
Chapter 2
Drift-Diffusion and Ballistic Transport

As the thermoballistic approach is devised to unify the drift-diffusion and ballistic
(thermionic) descriptions of carrier transport, we present in this chapter a detailed
exposition of the standard formulations of these two limiting cases. We consider
one-dimensional transport in three-dimensional, “plane-parallel” semiconducting
samples and disregard spin degrees of freedom. In the ballistic case, effects of carrier
tunneling and degeneracy are taken into account. The ranges of validity of the drift-
diffusion and ballistic models are indicated. With a view towards the thermoballistic
description of transport, we comment on the role of interface resistances and on the
chemical potential in the ballistic description.

2.1 Drift-Diffusion Transport

The drift-diffusion model is an extension of the transport model of Drude, so that
we begin here with an account of the latter. Drude’s model is far from being able
to describe transport properties of semiconductors quantitatively; nevertheless, its
exposition provides uswith the opportunity to introduce and discuss the basic notions
on which classical and semiclassical transport theories rely, and which will appear
ubiquitously throughout this book.

2.1.1 Drude’s Model

In the transport model of Drude [1–4], one considers a (three-dimensional) homo-
geneous classical gas of non-interacting electrons in thermodynamic equilibrium at
temperature T , which is subjected to an externally applied, constant electric field E.
The electrons collide with randomly distributed, spatially fixed scattering centers
(“impurities”). The collisions are assumed to cause the electrons to return instanta-
neously to complete thermodynamic equilibrium. The average vectorial velocity of
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6 2 Drift-Diffusion and Ballistic Transport

the electrons emerging from this equilibration is equal to zero. Their mean speed u,
i.e., the thermal average of the magnitude of the electron velocity as derived from the
three-dimensional Maxwell-Boltzmann velocity distribution function, is given by

u =
(

8

πm∗β

)1/2

, (2.1)

where m∗ is the effective electron mass, and β = 1/kBT , with kB the Boltzmann
constant. (Note that in Drude’s original papers [1, 2], the mean electron speed was
derived from Boltzmann’s equipartition theorem; the Maxwell-Boltzmann velocity
distribution was introduced into the description of electron transport in metals by
Lorentz [5].)

2.1.1.1 Drift Current

Defining the mean free path (or momentum relaxation length) l as the average dis-
tance (measured along the transport direction) traveled by the electrons between
two collisions, one finds for the collision time (or relaxation time) τ , defined as the
average time-of-flight between successive collisions,

τ = l

u
. (2.2)

Themean free path l characterizes a set of collision-free ballistic intervals of average
length l, across which electrons move ballistically under the influence of the external
field E. On average, they acquire a velocity, the drift velocity vdr , given by the
acceleration −eE/m∗ times their average time-of-flight across the ballistic intervals,
i.e., times the collision time τ ,

vdr = − eE
m∗ τ ≡ −νE, (2.3)

where

ν ≡ e

m∗ τ = e

m∗
l

u
= e

(
πβ

8m∗

)1/2

l (2.4)

is the electron mobility.
In the picture of Drude, the charge current density j (current, for short) is a drift

current, jdr , driven by the external electric field E,

j ≡ jdr = −envdr = enνE, (2.5)
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where n is the electron density. Since, in Drude’s model, n as well as the field E are
independent of position, j is constant. In terms of the electron conductivity

σ = eνn, (2.6)

the current j is expressed as
j = σE, (2.7)

i.e., in the form of Ohm’s law.
The transport mechanism in Drude’s model can be elucidated [4] by noting that

Eq. (2.3), when written as

− eE − m∗

τ
vdr = 0, (2.8)

states that the effect of the external force −eE is balanced, on average, by that of a
friction force −γvdr , with the friction coefficient γ given by

γ = m∗

τ
= e

ν
. (2.9)

The friction force reflects the reset to zero, on average, of their individual velocities
when, subsequent to their acceleration through the external field, the electrons are
thermally equilibrated due to impurity scattering.

2.1.1.2 Range of Validity

Limits on the range of validity of Drude’s model are set by the requirement that the
perturbation of the electron gas due to the external field is sufficiently small such
that the gas stays close to thermodynamic equilibrium. This condition can be met by
requiring the magnitude of the drift velocity to be very small as compared with the
mean speed of the electrons,

|vdr | � u. (2.10)

Using Eqs. (2.1), (2.3) and (2.4), condition (2.10) can be re-expressed in a form that
restricts, for given mean free path l, the magnitude of the electric-field vector E,

|E| � 8

πβel
. (2.11)

For a homogeneous sample of length S subjected to an externally applied voltage V ,
so that |E| = |V |/S, one has

|V | � 8S

πβel
. (2.12)
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Reversely, for given V , the ratio of mean free path to sample length is restricted by
the condition

l

S
� 8

πβe|V | . (2.13)

For room temperature, i.e., 1/β ≈ 0.025 eV, and values of e|V | of a few tens of
meV, which are typical for semiconducting devices, the right-hand side of condition
(2.13) is of order unity. Hence, one may use the condition

l

S
� 1 (2.14)

as a rough criterion for delimiting the range of validity of Drude’s model. The value
of l remains small if the density of impurities is sufficiently high.

2.1.2 Drift-Diffusion Model

Electron transport in inhomogeneous semiconductors is outside of the scope of
Drude’s model. The non-uniformity of the donor density in inhomogeneous sam-
ples entails a position dependence of the electron density, n = n(x), and gives rise to
an x-dependent internal (“built-in”) electrostatic potential [3, 6, 7]. [Throughout this
book, we consider one-dimensional transport in three-dimensional, “plane-parallel”
semiconducting samples, i.e., samples whose parameters do not vary in the direc-
tions perpendicular to the transport direction, which is taken as the x-direction (for a
discussion of this assumption, see Sect. 4.4.2). Further, the temperature T is assumed
to be constant across the sample.]

2.1.2.1 Local Thermodynamic Equilibrium

Transport in inhomogeneous systems near thermodynamic equilibrium can be
described in terms of a local thermodynamic equilibrium [3] characterized by a
local chemical potential μ(x)1 Disregarding spin degrees of freedom and adopting
the effective-mass approximation [3, 6], we have for the equilibrium electron density
n(x) in a nondegenerate system

n(x) = 4π

(
m∗

h

)3 ∞∫
−∞

dvx

∞∫
0

dwwf MB(E(v; x) − μ(x)). (2.15)

1 Throughout this book, we use the term “chemical potential” as defined in Ref. [3].

http://dx.doi.org/10.1007/978-3-319-05924-2_4
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Here, h is Planck’s constant, and we have introduced cylindrical coordinates in three-
dimensional velocity space (with Cartesian coordinates vx, vy, vz) such that

v = (v2x + w2)1/2, (2.16)

with w2 = v2y + v2z . The function

f MB(E) = e−βE (2.17)

is the Maxwell-Boltzmann energy distribution function, and

E(v; x) = ε(v) + Ec(x) (2.18)

is the total electronic energy at the equilibrium point x, with the kinetic energy

ε(v) = m∗

2
v2. (2.19)

The potential energy profile Ec(x), here assumed to be a prescribed function, com-
prises the conduction band edge potential (which includes the position-dependent
internal potential) and the external electrostatic potential. In general, Ec(x) exhibits
a “multiple-barrier” shape associated with local maxima of the profile. Evaluation
of the integrals in Eq. (2.15) results in the standard form for the density,

n(x) = Nce−β[Ec(x)−μ(x)], (2.20)

where

Nc = 2

(
2πm∗

βh2

)3/2

(2.21)

is the effective density of states at the conduction band edge [3].

2.1.2.2 Drift-Diffusion Current

The effects of the spatial variation of the electron density and of the associated occur-
rence of an internal potential in inhomogeneous semiconductors can be described
within an extension of Drude’s model, the drift-diffusion model. In this model, a gen-
eralized, x-dependent drift current jdr(x) is supplemented [3, 8–10] by a diffusion
current jdi(x) proportional to the density gradient along the x-axis, so that the total
(conserved) current j is given by

j = jdr(x) + jdi(x). (2.22)
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The generalized drift current is obtained from expression (2.7) by replacing (i) the
conductivity σ with the local conductivity σ(x) given by Eq. (2.6), with n(x) in
lieu of n, and (ii) the constant external electric field E with the field [dEc(x)/dx]/e
associated with the potential energy profile Ec(x), so that one obtains

jdr(x) = 1

e
σ(x)

dEc(x)

dx
. (2.23)

The diffusion current is written as

jdi(x) = eD
dn(x)

dx
, (2.24)

where D is the diffusion coefficient, which is related to the electron mobility ν via
the Einstein relation [3, 4],

D = ν

βe
= τ

m∗β
, (2.25)

and ν is now assumed to have the form corresponding to one-dimensional transport,

ν = e

(
2β

πm∗

)1/2

l (2.26)

[see Eq. (2.4) for the three-dimensional form of ν]. Then, generalizing Eq. (2.6), one
has

σ(x) ≡ eνn(x) = βe2Dn(x). (2.27)

For the total current j, one now finds from Eqs. (2.22)–(2.24), using Eq. (2.27),

j = 1

e
σ(x)

[
dEc(x)

dx
+ 1

βn(x)

dn(x)

dx

]
, (2.28)

which is the standard drift-diffusion expression (“drift-diffusion equation”) for the
total charge current. For the derivation of this expression fromBoltzmann’s transport
equation and for its application in device simulation, see, e.g., Ref. [11]. In Ref. [12],
the expression is derived within a time-dependent, tutorial treatment of diffusion in
the presence of an external electric field (“biased-random-walk model”).

2.1.3 Current-Voltage Characteristic and Chemical Potential

Substituting expression (2.20) for the equilibrium density n(x) in Eq. (2.28), we
obtain the current j in the form
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j = 1

e
σ(x)

dμ(x)

dx
, (2.29)

which shows that, in the drift-diffusionmodel, it is the local chemical potential which
provides the driving force for electron transport. Using Eqs. (2.20) and (2.27), we
can rewrite Eq. (2.29) as

βj

νNc
eβEc(x) = d

dx
eβμ(x). (2.30)

Considering a sample extending from x1 to x2, so that

S = x2 − x1 (2.31)

is the sample length, and integrating Eq. (2.30) over the interval [x1, x], we can
express the local chemical potential μ(x) in the form

eβμ(x) = eβμ(x1) + βj

νNc

x∫
x1

dx′eβEc(x′). (2.32)

An equivalent representation of μ(x) is obtained by integrating Eq. (2.30) over the
interval [x, x2].

2.1.3.1 Current-Voltage Characteristic

Now, setting x = x2 in Eq. (2.32), identifying the chemical potentials at the end-
points x1,2 with the potentials μ1,2 in the contacts connected to the semiconducting
sample,

μ(x1,2) = μ1,2, (2.33)

and solving the resulting equation for the current j, we then obtain, using Eq. (2.20),
the current-voltage characteristic of the drift-diffusion model in the form

j = −n(x1)e
−βEl

b(x1,x2)
ν

βS̃
(1 − e−βeV ). (2.34)

Here,

V = μ1 − μ2

e
(2.35)

is the voltage applied between the points x1 and x2, and

El
b(x1, x2) ≡ Em

c (x1, x2) − Ec(x1) ≥ 0 (2.36)
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is the maximum barrier height of the potential energy profile relative to its value
Ec(x1) at the left end of the sample, where Em

c (x1, x2) is the overall maximum of
Ec(x) in the interval [x1, x2]. Finally, the quantity

S̃ ≡
x2∫

x1

dxe−β[Em
c (x1,x2)−Ec(x)] (2.37)

is the “effective sample length”. It has the appealing property of becoming equal to
the sample length S when the profile is flat, i.e., when Ec(x) = const., and otherwise
satisfies S̃ < S. Writing the current-voltage characteristic in the particular form
(2.34) facilitates comparison with analogous expressions given below.

Expression (2.34) shows that the current-voltage characteristic of the drift-

diffusion model is controlled (i) by the “barrier factor” e−βEl
b(x1,x2), which involves

the overall maximum of the profile Ec(x), and (ii) by the ratio ν/S̃ or, owing
to Eq. (2.26), by the ratio l/S̃, in which the effective sample length reflects, in
an integral way, the shape of Ec(x). [In the ballistic description of transport, the

barrier factor e−βEl
b(x1,x2) re-appears as the thermally averaged probability for elec-

tron transmission from x1 to x2; see Eq. (2.68) below.]

2.1.3.2 Chemical Potential

Now, inserting expression (2.34) in Eq. (2.32), using Eqs. (2.20) and (2.33), and
defining

Ic(x
′, x′′) =

x′′∫
x′

dzeβEc(z), (2.38)

we can express the chemical potential μ(x) in the explicit form

eβ[μ(x)−μ1] = 1 − Ic(x1, x)

Ic(x1, x2)
(1 − e−βeV ), (2.39)

i.e., solely in terms of the potential energy profile Ec(x) and the voltage V . Equiva-
lently, we can write

eβ[μ(x)−μ2] = 1 + Ic(x, x2)

Ic(x1, x2)
(1 − e−βeV ) (2.40)

by using for μ(x) the representation obtained by integrating Eq. (2.30) over the
interval [x, x2]. It is easily seen that the two expressions (2.39) and (2.40) indeed
represent a unique chemical potential μ(x).
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2.1.3.3 Field-Driven Transport

As a special case, we consider electron transport in a homogeneous semiconductor
(i.e., in a homogeneously doped, monocrystalline semiconducting sample), driven
by a static external electric field of arbitrary magnitude (“field-driven transport”).
When the effect of Schottky barriers is disregarded, the field is spatially constant,
withmagnitude E = V/S. Assuming the field to be directed antiparallel to the x-axis,
we write the corresponding potential energy profile in the form

Ec(x) = Ec(x1) − ε

β
(x − x1), (2.41)

where the field parameter ε is given by

ε = βeE . (2.42)

For the effective sample length S̃, we then have

S̃ = 1

ε
(1 − e−εS), (2.43)

so that, using the relation

εS = βeV, (2.44)

we obtain for the current j from Eq. (2.34)

j = −n(x1)
ν

β
ε = −σ

V

S
, (2.45)

where the conductivity σ is given by Eq. (2.6). For the chemical potential μ(x), we
find from Eqs. (2.39) and (2.40), using relation (2.44),

μ(x) = Ec(x) + [μ1 − Ec(x1)] = Ec(x) + [μ2 − Ec(x2)]
≡ 1

2
(μ1 + μ2) − eV

x − (x1 + x2)/2

S
. (2.46)

The current j given by Eq. (2.45) is a pure drift current, i.e., in a homogeneous system,
there is no field-induced carrier diffusion in the drift-diffusion regime. Hence, the
equilibrium density n(x) given by Eq. (2.20) must be constant across the sample.
As the chemical potential μ(x) given by Eq. (2.46) runs parallel to potential energy
profile Ec(x) given by Eq. (2.41), this requirement is indeed fulfilled here.
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2.1.4 Range of Validity

The drift-diffusion model is based on the assumption of a continuously varying
equilibrium chemical potential μ(x), which implies that the sample length is covered
by points of local thermodynamic equilibrium that lie arbitrarily dense. Then, strictly
speaking, the mean free path l must be confined to arbitrarily small values. On the
other hand, l (or the mobility ν) must be finite and large enough to give rise to a non-
vanishing conductivity of a magnitude in the range of typical experimental values,
which calls for a relaxation of the former condition.

To obtain a practical criterion for the range of validity of the drift-diffusionmodel,
one may require l to be so small that the effective number of points of local ther-
modynamic equilibrium along the length of the sample is so large that the spatial
variations in the potential energy profile Ec(x), and hence in the electron density
n(x), are “resolved” with sufficient accuracy. In terms of a local, x-dependent mean
free path l(x), this requirement may be expressed as

l(x) � Δx, (2.47)

where Δx is the length of an interval, centered at the point x, over which the relative
variation of Ec(x) is very small compared to unity, i.e.,

1

Ec(x)

∣∣∣∣dEc(x)

dx

∣∣∣∣Δx � 1. (2.48)

For constant mean free path l, one may fulfill the above requirement in an overall
way by adopting the condition

l

S̃
� 1. (2.49)

The effective sample length S̃ defined by the integral (2.37) tends to decrease expo-
nentially when rapid variations in Ec(x) are “switched on”. Condition (2.49) tightens
condition (2.14) so as to permit the “resolution” of the details of the profile Ec(x).

2.2 Ballistic (Thermionic) Transport

In contrast to the drift-diffusion model, in which the points of local thermodynamic
equilibrium are assumed to lie arbitrarily dense, the ballistic (thermionic) transport
model presupposes the complete absence of such points inside the sample. Then,
the electrons in the sample perform a collision-free ballistic motion in the field
associated with the potential energy profile Ec(x). Without thermal equilibration, it
is meaningless to speak of a local chemical potential. Only at the sample ends at x1,2,
the electrons are forced into equilibrium, with densities
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n(x1,2) = Nce−β[Ec(x1,2)−μ1,2] (2.50)

determined by the boundary values of the potential energy profile, Ec(x1,2), and by
the chemical potentials μ1,2 in the contacts. Here, the mean free path l, which has
been of central importance in Drude’s model and in the drift-diffusion model, is
effectively of infinite length and does not appear in the formalism of the ballistic
model. Hence, roughly speaking, one may use the condition

l

S
	 1 (2.51)

to delimit the range of validity of the ballistic model.

2.2.1 Nondegenerate Case

In the ballistic model, the end-points x1,2 of the sample are fixed points of local
thermodynamic equilibrium with chemical potentials μ(x1,2) = μ1,2, out of which
thermal electron currents are symmetrically emitted towards the left and right, so
that only one half of each of these currents are emitted towards the inner region of
the sample.

2.2.1.1 Emitted Currents

For a nondegenerate system, the classical electron current Jl(x1) emitted at the left
end-point x1 towards the right, say, is expressed, in extension of Eq. (2.15) for the
electron density n(x), in the form

Jl(x1) = 4π

(
m∗

h

)3 ∞∫
0

dvxvx

∞∫
0

dwwf MB(E(v; x1) − μ1)

= 4πm∗2

βh3

∞∫
0

dvxvxf MB(E(vx; x1) − μ1) (2.52)

[here and in the following, we use the symbol J to denote any electron current
density (current, for short), as opposed to j used for the charge current density].
Using Eq. (2.50), we then find

Jl(x1) = veNce−β[Ec(x1)−μ1] = ven(x1), (2.53)
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where

ve =
(

m∗β
2π

)1/2 ∞∫
0

dvxvxf MB(m∗v2x /2) =
(

1

2πm∗β

)1/2

(2.54)

is the emission velocity, which is actually equal to one half of the one-dimensional
mean electron speed

u =
(

2

πm∗β

)1/2

, (2.55)

the three-dimensional analogue of which is given by Eq. (2.1).

2.2.1.2 Transmitted Currents

The electrons emitted at x1 with velocity component v
(1)
x move along ballistic

trajectories, thereby conserving their total energy,

E(vx; x) = E(v(1)
x ; x1), (2.56)

where x is any point inside the interval [x1, x2]. Therefore, although x is not a point
of local thermodynamic equilibrium, we can associate with it an equilibrium energy
distribution which is equal to that at x1. Now, since only electrons with total energy
larger than the overall maximum Em

c (x1, x2) of Ec(x) [see Eq. (2.36)] are classically
able to reach the right end-point of [x1, x2] at x2, part of the current Jl(x1) emitted
at x1 will be reflected, and the electrons forming it are absorbed when they return to
their origin at x1. The other, transmitted part Jl(x1, x2; x), called the (left) “ballistic
current”, is absorbed into the contact connected to the sample at x2. Modifying
expression (2.52), we have for this part

Jl(x1, x2; x) = 4πm∗2

βh3

∞∫
0

dvxvxf MB(E(vx; x) − μ1)

× Θ(E(vx; x) − Em
c (x1, x2)). (2.57)

In the integration, the potential energy profileEc(x) contained in the functionE(vx; x)
drops out, and we obtain for the (left) ballistic current the expression

Jl(x1, x2) = veNce−β[Em
c (x1,x2)−μ1], (2.58)

which is independent of x, i.e., the ballistic current is conserved, as expected. The
(right) ballistic current Jr(x1, x2) transmitted from the right end-point x2 of the
interval [x1, x2] is given by
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Jr(x1, x2) = −veNce−β[Em
c (x1,x2)−μ2], (2.59)

in analogy to Eq. (2.58).
The ballistic currents (2.58) and (2.59) bear a close analogy to the “thermionic

emission current” associated with the evaporation of electrons from a heated metal
(“Richardson effect”) [13–16]. In semiconductor physics, “thermionic emission”was
introduced as a mechanism of carrier transport by Bethe [17, 18] in his treatment of
electron transport across a Schottky barrier.

2.2.1.3 Ballistic Densities

Associated with the ballistic currents Jl,r(x1, x2) are the “ballistic densities”
nl,r(x1, x2; x) of the electrons making up the currents inside the ballistic interval
[x1, x2]. These densities will turn out to be instrumental in establishing the spin-
dependent thermoballistic scheme (see Sect. 4.2).

The density nl(x1, x2; x) associated with the current Jl(x1, x2; x) of Eq. (2.57) is
given by

nl(x1, x2; x) = 4πm∗2

βh3

∞∫
0

dvxf MB(E(vx; x) − μ1)

× Θ(E(vx; x) − Em
c (x1, x2)), (2.60)

which is evaluated to yield

nl(x1, x2; x) = Nc

2
Cm(x1, x2; x)e−β[Em

c (x1,x2)−μ1]. (2.61)

Here,

Cm(x1, x2; x) = eβ[Em
c (x1,x2)−Ec(x)]erfc({β[Em

c (x1, x2) − Ec(x)]}1/2), (2.62)

where the function

erfc(x) = 2√
π

∞∫
x

dze−z2 (2.63)

is the complementary error function [19]. The ballistic density is position-dependent
via the x-dependence of the functionCm(x1, x2; x), i.e., of the potential energy profile
Ec(x). The ballistic density nr(x1, x2; x) associated with the current Jr(x1, x2) is
obtained by replacing μ1 with μ2 in expression (2.61).

The function Cm(x1, x2; x) determines the “ballistic velocities”

http://dx.doi.org/10.1007/978-3-319-05924-2_4
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vl,r(x1, x2; x) ≡ Jl,r(x1, x2)

nl,r(x1, x2; x)
= ± 2ve

Cm(x1, x2; x)
, (2.64)

which have the same magnitude for the currents transmitted from the left and right.
For constant potential energy profile, one has Cm(x1, x2; x) = 1, and the electrons
move with speed 2ve, i.e., with the mean electron speed u given by Eq. (2.55). For
position-dependent profiles, when Cm(x1, x2; x) < 1, the magnitude of the ballistic
velocities is larger than u.

2.2.1.4 Net Currents and Joint Densities

The net ballistic current J(x1, x2) in the interval [x1, x2],

J(x1, x2) = Jl(x1, x2) + Jr(x1, x2) ≡ J (2.65)

equals the (conserved) total current J , which we can express, using Eqs. (2.58) and
(2.59), as

J = veNce−βEm
c (x1,x2)(eβμ1 − eβμ2). (2.66)

This can be rewritten, using Eqs. (2.35) and (2.50), in the form

J = ven(x1)T̄
l(x1, x2)(1 − e−βeV ). (2.67)

Here,

T̄ l(x1, x2) ≡ β

∞∫
0

dεe−βεT(x1, x2; ε + Ec(x1)) = e−βEl
b(x1,x2), (2.68)

with El
b(x1, x2) given by Eq. (2.36), is the thermal average of the classical transmis-

sion probability

T(x1, x2; E) = Θ(E − Em
c (x1, x2)) (2.69)

for electrons emitted at x1 with total energy E = ε + Ec(x1) to be transmitted to the
point x2. If, in particular, the potential energy profile is constant across the interval
[x1, x2], or if its maximum lies at the emission point x1 itself, then Em

c (x1, x2) =
Ec(x1) in Eq. (2.36), and hence T̄ l(x1, x2) = 1.

Relation (2.67) is the current-voltage characteristic of the (classical) ballistic trans-
port model. In contrast to the characteristic (2.34) of the drift-diffusion model, which
involves the mean free path l and the potential energy profile Ec(x) [via the effective
sample length S̃], the characteristic (2.67) is controlled by one “material parameter”
only, viz., the thermally averaged transmission probability T̄ l(x1, x2).
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For the joint ballistic density n(x1, x2; x),

n(x1, x2; x) = nl(x1, x2; x) + nr(x1, x2; x), (2.70)

we have

n(x1, x2; x) = Nc

2
Cm(x1, x2; x)e−βEm

c (x1,x2)(eβμ1 + eβμ2), (2.71)

in analogy to expression (2.66) for the net ballistic current.

2.2.2 Electron Tunneling

The ballistic transport model is straightforwardly extended so as to include elec-
tron tunneling by replacing the classical transmission probability T(x1, x2; E) of
Eq. (2.69) with the corresponding quantal probability T (x1, x2; E). The thermally
averaged quantal transmission probability is then, in generalization of expression
(2.68), given by

T̄ (x1, x2) = β

∞∫
0

dεe−βεT (x1, x2; ε + E>
c (x1, x2)), (2.72)

where

E>
c (x1, x2) ≡ max{Ec(x1), Ec(x2)}. (2.73)

The probability T (x1, x2; E) is obtained by solving the stationary Schrödinger equa-
tion with the potential energy function Ec(x). [Owing to time reversal invariance, the
probability for transmission from the left equals that for transmission from the right.]
The integration in Eq. (2.72) starts at the total energy E>

c (x1, x2), so that scattering
boundary conditions can be imposed on the wave function both in the ranges x ≤ x1
and x ≥ x2.

In WKB approximation [20, 21], the transmission probability T (x1, x2; E) to be
used in Eq. (2.72) is composed of the classical (“over-barrier”) part T(x1, x2; E)

given by Eq. (2.69) and the remaining quantal (“sub-barrier”) part Tsb(x1, x2; E),

T (x1, x2; E) = T(x1, x2; E) + Tsb(x1, x2; E). (2.74)

The sub-barrier contribution has the form

Tsb(x1, x2; E) = Θ(Em
c (x1, x2) − E)Pc(x1, x2; E), (2.75)
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where

Pc(x1, x2; E) = exp

⎛
⎝−2

x2∫
x1

dxκc(x)

⎞
⎠ , (2.76)

with

κc(x) = 1

�
{2m∗[Ec(x) − E]}1/2Θ(Ec(x) − E), (2.77)

is the barrier penetration factor.
In writing Tsb(x1, x2; E) in the form (2.75), we disregard resonance effects that

may occur when Ec(x) exhibits two or more local maxima in the interval [x1, x2],
with a corresponding number of one or more minima in between. Then, when the
energy E is located below the second-highest maximum and above the lowest min-
imum, there is at least one “valley” in Ec(x), across which the electron motion is
classically allowed, so that resonance formation due to quantum coherence becomes
possible. In semiconductor physics, a concrete realization of this situation occurs in
resonant tunneling in multiple-barrier quantum-well structures (see, e.g., Ref. [22]).
For this case, the fullWKB tunneling probability for double-barrier and triple-barrier
structures, respectively, has been presented in Ref. [23].

From Eq. (2.74), we now find for the WKB form of the thermally averaged trans-
mission probability T̄ (x1, x2) of Eq. (2.72)

T̄ (x1, x2) = T̄(x1, x2) + T̄sb(x1, x2). (2.78)

Here, we have

T̄(x1, x2) = e−βEb(x1,x2), (2.79)

with

Eb(x1, x2) = Em
c (x1, x2) − E>

c (x1, x2), (2.80)

for the over-barrier contribution, and

T̄sb(x1, x2) = β

∞∫
0

dεe−βεPc(x1, x2; ε + E>
c (x1, x2))Θ(Eb(x1, x2) − ε) (2.81)

for the sub-barrier contribution.
The thermally averaged quantal probability T̄ l(x1, x2) for transmission from the

left end-point at x1 can be expressed in terms of T̄ (x1, x2), using Eqs. (2.36) and
(2.80), as
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T̄ l(x1, x2) = T̄ (x1, x2)e
−β[E>

c (x1,x2)−Ec(x1)]. (2.82)

In analogy to Eq. (2.67) for the classical case, we have

J = ven(x1)T̄ l(x1, x2)(1 − e−βeV ) (2.83)

for the current-voltage characteristic of tunneling-enhanced ballistic transport.

2.2.3 Degenerate Case

In the degenerate case, when the electron system obeys Fermi-Dirac statistics, we
write the ballistic current Jl(x1, x2) in the form [see Eqs. (2.52) and (2.57) for the
nondegenerate case]

Jl(x1, x2; x) = 4π

(
m∗

h

)3 ∞∫
0

dvxvx

∞∫
0

dww

× f FD(E(v; x) − μ1)Θ(E(v; x) − Em
c (x1, x2)), (2.84)

where f FD(E) is the Fermi-Dirac energy distribution function,

f FD(E) = 1

1 + eβE
. (2.85)

Expression (2.84) for the current Jl(x1, x2; x) formally agrees with the expression
for the current of evaporated electrons encountered in the degenerate treatment of
the Richardson effect [15, 16]. Following the procedure of Ref. [15], we can reduce
the threefold integration in Eq. (2.84) to a single integration over the kinetic energy
ε = m∗w2/2, obtaining

Jl(x1, x2) = 4πm∗

βh3

∞∫
0

dε ln(1 + e−β(ε−μ1))Θ(ε − Em
c (x1, x2)). (2.86)

The ballistic current Jr(x1, x2) transmitted from the right end-point of the sample at
x2 is the negative of expression (2.86), with μ2 substituted for μ1. The total current
J [see Eq. (2.65)] is thus obtained as

J = veNcβ

∞∫
0

dε[ln(1+ e−β(ε−μ1))− ln(1+ e−β(ε−μ2))]Θ(ε−Em
c (x1, x2)). (2.87)
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Here, we have expressed the factor preceding the integral in Eq. (2.86) in terms
of the emission velocity, ve, and the effective density of states, Nc, which are nonde-
generate quantities given by Eqs. (2.21) and (2.54), respectively. Expression (2.87)
for the total current J is the degenerate analogue to the nondegenerate current-voltage
characteristic (2.66).

For low external electric fields (“low-field transport”) characterized by the
condition

εS = βeV � 1 (2.88)

[see Eq. (2.44)], we find, expanding the right-hand side of Eq. (2.87) to first order in
βeV ,

J = veNcβeV

⎡
⎣ ∂

∂μ

∞∫
0

dε ln(1 + e−β(ε−μ))Θ(ε − Em
c (x1, x2))

⎤
⎦

μ=μ1

= veNcβeV ln(1 + e−β[Em
c (x1,x2)−μ1]), (2.89)

where we have used Eq. (2.35). For the conductance per unit area in the ballistic
transport model, we now have

g ≡ eJ

V

∣∣∣∣
V →0

= βe2veNc ln(1 + e−β[Em
c (x1,x2)−μ1]). (2.90)

In highly doped, degenerate semiconductors, we may have

Em
c (x1, x2) − μ1 < 0 (2.91)

(see, e.g., Ref. [24], where grain-boundary-limited transport in polycrystalline mate-
rials is considered). Then, if

β[μ1 − Em
c (x1, x2)] 	 1, (2.92)

we find from Eq. (2.90)

g = β2e2veNc
[
μ1 − Em

c (x1, x2)
]
, (2.93)

which equals the conductance of a ballistic point contact [25, 26].

2.2.4 Interface Resistances and Chemical Potential

In closing this section, we note that the ballistic transport model does not
provide information onwhere the resistance causing the voltage drop is located along
the sample. Evidently, it cannot be inside the collision-free sample. In the quantal
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description of ballistic electron transport in mesoscopic systems as formulated by
Landauer [27–31], the resistance is made up solely of the interface resistances aris-
ing from the abrupt change in the density of states (“transverse modes”) that the
electrons encounter when they move across the interfaces separating the contacts
(with infinitely many modes) from the sample (with a few modes only). The voltage
drop is located, therefore, in the immediate vicinity of the interfaces, so that, when
a chemical potential is introduced ad hoc, this must be constant inside the sample
and discontinuous at the interfaces. Prior to the work of Landauer, the importance of
interface resistances in ballistic transport had been emphasized by Sharvin [25].

Anticipating the later development, we remark at this juncture that in the ther-
moballistic approach, i.e., for arbitrary, finite magnitude of the mean free path, the
(local) chemical potential is a constitutive element of the transport mechanism; it
is defined, and can be explicitly calculated, all along a semiconducting sample.
This potential has discontinuities at the contact-sample interfaces, whose magnitude
increases from near-zero in the small-l, drift-diffusion regime to the Sharvin value
in the large-l, ballistic regime. For more details, see Sect. 5.2.4.
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