism for classification.
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8 2 Fuzziness and Induction
2.1.1 Logic

In the words of John Stuart Mill (1843), logic is “the science of reasoning, as well as
an art, founded on that science” (p. 18). He points out that the most central entity of
logic is the statement, called a proposition:

The answer to every question which it is possible to frame, is contained in a proposition, or
assertion. Whatever can be an object of belief, or even of disbelief, must, when put into
words, assume the form of a proposition. All truth and all error lie in propositions. What, by
a convenient misapplication of an abstract term, we call a truth, is simply a true proposition.
(p- 27)

The central role of propositions indicates the importance of linguistics in phi-
losophy. Propositions are evaluated for their truth, and thus, assigned a truth-value
because knowledge and insight is based on true statements.

Consider the universe of discourse in logic: The set of possible statements or
propositions, P. Logicians believe that there are different levels of truth, usually
two (true or false); in the general case, there is a set, 7, of possible truth-values that
can be assigned to propositions. Thus, the proposition p € P is a meaningful piece
of information to which a truth-value, 7(p)E7, can be assigned. The
corresponding mapping of 7:P — 7 from propositions P to truth-values 7 is
called a truth function.

In general logic, operators can be applied to propositions. A unary operator,
0, : P1 — 7T ,maps a single proposition into a set of transformed truth-values. Accord-
ingly, a binary operator, O, : Py x P, — T, assigns a truth-value to a combination of
two propositions, and an n-ary operator, O, : Py x --- X P, — T, is amapping of
a combination of n propositions to a new truth-value.

The logic of two-valued propositions is the science and art of reasoning about
statements that can be either true or false. In the case oftwo-valued logic, or
classical logic (CL), the set of possible truth values, T = {true, false}, contains
only two elements, which partitions the class of imaginable propositions P into
exactly two subclasses: the class of false propositions and the class of true ones.

With two truth-values, there are four (27) possible unary logical operators;
however, there is only one possible non-trivial unary operator other than identity,
truth, and falsehood: A proposition, p € P, can be negated (not p), which inverts the
truth-value of the original proposition. Accordingly, for a combination of two

propositions, p and ¢, each with two truth-values, there are 16 (222) possible binary
operators. The most common binary logical operators are disjunction, conjunction,
implication, and equivalence: A conjunction of two propositions, p and ¢, is true if
both propositions are true. A disjunction of two propositions, p or g, is true if one of
the propositions is true. An implication of g by p is true if, whenever p is true, g is true
as well. An equivalence of two propositions is true if p implies ¢ and g implies p.
Classical logic is often formalized in the form of a propositional calculus. The
syntax of classical propositional calculus is described by the concept of variables,
unary and binary operators, formulae, and truth functions. Every proposition is
represented by a variable (e.g., p); every proposition and every negation of a



2.1 Deduction 9

proposition is a term; every combination of terms by logical operators is a formula;
terms and formulae are themselves propositions; negation of the proposition p is
represented by —p; conjunction of the two propositions p and ¢ is represented by
p A g; disjunction of the two propositions p and ¢ is represented by p V g;
implication of the proposition g by the proposition p is represented by p = ¢;
equivalence between the two propositions p and ¢ is represented by p = ¢; and
there is a truth function, 7~ : P — T¢E, mapping from the set of propositions p into
the set of truth values 7. The semantics of propositional calculus are defined by the
values of the truth function, as formalized in Formula (2.1) through Formula (2.5).

cL [ if(z(p) = true) false
p) = {else true. (2.1)

else false.

“L(p A g) = {if(r(p) =1(q) = true) true 22)

Fpvae {00 =) e g
“p=q) =1 (=pVa) (2.4)
“@p=q)="Pp=q9Nq=>Dp) (25)

George Boole (1847) realized that logic can be calculated using the numbers
0 and 1 as truth values. His conclusion was that logic is mathematical in nature:

I am then compelled to assert, that according to this view of the nature of Philosophy, Logic
forms no part of it. On the principle of a true classification, we ought no longer to associate
Logic and Metaphysics, but Logic and Mathematics. (p. 13)

In Boole’s mathematical definition of logic, the numbers 1 and O represents the
truth-values and logical connectives are derived from arithmetic operations: sub-
traction froml1 as negation and multiplication as conjunction. All other operators
can be derived from these two operators through application of the laws of logical
equivalence. Thus, in Boolean logic (BL), the corresponding propositional calculus
is called Boolean algebra, stressing the conceptual switch from metaphysics to
mathematics. Its syntax is defined in the same way as that of CL, except that the
Boolean truth function, 22 : P — 75 maps from the set of propositions into the set
of Boolean truth values, 755 := {0, 1}, that is, the set of the two numbers 0 and 1.

The Boolean truth function 7~ defines the semantics of Boolean algebra. It is
calculated using multiplication as conjunction and subtraction from 1 as negation,
as formalized in Formula (2.6) through Formula (2.8). Implication and equivalence
can be derived from negation and disjunction in the same way as in classical
propositional calculus.
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P(=p) =1 - (p) (2.6)
P ng) =" (p) - (q) (2.7)

P (p Vv q) == (-pA—q)

-1— (1 _ TBL(p)) ) (1 B TBL(q)) (2.8)

2.1.2 Classification

Class logic, as defined by Glubrecht, Oberschelp, and Todt (1983), is a logical
system that supports statements applying a classification operator. Classes of
objects can be defined according to logical propositional functions. According to
Oberschelp (1994), a class, C = {i € U | [1(i)}, is defined as a collection of
individuals, /, from a universe of discourse, U, satisfying a propositional function,
I1, called the classification predicate. The domain of the classification operator,
{.1.}:P — U, is the class of propositional functions P and its range is the
powerclass of the universe of discourse U, which is the class of possible subclasses
of U. In other words, the class operator assigns subsets of the universe of discourse
to propositional functions. A universe of discourse is the set of all possible
individuals considered, and an individual is a real object of reference. In the
words of Bertrand Russell (1919), a propositional function is “an expression
containing one or more undetermined constituents, such that, when values are
assigned to these constituents, the expression becomes a proposition” (p. 155).

In contrast, classification is the process of grouping individuals who satisfy
the same predicate into a class. A (Boolean) classification corresponds to a mem-
bership function, u-: U — {0, 1}, which indicates with a Boolean truth-value
whether an individual is a member of a class, given the individual’s classification
predicate. As shown by Formula (2.9), the membership y of individual i in class
C = {i € UII(i)} is defined by the truth-value 7 of the classification predicate
I1(i). In Boolean logic, the truth-values are assumed to be certain. Therefore,
classification is sharp because the truth values are either exactly O or exactly 1.

pe(i) = =(11(i)) £{0, 1} (2.9)

Usually, the classification predicate that defines classes refers to attributes of
individuals. For example, the class “tall people” is defined by the predicate “tall,”
which refers to the attribute “height.” An attribute, X, is a function that character-
izes individuals by mapping from the universe of discourse U to the set of possible
characteristics y (Formula 2.10).

X:U—y (2.10)

There are different types of values encoding characteristics. Categorical attri-
butes have a discrete range of symbolic values. Numerical attributes have a range of
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numbers, which can be natural or real. Boolean attributes have Boolean truth-values
{0, 1} as a range. Ordinal attributes have a range of categories that can be ordered.

On one hand, the distinction between univariate and multivariate classification,
the variety, depends on the number of attributes considered for the classification
predicate. The dimensionality of the classification, on the other hand, depends on
the number of dimensions, or linearly independent attributes, of the classification
predicate domain.

In a univariate classification (UC), the classification predicate I7 refers to one
attribute, X, which is true for an individual, i, if the feature X(i) equals a certain
characteristic, ¢ € y.

pyc(i) = 7" (X(0) = ¢) (2.11)

In a multivariate classification (MVC), the classification predicate refers to
multiple element attributes. The classification predicate is true for an individual,
i, if an aggregation, a, of several characteristic constraints has a given value,
c € y.

pve i) = P (a(X1 (), Xa (D) = ) (2.12)

A multidimensional classification (MDC) is a special case of a multivariate
classification that refers to n -tuples of attributes, such that the resulting class is
functionally dependent on the combination of all n attributes.

X, (i) C
type (i) == °F N (2.13)

This distinction between multivariate and multidimensional classification is
necessary for the construction of classification functions. Multivariate classifica-
tions can be derived as functional aggregates of one-dimensional membership
functions, in which the influence of one attribute to the resulting aggregate does
not depend on the other attributes. In contrast, in multidimensional classification,
the combination of all attributes determines the membership value, and thus, one
attribute has different influences on the membership degree for different combina-
tions with other attribute values. Therefore, multidimensional classifications need
multidimensional membership functions that are defined on n -tuples of possible
characteristics.



12 2 Fuzziness and Induction
2.2 Fuzziness

There are many misconceptions about fuzzy logic. Fuzzy logic is not fuzzy. Basically,
fuzzy logic is a precise logic of imprecision and approximate reasoning. (Zadeh, 2008,
p- 2051)

Fuzziness, or vagueness (Sorensen, 2008), is an uncertainty regarding concept
boundaries. In contrast to ambiguous terms, which have several meanings, vague
terms have one meaning, but the extent of it is not sharply distinguishable. For
example, the word tal/l can be ambiguous, because a tall cat is usually smaller than a
small horse. Nevertheless, the disambiguated predicate “tall for a cat” is vague,
because its linguistic concept does not imply a sharp border between tall and
small cats.

Our brains seem to love boundaries. Perhaps, making sharp distinctions quickly
was a key cognitive ability in evolution. Our brains are so good at recognizing
limits, that they construct limits where there are none. This is what many optical
illusions are based on: for example, Kaniza’s (1976) Illusory Square (Fig. 2.1).

An ancient symbol of sharp distinction between classes is the yin and yang
symbol (Fig. 2.2). It symbolizes a dualistic worldview—the cosmos divided into
light and dark, day and night, and so on.

Nevertheless, in reality, the transition between light and dark is gradual during
the 24 h of a day. This idea of gradation of our perceptions can be visualized by a
fuzzy yin and yang symbol (Fig. 2.3). Sorensen (2008) explains that many-valued
logics have been proposed to solve the philosophical implications of vagueness.
One many-valued approach to logic is fuzzy logic, which allows infinite truth-
values in the interval between 0 and 1.

In the next section, introducing membership functions, fuzzy sets, and fuzzy
propositions are discussed; these are the bases for fuzzy logic, which in fact, is a
precise logic for fuzziness. Additionally, it is shown how fuzzy classifications are
derived from fuzzy propositional functions.

2.2.1 Fuzzy Logic

Lotfi Zadeh (2008) said, “Fuzzy logic is not fuzzy” (p. 2751). Indeed, it is a precise
mathematical concept for reasoning about fuzzy (vague) concepts. If the domain of
those concepts is ordinal, membership can be distinguished by its degree. In
classical set theory, an individual, i, of a universe of discourse, U, is either
completely a member of a set or not at all. As previously explained, according to
Boolean logic, the membership function pg : U — {0, 1}, for a crisp set S, maps
from individuals to sharp truth-values. As illustrated in Fig. 2.4, a sharp set (the big
dark circle) has a clear boundary, and individuals (the small bright circles) are
either a member of it or not. However, one individual is not entirely covered by the
big dark circle, but is also not outside of it.
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Fig. 2.1 There is no square. W .
Adapted from “Subjective - y B
Contours” by G. Kaniza, N\
1976, Copyright 1976 by { /
Scientific American, Inc | |

In contrast, a set is called fuzzy by Zadeh (1965) if individuals can have a gradual
degree of membership to it. In a fuzzy set, as shown by Fig. 2.5, the limits of the set
are blurred. The degree of membership of the elements in the set is gradual,
illustrated by the fuzzy gray edge of the dark circle. The membership function,
ur U — [0, 1], for a fuzzy set, F, indicates the degree to which individual 7 is a
member of F in the interval between 0 and 1. In Fig. 2.4, the degree of membership
of the small circles i is defined by a normalization n of their distance d from the
center ¢ of the big dark circle b, u,(i) = n(d(i, ¢)). In the same way as in classical
set theory, set operators can construct complements of sets and combine two sets by
union and intersection. Those operators are defined by the fuzzy membership
function. In the original proposal of Zadeh (1965), the set operators are defined
by subtraction from 1, minimum and maximum. The complement, F,ofa fuzzy set,
F, is derived by subtracting its membership function from 1; the union of two sets,
F U G, is derived from the maximum of the membership degrees; and the inter-
section of two sets, F' N G, is derived from the minimum of the membership
degrees.

Accordingly, fuzzy subsets and fuzzy power sets can be constructed. Consider
the two fuzzy sets A and B on the universe of discourse U. In general, A is a fuzzy
subset of B if the membership degrees of all its elements are smaller or equal to the

membership degrees of elements in B (Formula 2.14). Thus, a fuzzy power set, B*,
of a (potentially fuzzy) set B is the class of all its fuzzy subsets (Formula 2.15).
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Fig. 2.2 Black or white:
conventional yin and yang
symbol with a sharp
distinction between
opposites, representing
metaphysical dualism.
Adapted from http://www.
texample.net/tikz/
examples/yin-and-yang/
(accessed 02.2012) with
permission (creative
commons license CC BY
2.5)

Fig. 2.3 Shades of grey:
fuzzy yin and yang symbol
with a gradation between
opposites, representing
metaphysical monism

ACB :=VYxEU : pp(x) < pg(x) (2.14)

B = {AQU |A§B} (2.15)

With the tool of fuzzy set theory in hand, the sorites paradox cited in the
introduction (Chap. 1) can be tackled in a much more satisfying manner. A heap
of wheat grains can be defined as a fuzzy subset, Heap C N, of natural numbers N
of wheat grains. A heap is defined in the English language as “a great number or
large quantity” (merriam-webster.com, 2012b). For instance, one could agree that
1,000 grains of wheat is a large quantity, and between 1 and 1,000, the “heapness”
of a grain collection grows logarithmically. Thus, the membership function of the
number of grains n € N in the fuzzy set Heap can be defined according to Formula
(2.16). The resulting membership function is plotted in Fig. 2.6.


http://dx.doi.org/10.1007/978-3-319-05861-0_1
http://www.texample.net/tikz/examples/yin-and-yang/
http://www.texample.net/tikz/examples/yin-and-yang/
http://www.texample.net/tikz/examples/yin-and-yang/
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Fig. 2.4 A visualization of
a classical set with sharp
boundaries

Fig. 2.5 A visualization of
a fuzzy set

Oifn=0
Httep() := 4 Tif n > 1000 (2.16)
0.1448In(n) else.

Based on the concept of fuzzy sets, Zadeh (1975a) derived fuzzy propositions
(FP) for approximate reasoning: A fuzzy proposition has the form “x is L,” where
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Fig. 2.6 Fuzzy set theory 1
applied to the sorites 09
paradox 08

Higeap(n)

0 200 400 GO0 800 1000

x is an individual of a universe of discourse U and L is a linguistic term, defined as a
fuzzy set on U. As stated by Formula (2.17), the truth-value 7*“ of a fuzzy
proposition is defined by the degree of membership g, of x in the linguistic term L.

P (xis L) := py (x) (2.17)

If A is an attribute of x, a fuzzy proposition can also refer to the corresponding
attribute value, such as x is L := A (x) is L. The fuzzy set L on U is equivalent to the
fuzzy set L on the domain of the attribute, or dom(A). In fact, the set can be defined
on arbitrarily deep-nested attribute hierarchies concerning the individual. As an
example, let us look at the fuzzy proposition, “Mary is blond.” In this sentence, the
linguistic term “blond” is a fuzzy set on the set of people, which is equivalent to a
fuzzy set blond on the color of people’s hair (Formula 2.18).

7P (“Mary is blond”) = g1y, (Mary) = p;,,q(color(hair(Mary))) (2.18)

Fuzzy propositions (¥P) can be combined to construct fuzzy formulae using the
usual logic operators not (=), and (A), and or (V), for which the semantics are
defined by the fuzzy truth function 7*” : F — [0, 1], mapping from the class of
fuzzy propositions F into the set of Zadehan truth values in the interval between
1 and 0. Let “xis P”’ and “x is Q” be two fuzzy propositions on the same individual.
Then their combination to fuzzy formulae is defined as follows (Formula 2.19
through Formula 2.21): negation by the inverse of the corresponding fuzzy set,
conjunction by intersection of the corresponding fuzzy sets, and disjunction by
union of the corresponding fuzzy sets.

7 ((xis P)) := up(x); (2.19)
P (xis P Axis Q) = ppng(x); (2.20)
PP (xis PV xis Q) == ppp(x) (2.21)

Zadeh’s fuzzy propositions are derived from statements of the form “X is ¥.”
They are based on the representation operator is : U x U* — F mapping from the
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universe U of discourse and its fuzzy powerset U™ to the class of fuzzy propositions
JF. Consequently, fuzzy propositions in the sense of Zadeh are limited to statements
about degrees of membership in a fuzzy set.

Generally, logic with fuzzy propositions—or more precisely, a propositional
logic with Zadehan truth values in the interval between O and 1, a “Zadehan Logic”
(ZL)—can be viewed as a generalization of Boole’s mathematical analysis of logic
to a gradual concept of truth. In that sense, ZL is a simple generalization of Boolean
logic (BL), in which the truth value of any proposition is not only represented by
numbers, but also can be anywhere in the interval between 0 and 1.

According to the Stanford Encyclopedia of Philosophy (Hajek, 2006), fuzzy
logic, in the narrow sense, is a “symbolic logic with a comparative notion of truth
developed fully in the spirit of classical logic” (“Fuzzy Logic,” paragraph3). If ZL is
viewed as a generalization of BL, fuzzy propositions of the form “X is ¥ are a
special case, and propositions and propositional functions of any form can have
gradual values of truth. Accordingly, ZL is defined by the truth function 7%t : P
— T% mapping from the class of propositions P to the set of Zadehan truth-values
T4 = [0,1]. Consequently, fuzzy set membership is a special case of fuzzy
proposition, and the degree of membership of individual x in another individual
y can be defined as the value of truth of the fuzzy proposition x € y
(Formula 2.22).

() = P (x ) (2.22)

The Zadehan truth function 7~ defines the semantics of ZL. As in Boolean
algebra, its operators can be defined by subtraction from 1 as negation, and
multiplication as conjunction, as formalized in Formula (2.23) and Formula
(2.24). Disjunction, implication, and equivalence can be derived from negation
and conjunction in the same way as in Boolean logic.

“(—p) =1 —-7(p) (2.23)
“(png) :="(p)-7(q) (2.24)

In that light, any proposition with an uncertain truth-value smaller than 1 or
greater than 0 is a fuzzy proposition. Additionally, every function with the range
[0,1] can be thought of as a truth function for a propositional function. For example,
statistical likelihood L(ylx) can be seen as a truth function for the propositional
function, “y is likely if x,” as a function of x. This idea is the basis for IFC proposed
in the next section. The usefulness of this generalization is shown in the chapter on
applications, in which fuzzy propositions such as “customers with characteristic
X are likely to buy product Y’ are assigned truth-values that are computed using
quantitative prediction modeling.
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2.2.2 Fuzzy Classification

A fuzzy class, C =~ {i ev ’ 1~7(1)}, is defined as a fuzzy set C of individuals i,
whose membership degree is defined by the Zadehan truth-value of the proposition
174 (7). The classification predicate, 1,is a propositional function interpreted in ZL.
The domain of the fuzzy class operator, ~ {.|.} : P — U", is the class of proposi-

tional functions, P, and the range is the fuzzy power set, U* (the set of fuzzy
subsets) of the universe of discourse, U. In other words, the fuzzy class operator
assigns fuzzy subsets of the universe of discourse to propositional functions.
Fuzzy classification is the process of assigning individuals a membership degree
to a fuzzy set, based on their degrees of truth of the classification predicate. It has
been discussed, for example, by Zimmermann (1997), Del Amo et al. (1999), and
Meier et al. (2008). A fuzzy classification is achieved by a membership function,
ug U — [0, 1], that indicates the degree to which an individual is a member of a

fuzzy class, C, given the corresponding fuzzy propositional function, I1. This
membership degree is defined by the Zadehan truth-value of the corresponding

proposition, I (i), as formalized in Formula (2.25).
pg(i) = (M (i) (2.25)

In the same way as in crisp classification, the fuzzy classification predicate refers
to attributes of individuals. Additionally, Zadehan logic introduces two new types
of characteristics. Zadehan attributes have a range of truth values represented by
T4 = [0, 1]. Linguistic attributes have a range of linguistic terms (fuzzy sets)
together with the Zadehan truth-value of membership in those terms (Zadeh,
1975b).

In a wunivariate fuzzy classification (UF), the fuzzy classification predicate 171
refers to one attribute, X, and it corresponds to the membership degree of the
attribute characteristic X(i) in a given fuzzy restriction (Zadeh, 1975a), R €y,
which is a fuzzy subset of possible characteristics y (Formula 2.26).

pyp(i) == 74 (X (i) is R) (2.26)

In a multivariate fuzzy classification (MVF), 17 refers to multiple attributes. The
truth function of the classification predicate for an individual, i, equals to an
aggregation, a, of several fuzzy restrictions of multiple attribute characteristics,
X(@),j=1 ... n(Formula 2.27).

gy (i) == a(ZH (X1 (i) is Ry, ..., X,(i) isRy,)) (2.27)

In a multidimensional fuzzy classification (MDF), I refers to n -tuples of
functionally independent attributes. The membership degree of individuals in a
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multidimensional class is based on an n -dimensional fuzzy restriction, R"
(Formula 2.28), which is a multidimensional fuzzy set on the Cartesian product
of the attribute ranges with a multidimensional membership function of
Umpr - range (X1) X ... X range (X,) — [0, 1].

X1(i)
typr(i) = 7 P |isR" (2.28)

2.3 Induction

Given a set of certainly true statements, deduction works fine. The problem is that
the only certainty philosophy can offer is Descartes’ “I think therefore I am”
proposition; however, postmodern philosophers are not so sure about the
I anymore (Precht, 2007, p. 62 ff). Therefore, one should be given a tool to reason
under uncertainty, and this tool is induction. In this chapter, inductive logic is
analyzed, the application of induction to fuzzy classification is discussed, and a
methodology for membership function induction using normalized ratios and
differences of empirical conditional probabilities and likelihoods is proposed.

2.3.1 Inductive Logic

Traditionally, induction is defined as drawing general conclusions from particular
observations. Contemporary philosophy has shifted to a different view because, not
only are there inductions that lead to particular conclusions, but also there are
deductions that lead to general conclusions. According to Vickers (2009) in the
Stanford Encyclopedia of Philosophy (SEP), it is agreed that induction is a form of
inference that is contingent and ampliative (“The contemporary notion of induc-
tion”, paragraph 3), in contrast to deductive inference, which is necessary and
explicative. Induction is contingent, because inductively inferred propositions are
not necessarily true in all cases. And it is ampliative because, in Vickers words,
“induction can amplify and generalize our experience, broaden and deepen our
empirical knowledge”(“The contemporary notion of induction”, paragraph 3). In
another essay in the SEP, inductive logic is defined as “a system of evidential
support that extends deductive logic to less-than-certain inferences” (Hawthorne,
2008, “Inductive Logic,” paragraph 1). Hawthorne admits that there is a degree of
fuzziness in induction: In an inductive inference, “the premises should provide
some degree of support for the conclusion” (“Inductive Logic,” para. 1). The degree
of support for an inductive inference can thus be viewed as a fuzzy restriction of
possible inferences, in the sense of Zadeh (1975a). Vickers (2009) explains that the
problem of induction is two-fold: The epistemic problem is to define a method to
distinguish appropriate from inappropriate inductive inference. The metaphysical
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problem is to explain in what substance the difference between reliable and
unreliable induction actually exists.

Epistemologically, the question of induction is to find a suitable method to infer
propositions under uncertainty. State of the art methods rely on empirical proba-
bilities or likelihoods. There are many interpretations of probability (Hajek, 2009).
For the context of this thesis, one may agree that a mathematical probability, P(A)
numerically represents how probable it is that a specific proposition A is true:
P(A) = 775(" A is probable "); and that the disjunction of all possible propositions,
the probability space €, is certain, i.e., P(Q2) = 1.

In practice, probabilities can be estimated by relative frequencies, or sampled
empirical probabilities p in a sample of n observations, defined by the ratio between
the number of observations, i, in which the proposition A; is true, and the total
number of observations (Formula 2.29).

,n TA,‘
P(A) ~p(A) := Z’;() (2.29)

A conditional probability (Weisstein, 2010a) is the probability for an outcome x,
given that y is the case, as formalized in Formula (2.30).

P(x|y) = (2.30)

Empirical sampled conditional probabilities can be applied to compute likeli-
hoods. According to James Joyce, “in an unfortunate, but now unavoidable, choice
of terminology, statisticians refer to the inverse probability Py(E) as the ‘likeli-
hood’ of H on E” (Joyce, 2003, “Conditional Probabilities and Bayes’ Theorem,”
paragraph 5). The likelihood of the hypothesis H is an estimate of how probable the
evidence or known data E is, given that the hypothesis is true. Such a probability is
called a “posterior probability” (Hawthorne, 2008, “inductive Logic,” paragraph 5),
that is, a probability after measurement, shown by Formula (2.31).

L(H|E):=p(E|H) (2.31)

In the sense of Hawthorne (2008), the general law of likelihood states that, for a
pair of incompatible hypotheses H; and H,, the evidence E supports H; over H,, if
and only if p(E1H,) > p(E|H>) The likelihood ratio (LR) measures the strength of
evidence for H over H, (Formula 2.32). Thus, the “likelihoodist” (sic; Hawthorne,
2008, “Likelihood Ratios, Likelihoodism, and the Law of Likelihood,” paragraph
5) solution to the epistemological problem of induction is the likelihood ratio as
measure of support for inductive inference.
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L(H, |E)

LR(H, > H, | E) := L(H|E)

(2.32)

According to Hawthorne, the prior probability of a hypothesis, po(H), that is, an
estimated probability prior to measurement of evidence E, plays an important role
for inductive reasoning. Accordingly, Bayes’ theorem can be interpreted and
rewritten using measured posterior likelihood and prior probability in order to
apply it to the evaluation of scientific hypotheses. According to Hawthorne
(2008), the posterior probability of hypothesis H conditional to evidence E is
equal to the product of the posterior likelihood of H given E and the prior
probability of H, divided by the (measured) probability of E (Formula 2.33).

L(H |E) - py(H)

PiH[8)= p(E)

(2.33)

What if there is fuzziness in the data, in the features of observations, or in the
theories? How is likelihood measured when the hypothesis or the evidence is fuzzy?
If this fuzziness is ordinal, that is, if the extent of membership in the fuzzy terms can
be ordered, a membership function can be defined, and an empirical probability of
fuzzy events can be calculated. Analogous to Dubois and Prade (1980), a fuzzy
event A in a universe of discourse U is a fuzzy set on U with a membership function
u7 = U — [0, 1]. For categorical elements of U, the estimated probability after
n observations is defined as the average degree of membership of observations
iin A , as formalized in Formula (2.34).

n

P(A) ~p(A) = 250 (234)

n

By application of Formula (2.34) to Formula (2.31), the likelihood of ordinal

fuzzy hypothesis H, given ordinal fuzzy evidence E, can be defined as a conditional
probability of fuzzy events, as shown in Formula (2.35).

L(A|E)=p(E | ) _W (235)

The question of the metaphysical problem of induction is: what is the substance
of induction? In what kind of material does the difference between reliable and
unreliable inductive inference exist? The importance of this question cannot be
underestimated, since reliable induction enables prediction. A possible answer
could be that the substance of an induction is the amount of information contained
in the inference. This answer presupposes that information is a realist category, as
suggested by Chmielecki (1998). According to Shannon’s information theory
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(Shannon, 1948), the information contained in evidence x about hypothesis y is
equal to the difference between the uncertainty (entropy), H(y), about the hypoth-
esis y and the resulting uncertainty, H,(y), after observation of the evidence x,
1(x, y) = H(y) — H{(y) = ZZyp(x A y)logop(x A y)/(p(x)p(y)). Shannon’s quan-
tity of information is defined in terms of joint probabilities. However, by applica-
tion of Shannon’s theory, the metaphysical problem of induction is transferred to a
metaphysical problem of probabilities because, according to Shannon, the basic
substance of information is the probability of two signals occurring simultaneously
compared to the probability of occurring individually. (One could link this solution
to the concept of quantum physical particle probability waves [Greene, 2011], but
this would go beyond the scope of this thesis and would be highly speculative;
therefore, this link is not explored here. Suffice it to state that probability apparently
is a fundamental construct of matter and waves as well as of information and
induction.)

2.3.2 Inductive Classification

Inductive classification is the process of assigning individuals to a set based on a
classification predicate derived by an inductive inference. Inductive classification
can be automated as a form of supervised machine learning (Witten & Frank, 2005):
a class of processes (algorithms or heuristics) that learn from examples to decide
whether an individual, i, belongs to a given class, y, based on its attributes.
Generally, supervised machine learning processes induce a model from a dataset,
which generalizes associations in the data in order to provide support for inductive
inference. This model can be used for predicting the class membership of new data
elements. Induced classification models, called classifiers, are first trained using a
training set with known class membership. Then, they are applied to a test or
prediction set in order to derive class membership predictions. Examples of clas-
sification learning algorithms that result in classifications are decision trees, clas-
sification rules, and association rules. In those cases, the model consists of logical
formulae of attribute values, which predict a crisp class value.

Data are signs (signals) that represent knowledge such as numbers, characters, or
bits. The basis for automated data analysis is a systematic collection of data on
individuals. The most frequently used data structure for analytics is the matrix, in
which every individual, i (a customer, a transaction, a website, etc.), is represented
by a row, and every attribute, X;, is represented by a column. Every characteristic,
X (i), of individual i for attribute X, is represented by one scalar value within the
matrix.

A training dataset d is an m X (n + 1) matrix with m rows, n columns for
X1, ..., X,, and a column Y indicating the actual class membership. The columns
X, 1 < k < n are called analytic variables, and Y is called the target variable,
which indicates membership in a target class y. In case of a binary classification, for
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each row index i, the label Y(i) is equal to 1 if and only if individual i is in class
y (Formula 2.36).

L1 oifiey
Y(i) = {0 else. (2.36)

A machine learning process for inductive sharp classification generates a model
M, (i), mapping from the Cartesian product of the analytic variable ranges into the
set {0, 1}, indicating inductive support for the hypothesis that i & y. As discussed
in the section on induction, the model should provide support for inductive infer-
ences about an individual’s class membership: Given M, (i) = 1, the likelihood of
i € y should be greater than the likelihood of i ¢ y.

The inductive model M, can be applied for prediction to a new dataset with
unknown class indicator, which is either a test set for performance evaluation or a
prediction set, where the model is applied to forecast class membership of new data.
The test set or prediction set d’ has the same structure as the training set d, except
that the class membership is unknown, and thus, the target variable Y is empty. The
classifier M,, derived from the training set, can be used for predicting the class
memberships of representations of individuals i & d. The model output prediction
M, (i) yields an inductive classification defined by {i | M, (i) = 1}.

In order to evaluate the quality of prediction of a crisp classifier model, several
measures can be computed. In this section, likelihood ratio and Pearson correlation
are mentioned. The greater the ratio between likelihood for target class member-
ship, given a positive prediction, and the likelihood for target class membership,
given a negative prediction, the better the inductive support of the model. Thus, the
predictive model can be evaluated by the likelihood ratio of target class member-
ship given the model output (Formula 2.37).

i)
)

1

(

p 1)
o ) (2.37)

=1 = -0

Working with binary or Boolean target indicators and model indicators allows
the evaluation of predictive quality by a measure of correlation of the two variables
M, and Y (Formula 2.38). The correlation between two numerical variables can be
measured by the Pearson correlation coefficient as the ratio between the covariance
of the two variables and the square root of the product of individual variances
(Weisstein, 2010b).

E((My — avg(M,)) (Y — avg(Y)))
stddev (M,) - stddev(Y)

corr(M,,Y) = (2.38)

The advantage of the correlation coefficient is its availability in database sys-
tems. Every standard SQL (structured query language) database has an implemen-
tation of correlation as an aggregate function. Thus, using the correlation
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coefficient, evaluating the predictive performance of a model in a database is fast
and simple. However, it is important to stress that evaluating predictions with a
measure of correlation is only meaningful if the target variable as well as the
predictive variable are Boolean, Zadehan, or numeric in nature. It will not work
for ordinal or categorical target classes, except if they are transformed into a set of
Boolean variables.

For example, in database marketing, the process of target group selection uses
classifiers to select customers who are likely to buy a certain product. In order to do
this, a classifier model can be computed in the following way: Given set of
customers C, we know whether they have bought product A or not. Let ¢ be an
individual customer, and C, be the set of customers who bought product A. Then,
the value Y(c) of target variable Y for customer c is defined in Formula (2.39).

1 ifc€ECy
Y(c) = {0 else. (2.39)

The analytic variables for customers are selected from every known customer
attribute, such as age, location, transaction behavior, recency, frequency, and
monetary value of purchase. The aim of the classifier induction process is to learn
a model, Mc,, that provides a degree of support for the inductive inference that a
customer is interested in the target product A. This prediction, M¢,(c) €{0,1},
should provide a better likelihood to identify potential buyers of product A, and it
should optimally correlate with the actual product usage of existing and future
customers.

2.4 Inductive Fuzzy Classification

The understanding of IFC in the proposed research approach is an inductive
gradation of the degree of membership of individuals in classes. In many interpre-
tations, the induction step consists of learning fuzzy rules (e.g., Dianhui, Dillon, &
Chang, 2001; Hu, Chen, & Tzeng, 2003; Roubos, Setnes, & Abonyi, 2003; Wang &
Mendel, 1992). In this thesis, IFC is understood more generally as inducing
membership functions to fuzzy classes and assigning individuals to those classes.
In general, a membership function can be any function mapping into the interval
between 1 and 0. Consequently, IFC is defined as the process of assigning individ-
uals to fuzzy sets for which membership functions are generated from data so that
the membership degrees are based on an inductive inference.

An inductive fuzzy class, y’, is defined by a predictive scoring model, M, : U
— [0, 1] , for membership in a class, y. This model represents an inductive
membership function for y’, which maps from the universe of discourse U into
the interval between O and 1 (Formula 2.40).
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uy U —[0,1] := M, (2.40)

Consider the following fuzzy classification predicate P(i, y) := “i is likely a
member of y.” This is a fuzzy proposition (Zadeh, 1975a) as a function of i and y,
which indicates that there is inductive support for the conclusion that individual
i belongs to class y. The truth function, 7%, of this fuzzy propositional function can
be defined by the membership function of an inductive fuzzy class, y'. Thus, P(i, y)
is a fuzzy restriction on U defined by u (Formula 2.41).

L (i is likely a member of y”) := M,(i) (2.41)

In practice, any function that assigns values between 0 and 1 to data records can
be used as a fuzzy restriction. The aim of IFC is to calculate a membership function
to a fuzzy set of likely members in the target class. Hence, any type of classifier
with a normalized numeric output can be viewed as an inductive membership
function to the target class, or as a truth function for the fuzzy proposition P(i, y).
State of the art methods for IFC in that sense include linear regression, logistic
regression, naive Bayesian classification, neural networks, fuzzy classification
trees, and fuzzy rules. These are classification methods yielding numerical pre-
dictions that can be normalized in order to serve as a membership function to the
inductive fuzzy class y' (Formula 2.42).

y = {iE U | i is likely a member of y} (2.42)
2.4.1 Univariate Membership Function Induction

This section describes methods to derive membership functions for one variable
based on inductive methods. First, unsupervised methods are described, which do
not require learning from a target class indicator. Second, supervised methods for
predictive membership functions are proposed.

Numerical attributes can be fuzzified in an unsupervised way, that is, without a
target variable, by calculating a membership function to a fuzzy class x is a large
number, denoted by the symbol T: the fuzzy set of attribute values that are large
relative to the available data. This membership function, u; : dom(C) — [0, 1],
maps from the attribute domain of the target variable into the set of Zadehan truth
values. This unsupervised fuzzification serves two purposes. First, it can be used to
automatically derive linguistic interpretations of numerical data, such as “large” or
“small.” Second, it can be used to transform numerical attributes into Zadehan
target variables in order to calculate likelihoods of fuzzy events. There are two
approaches proposed here to compute a membership function to this class: percen-
tile ranks and linear normalization based on minimum and maximum.

For a numeric or ordinal variable X with a value x ¢ dom(X), the percentile rank
(PR) is equal to the sampled probability that the value of the variable X is smaller
than x. This sampled probability is calculated by the percentage of values in dom(X)
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that are smaller than or equal to x. This sampled probability can be transformed into
a degree of membership in a fuzzy set. Inductively, the sampled probability is taken
as an indicator for the support of the inductive inference that a certain value, X;, is
large in comparison to the distribution of the other attribute values. The member-
ship degree of x in the fuzzy class “relatively large number”, symbolized by T, is
then defined as specified in Formula (2.43).

py(x) == p(X < x) (2.43)

For example, customers can be classified by their profitability. The percentile
rank of profitability can be viewed as a membership function of customers in the
fuzzy set T of customers with a high profitability. Figure 2.7 shows an example of an
IFC-PR of customer profitability for a financial service provider.

A simpler variant of unsupervised fuzzification for generating a membership
function for a relatively large number (1) is linear normalization (IFC-LN). For a
numerical attribute C, it is defined as the relative distance to the minimal attribute
value, as specified in Formula (2.44).



2.4 Inductive Fuzzy Classification 27

~ __ C(i) —min(C)
”“CO»"_anC)—nmmc) (2.44)
For the membership function induction (MFI) methods in the following sections,
the target variable for supervised induction must be a Zadehan variable, Y : U
— [0, 1] mapping from the universe of discourse (the set of possible individuals)
into the interval of Zadehan truth values between 0 and 1. Thus, Y7) indicates the
degree of membership of individual 7 in the target class y. In the special case of a
Boolean target class, Y7) is equal to 1 if i € y, and it is equal to 0 if i ¢ y. In the
analytic training data, a target class indicator Y can be deduced from data attributes
in the following way:

o If an attribute, A, is Zadehan with a range between 0 and 1, it can be defined
directly as the target variable. In fact, if the variable is Boolean, this implies that
it is also Zadehan, because it is a special case (Formula 2.45).

Zadehan(A) = p, (i) == A(i) (2.45)

e If an attribute, B, is categorical with a range of n categories, it can be
transformed into 7 Boolean variables y,; (k=1,2,...,n), where Hy (i) indicates
whether record i belongs to class &, as specified by Formula (2.46).

1 ifB(i) =k

categorical(B) = p(i): = { 0 else (2.46)

e If an attribute, C, is numeric, this thesis proposes application of an unsupervised
fuzzification, as previously specified, in order to derive a Zadehan target vari-
able, as formalized in Formula (2.47). This is called an inductive target
fuzzification (ITF).

numerical(C) = u,(i) := u; (C(i)) (2.47)

The second approach for univariate membership function induction is super-
vised induction based on a target variable. In order to derive membership functions
to inductive fuzzy classes for one variable based on the distribution of a second
variable, it is proposed to normalize comparisons (ratios and differences) of likeli-
hoods for membership function induction. For example, a normalized likelihood
ratio can represent a membership degree to an inductive fuzzy class.

The basic idea of inductive fuzzy classification based on normalized likelihood
ratios (IFC-NLR) is to transform inductive support of target class membership into
a membership function with the following properties: The higher the likelihood of
i € y in relation to i ¢ y, the greater the degree membership of i in y'. For an
attribute X, the NLR function calculates a membership degree of a value x € dom(X)
in the predictive class y’, based on the likelihood of target class membership. The
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resulting membership function is defined as a relation between all values in the
domain of the attribute X and their NLRs.

As discussed in Sect. 2.3.1, following the principle of likelihood (Hawthorne,
2008), the ratio between the two likelihoods is an indicator for the degree of support
for the inductive conclusion thati & y, given the evidence that X(i) = x In order to
transform the likelihood ratio into a fuzzy set membership function, it can be
normalized in the interval between O and 1. Luckily, for every ratio, R = A/B,
there exists a normalization, N = A/(A + B), having the following properties:

e Nisclose to 0 if R is close to 0.
e Nisequal to 0.5 if and only if R is equal to 1.
¢ Nisclose to 1 if R is a large number.

This kind of normalization is applied to the aforementioned likelihood ratio in
order to derive the NLR function. Accordingly, the membership u of an attribute
value x in the target class prediction y’ is defined by the corresponding NLR, as
formalized in Formula (2.48).

py () = NLR(y | ) = £ XL)(i |L’Ely 5 (2.48)

In fact, one can demonstrate that the NLR function is equal to the posterior
probability of y, conditional to x, if both hypotheses y and —y are assumed to be of
equal prior probability (Formula 2.52), by application of the second form of Bayes’
theorem (Joyce, 2003), as presented in Formula (2.50). The trick is to express the
probability of the evidence p(x) in terms of a sum of products of prior probabilities,
Do, and measured likelihoods, L, of the hypothesis and its alternative by application
of Formula (2.33).

Th
eorem NLR(y | ) = p(y | x) & poly) = po(—y) (2.49)
Proof

p(y | x) _Po (y;L(g | X) (c.f. Formula 2.33)

Po()’)L()’|x)

( | ) + po(=y)L(=y | %)

[lf p() =p(y)p(x | y) +p(=)p (x| —y) (2.50)
and p (:|p()> y) and p(x|y):=L(y|x)]

SO Y L]y ) =)
)

=: NLR (y |x q.ed.

Alternatively, two likelihoods can be compared by a normalized difference, as
shown in Formula (2.51). In that case, the membership function is defined by a
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normalized likelihood difference (NLD), and its application for classification is
called inductive fuzzy classification by normalized likelihood difference
(IFC-NLD). In general, IFC methods based on normalized likelihood comparison
can be categorized by the abbreviation IFC-NLC.

Ly|o) —Llzy[o)+1
2

py (x) :==NLD(y | x) = (2.51)

If a target attribute is continuous, it can be mapped into the Zadehan domain of
numeric truth-values between 0 and 1, and membership degrees can be computed
by a normalized ratio of likelihoods of fuzzy events. If the target class is fuzzy, for
example because the target variable is gradual, the likelihoods are calculated by
fuzzy conditional relative frequencies based on fuzzy set cardinality (Dubois &
Prade, 1980). Therefore, the formula for calculating the likelihoods is generalized
in order to be suitable for both sharp and fuzzy characteristics. Thus, in the general
case of variables with fuzzy truth-values, the likelihoods are calculated as defined in
Formula (2.52).

Zin:l (D) (7)
Zf; iy (D)
Zin:l (0 (1 = 1, (D))

L(=yl) = 7

Zi:l (1 - ”-V(i))

Accordingly, the calculation of membership degrees using the NLR function
(Formula 2.52) works for both categorical and fuzzy target classes and for categor-
ical and fuzzy analytic variables. For numerical attributes, the attribute values can
be discretized using quantiles, and a piecewise linear function can be approximated
to average values in the quantiles and the corresponding NLR. A membership
function for individuals based on their attribute values can be derived by aggrega-
tion, as explained in Sect. 2.4.2.

Following the different comparison methods for conditional probabilities
described by Joyce (2003), different methods for the induction of membership
degrees using conditional probabilities are proposed in Table 2.1. They have been
chosen in order to analytically test different Bayesian approaches listed by Joyce
(2003) for their predictive capabilities. Additionally, three experimental measures
were considered: logical equivalence, normalized correlation, and a measure based
on minimum and maximum. In those formulae, x and y are assumed to be Zadehan
with a domain of [0,1] or Boolean as a special case. These formulae are evaluated as
parameters in the meta-induction experiment described in Sect. 4.2.

A method for discretization of a numerical range is the calculation of quantiles
or n-tiles for the range of the analytical variable. A quantile discretization using -
tiles partitions the variable range into n intervals having the same number of
individuals. The quantile Qf(i) for an attribute value Z(i), of a numeric attribute

Liylx) =
(2.52)
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Table 2.1 Proposed formulae for induction of membership degrees

Method Formula
Likelihood of y given x (L) L(ylx) = p(xly)
N lized likelihood ratio (NLR ¢
ormalized likelihood ratio ( ) NLR(y | x) | p(5 }y)
P [) (] )
N lized likelihood rati ditional (NLRU x
ormalized likelihood ratio unconditional ( ) NLRU(y | X)p(i,(y‘ ilm
Ni lized likelihood diff NLD x| y)-p(x| =
ormalized likelihood difference ( ) NLD(y | ) :p(/ [5) 12( [ )1
Normalized likelihood difference unconditional y | x)=p()+1
(NLDU) NLDU (y | x) = '7(!%

Conditional probability of y given x (CP) pOlx)
Normalized probability ratio (NPR X

Normalized probability ratio unconditional (NPRU) (
NPRU(y | x) = AR
(v

Normalized probability difference (NPD) NED (y ! x) _» (y | c {
Nor(r;l}z;};)z;c; probability difference unconditional NPDU (y | x) _r (y ‘ x)z—p(y)ﬂ
Equivalence—if and only if (IFF) avg
@=x-1A=-y) - A=y -1A=x))
Minimum-maximum (MM) p(y ‘ ,\») NN,  gom(x) ([, (y | 7))
min, & gom(x) (17 (,V ‘ z )+maxzedoun(X) ([7 ()' | 7))
Normalized correlation (NC) Corr(gy)ﬂ

Z and an individual i, is calculated using Formula (2.53), where # is the number of
quantiles, m is the total number of individuals or data records, rankz(i) is the
position of the individual in the list of individuals sorted by their values of attribute
Z, and trunc(r) is the closest integer that is smaller than the real value r.

QF(i) = trunc (% (rankz (i) — 1)) (2.53)

The rank of individual i relative to attribute Z, rank,(i), in a dataset S is the
number of other individuals, /4, that have higher values in attribute Z, calculated
using Formula (2.54).

rankz(i) == [{hES |ViES : Z(h) > Z(i) }| (2.54)

In order to approximate a linear function, the method of two-dimensional
piecewise linear function approximation (PLFA) is proposed. For a list of points
in R?, ordered by the first coordinate, ({x1, Y1) (X2, ¥2)5 -« s {Xny Y0)), for every
point (x;, y;) except the last one (i = 1, 2, ..., n — 1), a linear function, f;(x) =
a;x + b;, can be interpolated to its neighbor point, where a; is the slope (For-
mula 2.55) and b; is the intercept (Formula 2.56) of the straight line.
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()’i+1 - )’i)
aj = -——-—"2= 2.55
(Xi+1 - Xi) ( )
bi:=y;, — aix; (2.56)

For the calculation of membership degrees for quantiles, the input is a list of
points with one point for every quantile k. The first coordinate is the average of the
attribute values in k. The second coordinate is the inductive degree of membership
wy in target class y, given Z(i) is in quantile k, for example derived using the NLR

function.

Vi = py (k)
. iy 2.57
xe = avg{Z(i) | Q7 (i) =k} (2.57)
Finally, a continuous, piecewise affine membership function can be calculated,
truncated below 0 and above 1, and is composed of straight lines for every quantile

k=1,...,n— 1; n > 2 of the numeric variable Z (Formula 2.58).
0 lapx + by <0Va,—1x+b,-1 <0
aix + b, lx < xp
Hy(X) == S arx + by X < X < Xy (2.58)
A X+ by x> x,
1 aix+by>1Va, (x+b,_1>1

The number of quantiles can be optimized, so that the correlation of the
membership function with the target variable is optimal, as illustrated in Fig. 2.8.

2.4.2 Multivariate Membership Function Induction

As shown in Fig. 2.9, the proposed process for inducing a multivariate inductive
fuzzy class consists of preparing the data, inducing univariate membership func-
tions for the attributes, transforming the attribute values into univariate target
membership degrees, classifying individuals by aggregating the fuzzified attributes
into a multivariate fuzzy classification, and evaluating the predictive performance
of the resulting model.

The idea of the process is to develop a fuzzy classification that ranks the
inductive membership of individuals, i, in the target class y gradually. This fuzzy
classification will assign individuals an inductive membership degree to the pre-
dictive inductive fuzzy class y' using the multivariate model py - The higher the
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inductive degree of membership y/ (i) of an individual in y', the greater the degree
of inductive support for class membership in the target class y.

In order to accomplish this, a training set is prepared from source data, and the
relevant attributes are selected using an interestingness measure. Then, for every
attribute X;, a membership function, p yk, : dom(Xy) — [0, 1], is defined. Each yyk, is

induced from the data such that the degree of membership of an attribute value X;(7)
in the inductive fuzzy class y’ is proportional to the degree of support for the
inference that i & y. After that, in the univariate classification step, each variable,
Xy, is fuzzified using ,uy"',. The multivariate fuzzy classification step consists of

aggregating the fuzzified attributes into one multivariate model, uy, of data
elements that represents the membership function of individual i in y’. This induc-
tive fuzzy class corresponds to an IFC that can be used for predictive ranking of
data elements. The last step of the process is model evaluation through analyzing
the prediction performance of the ranking. Comparing the forecasts with the real
class memberships in a test set does this. In the following paragraphs, every step of
the IFC process is described in detail.

In order to analyze the data, combining data from various sources into a single
coherent matrix composes a training set and a test set. All possibly relevant
attributes are merged into one table structure. The class label Y for the target
variable has to be defined, calculated, and added to the dataset. The class label is
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restricted to the Zadehan domain, as defined in the previous section. For multiclass
predictions, the proposed process can be applied iteratively.

Intuitively, the aim is to assign to every individual a membership degree in the
inductive fuzzy class y'. As explained in Sect. 2.3.1, this degree indicates support
for the inference that an individual is a member of the target class y. The member-
ship function for y’ will be derived as an aggregation of inductively fuzzified
attributes. In order to accomplish this, for each attribute, a univariate membership
function in the target class is computed, as described in the previous section.

Once the membership functions have been induced, the attributes can be
fuzzified by application of the membership function to the actual attribute values.
In order to do so, each variable, X}, is transformed into an inductive degree of
membership in the target class. The process of mapping analytic variables into the
interval [0, 1] is an attribute fuzzification. The resulting values can be considered a
membership degree to a fuzzy set. If this membership function indicates a degree of
support for an inductive inference, it is called an inductive attribute fuzzification
(IAF), and this transformation is denoted by the symbol ~» inFormula (2.59).

Xi(i) ~ pyy (X (1)) (2.59)

The most relevant attributes are selected before the IFC core process takes place.
The proposed method for attribute selection is a ranking of the Pearson correlation
coefficients (Formula 2.38) between the inductively fuzzified analytic variables and
the (Zadehan) target class indicator Y. Thus, for every attribute, X, the relevance
regarding target y is defined as the correlation of its inductive fuzzification with the
target variable (see Sect. 3.1.1).

In order to obtain a multivariate membership function for individuals i derived
from their fuzzified attribute values p, (Xi(i)), their attribute value membership
degrees are aggregated. This corresponds to a multivariate fuzzy classification of
individuals. Consequently, the individual’s multivariate membership function u,
: U — [0, 1] to the inductive fuzzy target class y’ is defined as an aggregation, aggr,
of the membership degrees of n attributes, X;, k = 1, 2, ..., n (Formula 2.60).

py (1) 1= agr (1 (G (), oty (X,(0))) (2.60)

By combining the inductively fuzzified attributes into a multivariate fuzzy class
of individuals, a multivariate predictive model, Hy's is obtained from the training set.
This corresponds to a classification of individuals by the fuzzy proposition “i is
likely a member of y,” for which the truth value is defined by an aggregation of the
truth values of fuzzy propositions about the individual’s attributes, X;(i) is y’. This
model can be used for IFC of unlabeled data for predictive ranking. Applying an

alpha cutoff, {i ’ Hy (i) > a}, an a € [0, 1] leads to a binary classifier.

There are different possibilities for calculating the aggregation, aggr. Simpler
methods use an average of the attribute membership degrees, logical conjunction
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(minimum, algebraic product), or logical disjunction (maximum, algebraic sum).
More sophisticated methods involve the supervised calculation of a multivariate
model. In this thesis, normalized or cutoff linear regression, logistic regression, and
regression trees are considered. These different aggregation methods were tested as
a parameter in the meta-induction experiment described in Sect. 4.2 in order to find
an optimal configuration.

Finally, in order to evaluate predictive performance, the classifier is applied to a
hold-out test set, and the predictions (i) are compared with the actual target

variable (7). The correlation between the prediction and the target, corr (,uyr, Y ) , can
be used to compare the performance of different IFC models.
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