
Chapter 2
Dynamical Systems

Abstract Dynamical systems are formally defined—may they be classical or
quantum. We introduce important concepts for the analysis of classical non-
linear systems. In order to focus on the essential questions, this chapter restricts to
one-dimensional discrete maps as relatively simple examples of dynamical systems.

2.1 Evolution Law

A dynamical system is given by a set of states Ω and an evolution law telling us
how to propagate these states in (discrete or continuous) time. Let us assume that the
propagation law is homogeneous in time. That means it depends on the initial state
but not on the initial time. Mathematically speaking a dynamical system is given by
a one-parameter flow or map

T : G × Ω → Ω, (2.1.1)

(g ∈ G, ω ∈ Ω) �→ T g(ω) ∈ Ω,

such that the composition is given by

T g ◦ T h = T g+h . (2.1.2)

For a discrete dynamical system we have G = N or G = Z (discrete time steps)
and for a continuous dynamical system G = R

+ or G = R (continuous time). The set
Ω contains all possible states. It describes the physical reality one wants to model
and is called the phase space. From an algebraic point of view the above defined
maps form a semi-group that operates on Ω . If the map T is invertible for all t ∈ G
this structure extends to a group1 and we say that the dynamical system is invertible.

1 Translational invariance of the flow with respect to the time parameter g is only given if the
generator of the dynamics is itself time-independent. Any classical problem can formally be made
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10 2 Dynamical Systems

The sets
{
T t (ω)

}
t∈G define orbits or trajectories of the map. They can be discrete

or continuous, finite or infinite.
The above definitions are quite abstract and therefore we give a few examples.

1. The simplest example is a discrete dynamical system defined by an iterated map.
Let f be a map of the interval Ω onto itself. We define

T n = f ◦ f ◦ .. ◦ f
︸ ︷︷ ︸

n times

, G = N. (2.1.3)

If the map f is invertible so is the dynamical system, and we can extend time to
G = Z. Two concrete examples of such discrete maps will be given in Sect. 2.2.

2. An example from classical physics is the motion of N particles in three space
dimensions. The dynamics are governed by Newton’s equations of motion for the
vector of positions x(t)

mẍ(t) = F(x(t)). (2.1.4)

Defining the composite vector y(t) = (y1(t) ≡ x(t), ẋ(t)) and f (y(t)) =
(y1(t), F(y1(t))/m), we obtain

ẏ(t) = f (y(t)). (2.1.5)

To make the connection between this formulation and the definition of dynam-
ical systems we write the solution as T t (y(0)) = y(t). We obtain the solution
in one step but also in two steps if we insert the end of the first trajectory as an
initial condition into the second trajectory,2 i.e. T s+t (y(0)) = T t (T s(y(0))) =
(T t ◦T s)(y(0)). Note that x(t) is an element of the configuration spaceR

3N while
y(t) is an element of the phase space Ω = R

6N . Equation (2.1.5) is equivalent to
the Hamiltonian formulation of the problem. Motivated by our general definition
(2.1.1) and (2.1.2) we see that this is actually the natural way to treat classi-
cal dynamics. We will therefore use the formalism of Hamiltonian mechanics
(Sect. 3.2), operating in phase space rather than configuration space, throughout
the Chap.3.

3. The time evolution of a quantum mechanical spinless particle in three space
dimensionswith time-independent hermitianHamiltonian.HereΨ0 ∈ L 2(R3) =
Ω and

T t (Ψ0) = Û (t)Ψ0 = e−i Ĥ t/� Ψ0. (2.1.6)

The so-defined dynamical system is obviously invertible, with T −t = Û †(t).

(Footnote 1 continued)
time-independent, see Sect. 3.3.1; hence the property of a translationally invariant group is always
obeyed in this generalized sense. The quantum evolution for periodically time-dependent systems
can also be cast in a similar way using a theorem of Floquet [1]. For generally time-dependent
quantum systems, time ordering [2] must be used to formally write down the evolution law.
2A formal proof is found in [3] based on the fact that every point in phase space has a unique time
evolution.

http://dx.doi.org/10.1007/978-3-319-06343-0_3
http://dx.doi.org/10.1007/978-3-319-06343-0_3
http://dx.doi.org/10.1007/978-3-319-06343-0_3
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4. Non-invertible quantum dynamics: A reduced quantum mechanical system
(a subsystem of a larger one) can—under certain conditions—be described by
a master equation for the density operator of the system

˙̂ρ(t) = − i

�

[
Ĥ , ρ̂(t)

]
+ L̂

(
ρ̂(t)

)
. (2.1.7)

In this case the time evolution has only the property of a semi-group. With the
above equation it is possible tomodel dissipation and decoherence by theLindblad
operator L̂ , whilst the coherent evolution is induced by the first term on the
right hand side of the equation. For more information see, e.g., [4, 5]. Replacing
the density operator by a classical density distribution in phase space one may
model the corresponding quantum evolution to some extent. On the classical level
one then has to deal with a Fokker-Planck equation for phase space densities
describing irreversible motion [6].

2.2 One-Dimensional Maps

In the followingwe discuss two seemingly simple discrete dynamical systems. Those
are not Hamiltonian systems but one-dimensional mappings, i.e., the phase space is
just one-dimensional. Yet, it will turn out that some general concepts can be easily
introduced with the help of such maps, e.g. fixed points and their stability or periodic
orbits. They have also the great advantage that much can be shown rigorously for
them [7, 8]. Therefore, one-dimensional discrete maps form one of the bases for the
mathematical theory of dynamical systems, see for instance [9].

2.2.1 The Logistic Map

The logistic map is a versatile and well understood example of a discrete dynamical
map which was introduced in 1838 by Pierre Francois Verhulst as a mathematical
model for demographic evolution [10]. Its nonlinear iteration equation is given by
the formula

yn+1 = Ryn(M − yn), (2.2.1)

where yn is a population at time n, R ≥ 0 is a growth rate and M is an upper
bound for the population. The population at the next time step is proportional to
the growth rate times the population (which alone would lead to exponential growth
for R > 1/M) and to the available resources assumed to be given by M − yn . The
system’s evolution is relatively simple for R < 1/M having the asymptotic solution
limn→∞ yn = 0 (extinct population) for all initial values. For general values of the
growth rate, the system shows a surprisingly complicated dynamical behavior. Most
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interestingly, in some parameter regimes the motion becomes chaotic, which means
that the population yn strongly depends on the initial condition y0. Additionally, the
system might not converge to an asymptotic value or show non-periodic behavior.

Let us now analyse the logistic map in more detail. In order to get the standard
formof the logisticmapwe rescale the variable describing the population xn = yn/M
and write the time step as the application of the evolution law T leading to

T (x) = r x (1 − x), for x ∈ Ω = [0, 1]. (2.2.2)

Here r = M R. If we want T to map the interval Ω onto itself we have to choose
r ∈ [0, 4]. First, we look for fixed points of the map T , that means points for which

T (x∗) = x∗ ⇔ x∗ = r x∗(1 − x∗). (2.2.3)

holds. The above equation has two solutions:

x∗
1,1 = 0 is

⎧
⎪⎨

⎪⎩

an attractive fixed point for r < 1

an indifferent fixed point for r = 1

a repulsive fixed point for r > 1,

(2.2.4)

and

x∗
1,2 = 1 − 1

r
is

⎧
⎪⎨

⎪⎩

an attractive fixed point for 1 < r < 3

an indifferent fixed point for r ∈ {1, 3}
a repulsive fixed point for |r − 2| > 1.

(2.2.5)

Thereby we have used the notion that a fixed point x∗ is called attractive/repulsive
if the derivative with respect to x

∣
∣T ′(x∗)

∣
∣ <

> 1, and indifferent if
∣
∣T ′(x∗)

∣
∣ = 1.

Attractive fixed points are important quantities because they lead to asymptotically
converging dynamics. For all initial conditions which lie in the subset of Ω around
the fixed point where the map T is contracting (modulus of the derivative smaller
than one), the evolution converges towards the fixed point for large times. How the
system reaches the fixed point x∗

1,2 by iteration is shown schematically in Fig. 2.1.
Besides the two fixed points x∗

1,1 and x∗
1,2, the logistic map has fixed points of

higher order, too. That means fixed points of the p-times iterated map T p. A fixed
point of order p is defined by

T p(x∗) = x∗. (2.2.6)

This includes the possibility that for all n ≤ p one has T n(x∗) = x∗, as, for
example, a fixed point of first order is also a fixed point of all higher orders. Usually,
one assumes that p is the prime period of x∗, that is, we have T n(x∗) 
= x∗ for all
n < p. Fixed points lead to periodic orbits (PO), that means orbits {T n(x∗)}n∈N

which consist only of finitely many points. If one starts the dynamics with a fixed
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0 1/2 1 x
x∗

1

T (x)

Fig. 2.1 Schematic iteration shown by the arrows which converges to the fixed point of the logistic
map for r = 2.5

point of order p, the initial value is recovered after p time steps. The logistic map
has, for example, two fixed points of order two

x∗
2,(1,2) = 1

2r

(
r + 1 ± √

(r + 1)(r − 3)
)
, (2.2.7)

which are attractive for 3 < r < 1 + √
6 ≈ 3.45. As r is increased, attractive fixed

points of higher order (4, 8, 16, ..) emerge. The fixed points are, however, determined
by the solutions of high-order polynomials and analytical values are difficult to obtain,
see, for example, [11] for more details.

We note that there is a natural relation between all fixed points of a given order
p > 1. Assume, for instance, the two second-order fixed points x∗

2,1 and x∗
2,2. When

we apply T 2 on x∗
2,1 we find T (T (x∗

2,1)) = T (x∗
2,2) = x∗

2,1. This behavior is found
for all fixed points of order p > 1. Let x∗

p,i , i = 1, .., p, be the p fixed points of
order p (the number of fixed points always equals the order). One finds

T p(x∗
p,1) = T (T (...(x∗

p,1)...)︸ ︷︷ ︸
p times

= T (T (...(x∗
p,2)...)︸ ︷︷ ︸

p−1 times

= ... = T (x∗
p,p) = x∗

p,1.

(2.2.8)
Hence, if one fixed point of order p is given, the p −1 other fixed points of that order
can be computed by applying T repeatedly. We illustrate the described phenomenon
in (2.2.8) for p = 2. The two fixed-points of second order are mapped onto each
other by T (Fig. 2.2).

The dynamical behavior of the logistic map is summarized in its bifurcation
diagram, see Fig. 2.3. For each value of r on the abscissa, the value of x is plotted
after 400 iterations for random initial data. It turns out that outside the chaotic regime
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x

Fig. 2.2 T maps x∗
1 onto x∗

2 and vice versa. Accordingly, both x∗
1 and x∗

2 are fixed points of
T 2 = T ◦ T . The plot was made for the parameter r = 3.214, giving x∗

1 ≈ 0.5078 and x∗
2 ≈ 0.8033

the asymptotic evolution does not depend on the initial conditions. For r < 1, the
motion converges towards the fixed point x∗

1,1 = 0. For 1 < r < 3, it goes to

x∗
1,2 = 1 − 1

r for almost every x0. At r = 3 is a bifurcation point. For larger values
of the growth rate, the asymptotic dynamics converge towards the two fixed points
of second order, x∗

2,1 and x∗
2,2 (defining a periodic orbit). This phenomenon is known

as period doubling. In Fig. 2.3 we see both solutions, because x400 is plotted for
many initial points. Note that, in the limit of many iterations, the dynamics do not
converge to one of the fixed points, but the evolution jumps between them for all
times.3 The two fixed points of order two split again into two new ones at r = 1+√

6.
This scheme repeats itself infinitely often while the distance between the bifurcation
points decreases rapidly. It can be shown [7, 12] that the ratios of the lengths between
two subsequent bifurcation points approach a limiting value

lim
k→∞ δk = rk − rk−1

rk+1 − rk
= 4.669201 . . . ∈ R \ Q , (2.2.9)

known as the Feigenbaum constant. For most r beyond the critical value r∞ =
3.569945... (knownas accumulationpoint) the systembecomes chaotic,whichmeans

3When we say that the dynamics (for the initial condition x0) converge towards a periodic orbit
with p elements (or towards the fixed point x∗ of order p, which is an element of the periodic orbit)
we mean that limn→∞ T np(x0) = x∗.
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Fig. 2.3 Bifurcation diagram of the logisticmap. For each value on the abscissa, the value xn=400 ≈
x∞, i.e. after 400 iterations of the map, for random initial data is represented on the ordinate. The
path into chaos goes along a cascade of accumulating bifurcation points. Up to r < 3.5 stable fixed
points of order 1, 2 and 4 are shown. Above r∞ ≈ 3.57 chaos develops as motivated in the text

that the asymptotic evolution will not converge towards periodic orbits any more.4

Here the values x400 (for many random initial conditions) cover quasi-uniformly the
whole phase space Ω = [0, 1]. Note that in this regime the motion strongly depends
on the initial value x0.Nevertheless there exist values r > r∞ forwhich newattractive
fixed points (of order 3, 5, 6, 7 ...) appear, see [8]. The route into chaos via a cascade
of accumulating bifurcation points (period doublings) is a general phenomenon and
not limited to the here reported example of the logistic map. Examples of so-called
mixedHamiltonian systems showing bifurcations of initially stable resonance islands
with increasing perturbation are discussed in Sect. 3.8.7.

2.2.2 The Dyadic Map

Another important example of a discrete dynamical map showing chaotic behavior
is the dyadic map, also known as Bernoulli shift. It is defined by

4Also in the chaotic regime there exist fixed points but they are not attractive. Since at each point of
a period doubling the fixed point does not vanish but only loses the property of attraction, the fixed
points in the chaotic regime form a dense set (yet of Lebesgue measure zero in the interval [0, 1]).

http://dx.doi.org/10.1007/978-3-319-06343-0_3
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0
1/2 1 x

1

T (x)

Fig. 2.4 The dyadic map. As indicated by the arrows, the map is not one-to-one

T (x) =

⎧
⎪⎨

⎪⎩

2x for 0 ≤ x <
1

2

2x − 1 for
1

2
≤ x ≤ 1

. (2.2.10)

Its phase space is the unit interval Ω = [0, 1]. When we represent the numbers
x ∈ Ω in the binary representation x = ∑∞

i=1 xi2−i , xi ∈ {0, 1}, the map can be
interpreted as a shift of decimals:

x = 0.x1x2x3x4 . . . → T (x) = 0.x2x3x4 . . . (2.2.11)

This explains also the name (Bernoulli) shift map. The dyadic map is displayed in
Fig. 2.4.

It can be shown that it is topologically conjugate5 to the logistic map with r = 4
(which is chaotic for this parameter), see [13–15].6

The dynamics of the dyadic map can be summarized as follows. If the initial
condition is irrational, the motion will be non-periodic. Note that this is true for

5 Two functions f and g are said to be topologically conjugate if there exists a homeomorphism
h (continuous and invertible) that conjugates one into the other, in formulas g = h−1 ◦ f ◦ h.
This is important in the theory of dynamical systems because the same must hold for the iterated
system gn = h−1 ◦ fn ◦ h. Hence if one can solve one system, the solution of the other one follows
immediately.
6 In the literature one often finds that the logistic map for r = 4 is topologically conjugate to the
tent map [14], but the tent map is topologically equivalent to the dyadic map [15], which together
gives the wanted equivalence.
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almost all7 initial values. For x0 ∈ Q, the evolved value converges towards zero if
the binary representation of x0 is non-periodic and hence finite, or towards a periodic
orbit if the representation shows periodicity. Hence, as for the logistic map, the fixed
points in the chaotic regime form a set of Lebesgue measure zero. Being such a
simple system the dyadic map can be solved exactly. Exploiting the connection to
the logistic maps, the solution can be used to compute an analytical solution of the
dynamics of the logistic map for r = 4 as well. It reads

xn+1 = sin2(2n Θ π), (2.2.12)

with Θ = 1
π
sin−1(

√
x0) for the initial condition x0, see [17, 18].

Analyzing the dyadic map, it is particularly simple to see why the forecast of
chaotic systems is so difficult. If one starts with a number that is only precisely
known up to m digits, in the binary representation all information and therewith
the predictability of the model is lost after m iterations. As a consequence, we can
easily compute the rate of spreading of initially close points. This rate is known as
Lyapunov exponent and defined by

σ = lim
n→∞ lim

m→∞
1

n
ln

∣
∣
∣
∣
xn(x0) − xn(x ′

0)

2−m

∣
∣
∣
∣ = lim

n→∞ lim
m→∞

1

n
ln

∣
∣
∣
∣
2−m+n

2−m

∣
∣
∣
∣ = ln 2.

(2.2.13)

Here the initial conditions x0 and x ′
0 differ only in the m-th digit in Eq. (2.2.11).

σ is called exponent since it characterizes the speed of exponential spreading as time
evolves. For Hamiltonian systems, we will discuss Lyapunov exponents in detail in
Sect. 3.9.

2.2.3 Deterministic Random Number Generators

A somewhat surprising application of chaotic maps is the deterministic generation
of so-called pseudo-random numbers. Since the motion of a chaotic map depends
sensitively on the initial conditions, a different series of numbers is generated for
different initial values. If one does not start the dynamics at one of the fixed points
(which form a set of measure zero anyhow), these series will neither be periodic
nor be converging to a single point. Unfortunately, this scenario does not work on a
computer, which needs to rely on a finite set of numbers,8 and therefore necessarily
produces periodic orbits at some stage. Nevertheless, so-called linear congruential
generators, as generalizations of the dyadic map, can be used as low-quality random
number generators:

7The measure theoretical notion “for almost all” means for all but a set of Lebesgue measure zero
[16].
8This set is normally composed exclusively of rational numbers, leading e.g. to non-chaotic behavior
for the dyadic map.

http://dx.doi.org/10.1007/978-3-319-06343-0_3
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an+1 = N1 an mod N2, (2.2.14)

bn+1 = an+1

N2
, (2.2.15)

where N1, N2, an ∈ N [19]. This procedure generates “uncorrelated” and uniformly
distributed numbers bi in the unit interval, but the constants N1 and N2 should be
chosen very carefully in order to maximize the periodicity as well as to minimize
correlations between subsequent numbers [20]. While this algorithm is very fast and
easy to implement, it has many problems (see chapter 7.1 of [20]) and today other
methods like the Mersenne Twister [21] have widely replaced it due to their high
period (219937 − 1, not a mistake!) and efficient implementations [22]. It should
be stressed that the performance of these random number generators needs to be
analyzed using number theoretical tools, not the ones presented in this chapter.

Therewith, we conclude the examination of one-dimensional discrete maps which
have been introduced as toymodels to exemplify chaotic behavior. In the nextChapter
we come to “real” physical applications of classical mechanics. Since even systems
with one degree of freedom have a two-dimensional phase space and a continu-
ous time evolution a priori, we expect a more complicated dynamical behavior for
them. In what follows in this book, we will restrict ourselves exclusively now to
so-called Hamiltonian systems without friction or dissipation, whose time evolution
is invertible.

Problems

2.1. Prove the following theorem:
Let T be a dynamical map, as introduced in Sect. 2.1, with a fixed point x∗, and
continuously differentiable with respect to x close to the fixed point. If its derivative
with respect to x is

∣
∣T ′(x)|x=x∗

∣
∣ < 1, then x∗ is attractive.

2.2. Find the fixed points of order two of the logistic map from Eq. (2.2.2) with r as
a free parameter. Check also the stability of the fixed points found.
2.3. Find all 1st and 2nd order fixed points of the dyadic shift map from Eq. (2.2.10).
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