Chapter 2
Theoretical Principles

In this chapter we shall present a phenomenological description of nuclear spin
dynamics, including relaxation, in a magnetic field (i.e., the Bloch equations) as well
as a more accurate description using the principles of quantum mechanics (Redfield
relaxation theory). We shall then use these concepts to develop analytical models
to describe relaxation dispersion experiments and to derive analytical functions that
allow one to extract information from the experimental data.

2.1 The Bloch Equations

In this section we shall follow the approach of [1]. The semiclassical vector model
developed by Felix Bloch in [2] describes the behavior of an ensemble of noninter-
acting spin-1/2 nuclei in a static magnetic field but fails in describing more complex
systems, where a quantum mechanical approach is required. However, because the
basic concepts and terminology are still used in modern NMR, we shall briefly present
the Bloch equations.

2.1.1 Equations Describing Spin Dynamics in the Absence
of Relaxation

The evolution of the bulk magnetization vector M (¢) in the presence of a magnetic
field B (7) is described by

dM (1)
dt

=M () x yB (1) 2.1)

where y is the gyromagnetic ratio of the nuclei of interest. Equation 2.1 is valid in
the laboratory frame. It is convenient to rewrite it in a frame that rotates with angular
velocity w around the z-axis, defined by the unit vector k:
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AM (] [dM ()
|: dt ]rot B |: dt

=M (1) x [yB (1) + wk] . (2.2)

} + M () x wk
lab

The two equations can be actually written in the same form, provided that B (7) is
replaced by an effective field defined as

By =B (1) + —k. 2.3)
v

For a static field |B (¢)| = By, the effective field is zero if w is chosen to correspond
to the Larmor frequency
wy = —y By, 2.4)

and the bulk magnetization appears to be stationary. In other terms, in the absence of
other fields the bulk magnetization simply precesses at the Larmor frequency around
the magnetic field that defines the z-direction of the laboratory and rotating frames.

The magnetic component of a radio-frequency (rf) field that is linearly polarized
along the x-axis of the laboratory frame is

B, (t) = 2B cos (wyst + @) i
= Bi{cos (wyrt + ¢) i + sin (w7 + ¢) j}
+ Bi{cos (w1 + ¢) i — sin (wyrt + @) j}, (2.5)

where B is the amplitude of the applied 7f field, s its angular (or carrier) frequency,
¢ its phase, and i and j are unit vectors defining the x- and y-axes, respectively. In the
second equality of the previous equation, we decomposed the linearly polarized rf
field into two circularly polarized components, with opposite directions of rotation
around the z-axis. Only the component rotating in the same sense as the magnetic
moment can interact with the nuclear spins. The counter-rotating field produces only
a small effect, known as Bloch-Siegert shift, that is proportional to (Bo/2B)?, and
can be neglected for our purposes. Therefore, one obtains

B, (1) = Bi{cos (o + @) i+ sin (w,r + ¢) j}. (2.6)

It is useful then to rewrite Eq.2.1 in a rotating frame where the 7f field is time-
independent, i.e. a frame that rotates at angular frequency ws:

dM'T (1)

= M (1) x yBT (2.7)

where the effective field in the 7f frame is

B = B{cos ¢i"l + sinj7} + ABok'T (2.8)
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and
Q
ABy = ——, (2.9)
14

where we used the definition of the offset £ = wp — w,y. The magnitude of the

effective field is B
BT = /B> + AB3 = ——, (2.10)
sin 6

where 6 indicates the angle through which the frame is tilted with respect to z-axis
of the laboratory frame:

B

L_ o 2.11)

ABy Q
In general, we will use this tilted frame in the following discussion, unless other-
wise stated. For the sake of clarity, we will use a simplified notation, dropping the
superscript rff .

2.1.2 Empirical Description of NMR Relaxation

Using the equations of the previous section, the magnetization would evolve around
the z-axis freely and forever. This is of course not the case, because the experimental
practice shows that the thermal equilibrium is restored after some time. In other
words, nuclear spins are subject to relaxation. Bloch [2] proposed to introduce two
processes to account for such relaxation. The first mechanism accounts for the return
of the population difference across the Zeeman transition to Boltzmann equilibrium,
i.e. for the z-component of the magnetization to go back to equilibrium. This process,
known as longitudinal or spin-lattice relaxation, can be described by a first-order rate
expression:

dM: (1)

e Ry [Mo — M. (1], (2.12)

in which Ry = 1/Tj is the longitudinal relaxation rate constant and M is the magni-
tude of the equilibrium magnetization, which lies entirely on the z-axis. According
to Eq.2.12, the longitudinal magnetization returns to equilibrium in an exponential
fashion.

Another first-order rate process, known as transverse or spin-spin relaxation, was
introduced to model the decay of the transverse magnetization in the transverse plane:

PO rort 0,
M@ _ —RoMy, (1), (2.13)

dt
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where Ry = 1/T> is the transverse relaxation rate constant. This second process
accounts for the mutual dephasing of the spins in the xy-plane.
The Bloch equations are obtained combining Egs. 2.1, 2.12 and 2.13:

M,
dt(t) — 3y M (1) x B(1)], — RaMs (1),
M, (1)
= =y M) x B0, — RaMy (1), (2.14)
M.
T(’) =y [M(@®) x B®)], — Ry [M. (t) — Mo].

These equations describe the evolution of the magnetization in a static magnetic field
and in the absence of an applied rf field. A more general expression can be obtained
in a rotating reference frame including the effect of an rf pulse (see Egs. 2.6 and
2.7). In a convenient matrix form, one obtains

4 [Mc@ Ry —Q  wsing M, (1) 0

T M, | = Q —R; —wicos¢ M, (@) | +RiMp| 0O

M) —wising wjcosp  —R, M. (1) 1
2.15)

In many cases of practical interest the equation can be simplified even further. For
instance, during free precession, that is in the absence of rf pulses, w; = 0 and 2.15
simplifies to

M, (1) “Ry -2 0 M, (1) 0
G|Mol=| 2 R 0 My(0) | +RiMy| 0 |. (2.16)
" M. (1) 0 0 —Ri || M@ 1

If the pulse is short enough, i.e. its duration 7, << T, T, it is possible, in a good
approximation, to neglect relaxation contributions to the trajectory of the magneti-
zation:

M, (1) 0 —Q w1 sin ¢ M, (1)
— | My(1) | = Q 0 —w1 COS ¢ M, @) |. 2.17)
a1 m. () —wsing wjcosd 0 M. (1)

As mentioned earlier, the Bloch equations fail at describing systems of interacting
spins. Several extensions to Bloch model to account for such interactions, such
as the Solomon Eq.[3], have been proposed. However, to be useful for practical
applications, it is necessary to use the semiclassical approach of Bloch, Wangsness
and Redfield [4, 5].
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2.2 Chemical Exchange Effects

In the absence of scalar coupling interactions, chemical exchange processes are
described by an extension of the Bloch equations (see Sect.2.1). In the case of a
first-order chemical reaction or, equivalently, a two-site chemical exchange process,
the kinetic rate laws are written in matrix form as

dTAdO | _ |~k k-t [[[A]O 2.18)
dr | [A2] (®) ki —k—1 | [ [A2] (@) |’ ’
in which kj (k_p) is the rate constant for the forward (reverse) reaction. In general,

in the case of a set of N coupled reactions, one has

dA (1)
dr

—KA (1), (2.19)

in which the elements of the rate matrix K are given by

Kij = kji, (2.20)
N

Kii = — Zkij~ (2.21)
=1
i

Modified Bloch equations, known as McConnell equations, can be derived for such
a system:

dM (1) N
— =7 (1=9) [M;® x BO)], = RoMj (1) + élngkx ),
dM;, (1) N
=7 (1=0) [Mj () x BO)], — Rojjy (1) + >~ KMy (1)
k=1
dM;; (1) N
TEZ <y (1-) [My @ x B, — Ry [Mye 0) ~Mo] + 3 KieMic ).
k=1

(2.22)

The above equations can be generalized to higher-order reactions by introducing the
pseudo-first order rate constants:

_ gij (1)

= 0o

) (2.23)

where ¢;; (¢) is the rate constant for the conversion of the ith species into the jth one.
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The McConnell equations can be solved analogously to the Bloch equations.
Three different regimes emerge from the set of solutions to these equations:

1. in the case of slow exchange, i.e. when the exchange rate is smaller than the
chemical shift difference between the two sites, two resonance lines are observed;

2. as the exchange rate increases, the lines broaden and, when the rate is of the
order of the chemical shift difference, the lines coalesce (intermediate exchange
or coalescence);

3. if the rate is further increased, the system is in fast exchange and a single narrow
resonance line is observed at the average of the chemical shifts.

2.3 Bloch-Wangsness-Redfield Theory

In this model, also known as Redfield theory, a quantum mechanical description of
the system is derived, while describing the surroundings (i.e., the heat bath or lattice)
in a classical way. The main limitation of this approximation is that the energy levels
are predicted to be equally populated at equilibrium. Therefore, the theory is formally
valid only in the high-temperature limit, which is a very good approximation at room
temperature. At finite temperatures, corrections are required to ensure that the correct
equilibrium populations are reached. However, these corrections are significant only
in the case of very low temperatures. In our discussion, we shall follow the account
of [1].

2.3.1 The Master Equation

Let us write the Hamiltonian as a sum of terms that act only on the spin system (J4))
and a stochastic part, 77 (1), that couples the spin system to the lattice:

A1) = A+ I (). (2.24)

In the above expression the absence of applied rf fields was implicitly assumed, thus
A is time-independent. In other words, a time-dependent perturbation 741 (¢) is
superimposed onto the main time-independent Hamiltonian 7.

The corresponding Liouville equation of motion, describing the evolution of the
density operator o (t), is

d .
“dt(’) =i+ 4 (1), 0 ()] = —i {Lo + L (t)} o (1), (2.25)

in which L (t) = [ (1)], is the commutation superoperator or Liouvillian.
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It is convenient to remove the explicit dependence on .74 by rewriting the density
operator in a new reference frame, called the interaction frame:

ol (1) = exp (iior) o (1) = exp (i 1) o () exp (—i A1) . (2.26)
Transforming also the stochastic Hamiltonian,
A (1) = Lo (1) = exp (i461) H4 (1) exp (—i A1) (2.27)
it is possible to rewrite Eq.2.25 in the interaction frame:

do” (1)
dr

—i [%f @, o" (r)] = —ilT o (). (2.28)

In mathematical terms, the transformation into the interaction frame is isomorphous

to the rotating-frame transformation. However, there are some marked differences

between the two. Indeed, in the rotating frame the 7f Hamiltonian is time-independent

and the interactions contained in %) are retained; on the other hand, in the interaction

frame, 77 is not (explicitly) active, whereas the time dependence of %”]T (1) is

retained. This means that it is possible to apply both the transformation sequentially.
Several assumptions are required to solve Eq.2.28:

1. The ensemble average of %”IT (#) is zero. Any time-dependent fluctuations that do
not vanish upon averaging are to be included in the time-independent Hamiltonian;

2. o7 () and Jﬁr (r) are not correlated, thus it is possible to take the ensemble
average of the fluctuations of the Hamiltonian and of the quantum states indepen-
dently;

3. 1. Kt K 1/R, where 1. is the correlation time relevant for %T (t) and R is the
relevant relaxation rate constant;

4. in order for the system to relax towards thermal equilibrium, o7 (¢) has to be
replaced by o7 () — o0, in which oy is the density operator at equilibrium. By
definition, one has GOT = 0y.

Using this assumption, the right-hand term in Eq. 2.28 can be replaced by an integral:

—/df[%’iT 0, AT ¢ —1), 0" (1) = ooll, (2.29)
0

do? (t)
dr

where the overbar represents the ensemble average. In this equation the third assump-
tion allows the integral to run to infinity; because we assumed that the fluctuations
of the Hamiltonian are not correlated with the density matrix, we could calculate the
ensemble average over the stochastic Hamiltonians independently from o7 (7).

In order to be able to transform Eq. 2.29 back to the laboratory frame, the stochastic
Hamiltonian has to be decomposed as the sum of random functions of spatial variables
FZ (t) and tensor spin operators AZ:
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k
S () = D (=DIF ()AL (2.30)
qg=—k

The tensor spin operators are chosen to be spherical tensor operators because of their
transformations properties under rotations. For the Hamiltonians of interest in NMR
spectroscopy, the rank of the tensor k is one or two. These operators can be further
decomposed as a sum of basis operators:

q _ q
Al = ZAkp, (2.31)
P
where the components AZP have the following property:
Lo [AZP} - [% AZP] = WAl (2.32)
In other words, AZP are eigenfunctions of the Hamiltonian commutation superop-
erator with eigenfrequencies a)Z. The index p here is used to distinguish between

spin operators with the same order ¢ but different eigenfrequencies. Furthermore,
Eq.2.32 implies the following property:

exp (iiot) AZP = exp (i.741) AZP exp (—ist) = exp (iwgt) AZP, (2.33)
which defines also the transformation of AZP in the interaction frame:

AL = exp (ion) Al exp (—iton) = > AL exp (iwgz) L (234
14

Substituting Egs. 2.30 and 2.34 in Eq. 2.29, one obtains

da;(t) = — z z (—1)q+q/ exp {i (a)z + a)g,/) [} I:AZI;" I:AZ[J’ v () — 00]]
4.9 p.p’
oo

X /Fk_q/ ) F 1t — 1) exp (iwjt)dr. (2.35)
0

If ¢ # —q, the two random processes F 7 (t) and F " (1) are assumed to be
statistically independent, which causes the ensemble average to vanish, unless ¢’ =
—q. Thus,
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do” (1) : . -
5= X Seoli(et o) ) [ [a " 0 o]
X / FlL@) F, (1 — 7) exp (iwpT)dr. (2.36)

0

The equation above can be further simplified by noticing that terms in which | a)g -
wZ, [> 0 oscillate much faster than the typical time scales of relaxation phenomena,

and therefore do not affect the evolution of the density matrix. Furthermore, in the
absence of degenerate eigenfrequencies, terms in Eq. 2.36 are not vanishing only if
p = p'. Therefore,

doT (1) d - T = )
Gdt =— q;k ; [Akpq, [AZP, ol " — ao]] 0/ FZ () Fy Tt—1) exp (za)lq,r)dr.

(2.37)

The terms FZ O F, 4 (t — 1) are known as correlation functions. The real part of the
integral in Eq.2.37 is the power spectral density function j4 (w):

79 (w) =2 Re /F,‘j (1) F, ? (t — 1) exp (iw7) dt

0
00

=Re / FlL @) F, (1 — 7) exp (iw7) dT

—00

= Re / Fl @) F, (14 t)exp (iwt)d7 | . (2.38)

—00

The equation above shows that the power spectral density is an even function of t.
Furthermore, it is an even function of @ as well. On the other hand, the imaginary
part of the integral in Eq.2.37,

k4 (w) = Im /F,f ) F 7 (t — 1) exp (—iwT) dT

0
0

=Im /FZ (1) Fk_q (t+ 1v)exp (—iwr)dr ¢, (2.39)
0

is an odd function of w.
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In the high-temperature limit, the equilibrium density matrix is proportional to
. Thus, using Eq. 2.33, the double commutator [[Ak_pq, AZP] , ao] = 0. Using this
property in Eq.2.37, one obtains

k
do;(t) _ _% qzzkg [Ak—p‘l, [AZP, ol (1) — ao]]jq (wg)
* izk: 2 [[Ak_pq’ Azp] Lol (f)] ka (w,q,) : (2.40)

q=0 p

By transforming the above equation back to the laboratory frame, the Liouville-von
Neumann differential equation for the density equation is obtained:

do (1)

o - —i[H, 0 (O] —i[A, 0 ()] =T (o (1) —0p), (2.41)

in which the relaxation superoperator is

f =% i > [A;p", [AZP, ]]jq (wg) (2.42)

qg=—k P

A is the dynamic frequency shift operator that accounts for second-order frequency
shifts of the resonance lines, known as dynamic frequency shifts:

k

A=->S "k (wg) [Ak‘p", Agp] . (2.43)

q=0 p

This term can be incorporated into the Hamiltonian to obtain the final result, known
as master equation:

do (1)

” —i[#, 0 ()] =T (o (1) = 00) . (2.44)

In the calculation of relaxation rates it is often convenient to expand Eq. 2.44 in terms
of the basis operators used to expand the density operator:

db, (1) ,
5 = Z (=i (1) — Ty [bs (1) — byol} (2.45)

where €2, are characteristic frequencies defined as

B, | [4, Bs))
Qpy = W0 D5 2.46
(B, | By) (249
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Fig. 2.1 Redfield kite. In Populations  ZQ SQ
the absence of degenerate

transitions, only the elements
contained in the solid blocks
can be non-zero, i.e. cross-
relaxation is possible between
populations, while the coher-
ences relax independently. In
the case of degenerate tran- - - - - —_ - = == 9
sitions, additional non-zero |
elements can be found inside
the dashed blocks between | |
coherences of the same order.
ZQ zero quantum, SQ single
quantum, DQ double quantum | |

.

', are the rate constants for relaxation between the operators B; and B, (and vice
versa, since [',; = I', for normalized basis operators)

ZQ Populations

sSQ

(B, | By)
_ ! Z Z < [A ; l[BAZ)P’BS]D 4 (wg), (2.47)
q_—k » r r

and finally b, (¢) results from the application of the relevant projection superoperator
onto the density matrix:

by (1) = Brlo®) (2.48)

(B, | B,)

The diagonal elements I',, are auto-relaxation rates, while off-diagonal elements I
are cross-relaxation rates. Because we assumed that only terms satisfying ¢ = —¢’
give non-zero contributions to Eq.2.35, cross-relaxation can occur only between
operators with the same coherence order. In addition, because of the secular approx-
imation in Eq.2.37, cross-relaxation between off-diagonal terms is forbidden in the
absence of degenerate transitions. These two features give rise to a characteristic
block shape in the relaxation superoperator, known as Redfield kite (see Fig. 2.1).
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2.3.2 Interference Between Relaxation Mechanisms

In general there is more than one process that can cause relaxation. In this case, one
can generalize Eq.2.30 to

k
A ) =D D (=DIF L)AL, (2.49)
m g=—k

in which the index m runs over all active mechanisms. Using the above equation, a
generalization of Eq.2.47 can be written:

240 &4 (B, | B,)
k P A AZ
+lmZJ1:q_2_:k§: < [ <kP |[B )kp ]]> i (w;,)
m#n
_Zr + > (2.50)
mn

in which the cross-correlated spectral density was used, defined as

o0

JI.,=Re / . @ F (t+ 1) exp (—iwt)dr ¢ . (2.51)

—0o0

In other words, according to Eq. 2.50, in a spin system where more than one stochastic
Hamiltonian is present, we can have relaxation due to only one mechanism, with
relaxation rate constant I', and relaxation arising from the interference (or cross-
correlation) between different mechanisms, with relaxation rate constant I')3". The
latter is possible only if there is some degree of correlation between the mth and nth

mechanisms, i.e., if FZ i (D and F (t) are correlated.

2.3.3 Relaxation in the Rotating Frame

In the presence of an applied rf field, a transformation into a rotating frame, where
the time dependence of the rf Hamiltonian /77 () is removed, has to precede the
transformation into the interaction frame. When the Zeeman interaction is the dom-
inant term in %), the interaction frame is a doubly rotating tilted frame. Thus, the

frequencies used as arguments of the spectral density function should be replaced by

q(rf)

a) +wp 7, where the latter is defined by
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K

> wy.i [Izi, AZP] =oAL, (2.52)
i=1

in which w,; is the frequency of the rotating frame for the ith spin and K is the
number of irradiated spins.
However, in most of the cases wjt. < 1, where w; is the applied rf ampli-

tude and t. is the rotational correlation time of the molecule of interest. Therefore
j4 (a)Z + wg('f)) ~ j4 (wj). Using this approximation, it is possible to compute
approximate relaxation rate constants by transforming the operators in the tilted
frame to the laboratory frame before using Eq.2.47:

(u-'BU | {U~'BU})

I =
" (B | B;)

(2.53)

For instance, if an rf field is applied with x-phase, the transformation is defined as a
rotation around the y-axis:

K
U =exp {lz eily,} , (2.54)

i=1

in which 6; = w1/ ; is the tilt angle.
The autorelaxation rate Ry (6;) or R;, is given by

R1, = Ry cos? 0; + Ry sin® 6;. (2.55)

Operators that do not commute with the Hamiltonian in the rotating frame decay
rapidly as a consequence of rf inhomogeneities: therefore, if a continuous-wave
field is applied, only operators which do not evolve in the rotating frame have to
be considered, i.e. longitudinal operators and zero-quantum coherences. If the rf
field is phase- or amplitude-modulated in order to suppress the effect of offsets and
rf inhomogeneities, more quantum states have to be considered and the effective
average rate constant has to be obtained by averaging the instantaneous rate constant
over the trajectory followed by the operator under the influence of the rotating-frame
Hamiltonian (see Sects. 2.4 and 2.5).

2.3.4 Spectral Density Functions

As shown by Hubbard [6], in the high-temperature limit, the description of the relax-
ation properties of the system requires only one spectral density function, because
the following identity holds:



22 2 Theoretical Principles

Table 2.1 Spatial functions for relaxation mechanisms

Interaction c(n)

Dipolar —/6 (110/47) hyrysris (1)
CSA AcyiBy/V3

Quadrupolar equ/ [4nl 21 — 1)]

An axially symmetric chemical shift tensor is assumed, with oz, = o), oxx = 0yy = o1 and
Ao = o — o . The electric field gradient tensor is assumed to be axially symmetric, with principal
values V,; = eq and V., = Vy,. Q is the nuclear quadrupole moment and e is the electron charge

J (@) = (=11} (@) = (1)) (). (2.56)

Tensor operators of rank 2 can be used to describe the relaxation mechanisms of
interest. The random functions F. g (t) in Eq.2.39 can be factored as

FY (1) = co (0) Y[ (1)]. (2.57)

Therefore, the spectral density function can be written as

j(w) =Re co () co (t+ 1) Y [QNTYY[Q (t + 7)) exp (—iwT) dT

= Re C(r)exp (—iwt)dr ¢, (2.58)

——3g 3T—3g

|
-
|
-

3

with the stochastic correlation function:

C)y=co®cot+T)YI[QMOIYI[Q(+ )] (2.59)

In the above equations, cq (¢) is a function of physical constants and spatial variables
(see Table 2.1), Yg [€2 ()] is a modified second-order spherical harmonic function
(see Table 2.2) of the polar angles in the laboratory frame €2 (¢). The polar angles are
used to define the orientation in the laboratory frame of a vector that points in the
principal direction for the interaction. The most important feature of spectral density
functions is that, as the molecules tumble in solution, the oscillating magnetic fields
that cause relaxation are not distributed in a homogeneous way over all frequencies.
The power spectral density function can be used to measure the probability of motions
with frequency between w and w + dw.

For a rigid spherical molecule, the spatial function is time-independent (i.e.,
c (t) = co), and therefore J (w) = dyoJ (w), in which doy = c(z). The orientational
spectral density function used here is defined as



2.3 Bloch-Wangsness-Redfield Theory 23

Table 2.2 Modified

q
second-order spherical 4 Ll
harmonics 0 (3cos?6 — 1) /2 .
1 —/3/2sin 6 cos He'®
2 J3/8sin? 029
o0
J (w) =Re / C(%o (r)exp (—iwt)dr ¢, (2.60)
—0o0
in which the orientational correlation function
Co (1) =Y [QOIYIQ (t + 1)] (2.61)

was used. For instance, in the case of isotropic rotational diffusion of a rigid rotor,
the orientational correlation function is

1
Cio (1) = 5™, (2.62)

in which 7, is the correlation time, which depends on the size of the molecule, the
viscosity of the solution, and the temperature. The corresponding spectral density

function is
J@) =2 (2.63)
w))= ———"""". .
Si+0?)

The functional form in Eq.2.63 is a Lorentzian. Therefore, because the value of
a Lorentzian is almost constant for wztcz < 1, if the molecular motion is rapid
enough to satisfy a)éq)zrcz < 1 (i.e., t. is short enough), J (wg) ~ J (0) is a good
approximation. We shall refer to this limit as extreme narrowing regime. On the
contrary, if the motion is very slow, i.e. wéq)ztcz > 1, thenJ (w}) o w;,q)_ztc, a limit
known as spin diffusion (or slow tumbling) regime.

Both overall rotational Brownian motions and relative motions of nuclei in a
molecular reference frame contribute to the modulation of local magnetic fields. In
the case of isotropic rotational diffusion, to a very good approximation, the total
correlation function can be factored as

C(t)=Co(n)Cr (), (2.64)
in which the correlation function for overall motions Co (7) is given by Egs. 2.61

and 2.62, whereas the correlation function for internal motions has to be computed
directly from Eq.2.59 assuming a model of intramolecular motions.
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Table 2.3 Tensor operators

for the dipolar interaction 4 P Agp Wp
0 0 (2/%) LS. 0
0 1 —1/(2~@) s w — g
1 0 —-(1/2) LSt ws
1 1 —(1/2)1ts, w;
2 0 (1/2)1+ts* oy + ws

2.3.5 Relaxation Mechanisms

In the following, we will limit ourselves to intramolecular dipolar, anisotropic chemi-
cal shift, quadrupolar and scalar coupling interactions. Intramolecular paramagnetic
relaxation can be described by the same Hamiltonian as dipolar interactions, the
only difference being that the interaction is between the nucleus and an unpaired
electron. All other relaxation mechanisms are of no practical interest in the case of
biomolecules. In particular, for spin-1/2 nuclei in diamagnetic biological molecules,
the dipolar and the anisotropic chemical shift mechanisms are by far the dominant
mechanisms.

2.3.5.1 Dipolar Relaxation

In the case of intramolecular dipolar relaxation for a an IS spin system, the terms
Agp are given in Table 2.3. The relaxation rate constants can be calculated using
Eq.2.47 and are given in Table 2.4. It is worth pointing out that R; has a maximum
for wgt, = 1, whereas R, increases monotonically with z,.

If the two spins are weakly coupled, the longitudinal relaxation is unaffected
by the scalar interaction because both I, and S, commute with the scalar coupling
Hamiltonian. The expressions in Table 2.4 are therefore still valid.

As far as the transverse relaxation is concerned, the in-phase I (ST) term evolves
into the anti-phase operator 2/, (21,5 ) under the effect of the scalar interaction.
If the evolution is faster than the relaxation processes, an average relaxation constant
is measured because the magnetization is rapidly exchanging between in-phase and
anti-phase terms.

2.3.5.2 Chemical Shift Anisotropy and Quadrupolar Relaxation

Local fields that lie at the origin of chemical shifts are in general anisotropic. There-
fore, the chemical shift is best described as a tensor. The reorientation of this tensor
with respect to the laboratory frame induces a time-varying magnetic field on the
nucleus and, consequently, relaxation. The chemical-shift anisotropy (CSA) relax-
ation is significant for 1>C, N and 3!P, while it is negligible for protons, and it has
a quadratic dependence on the strength of the static magnetic field.



2.3 Bloch-Wangsness-Redfield Theory 25

Table 2.4 Relaxation rate constants for IS dipolar interaction

Coherence  Operator Relaxation rate constant
level
Populations I, (doo/4) {J (w1 — ws) + 3J (w) + 6J (w1 + ws)}
S: (doo/®) {J (o1 — ws) + 3J (wr) + 6J (w1 + ws)}
I; < §; (doo/H) {—J (o1 — ws) + 6J (w1 + ws)}
0 218, (Bdoo/H) { (wp) +J (05)}
ZQx, ZQy (doo/8) {2J (wr — ws) + 3J (w1) + 3/ (ws)}
+1 It 1 (doo/8) {4J (0) + J (w1 — ws) + 3J (wr) + 6J (ws) + 6J (0 + ws)}
ST, 8™ (doo/8) {4J (0) + J (w1 — ws) + 3J (ws) + 6J (wr) + 6J (w1 + ws)}

2078, 207S; (doo/8) {47 (0) +J (0 — ws) + 37 (1) + 6] (wr + ws)}
2L.ST, 21,87 (doo/8) {4J (0) + J (w5 — ws) + 3] (ws) + 6J (wr + ws)}
2 DQ.. DOy (doo/8) {3/ (wr) 4 3J (ws) + 127 (@ + ws)}

doo = (1t0/4m)? R ypylry®

Table 2.5 Tensor operators

q
for the CSA interaction P A2p Wp
0 (2/ JE) L. 0
! —a/rt -
Table 2.6 Tensor operators 7 -
for the quadrupolar 4 p 2p P
interaction 0 0 (1/2\@) [42 — 171 — 17 17] 0
1 0 — (/) [LIT +17L] wr
2 0 (/rtrt 20y

Nuclei with 7 > 1/2 also have a nuclear electric quadrupole moment, which is a
measure of how much the nuclear charge distribution departs from a spherical one.
A relaxation pathway is provided by the interaction of the quadrupole moment with
local oscillating electric field gradients, generated by the electrons.

The terms Ag for the CSA and quadrupolar interactions are given in Tables 2.5
and 2.6, respectively. Longitudinal and transverse relaxation rate constants are given
in Table 2.7, where axially symmetrical CSA and quadrupolar tensors were assumed
for a spin-1 nucleus.

2.3.5.3 Scalar Relaxation

In the presence of a scalar interaction, the local magnetic field experienced by spin
S (e.g., a nitrogen-15) depends on the value of the J-coupling constant with spin /
(e.g., a proton). The magnetic field is time-dependent in the following two scenarios:

1. the value of the J-coupling constant is time-dependent (scalar relaxation of the
first kind). This can happen in the case of transitions of the spin system between
environments where the coupling constant assumes different values;
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Table 2.7 CSA and quadrupolar relaxation rate constants

Rate constant CSA Quadrupolar
R dooJ (wr) 3doo {J (wr) + 27 2wr)}
Ry (doo/6) {47 (0) + 37 (wp)} (3doo/2) {37 (0) + 5J (o) + 2J Qwyp)}

2
CSA doo = (o) — 1)’ w?/3
Quadrupolar dy = [e*qQ/ (4h)]2

2. the state of spin / varies very rapidly (scalar relaxation of the second kind). This is
the case if the nucleus relaxes rapidly or if it is involved in fast chemical exchange.

Expressions for contributions to relaxation rate constants from scalar relaxation are
given by [7]:

re = Ao = : (265)
=3 1+ (0 — ws)? 3 ’

RY = AZS(S 1 © . (2.66)
273 I+ —wg)?2 | '

For scalar relaxation of the first kind, A = 27 (p]pz)l/2 (J1 — J2), in which J; and
J are the scalar coupling constants, p; and p, the populations of the two sites, and
7] = Tp = T, is the exchange time constant. In the case of relaxation of the second
kind, A = 2nJjs and 71 and 1 are the spin-lattice and spin-spin relaxation time
constants for spin S.

2.4 Average Hamiltonian Theory

In the following section, we will adopt the approach of [8].

The principle on which Average Hamiltonian Theory (AHT) rests is that, in the
case of a periodic time-dependent Hamiltonian, it is possible, under suitable condi-
tions, to describe the evolution of the spin system with good accuracy considering
the average effect of the Hamiltonian over a cycle of its oscillations [9]. For a time-
independent system, the evolution operator can be written in an exponential form.
Therefore, in the time-dependent case, for the Schrddinger equation

d"dt(t ) - it o ). 2.67)

a solution expressed in an exponential form is postulated, given by

o) =e s (0), (2.68)
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in which H (¢) is a continuous function of time, that is not to be confused with the
Hamiltonian .77 (r).! As proposed by Magnus [10], H () can be written as a series
expansion:

Ho=HO O +HY 0)+H® 1)+ --- . (2.69)

For reference, the first two terms are

t
HO @) = / (1) dn, (2.70)
0
. t
HO (1) = —%//[jf (ty) , H (1)] dtydiy. 2.71)
00

In the case of a periodic Hamiltonian, i.e., 57 (t) = J# (¢t + t), one can compute
the integrals over one cycle and extend them to arbitrary durations by setting

o (N7) = [e—"”“)]N o (0). 2.72)

In the literature, the terms of the expansion of H (t) are divided by t to yield a
time-independent effective Hamiltonian. The average Hamiltonian is given by the

zeroth-order term
—o _HY ()

H (2.73)
T
whereas the first-order correction to 7° is given by
_ HOD
R (2.74)

T

and so on for higher-order terms.

Although a considerable simplification in the calculations is achieved, one draw-
back of AHT is that the system can only be observed “‘stroboscopically” at integer
multiples of the period, i.e., att = Nt. A second, possibly more serious, limitation is
that the series in Eq.2.69 must converge. A rough criterion is developed as follows.
H™ (1) contains n-fold products of . (¢) and each integration introduces a term pro-

n
portional to . Therefore, the nth-order term is roughly proportional to ((%ﬂ 2)1/ z r) .

. 1/2 .
Hence, the series should converge for (%” 2) / T < 1. Although often useful, this
criterion is not rigorous and can provide misleading results.

! Magnus [10] shows that, rigorously speaking, H (f) always exists for ¢ close to zero, but may not
be a solution valid for the entire domain of the function. Indeed, some restrictions must be placed
on . (t) for H () to be well defined for all 7. The reader is referred to the original work of Magnus
for a discussion of these restrictions.
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2.5 Average Liouvillian Theory

The behavior of a spin system under the combined effect of rf pulses, free-precession
intervals and relaxation can be described, with good accuracy, in the framework of
the Average Liouvillian Theory (ALT). We shall present here its basic concepts
following the account of [11].

It is possible to write a general solution to Eq.2.25 in the form

n—1
o0 =et]] [ieje*if.f] o (0), (2.75)
j=1

in which t = Zj tj, and kj is a superoperator that corresponds to the transformation
induced by a pulse, or a group of pulses, which may or may not include free precession
delays. In Eq.2.75, we implicitly assumed that all the transformations induced by
pulses are instantaneous. If this assumption is not valid, the effect of the rf pulses
may be included in L. Also, in the symbol Hj it is implied that the indices j are sorted
by time from right to left in ascending order.

For the jth time step a transformed Liouvillian ijT can be defined as

~ ~

LT =R, \R,_>---

; LR RLR (2.76)

Similarly, a transformed initial density matrix is defined as
n—1
o’ ) =[] Rio©. (2.77)
j=1
Equations 2.76 and 2.77 allow to rewrite Eq.2.75 as
n oy
o =[] " (). (2.78)

j=1

Imperfections of the transformations I}j lead to losses that may be treated including
in Eq.2.78 a scalar factor A;, which correspond to the attenuation due to the jth step:

n ~
o (1) = [[Aae™ 67 (0)
j=1

n A
—AT] e LisT (), (2.79)
j=1
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in which A = HJ'-’ZI Aj is a measure of the total attenuation due to the entire pulse
sequence, with0 < A < 1.

In analogy with the average Hamiltonian of Eq.2.69, the average Liovillian is
defined as . . . .
Loy=LO+1LW 41> | (2.80)

where

o 1 o
(O Ty
LO= -1y,
J
~ 1 ~ ~
1 § T T

j>k

N 1 ~ ~ ~ N ~ N
19— = L7 [LE L]+ [[£T . ] £ u]
j>k>I1

1(r, A A A A .
+ 3 {[Lthk, I:Lthk, LITI[]] + [[Lgtk, LITI[] , LZTZ‘I]} S (2.81)
Using the definition of average Liouvillian in Eq.2.79, we obtain

o () = Ae Lot 6T (0) = Ao T (0). (2.82)

The terms in Ly, have symmetry properties that reflect those of the pulse sequence.
Indeed, a handful of theorems can be used to simplify the calculation of the average
Liouvillian:

1. In the case of a symmetric Liouvillian, i.e.,

LT ; =17 nejt 10 and all the even-order corrections vanish, i.e., L® = 0 for even k;

2. If the transformations Rj are distributed in an antisymmetric way, i.e., Rj = IA?;_I 2

the Liouvillian is symmetric, i.e., LT = LnT_ 1
3. On the contrary, if the distribution of the transformations is symmetric, i.e.,
R = Rn —j» the Liouvillian is symmetric only if the matrix associated to each

transformatlon is diagonal.

Similarly to the average Hamiltonian, the existence of the average Liouvillian is
guaranteed only if some requirements are met. Formally, a given Liouvillian can be
written as the sum of a time-dependent and a time-independent part:

L(t)=1Lo+ AL (7). (2.83)
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Here, L (#) includes all the time-dependent components that are induced by the trans-
formations applied to the system,” whereas Lo includes phenomena that are constant
during the experiment, such as relaxation, chemical shifts and scalar couplings.

The most important parameter in the above equation is A, that is a measure of
the strength of the influence of the applied rf fields on the natural spin dynamics.
Indeed, the basis of ALT is the assumption that the propagator can be written at any
time in an exponential form, i.e.,

U@t) = e S0, (2.84)

In other words, in analogy with the average Hamiltonian theory, the existence of a
valid solution to the master equation that can be expressed in an exponential form is
assumed. As shown by Maricq [12], the condition of validity is that €2 (, ) can be
expanded in a power series in A, although for some singularities it may not be possible
to write an exponential solution to the master equation. The reader is referred to [12]
for further details.

Lastly, a criterion to estimate the weight of the contribution of higher-order terms
to the average Liouvillian is provided. We shall start by defining the norm ||A|| of a
matrix A as the square root of the largest eigenvalue Auq, of (ATA).3

The following general expression can be deduced from Eq.2.81:

~ 1 ~ n
0 _ — > [L].th, L(k—D] , (2.85)

Jj>

in which the subscript j > was used to indicate that the time sorting of j must be
conserved. If one assumes that the eigenvalues of L are good approximations of the
eigenvalues of LjT, then

IE®) hmar (ET2) (555) 1,/ 2nar (E7E)
! ~ = . (2.86)
|L&=D| k k

Higher-order terms can therefore be ignored when the above ratio is much smaller

than one, i.e., if . /Ay (IZUt) & k, or simply A4y (i) <« k in the case of a

symmetric Liouvillian. Usually, the terms with k > 2 can be safely neglected.

2 The time dependence is not the one due to the modulation of the rf fields that can be removed
by transforming to a rotating frame, but the one due to the fact that different transformations R; are

applied at different #;. Therefore, i] (1) is, strictly speaking, a discrete function of time.
3 If A is symmetric, ||A| is simply equal to its largest eigenvalue.
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