
Chapter 2
Theory of Scavenging and Recombination
Kinetics

2.1 Introduction

This chapter sets out to introduce the theory of diffusion kinetics and its implementa-
tion in the simulation packages used as part of this work. Diffusion is the movement
of particles from regions of high concentrations to regions of lower concentrations,
driven by a concentration gradient which approaches steady state at long times. It is
driven by entropy and the second law of thermodynamics which results in Fick’s law
(vide infra). As the spatial distribution of particles is non-homogeneous in nature
within a spur, the recombination kinetics cannot be described by conventional the-
ories of homogeneous reactions. This has led to the development of new theories
which are able to describe the time-dependent intra-spur reactions, and are discussed
in detail in this chapter.

Following the radiolysis of the solvent, localised clusters of highly reactive parti-
cles are formed which have a non-uniform distribution. After a short period of time,
the clusters of ions spread by diffusion to form a uniform distribution which can
be characterised by homogeneous theories of chemical kinetics. However, before
scavenging steady state conditions can be achieved there is a transient period whose
lifetime varies as a2/(π D′) where a is the encounter radius and D′ the mutual dif-
fusion coefficient.

In the subsections below, a detailed review of the theories which underlie the
diffusive behaviour and the chemical kinetics for both neutral and charged species
are now presented.

2.2 Homogeneous Kinetics

Theories of diffusion-controlled reactions were first studied by Smoluchowski
[1, 2] and form the foundation of many standard theories today. Considering a simple
bimolecular reaction between the species A and B of the form
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A + B
kd�
k−d

AB∗ ka−→ products (2.1)

where kd is the second order rate constant to form the encounter pair AB∗, while
k−d and ka are the first order rate constants for the dissociation of the encounter pair
and formation of products respectively. The rate of change of the transient [AB] with
respect to time can be expressed as

d[AB]

dt
= kd[A][B] − (k−d + ka)[AB] (2.2)

Using the steady state approximation such that d[AB]/dt = 0 (which is appropriate
when the lifetime of the encounter pair is short on the timescale of the reaction so
that the concentration of pairs remains very small), Eq. (2.2) reduces to the form

[AB] = kd[A][B]
(k−d + ka)

(2.3)

with the experimentally observed rate constant being of the form

kobs = kdka
(k−d + ka)

(2.4)

If ka � k−d, then kobs ≈ kd and the reaction is said to be diffusion controlled, and
kobs depends only on the relative rate of diffusion of species A and B. If however,
k−d � ka then the reaction is said to be activation controlled as the species A and B
must have enough energy to surpass the activation energy barrier (Ea) threshold. In
an intermediate region, k−d and ka may become comparable, in which case the rate
of reaction is dependent on both the rate of diffusion kd and the rate of crossing Ea

and is termed partly diffusion controlled.

2.2.1 Neutral Species in Solution

In this section the foundations of the theory underlying chemical kinetics are pre-
sented. Based on the diffusion equation to describe Brownian motion together with
Smoluchowski’s theory [1, 2], a thorough derivation of the bulk reaction rate constant
for neutral species for both diffusion and partially diffusion controlled reactions is
presented. This theory is then extended for charged species in subsequent sections.

2.2.1.1 Diffusion Controlled Reactions

In the absence of any intermolecular forces, the diffusion of species B is considered
random and can be characterised by its diffusion coefficient, which according to the
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Stokes-Einstein relation is inversely proportional to the solvent viscosity. However,
in Smoluchowski theory this independence is extended to the frame of reference
on the A as well; each B particle diffuses relative to the A particle with a mutual
diffusion coefficient D′. The flux of B particles per unit area (JB) is known to be
dependent on the gradient operator (∇c) with respect to the coordinates relative to
the position of A and mutual diffusion through the relation

JB = −D′∇c (2.5)

where c is the concentration of B particles. In the above formulation, the motion of
B particles relative to A is assumed to be independent and the negative sign simply
implies that the diffusive flow is in the direction of lower concentration. Fick’s first
law of diffusion is of the same form as Eq. (2.5) but does not involve these extra
assumptions, and is used to describe the diffusion of species in real space not the
relative diffusion of two species. Smoluchowski recognised that Fick’s first lawmight
also be applicable in relative space as well.

For a steady state reaction, the rate of flow of B particles through any sphere of
radius r containing the A particle (with a concentration gradient ∂c/∂r ) is constant,1

with the pseudo first order rate constant (ζ ) given by the expression

ζ = D′4πr2
∂c

∂r
(2.6)

where it is assumed that the concentration of B reactants around any A reactant is
spherically distributed. With this simplification, only the radial part of the diffusion
equation needs to be considered without the need to explicitly take into account its
angular dependence (this assumption is made throughout this section). Integrating
the above equation gives

c(r) = c(∞) − ζ

4π D′r
(2.7)

and using the inner boundary condition such that c(a) = 0, (instantaneous reaction
at the encounter distance a) gives the well known solution for the steady state rate
constant to be

k(∞) = ζ

c(∞)

= 4π D′a (2.8)

If the encountering particles are of the same species, then the above equation becomes
k(∞) = 2π D′a, which avoids double counting every pair or reactants. Before steady
state conditions can arise there is a period of transient kineticswhichmust be properly

1 This assumes that the stationary A particle is at the centre of the sphere.
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taken into account. This is because initially the inward diffusion of species B does
not balance the rate of reaction of B at A and consequently the concentration gradient
dynamically changes. More formally stated, the flux of B particles towards A (JB1)
is less than the flux of B particles leaving the chemical system (JB2) via reaction.
From the law of conservation of matter, the difference between JB1 and JB2 results in
a change in the concentration. Using Fick’s first law together with mass balance, the
rate of change of the concentration in one dimension can be formally expressed as

∂c

∂t
= − ∂

∂x
JB

= ∂

∂x

(
D′ ∂

∂x
c

)
(2.9)

In the above formulation, it is again assumed that the motion of B particles relative
to A is independent. If D′ is constant then Eq. (2.9) simplifies to

∂c

∂t
= D′ ∂2c

∂x2
(2.10)

which is recognisable as Fick’s second law of diffusion in one dimension.2 For dif-
fusion in three dimensions, Fick’s second law becomes

∂c

∂t
= D′∇2c (2.11)

which is the three dimensional diffusion equation (∇2 being the Laplacian operator).
For the case in which D′ is not constant, Fick’s second law must be modified to the
form

∂c

∂t
= ∇ · (D′∇c) (2.12)

Probability distribution of B around A Letting [B]avg(r, t) represent the average
concentration of B particles around the surviving A particles (normalised to the bulk
concentration [B]0), the density distribution of B about A can be expressed as

ρB(r, t) = [B]avg(r, t)

[B]0 0 ≤ ρB ≤ 1 (2.13)

where r is the distance between an A and B particle. Rewriting Eq. (2.11) in terms
of ρB(r, t) and considering only the radial dependence of the diffusion equation, one
arrives at the expression for the distribution of B about A to be

∂ρB(r, t)

∂t
= D′
{

∂2ρB

∂r2
+ 2

r

∂ρB

∂r

}
(2.14)

2 This equation is known as the diffusion equation in one dimension.
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with 2D′/r termmodelling the drift of the two particles away from each other, which
is a geometric feature in a three dimensional space (in two dimensional space this
would be D′/r and in one dimension this would be zero). To solve Eq. (2.14), the
initial condition required is of the form

ρB(r, 0) =
{
0 r ≤ a
1 r > a

(2.15)

which simply states that at zero time particles A are removed by reaction when
r < a or are uniformly distributed around A if r > a. The two other boundary con-
ditions required are ρB(a, t) = 0, which is simply reasserting that two species react
instantly on encounter at t (commonly referred to as totally absorbing boundary),
and ρB(r → ∞, t) = 1 with t ≥ 0, thus establishing that [B]avg(r, t) approaches
the bulk concentration [B]0 with increasing distance at all times. The solution to
Eq. (2.14) is shown below, which can be obtained in a straightforward manner by
using the Laplace transform method [3].

ρB(r, t) = 1 − a

r
erfc

(
r − a√
4D′t

)
(2.16)

The erfc term arising in the above equation is the complementary error function
which is defined as

erfc(x) = 2√
π

∞∫
x

e−t2 dt (2.17)

It can be seen that at long times such that t → ∞, Eq. (2.16) reduces to ρB(∞) =
1 − (a/r), which gives the steady state distribution of B particles around any
A particle. The time variation of this density distribution is shown in Fig. 2.1, which
shows that with a given D′, the return to steady state is more rapid for regions close
to A.

Using the spherical symmetry of the concentration of B about A, the inward flux
towards the A particle can be described using Fick’s law as

JB(a) = D′ ∂[B]avg
∂r

∣∣∣∣
r=a

= D′[B]0 ∂ρB

∂r

∣∣∣∣
r=a

(2.18)

Differentiating Eq. (2.16) and taking the condition r = a (i.e. at the reactive
boundary), the magnitude of the flux at a can be written in the form

JB(a) = D′[B]0
(
1

a
+ 1√

π D′t

)
(2.19)

The rate of reaction is then simply the magnitude of the inward flux of the B particle
across a sphere of radius a containing the A particle, which is 4πa2 JB(a). Thus the
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Fig. 2.1 Density distribu-
tion of B species around an
a species as a function of
distance at five different time
scales. D′ = 0.44 Å2 ps−1

and encounter distance a =
2.2 Å (typical values for the
·OH + ·OH reaction)

overall reaction rate is given by

[A][B]04πa2D′
[
1

a
+ 1√

π D′t

]
(2.20)

with the second-order rate time dependent rate coefficient found to be

k(t) = 4πaD′
(
1 + a√

π D′t

)
(2.21)

The units of the second-order rate constant are m3 s−1 and should be converted to
the more commonly used units of M−1 s−1 by introducing a multiplicative factor
103NA dm3 m−3, where NA is Avogadro’s constant. Equation (2.21) shows that
the time-scale of the transient period is given by a/

√
π D′t ≈ 1; so for example

using the parameters a = 2.52 Å and D′ = 0.44 Å2 ps−1 (typical values for the
OH + OH reaction) gives a transient period of ≈4.5 ps. The transient period using
these parameters is shown diagrammatically in Fig. 2.2. It should be noticed that
the timescale of the transient period scales with the square of the encounter radius(
t = a2/π D′), highlighting the importance of the transient kinetics for chemical
systems with larger reaction systems such as polymers and structures like micelles.

Problems with Smoluchowski theorySmoluchowski theorymakes the assumptions
such that: (1) the central particle A is fixed at the origin and (2) the central sink is
indestructible. Many workers [4–6] have attempted to apply the theory where the
central sink is destroyed by reaction or when the central A particle is not stationary.
It is not immediately clear how the theory can describe either of these effects. The
worst case scenario for Smoluchowski’s theory is to consider the situation where the
central A particle moves in a ‘sea’ of stationary B particles. Fixing on the frame of
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Fig. 2.2 Transient period of
the kinetics for the ·OH +
·OH recombination in com-
parison with the steady state
rate constant. The parame-
ters used were a = 2.52
Å (encounter radius) and
D′ = 0.44 Å2 ps−1

Fig. 2.3 Survival probability
of a hydroxyl radical in a
concentration of 1 M of
scavengers. Encounter radius
was 0.77 Å and the mutual
diffusion coefficient (D′) set
to 0.315 Å2 ps−1. Scavenging
rate constant was 1.9 × 10−3

M−1 ps−1

reference of the A particle, the relative movement of the B particles relative to A is
correlated, whereas in Smoluchowski’s theory themotion of the B particles is strictly
uncorrelated. It is found that even with this neglect of the correlation between the
A−Bparticles, the theory accurately predicts the survival probability of theAparticle
(as shown in Fig. 2.3), in comparison with numerical simulations, which treats the
scavengers explicitly and takes into account the correlation of the B particles.

In the frame of reference of particle A, B particles diffusing into A are removed
instantly by reaction, setting up a concentration gradient where inward diffusion
balances reaction. Hence, the rate of reaction is equal to the rate of first encounter in
solution, and the rate of flow into A is the rate of reaction per A molecule. In order to
describe this from a theoretical point of view, one must set up a model of transport
for Brownian motion. Although there are many models available (as discussed in
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Sect. 2.3.4) currently the only solvable realistic model is the diffusion equation.
From the viewpoint of spin dynamics, this theory is considered incomplete, since for
a spin-controlled reaction the species are required to be in the correct spin state for
reaction to occur. An alternative treatment for spin controlled reactions is presented
later in this Sect. 2.7.1), which analytically treats re-encounters differently to first
encounter and still retains the diffusion equation.

2.2.1.2 Partially Diffusion Controlled Reactions

Treating partially diffusion controlled reaction involves replacing the inner boundary
condition such that ρB(a, t) = 0 with a radiation boundary condition [7] of the form

kactρB(a) = 4πa2D′ ∂ρB
∂r

∣∣∣∣
r=a

(2.22)

where kact is the second-order rate constant, describing the rate at which the particle
crosses the activational energy barrier to react. The right hand side of Eq. (2.22) is
simply Fick’s first law describing the flux of B particles towards a single A particle.
The radiation boundary condition assumes that the rate of reaction is proportional to
the concentration ofBparticles at the encounter distance (a),where kact is the constant
of proportion. The relationship between kact and the reactivity of the surface (v) can
be expressed through the equation kact = 4πa2v, with v having units of velocity.
Both kact and v are simply alternative ways of parameterising the boundary rate;
however it is more convenient to use the parameter v, as (i) kact is second order and
(ii) the effect of the encounter radius is factored out on the overall reactivity.

The probability distribution of the B particles around the A particle using this
boundary condition can be obtained using the Laplace transform technique to give [3]

ρB(r, t) = 1 − a

r

kact
kact + 4πaD′ ×

[
erfc

{
r − a√
4D′t

}

− exp

{
(4πaD′ + kact)(r − a)

4πa2D′

}

× exp

{
(4π D′a + kact)2t

(4πa2)2D′

}

× erfc

{
4πaD′ + kact
4πa2(D′/t)1/2

+ r − a√
4D′t

}]
(2.23)

where as before r is the separation distance of the A and B particle and D′ is the
mutual diffusion coefficient. As expected, for an infinitely fast reactivity boundary,
it is seen that the solution reduces to Eq. (2.8) (Smoluchowski’s totally absorbing
boundary condition). Taking the limit t → ∞, the steady state limit of ρB(r,∞) can
be found to be
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ρB(r, t → ∞) = 1 − a

r

[
kact

kact + 4π D′a

]
(2.24)

which shows that for a partially diffusion controlled reaction, there is a greater con-
centration of species B around A than what is predicted by Smoluchowski’s totally
absorbing boundary conditions.

The time dependent rate constant k(t) may be written in the form k(t) =
kactρB(a, t), which simply states that the rate is proportional to the concentration
of B particles around the A particles multiplied by the reactivity of the surface. The
explicit form for k(t) is then

k(t) = 4πaD′kact
4πaD′ + kact

[
1 + kact

4πaD′ exp
[

D′t
a2

(
1 + kact

4πaD′

)2]

× erfc

{√
D′t
a

(
1 + kact

4πaD′

)}]
(2.25)

which can be simplified by using the asymptotic form such that limx→∞ exp(x2)
erfc(x) = 1/x

√
π to give the rate at long times to be

k(t) = 4πaD′kact
4πaD′ + kact

[
1 + kacta

(4π D′a + kact)(
√

π D′t)

]
(2.26)

For comparison with the diffusion controlled case, expressing Eq. (2.26) in the form
of Eq. (2.21) gives

k(t) = 4πa′
effD

′
[
1 + a′

eff√
π D′t

]
(2.27)

with the ‘effective’ encounter radius (a′
eff) defined as

a′
eff = a

(
kact

4πaD′ + kact

)
(2.28)

The steady state rate constant is then simply

k(∞) = 4πa′
effD

′ (2.29)

It can be seen that within the steady state limit the encounter distance is reduced by
a factor of (kact + 4π D′a)/kact in comparison to Smoluchowski’s totally absorbing
boundary.

Equation (2.29) can be decomposed into two processes [8] as

k(∞)−1
obs = (kdiff)

−1 + (kact)
−1 (2.30)
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which simply states that using the radiation boundary condition, the overall time
required for species A and B to react involves: (i) the time required for diffusion [the
first term in Eq. (2.30)] and (ii) time required to react once within this encounter
distance [the second term in Eq. (2.30)]. If the condition kact � 4πaD′ is true, then
the rate limiting step is diffusion towards the boundary and in this instance reactions
are said to be diffusion controlled. If the converse is true, such that kact � 4πaD′,
then reaction on the boundary is the rate determining step (kinetic control) and the
rate can be approximated as

k(t) = kact

[
1 + kact

4πaD′
a√

π D′t

]
(2.31)

Problems with the radiation boundary Some of the problems with using the radi-
ation boundary condition to model chemical systems have been discussed in the
literature [9]. The most important of these are (1) for particles close to the encounter
distance, it is not possible to specify a non-zero probability for reaction, since an infi-
nite number of encounters follow an unsuccessful first encounter resulting in reaction
(as shown by Collins and Kimball [7]). (2) Schell and Kapral [10] have shown that
the probability of reaction on encounter should scale with the ratio of D′ and a (D′ is
the mutual diffusion coefficient and a the encounter distance) for radiation boundary
condition to be applicable. (3) All re-encounters are treated in the same manner.

Sometimes for a spin controlled reaction, the probability of reaction of first
encounter has a physical origin, and if this first encounter is unreactive then the
spin state is also unreactive, and therefore all subsequent rapid re-encounters will
not react either [due to condition (3)]. The radiation boundary condition is clearly not
appropriate to use for such reactions, where an appropriate model for spin dynamics
is not incorporated.

Noyes [8],Wilemski and Fixman [11] have pointed out that it is not strictly correct
to apply Smoluchowski [1] or radiation [7] boundary conditions to the diffusion
equation to model bimolecular chemical reactions. Both Teramoto and Shigesada
[12] and Wilemski and Fixman [11] have proposed a modified diffusion equation by
introducing a sink term to represent the reaction rate at a set of relative phase-space
coordinates of two reacting species. Let a simple diffusive process be described as

∂ρB

∂t
− D′∇2ρB = − k

4πa2 δ(r − a)ρB (2.32)

with k being a second order rate constant, δ(x) the Dirac delta function and ∇2 the
Laplacian operator. Assuming spherical symmetry, Wilemski and Fixman [11] have
shown that integrating Eq. (2.32) over the entire volume gives an expression for the
rate of change for the total number (n) of unreacted particles to be

dn

dt
= −kρB(a, t) (2.33)
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where the term ∂ρB/∂t is required to vanish at the reactive surface a due to reaction.
Integrating Eq. (2.32) again, but with r ≥ a + ε, Wilemski and Fixman [11] further
obtain

dm

dt
= −4π(a + ε)2

∂ρB

∂r

∣∣∣∣
r=a+ε

(2.34)

with m being the number of unreacted particles from a spherical surface of radius
a + ε, which is centered at the origin. By letting Eqs. (2.33) and (2.34) be equal and
taking the limit ε → 0 (such that there is no surface extending from a), one retrieves
the radiation boundary condition as given in Eq. (2.22). Clearly the radiation bound-
ary is not appropriate to use if reaction is possible at multiple interparticle distances
and one must instead use Wilemski and Fixman’s method. Another important rea-
son to use Wilemski and Fixman’s method is that the Green’s function can be more
readily found (in comparison with the radiation boundary) which is described on the
full configuration space, and can be used to solve the general diffusion equation.

2.2.2 Ions in Solution

In the analysis so far, it is assumed both particlesA andB to be uncharged. If however,
both the particles are now ions, the diffusion of B reactants about a given A particle
has to be modified due to the drift exerted by the electrostatic forces. The steady state
solution for both diffusion controlled and partially diffusion controlled reactions is
now presented.

2.2.2.1 Diffusion Controlled Reactions

Diffusion controlled recombination of an ion pair is influenced by the random
dispersive forces (also present for non-charged species) and the strong Coulombic
electrostatic interactions. The diffusion equation [13, 14] governing the diffusive
motion of charged species is known as the Debye-Smoluchowski equation [15],
which can be expressed as

∂ρB

∂t
= D′∇2ρB + D′

kBT
∇ · (ρB∇U ) (2.35)

where as before ρB is the probability distribution of B about A, and U is the
electrostatic potential energy at a separation r . The explicit form forU can be written
as (in the absence of any screening potential)

U = kBT zi z j rc
r

(2.36)



34 2 Theory of Scavenging and Recombination Kinetics

with rc representing the Onsager distance [14] (the distance at which the Coulombic
interaction equals kBT ), which is defined as

rc = e2

4πε0εr kBT
(2.37)

In Eqs. (2.36) and (2.37) zi e and z j e are the charges on ion i and j respectively,
ε0 is the permittivity of free space, εr is the relative permittivity of the solvent, kB
is the Boltzmann constant and T is the temperature. The sign of rc is important
and it depends on whether the encountering pair are of the same charge (in which
case rc > 0) or of different charge (in which case rc < 0). In the absence of any
external field, the diffusion tensor and potential energy of interaction is assumed to
be spherically symmetrical, so the diffusive motion becomes independent of angles
φ and θ . Substituting the expression for U , the radial part of Eq. (2.35) becomes

∂ρB

∂t
= D′
[
∂2ρB

∂r2
− ∂

∂r

(2r + rc)ρB
r2

]
(2.38)

In the steady state limit (∂ρB/∂t = 0) Eq. (2.38) can be reduced to

∂

∂r

(
r2

∂ρB

∂r

)
− rc

∂ρB

∂r
= 0 (2.39)

which when integrated gives

(
r2

dρB

dr

)
− ρBrc = A (2.40)

where A is the constant of integration. Using standard integration techniques together
with boundary conditions ρB(a, t) = 0 and ρB(r → ∞, t), the expression for the
steady state distribution of B about A is then

ρB(r,∞) = 1 − exp
( rc

a − rc
r

)
1 − exp

( rc
a

) (2.41)

Fick’s first law in the presence of electrostatic forces can be written as

JB = D′
[
∇ρB + ρB

kBT
∇U

]
(2.42)

which gives an expression for the steady state rate constant to be

k(∞) = 4πa2D′
[
∂ρB

∂r
+ ρB(a,∞)

kBT

dU

dr

]
(2.43)
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Using the derivative of Eq. (2.41) and substituting into Eq. (2.43) finally gives the
steady state rate constant for ions to be

k(∞) = 4πrcD′ [exp (rc
a

)
− 1
]−1

. (2.44)

2.2.2.2 Partially Diffusion Controlled

Like the neutral case, the inner boundary condition must be replaced from
Smoluchowski’s condition to ρB(a) = kactρB. The required inner boundary con-
dition for charged species then takes the form

4πa2D′
[
∇ρB + ρB

kBT
∇U

]
a

= kactρB (2.45)

where the left hand side of Eq. (2.45) simply representing the diffusive flux across
a sphere of radius a (with the A particle located at the centre). Upon solving with
the required boundary conditions one obtains an expression for the steady state rate
constant to be k(∞) = 4πa′

effD
′, with a′

eff representing

a′
eff = rc

[(
1 + 4πrcD′

kact

)
exp(rc/a) − 1

]
. (2.46)

2.3 Diffusion as a Stochastic Process

2.3.1 Introduction

Until now diffusion has been treated as a macroscopic physical process driven by
entropy, however, the diffusion equation implies amicroscopic interpretation in terms
of stochastic trajectories. Since much of the work in this thesis uses and develops
simulation methods at this microscopic level, it is necessary to introduce the funda-
mental concepts of this theory.

Markov process A stochastic process is a random process in which the evolution
from a state X (tn) to X (tn+1) is indeterminate (i.e. governed by the laws of prob-
ability) and can be expressed by a probability distribution function. Diffusion can
be classified as a stochastic process in a continuous state space (τ ) possessing the
Markov property as

P(X (tn+1) ∈ τ |X (t1) = x1, X (t2) = x2, . . . , X (tn) = xn)

= P(X (tn+1) ∈ τ |X (tn) = xn) (2.47)
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In diffusion terms of a stochastic process, the above equation simply states that the
future trajectory of a particle is independent of the trajectory the particle followed to
reach its current state.

Strong markov process For a diffusion process, the Markov property can be
extended to a sequence of random times known as the strong Markov property and
can be expressed as follows: let Tn, n = 1, 2, . . . be an increasing sequence of stop-
ping times3 for the process X (tn), n ≥ 0, and suppose X (T ) = xn ; the Markov
chain X (Tn+1), X (Tn+2), . . . , XT +n behaves as if the process had started anew at
X (Tn) = xn , and is independent of theMarkov chain of events X (T1), . . . , X (Tn−1).
It should be noticed that a Markov process does not necessarily obey the strong
Markov property because of subtle links between the random times. The converse is
however true.

Time homogeneous process Finally a diffusion process is time-homogeneous in
that the process is independent of the time origin. This can be written more formally
as

P((X (Tn) = xn)|X (Tn−1) = xn−1) = P(X (Tn − Tn−1) = xn|X (0) = xn−1)

(2.48)
which simply states that the diffusion process starts afresh, and that the new position
xn only depends on the elapsed time since the most recently specified position xn−1.
A diffusion process is only time homogeneous if it obeys the above property. Not all
diffusion process obey this property such as a conditioned diffusion process, where
the time origin is of significant importance.

2.3.2 One Dimensional Diffusion Process

The mathematical model of a one dimensional diffusion is the Wiener process (Wt ),
which satisfies the following three conditions: (1) W0 = 0, (2) Wt is continuous with
independent increments and (3) the trajectory of [Wt+δt − Wt ] can be sampled from
a normal distribution with mean (μ) of zero and variance (σ 2) of δt (strong Markov
property).

A Wiener process has the additional property E(X (tn+1)|X1 . . . X (tn) = X (tn)

i.e. the expectation value for a future event Xn+1, conditioned on it having evolved
to X (tn) is E[X (tn)] and no information is needed regarding any previous or future
events. In diffusion terms of a stochastic process, this means that the expectation
value of a new position of the particle at X (tn+1) is equal to its position at X (tn) and
is known as the martingale property.

More generally, a diffusion process from a state X (t) to X (t + δt) of a particle in
one dimension can be characterised by two parameters, namely μ representing the

3 T is said to be a stopping time for the sequence {X (ti )}, if the event 〈X (T ) = n〉 is independent
of X (Tn+1), X (Tn+2), X (Tn+3) . . . for n = 1, 2, . . ..
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mean (drift) and σ 2 representing the variance (dispersion)

μ = lim
δt→0

E(δX)

δt

σ 2 = lim
δt→0

E(δX2)

δt
(2.49)

All higher moments are zero for a diffusion process. The stochastic differential equa-
tion [16] which governs the change in the particle’s position (d X ) in an infinitesimal
time space (dt) is well known to be

d X = μdt + σdWt (2.50)

with dWt representing the random increment of the standard Wiener process over
the time interval dt . Analytical solution in terms of stochastic process that can be
sampled exactly is only possible in some cases; where this is not possible, numerical
simulations become necessary. There aremany discretisationmethods available [17],
with the simplest being the Euler method (which is adopted for the purposes of this
work). The solution to Eq. (2.50) is only possible when dt is infinitesimal, and must
be approximated by time discretisation, which replaces d X and dt in Eq. (2.50) with
δX and δt . Using the definition of a Wiener process [condition (3)], dWt can be
replaced with a normally distributed random variable with μ = 0 and σ = δt giving

δX = μδt + σ
√

δt N (0, 1) (2.51)

For theWiener process the transition density on going from a state x0 to y is a simple
Gaussian of the form

p(x0, y, t) = 1

σ
√
2π t

exp

[
(y − x0 − μt)2

2σ 2t

]
(2.52)

A Wiener process {X (t), t ≥ 0} with X (0) = 0, μ = 0 and σ = 1 is commonly
referred to as the standard Wiener process. Using this transition density, both the
forward and backward equations (see Sect. 2.3.2.1 for a detailed explanation) can
be derived, for which Eq. (2.52) is a solution [18].

2.3.2.1 Kolmogorov Diffusion Equation

Defining p(x, y, t) as the probability (or more formally the transition density) of the
particle diffusing from position x to y at a given time t , Kolmogorov [13] (and later
by Cox and Miller [19]) has shown that p(x, y, t) satisfies Eqs. (2.53) and (2.54),
formally known as the Kolmogorov forward and backward equations [13].
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Forward equation:

∂p

∂t
= ∂2

∂y2

(
σ 2(y)p

2

)
− ∂

∂y
(μ(y)p) (2.53)

Backward equation:
∂p

∂t
= 1

2
σ 2(x)

∂2 p

∂x2
+ μ(x)

∂p

∂x
(2.54)

In the language of applied maths, p(x, y, t) is the Green’s function for the diffusion
process. It is important to note that in the forward equation, differentiation is carried
out with respect to y (the current position) and with respect to x (the initial position)
in the backward equation. In the simulation of chemical systems, the drift term
(μ) arising in Kolmogorov’s equation is normally due to the Coulombic interaction
between charged species and can be expressed as

μ(x) = − D′

kBT

∂U

∂x
(2.55)

with D′ being the diffusion coefficient, kB theBoltzmann constant, T the temperature
and U the potential energy. If D′ does not depend on either the position or time, then
Eqs. (2.53) and (2.54) can be rewritten as the one dimensional Debye-Smoluchowski
equation with variance 2D′ as

Forward equation:
∂p

∂t
= D′ ∂2 p

∂y2
+ D′

kBT

∂

∂y

(
p
∂U

∂y

)
(2.56)

Backward equation:
∂p

∂t
= D′ ∂2 p

∂x2
− D′

kBT

∂U

∂x

∂p

∂x
(2.57)

If both D′ and μ are constant then Eq. (2.53) can be re-expressed in the form

∂p

∂t
= D′ ∂2 p

∂y2
− μ

∂p

∂y
(2.58)

In order to numerically solve the stochastic differential equation, the constraint that
μ is constant is made, which is satisfactory so long as the time steps used in the
simulation remain sufficiently small during interval t and t + δt . The solutions to
Eq. (2.58) has been done by Kolmogorov [13] using different boundary conditions.
Due to the extensive use of these Greens’ functions in the simulation packages, they
have been reproduced below using the four most common boundary conditions.4

4 Proof of these are shown in the Appendix in Sects. A.4–A.7.
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2.3.2.2 Transition Density with No Boundary

p(x, y, t) = 1√
4π D′t

exp

[
− (y − x − μt)2

4D′t

]
. (2.59)

2.3.2.3 Transition Density with a Reflecting Boundary

Boundary condition

D′ ∂p

∂y

∣∣∣∣
a

− μp(a) = 0 (2.60)

pref(x, y, t) = 1√
4π D′t

exp

[
− (y − x − μt)2

4D′t

]

+ 1√
4π D′t

exp[−μ(x − a)/D′] exp[−(y + x − μt − 2a)2/4D′t]

+ μ

2D′ exp[μ(y − a)/D′]erfc[(x + y + μt − 2a)/
√
4D′t]. (2.61)

2.3.2.4 Transition Density with an Absorbing Boundary

Boundary condition
p(a) = 0 (2.62)

pabs(x, y, t) = 1√
4π D′t

(
exp

[
− (y − x − μt)2

4D′t

])

− 1√
4π D′t

(exp[μ(a − x)/D′ − (y + x − μt − 2a)2/4D′t]).
(2.63)

2.3.2.5 Transition Density with a Radiation Boundary

Boundary condition

D′ ∂p

∂y

∣∣∣∣
a

− μp(a) = vp(a) (2.64)

Recalling v to measure the reactivity of the surface which has units of velocity, the
solution is given as



40 2 Theory of Scavenging and Recombination Kinetics

prad(x, y, t) = 1√
4π D′t

exp

[
− (y − x − μt)2

4D′t

]

+ 1√
4π D′t

exp[−μ(y − a)/D′] exp[−(y + x − μt − 2a)2/4D′t]

+ 2v + μ

2D′ exp[v(x + y + μt − 2a + vt) + μ(y − a)/D′]

× erfc

(
x + y − 2a + (2v + μ)t√

4D′t

)
. (2.65)

2.3.3 Three Dimensional Diffusion

To model diffusion in three dimensions, the stochastic differential equation must be
modified to the form

dr = µdt + σ
√

dtN(0, 1) (2.66)

with µ being the drift vector equalling to DF/kBT if the species are charged (in
this expression D is the diffusion coefficient, F the external force on the particle,
kB the Boltzmann constant and T the temperature). In three dimensional space,
Kolmogorov’s backward equation becomes

∂p

∂t
= D′∇2

x p − D′

kBT
∇xU · ∇x p (2.67)

with the adjoint forward equation taking the form

∂p

∂t
= D′∇2

y p + D′

kBT
∇y · (p∇yU ). (2.68)

2.3.4 Other Models of Molecular Motion

Themodelling of Brownianmotion for molecules in liquids is by nomeans limited to
the Kolmogorov diffusion equation. There are many alternative algorithms available,
which make use of the velocity and the force to explicitly calculate the trajectory
of the particles. In this section, a brief discussion of the three most commonly used
simulations in radiation chemistry are presented. A much more detailed explanation
can be found in the references provided.

Molecular dynamicsThemost successfulmodel which is able to describemolecular
motion is molecular dynamics [20–23]. The foundation of molecular dynamics relies
on the particles interacting using a predefined potential energy function, which itself
is usually calculated from experimental data. The particles move according to the
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laws of classical dynamics by integrating Newton’s equations of motion. One of the
most important functions which can be obtained from this type of simulation is the
velocity autocorrelation function (χ ) for a single particle, defined as

χ = 〈vc(0) · vc(t)〉
〈‖vc(0)‖2〉 (2.69)

with vc(0) being the initial velocity and vc(t) the velocity at time t . Through the use
of the Green-Kubo relation [24, 25], χ can be related to the diffusion coefficient as

D = 1

3

∞∫
0

〈vc(t) · vc(0)〉 dt (2.70)

Unfortunately,molecular dynamics are computationally very expensivewhichmakes
simulating radiation kinetics very difficult. This problem is further compounded by
the necessity to perform many realisations to obtain statistically significant results;
something which is not practical at present. In order to solve the ordinary differential
equations of motion to generate a trajectory, a range of finite different methods are
available (for example the velocity Verlet algorithm [26]).

Langevin equation Although molecular motion can be entirely described using
molecular dynamics, it does have the disadvantages of requiring small time steps
and the necessity to model the solvent molecules explicitly. The Langevin equation
[27] helps to circumvent these problems to a certain degree. Using Newton’s second
law of motion, the rate of change of the velocity for a single particle can be described
using the relation

dvc(t)

dt
= −γFvc(t)

m
+ 1

m
ξ ′(t) (2.71)

with vc(t) being the velocity,m themass, γF the friction coefficient as given by Stokes
law and ξ ′(t) a stochastic variable representing the collision between the particle and
the solvent. The change in the particle’s displacement is then simply

dx

dt
= vc(t) (2.72)

Equation (2.71) is a linear equation whose solution is elementary such that

vc(t) = e−t/τ vc(0) + 1

m

t∫
0

e−(t−s)/τ ξ ′(s) ds (2.73)

with τ = m/γF. The integral in the above equation gives an ‘extra’ velocity pro-
duced by the random noise to prevent the velocity decaying to zero. Unfortunately,
ξ ′(s) is a fluctuating function and it is not obvious whether any global solution to
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Eq. (2.71) exists unless stronger conditions to ξ ′(s) are imposed. It can be shown that
ξ ′(s)ds possesses the properties of a Wiener process dW, which when substituted
into Eq. (2.71) gives the stochastic differential equation of the form

dvc(t) = γF

m
v(t)dt + 1

m
dW (2.74)

with the solution to the above equation readily found to be

vc(t) = e−t/τ vc(0) + 1

m

t∫
0

e−(t−s)/τ dW (2.75)

where vc(0) is the initial velocity of the particle. The expression for the variance in
the velocity is then

〈v2c (t)〉eq = kBT

m

(
1 − exp

(
−2γF

m
t

))
+ v2c (0) exp

(
−2γF

m
t

)
(2.76)

where kB is Boltzmann’s constant and T the temperature. The solution for the vari-
ance in the position involves multiplying Eq. (2.71) by x and taking the ensemble
average. Letting u = d〈x2〉/dt , Eq. (2.71) can be re-written as5

m

2

du

dt
+ γF

2
u = kBT (2.77)

The general solution can be readily calculated to be

u = Ce−γFt/m + 2
kBT

γF
(2.78)

with C being the constant of integration, which equals to kBT/γ . Using the solution
for u, the expression for 〈x2〉 finally gives

〈x2(t)〉 = 2kBT m

γ 2
F

[
tγF
m

−
(
1 − exp

(
− tγF

m

))]
. (2.79)

Fokker-Planck equation The Langevin equation describes the Brownian motion
of a single particle which experiences a random force (due to collisions with the
solvent particles) causing the velocity to behave in a stochastic way. The Fokker-
Planck equation (also known asKolmogorov forward equation) extends the Langevin
equation to an ensemble of identical Brownian particles by finding the probability
distribution P(v, t) of N particles in the ensemble having velocities in the interval
(v, v + δt) at time t . The Fokker-Planck equation can be formally expressed as

5 It should be recognised that 〈ẋ x〉 = 1
2

dx2
dt and 〈ẍ x〉 = 1

2
d2x2

dt2
− u2.
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∂

∂t
P(vc, t) = γF

∂

∂vc
(vc P(vc, t)) + kBT γF

m

∂2

∂v2c
P(vc, t) (2.80)

The steady state solution to the Fokker-Planck equation can be readily found to be

P(v) =
(

γF

π Q

)1/2
exp

(
−γFv

2
c

Q

)
(2.81)

with Q = 2γFkBT/m which describes the strength of the stochastic force. The time
dependence of P(vc, t), subject to the initial condition P(vc, t0) = δ(vc(t) − vc(0))
can be obtained using the method of Fourier transformation. A full derivation is not
presented here, but can be found elsewhere [28]. The final result yields

P(v, t) =
√

γF

π Q[1 − exp[1 − 2γF(t − t0)]] exp
[
−γF[vc(t) − vc(0) exp[−γF(t − t0)]]2

Q[1 − exp[−2γF(t − t0)]]

]

(2.82)

Diffusion model used in this work For the purpose of this work the evolution of
the particle position is described in terms of the stochastic differential equation.
The major problem with using this technique is that the particle velocity cannot be
described (since the diffusion sample paths are nowhere differentiable). The cen-
tral limit theorem does however provide the reassurance that the diffusion equation
accurately describes evolution of the transition density. For all chemical systems
investigated as part of this work, the transient period occurs on a timescale of tens of
picoseconds or possibly even longer. This value is much bigger than typical values
of the velocity autocorrelation function, making the use of the diffusion equation
justifiable.

2.4 Geminate Recombination

In diffusion controlled kinetics, two different types of reactions can take place,
namely geminate recombination and bulk reactions. Geminate recombination arises
in isolated spurs, before any significant diffusion has taken place and entails the reac-
tion between isolated pairs of A and B particles. In this case it becomes meaningless
to define their concentration. For geminate recombination, the survival probability
�(r, t) (or its complement W (r, t)), which is the probability of surviving reaction to
a time t , given an initial separation r , is one of the most important physical quantities
in radiation chemistry.

In this section, the solution to the backward diffusion equation for �(r, t) using
two different types of boundary conditions for both neutral and charged species is
presented. These solutionswill then be used in the next section to demonstrate the link
between the bulk reaction rate and the pair survival probability. Before presenting
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the discussion, it is worth noticing why �(r, t) (and by extension W (r, t)) obeys
only the backward diffusion equation rather than the forward diffusion equation.

The expression relating �(r, t) and p(x, y, t) is given by

�(r, t) =
∞∫

a

p(x, y, t)dy (2.83)

which simply states that the probability of survival is an integral of the probability
density function for the interparticle distance up to time t . This integral involves
the variable y, so the backward diffusion equation is not affected. However, upon
integrating the forward equation one obtains

∂�

∂t
=
[

∂

∂y

(
1

2
σ 2(y)p(x, y, t)

)
− μ(y)p(x, y, t)

]b
a

(2.84)

which simply states that the rate of reaction is proportional to the diffusive flow over
the two boundaries (essentially Fick’s law). This is not an expression for the survival
probability.

2.4.1 Diffusion Controlled Reactions

2.4.1.1 Neutral Species

In order to find the expression for the reaction probability of two neutral particles it
is necessary to return to the backward diffusion equation

∂W

∂t
= D′
[
∂2W

∂r2
+ 2

r

∂W

∂r

]
(2.85)

with r being the separation of the pair and W is the reaction probability. Assuming
spherical symmetry together with the boundary conditions6

W (a, t) = 1 (t > 0) (2.86)

W (r → ∞, t) = 0 (2.87)

W (r, 0) = 0 (r > a) (2.88)

the solution to Eq. (2.85) can be found using the Laplace transform method to give

6 These boundary conditions are equivalent to Smoluchowski’s boundary conditions as discussed
earlier.
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W (r, t) = a

r
erfc

(
r − a√
4D′t

)
(2.89)

where a is the encounter radius and D′ is the mutual diffusion coefficient. The
reaction probability W (r, t) is the complement of the survival probability �(r, t)
so Eq. (2.89) can be easily reformulated in terms of the survival probability using
the relationship �(r, t) = 1 − W (r, t). The asymptotic recombination yield is then
easily seen to be

W (r,∞) = a

r
(2.90)

2.4.1.2 Charged Species

The time-dependent backward diffusion equation for the reaction probability of ions
[29, 30] is known to be

∂W

∂t
= D′
[
∂2W

∂r2
+ (2r + rc)

r2
∂W

∂r

]
(2.91)

where rc is the Onsager distance. In order to solve the above diffusion equation, it is
necessary to impose some boundary conditions. Assuming the reaction between the
species to be diffusion controlled with an absorbing boundary at a (the encounter
distance), the required boundary conditions remain the same as shown in Eqs. (2.86)–
(2.88). Unfortunately, Eq. (2.91) cannot be solved in closed form with several
attempts detailed in the literature which aim to provide an approximate solution
[31–37]. The most rigorous of these is the solution obtained by Hong and Noolandi
[38], however, the solution is exact only in the Laplace space and cannot be inverted
analytically. From their formulation, the survival probability (at long times) is found
to be

�(t) = [U (r)/U (∞)]
(
1 + rc

U (∞)
√

π D′t

)
(2.92)

where r is the radical pair separation and U (r) = exp(−rc/r) + (D′rc/va2 − 1)
exp(−rc/a) (with r , a and v representing the distance between the ion pair, the
encounter radius and reaction velocity respectively). Taking the inverse Laplace
transform of Hong and Noolandi’s expression (or in general the inverse Laplace
transform of any expression) is notoriously numerically unstable. A much better
method [39] is to use a numerical solution to the partial differential equation using
a standard finite difference method, which is certain to be unconditionally stable.

For high permittivity solvents (when rc is small), Clifford et al. [32] have obtained
an approximate time dependent solution for W (r, t) as

W (r, t) =
(

a′
eff

reff

)
erfc

(
reff − a′

eff√
4D′t

)
(2.93)
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with the asymptotic form for the reaction probability being

W (r,∞) = a′
eff

reff
(2.94)

In the above expression, reff and a′
eff are defined to be rc/(exp(rc/r) − 1) and

rc/(exp(rc/a) − 1) respectively, and are referred to as the natural distance scale
for the radial process.

For lowpermittivity solventsGreen et al. [31] have developed an excellent approx-
imation for the reaction probability as

W ∗(x, a, τ ) ≈ 1

2
erfc

⎛
⎜⎜⎜⎝

(x − y)

√
2

(
s(τy)2 − s(τa)2

τ
′2
a

τ
′2
y

)1/2

⎞
⎟⎟⎟⎠ (2.95)

with the variables in the above equation defined to be

x = 2r

rc
(2.96)

y =
[
6((τ + τa)1/3 − 1

7
[6(τ + τa)

]2/3
(2.97)

τx = 1

6

[
7

2
(1 −√(1 − 4x/7))

]3
(2.98)

τ ′
x =

1
2

[ 7
2 (1 − √

(1 − 4x/7))
]2

√
(1 − 4x/7)

(2.99)

s2 = 6τ

7
(2.100)

where τ = 4D′t/r2c . Unfortunately, the approximation breaks down if τ is suffi-
ciently large because the normal distribution has a significant part of its density on
the wrong side of the reflecting boundary at the origin. This situation arises at longer
times because the standard deviation s increases faster than the mean (defined as
m = (6τ)1/3− (6τ)2/3/7). However, in Sect. 4.4.4.1, it will be shown how this error
can be partially corrected. The corresponding unconditioned reaction probability can
be found using Eq. (2.95) through the relation

W (x, a, τ ) = W (x,∞, τ ) × W ∗(x, a, τ ) (2.101)

Using the perturbation treatment [38, 40] for small r and large t , Tachiya [4] has
found an approximate expression for �(r, t) as

http://dx.doi.org/10.1007/978-3-319-06272-3_4
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�(r, t) = e−(rc/r) − e−(rc/a)

1 − e−(rc/a)

[
1 + 1

1 − e−(rc/a)
× rc√

π D′t

]
(2.102)

with the asymptotic expression for the survival probability found to be

�(r,∞) = e−(rc/r) − e−(rc/a)

1 − e−(rc/a)
(2.103)

which is the same as that obtained by Clifford et al. [32] [i.e. Eq. (2.94)].

2.4.2 Partially Diffusion Controlled Reactions

2.4.2.1 Neutral Species

As mentioned previously, for partially diffusion controlled reactions the reactivity
of the inner boundary can be controlled using the parameter v which has units of
velocity. The required inner boundary condition is of the form

∂�

∂r

∣∣∣∣
r=a

= v

D′ �(a) (2.104)

with the outer and initial conditions taking the form

�(r → ∞, t) = 1 (2.105)

�(r, 0) = 1 (r > a) (2.106)

Using the above boundary conditions, the expression for the survival probability in
the absence of any interaction potential can be found to be

�(r, t) = 1 − a(
1 + D′

va

)
(
erfc

(
r − a√
4D′t

)

− exp

[(va

D′ + 1
)(r − a

a

)
+
( vr

D′ + 1
)2 (D′t

a2

)]

× erfc

[
r − a√
4D′t

+
(va

D′ + 1
) √

D′t
a

])
(2.107)

with the asymptotic form of the above to be

�(r,∞) = 1 − (a/r) + (D′/va)

1 + (D′/va)
(2.108)
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2.4.2.2 Charged Species

Using the perturbation treatment [38, 40] for small r and large t , together with the
boundary conditions given in Eqs. (2.104)–(2.106), Tachiya [4] has arrived at an
approximate expression for the survival probability as

�(r, t) = e−(rc/r) + (η − 1) e−(rc/r)

1 + (η − 1) e−(rc/a)

×
[
1 + 1

1 + (η − 1) e−(rc/a)
× rc√

(π D′t)

]
(2.109)

where η = D′rc/va2. As expected the above equation decomposes to Eq. (2.102) in
the limit v → ∞. The asymptotic form for the survival probability is then readily
found to be

�(r,∞) = e−(rc/r) + (η − 1) e−(rc/a)

1 + (η − 1) e−(rc/a)
(2.110)

which unfortunately diverges for short times. A much better approximation has been
developed byGreen et al. [41], which provides the same asymptotic form asTachiya’s
expression, however the function is not divergent for short times. Green et al. [41]
solved the backward diffusion equation subject to the inner boundary condition

∂W

∂r

∣∣∣∣
r=a

= − v

D′ [1 − W (a)] (2.111)

with the other boundary conditions given by Eqs. (2.87) and (2.88). The expression
for the time-dependent reaction probability was found to be

W (r, t) ≈ a′
eff

reff(1 + δ)
[erfc(α) + exp(2αβ + β2)erfc(α + β)] (2.112)

with α, β and δ defined to be

α = reff − a′
eff√

4D′t
(2.113)

δ = D′a′
effe

rc/a

va2 (2.114)

β = (1 + 1/δ)

√
D′t

a′
eff

(2.115)

and reff and a′
eff are defined to be (rc/exp(rc/r) − 1) and (rc/exp(rc/a) − 1) respec-

tively. In the limit v → ∞ Eq. (2.112) reduces to Eq. (2.93) which is to be expected
since the surface reactivity is now infinitely fast.
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2.5 Bulk Recombination Rate Constant

Bulk reaction is the reaction between two particles, say A and B which are uni-
formly distributed in the chemical system. In this situation it becomes necessary to
define the concentrations cA and cB of both species. In this section the bulk reaction
rate is derived in terms of the pair survival probability and it is demonstrated how
Smoluchowski’s time dependent rate constant can be obtained by making use of the
independent pairs approximation.

In general the bulk reaction rate k is proportional to both cA and cB as

−dcA
dt

= −dcB
dt

= kcAcB (2.116)

and as previously shown in this work, the usual method to calculate k(t) considers the
distribution of B particles around any given A particle. The B particles are assumed
to be in excess of the A particles so that the competition of an A particle to capture
a B particle is not important. Also the A particles are considered to be effectively
independent from one other and therefore the concentration gradients about each
survivingAparticle donot interfere. The rate constant k(t) is then the inwarddiffusive
flow rate of B particles across the reaction surface at a. Shlesinger [42] has stated in
the literature that this formulation for k(t) is not strictly speaking correct. Only the
first B particle which diffuses towards the reaction surface will contribute to k(t),
and not the diffusive motion of all the B particles towards the reaction surface. This
problem is remedied by explicitly using the pair survival probability.

2.5.1 Independent Pairs Approximation

The independent pairs approximation (IPA) plays an important role in describing
the kinetics in microscopic nonhomogeneous systems. Rather than formulating a
theory based on macroscopic systems, IPA starts with a microscopic description of
the geminate pair and extends its applicability to systems of more than two particles.
Consider an A particle fixed at the origin, then let the probability density of finding
a B particle at distance r1, r2 and so on from the A particle be u(r1, r2, . . . , rN )

(the joint probability density of N distances). The probability P(t) of the A particle
surviving is then the probability of all B particles belonging to A surviving such that

P(t) =
∫
V

∫
V

. . .

∫
V

�(r1, t)�(r2, t) . . . �(rN , t)

× u(r1, r2, . . . , rN )dr1dr2 . . . drN (2.117)

with V being the volume of the system and �(r, t) the pair survival probability of
species A and B.
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Uniform distribution The bulk rate constant k(t) for a uniform distribution can now
be formulated in a similar manner to Eq. (2.116) using the survival probability of the
A particle as follows

k(t) = − 1

cB

d ln P

dt
(2.118)

Letting the B particles be distributed according to a Poisson distribution, the proba-
bility that the volume contains N particles is

u(N ) = e−cBV (cBV )N

N ! (2.119)

Assuming for simplicity that V only contains one B particle, the survival probability
of A is then simply

�1 = 1 −
R∫

a

4πr2

V
W (r, t) dr (2.120)

where W (t) is the reaction probability of particle A and R is the maximum distance
between the A–B particle. Now making the independent pairs approximation such
that

P(survival|N ) = P(survival|1)N (2.121)

which in words states that the probability of the A particle surviving conditioned the
volume contains N number of B particles, is equivalent to the probability of all B
particles belonging to A surviving. The expression for P(t) can now be rewritten in
the form

P(t) =
∞∑

N=0

u(N )P(survival|1)N

=
∞∑

N=0

e−cBV (cBV )N

N ! (�1)
N

= [1 − cBV ][1 + cBV �1]
= e−cBV (1−�1)

= exp(−cB

R∫
a

4πr2W (r, t) dr) (2.122)

Substituting the expression for P(t) into Eq. (2.118) then gives

k(t) = d

dt

R∫
a

4πr2W (r, t) dr (2.123)
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Making the assumption that B is in large excess over the A particles and substituting
the expression for W (r, t) Eq. (2.89) into Eq. (2.123) finally gives Smoluchowski’s
time dependent rate constant to be

k(t) = 4πa

∞∫
a

r erfc

(
r − a√
4D′t

)
dr

= 4πaD′
[
1 + a√

π D′t

]
(2.124)

The rate constant for reactions which are not fully diffusion controlled can also be
readily found by substituting the complement of Eq. (2.107) into Eq. (2.123) to give

k(t) = 4π D′a
1 + α

[
1 + va

D′ exp
((va

D′ + 1
)2 (D′t

a2

))

× erfc

[(va

D′ + 1
) √

(D′t)
a

]]
(2.125)

where α = D′/va. The above expression reduces to Eq. (2.124) for an infi-
nitely fast boundary (v → ∞). This derivation has shown two important factors:
(1) Smoluchowski’s first assumption that the central A particle is stationary is equiva-
lent to the independent pairs approximation and (2) Smoluchowski’s second assump-
tion that the central sink is indestructible is not necessary in this case (as shown by
Steinberg and Katchalski [5] and Tachiya [4]). Other derivations of the above equa-
tion have also been presented in the literature [3]. Therefore the usual method used to
calculate k(t) is correct, because in Eq. (2.116), the right hand side is multiplied by
the concentration of the surviving A particles. The concentration of the A particle is
only depleted by the inward flow of the first B particles and not of all the B particles.
Hence only the inward flow of the first B particles contributes to the rate constant.

Thermal distribution From statistical mechanics the thermal distribution is known
to take the form

u(r1, r2, . . . , rN ) = e−β[�1(r1)+�2(r2)+···�N (rN )]∫ ∫
. . .
∫

e−β[�1(r1)+�2(r2)+···�N (rN )]dr1r2 . . . rN
(2.126)

where �(r) = −e2/εr r , with εr being the dielectric constant, e the electron charge
and β = 1/kBT , with kB being the Boltzmann constant, T the temperature. The
probability of survival of the A particle is then

P(t) =
[∫ V

a �(r, t)e−(β�(r))dr∫ V
a e−(β�(r))dr

]N

(2.127)
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Under the assumption that

lim
V →∞

∫∞
a e−(β�(r))dr

V
= 1 (2.128)

and �(r) to drop with increasing r , the final expression for P(t) yields

P(t) = e−cB
∫ [1−�(r,t)]e−(β�(r))dr (2.129)

Substituting the above expression into Eq. (2.118) then gives the bulk rate constant
for a thermal distribution to be [4]

k(t) = −
∞∫

a

∂�(r, t)

∂t
e−(β�(r))dr (2.130)

2.6 Scavenging Kinetics

2.6.1 Scavenger Concentration and the Inverse Laplace
Transform Relationship

In radiation chemistry, experimentalists often use scavengers to intercept the radicals
and ions before they recombine. The addition of scavengers often introduces an extra
level of complexity into the recombination kinetics since some of the scavenged
products might be capable of further reactions. It was first suggested by Monchick
and Hummel [43–45] that the kinetics of recombination in a two radical spur can
be extracted by observing the concentration dependence of the yields of scavenging
and recombination. The yield of scavenged radicals G(s) per 100 eV of absorbed
energy can be related to the recombination kinetics in hydrocarbons by the relation

G(s) = s

∞∫
0

exp(−st)G(t) dt (2.131)

where s is the pseudo-first order scavenging rate constant (equal to k[S], with k being
the steady state scavenging rate constant and [S] the concentration of scavengers)
and G(t) the survival yield of radicals per 100 eV in the absence of scavengers. The
unknown function G(t) can be obtained by taking the inverse Laplace transform
(ILT) of G(s)/s. Hence, in order to determine G(t) a knowledge of the function
G(s)/s is required from zero up to the point where all the particles are scavenged.
Warman et al. [46] have studied the irradiation of hydrocarbon solutions, and have
found an expression for G(s) (for low concentrations of [S]) to be of the form
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G(s) = [G(0) − G(∞)]
(�[S])1/2

1 + (�[S])1/2 + G(∞) (2.132)

where G(0) is the initial yield of ions, G(∞) is the final yield of intra-spur ions
and � is a constant which is related to the particular scavenging reaction. The ILT of
G(s)/s is then readily found to be

G(t) = [G(0) − G(∞)] exp(λt)erfc(tλ)1/2 + G(∞) (2.133)

withλ = k/�. Hummel has similarly suggested a form for the scavenging of ions to be

G(s) = [G(0) − G(∞)] (1 − exp(−(�[S])1/2)) + G(∞) (2.134)

with the ILT of the above expression being

G(t) = [G(0) − G(∞)]
(
1 − erfc

(
1

2(λt)1/2

))
+ G(∞) (2.135)

Both Eqs. (2.132) and (2.134) are functions which can be expressed as

G(s) = [G(0) − G(∞)]

∑n
i=1(�[S])i/2/ i !∑n
i=0(�[S])i/2/ i ! + G(∞) (2.136)

It was found by Pimblott and La Verne [47] that an intermediate function (with i = 2
in the above expression) of the form

G(s) = [G(0) − G(∞)]
(�[S])1/2 + �[S]/2

1 + (�[S])1/2 + �[S]/2 + G(∞) (2.137)

gave a more acceptable fit to experimental data. The ILT of the above expression was
found to be

G(t) = [G(0) − G(∞)]
(
2Ff

(
4λt

π

)1/2)
+ G(∞) (2.138)

with Ff representing the auxiliary function for the Fresnel integrals.

2.6.2 Competition Between Scavenging and Recombination

For some of the chemical systems considered in this thesis, geminate recombination
competes with scavenging. The fact that the radicals are initially close to one another
means that the radicals compete for individual scavengers; this competition leads to
an effect on the scavenging rate.
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It has been reported in the literature [48] that Smoluchowski’s rate constant over-
estimates the rate of scavenging for a single target that can be hit multiple times (for
example DNA). In their work, the authors found that Smoluchowski’s rate constant
overestimated the scavenging yield in comparison toMonteCarlo randomflights sim-
ulation (which makes no assumptions on the rate of scavenging as they are explicitly
treated). The authors have found that a modification to Smoluchowski’s rate constant
is required in order to properly take the correlation of reaction times into account;
however, the independent pairs approximation is still made.

In their paper [48], they show that the probability distribution for the first reaction
time is given by P2 = exp(−cvL(2t)), whereas assuming independence of radical-
target distances this would be exp(−2cvL(t)), where c is the target concentration
and vL has the dimension of volume and is defined as vL(t) = 4

3πa3 + 4π D′a(t) +
8a2

√
π D′t . Comparing the two exponents for a correlated system (Eq. 2.139) and

assuming independence of radical−target distance (Eq. 2.140) they obtain the fol-
lowing expressions

vL(2t) = 4

3
πa3 + 8π D′at + 8a2

√
2π D′t (2.139)

2vL(t) = 8

3
πa3 + 8π D′at + 16a2

√
π D′t (2.140)

In the above equations, the first term representing zero time reaction is overestimated
by a factor of two if independence of reaction times is assumed. This is because for a
geminate pair, if the scavenger is initially far from one radical then it will also be far
from the other radical. Hence there is a second possibility for the other radical to be
close to the target and react. However, if the radical-target distances are correlated,
and if one radical is far from the target then the other must be as well (as the radicals
are close together).

The second term operates in the long time limit when steady state is achieved and
any information regarding the initial radical-target correlation is lost. Therefore it is
not surprising that both the exponents are the same.

The third term is the most important, as this represents the rate of reaction before
a concentration profile is established. It is seen that this term is a factor of

√
2

smaller than what is predicted by Smoluchowski. By slowing the transient term
in Smoluchowski’s time dependent rate constant, the authors report the modified
expression for the correlated system to be

k(t) = 4πaD′
(
1 + a√

2π D′t

)
(2.141)

Themodified rate constant shows that the first radical-target reaction to be slower than
what is predicted by Smoluchowski, because asmentioned earlier, if one radical is far
from the target the other must be as well (with the converse also being true); whereas
assuming independence of radical-target distance, there is a second possibility for
the radical to be close to the target. Given that the first reaction time is slower than
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what is predicted by assuming independence of distance (assuming radical decay is
identical such that each radical is equidistant from the target), it is foundby the authors
that the second radical-target reaction time must be faster than what is predicted by
Smoluchowski. This is found to be true for an indestructible sink, as the second
radical is much more likely to react with the same target as the first and this will
occur on amuch faster timescale thanwhat is predicted by assuming independence of
reaction times. Further work conducted by the authors has shown that for a reaction
scheme where scavengers are not indestructible, the second reaction is predicted
to be slower than Smoluchowski’s theory, since the concentration of scavengers is
depleted by the first reaction.

2.7 Spin-Controlled Reactions

In order to model spin-dependent reactions it is necessary to introduce a spin statis-
tical factor (σS) into Smoluchowski’s rate constant to account for the fact that only
1/4 of all interactions will be in a reactive singlet state. The modified Smoluchowski
steady state rate constant for spin systems is then [3]

k = 4π D′aσSβ (2.142)

where β is 1
2 for like reactions or unity otherwise. The value of σS varies for different

chemical systems and is directly related to the spin relaxation time. For radicalswhose
spin-relaxation time is much longer than the encounter time (∼10−8 − 10−10 s),
σS = 1

4 , however for faster relaxing systems σS → 1, reflecting the fact that the spin
can re-orient itself whilst still inside the encounter cage. Various σS values have been
tabulated in the literature [49] based on the observed rate constant for the reaction
between the hydrated electron and various radicals; a spin factor of 1

4 is applicable for
e−
aq + ·SO−

3 , CO
·−
3 , ·CO−

2 ,
·C(CH3)2OH, (·CH2)(CH3)2COH, ·C6H6OH, C6H5O·,

p−(H3C)C6H4O· and p−OC6H4O·−, whilst for reactions between e−
aq + ·OH, ·N3,

Br2·− and I2·− the spin factor is found to be close to unity. For the e−
aq + ·OH the

spin factor is close to unity because of the unquenched orbital angular momentum
in linear radicals, which through the spin-orbit coupling mechanism can lead to very
fast spin relaxation.

Based on experimental findings by Ichino and Fessenden [49], the authors have
suggested that σS is also temperature dependent. Assuming the radical pair lifetime to
be inversely proportional to themutual diffusion constant (D′) [50], it is found that D′
changes by about a factor of three between 298 and 343 K, so the radical pair lifetime
should decrease by about the same factor. Therefore, with increasing temperatures,
diffusive separation of triplet radical pairs may become a faster process than spin-
relaxation, in which case the spin-factor would be lowered. This explanation has
been found to be in agreement with experimental findings [49].
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A very useful theoretical model developed by Mints and Pukhov [51] allows
the relationship between the spin factor and spin relaxation to be analysed. Using
the stochastic Liouville equation and a phenomenological approach to treating spin
relaxation, the authors arrive at the expression for the (e−

aq + radical) reactions as

σS = 1

2

kτ PQ

kτ(P + Q) + 2PQ
(2.143)

where

τ = a′b′

D′ , P = 2

(
1 + √

2x ′

2 + √
2x ′

)
, Q = 1 +√y′

x ′ = 1

2T1

b
′2

D′ , y′ = 1

2T2
(2.144)

Here, k is the rate constant for reaction, τ is the radical pair lifetime, a′ is the thickness
of the reaction layer, b′ is the reaction distance, D′ the mutual diffusion coefficient
and T1 and T2 are the longitudinal and transverse relaxation times of the counter
radical. This model neglects any magnetic interactions (i.e. hyperfine and Zeeman)
which could possibly influence the observed chemical kinetics.

2.7.1 Recovering Boundary Model

An analytical theory developed by Green et al. [9] replaces the radiation boundary
condition, treating encounters and re-encounters differently and is known as recov-
ering boundary. The main idea of this theory is that on an unsuccessful encounter
the boundary becomes unreactive, which gradually grows back as a function of time.
The nature of this recovery can take various analytical forms depending on the type
of reaction. In this section only a brief review of the theory is presented which is
applicable to this work. A fuller review can be found in reference [9].

The recovery boundary method finds the Laplace transform of the density of the
reaction times following an unreactive encounter, which takes the form

f (t) =
t∫

0

w2(t1)w1(t − t1)P(t − t1)dt1

+
t∫

0

t2∫
0

w2(t1)w1(t2 − t1)(1 − P(t2 − t1)) f (t − t2)dt1dt2

(2.145)
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with w1 and w2 denoting the first passage density of times from a + δ to a and a to
a + δ respectively (a being the encounter distance). The first term simply states that
for a diffusion process which obtains a + δ at t1, the probability of reacting at time
t (which denotes the time taken to diffuse from a to a + δ) is P(t − t1). The second
term accounts for the diffusion process to have attained a at an earlier time t2 and
was found to be unreactive with probability 1− P(t2 − t1). Using the strong Markov
property, the process starts anew with the probability of reaction at t2 zeroed, and
eventually reacting at a later time t .

Recognising Eq. (2.145) as a convolution, the Laplace transform takes the form

f̃ (s) = w̃(s)ṽ(s)

1 − w̃2(s)(w̃1(s) − ṽ(s))
(2.146)

where ṽ(s) contains the recovery function and is related to v(t) by the expression
w1(t)P(t). The authors have found that under most conditions, recovery can start
as soon as the boundary is obtained; introducing any delay times (i.e. time to attain
a + δ) is deemed unnecessary. In this case taking the limit δ → 0 of Eq. (2.146), the
authors obtain

f̃ (s) = ṽ(s)

1 − (w̃1(s) − ṽ(s))
(2.147)

where ṽ(s) contains the recovery function and is related to v(t) by the expression
w1(t)P(t).

In order to model spin dependent reactivity, where reaction is only possible
through the singlet channel, the authors make use of the exponential model of the
form P(t) = p(1 − e−βt ) to calculate the probability of reaction. Here, the P(t)
relaxes exponentially towards the asymptotic value of p (the probability of being in a
singlet state). β in this expression is the inverse of the spin relaxation time. Using the
shift theorem of Laplace transform, the authors derive an expression for ṽ(s) to be

ṽ(s) = p[w̃1(s) − w̃1(s + β)] (2.148)

On substituting this definition for v(s) into Eq. (2.147), the expression for the first
passage density of times is

f̃ (s) = p[w̃1(s) − w̃1(s + β)

1 − [(1 − p)w̃1(0) + pw̃1(β)] (2.149)

The probability of ultimate reaction can then be simply calculated by using the final
value theorem (s → 0), giving

F∞ = p[w̃1(0) − w̃1(β)]
1 − [(1 − p)w̃1(0) + pw̃1(β)] (2.150)
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2.7.1.1 Homogeneous Rate Constant

The steady state rate constant can be expressed as

k∞ = 4π D′a[q + (1 − q)F∞] (2.151)

where q is the probability of reaction on first encounter. The first term of Eq. (2.151)
is equivalent to Eq. (2.142) (Smoluchowski’s steady state rate constant with a spin
statistical factor), with the second term describing the correction for the regrowth of
reactivity following each unreactive encounter. The exact solution for w̃1(s) (assum-
ing a spherical particle) is shown to be

w̃1(s) = a

a + δ
exp(−δ

√
s/D′) (2.152)

Using the above definition for w̃1(s), substituting into Eq. (2.149) and taking the
limit s → 0, the ultimate recombination probability can be expressed as

F∞ = ap
√

β/D′

1 + ap
√

β/D′ (2.153)

Substituting the above expression for F∞ into Eq. (2.151) gives the expression for
the steady state rate constant to be

k∞ = 4π D′a
(

q + ap
√

β/D′

1 + ap
√

β/D′

)
(2.154)

Whether the recovering boundary or radiation boundary is applicable depends on a
detailed model of the dynamics of the system and must be implemented accordingly.
For the purposes of this work, the recovering boundary formalism is simply used
to estimate the feasibility of certain approximations and is not implemented in any
simulation.
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