
Chapter 2
Identification of Dynamical Systems Using
Recurrent Neurofuzzy Modeling

2.1 The Recurrent Neurofuzzy Model

Let us consider a nonlinear function f (x, u), where f : Rn+m → Rn is a smooth
vector field defined on a compact set � ⊂ Rn+m , with input space u ∈ Uc ⊂ Rm

and state-space x ∈ X ⊂ Rn . Also, we assume that the dynamic equation which
describes the i/o behavior of a system has the following form (Christodoulou et al.
2007; Theodoridis et al. 2009, 2012):

ẋ(t) = f (x(t), u(t)), (2.1)

or in a per-state form:
ẋi (t) = fi (x(t), u(t)), (2.2)

where fi (·), i = 1, 2, . . . , n, is a continuous function and t denotes the temporal
variable. In order to proceed further we have to state the following assumption:

Assumption 1 Notice that since � ⊂ �n+m then � is closed and bounded set.
Also, it is noted that even if � is not compact we may assume that there is a time
instant T such that (x(t), u(t)) remain in a compact subset of � for all t < T ; i.e. if
�T := {(x(t), u(t)) ∈ �, t < T }. The interval �T represents the time period over
which the approximation is to be performed.

We consider that function f (x, u) is approximated by a fuzzy system using appro-
priate fuzzy rules. In this framework, let � f be defined as the universe of discourse
of (x, u) ∈ X ∪ U ⊂ Rn+m belonging to the ( j1, j2, . . . , jn+m)th input fuzzy
patch and pointing—through the vector field f (·)—to the subset that belongs to the
l1, l2, . . . , ln th output fuzzy patch. Also, � fi is a subset of � f containing input pair
values associated with fi . Furthermore, �

p
fi
, with p = 1, 2, . . . , q the number of

fuzzy partitions of the i-th state variable, is defined as the p-th subregion of� fi such
that � fi = ⋃q

p=1 �
p
fi
.
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Definition 2.1 According to the above notation the indicator function (IF) connected
to �

p
fi
is defined as follows:

I p
i (x(t), u(t)) =

{
α

p
i (x(t), u(t)) if (x(t), u(t)) ∈ �

p
fi

0 otherwise
(2.3)

where α
p
i (x(t), u(t)) denotes the firing strength of the rule.

Then, assuming a standard defuzzification procedure (e.g., centroid of area or
weighted average, see Sect. 1.3.1), the functional representation of the fuzzy system
that approximates the real one can be written as

f̂i (x(t), u(t)) =

q∑

p=1
I p
i · x̄ p

fi

q∑

p=1
I p
i

, (2.4)

where the summation is carried over all the available fuzzy rules.

Definition 2.2 Using the notation presented in Sect. 1.3.1, we can define asweighted
IF (WIF) the following equation:

(
I ′)p

i = I p
i

q∑

p=1
I p
i

(2.5)

which is the IF defined in (2.3) divided by the sum of all IF participating in the
summation of (2.4).

Thus, Eq. (2.4) can be rewritten as

f̂i (x(t), u(t)) =
q∑

p=1

(
I ′)p

i · x̄ p
fi
. (2.6)

Based on the fact that functions of high-order neurons are capable of approximat-
ingdiscontinuous functions (Kosmatopoulos andChristodoulou1996;Christodoulou
et al. 2007), we use high-order neural networks (HONNs) to approximate a

(
I ′)p

i .
Thus, we have the following definition:

Definition 2.3 A HONN is defined as:

N p
i (x(t), u(t); w, k) =

k∑

l=1

wpl
fi

∏

j∈Il

�
d j (l)
j , (2.7)
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where Il = {I1, I2, . . . , Ik} is a collection of k not-ordered subsets of {1, 2, . . . , n +
m}, d j (l) are nonnegative integers. � j are the elements of the following vector:

� = [
�1 . . . �n �n+1 . . . �n+m

]T = [
s(x1) . . . s(xn) s(u1) . . . s(um)

]T
,

where s denotes the sigmoid function defined as:

s(x) = α

1 + e−βx
− γ, (2.8)

with α, β being positive real numbers and γ being a real number.

Special attention has to be given in the selection of parameters α, β, γ so that
s(x) fulfill the persistency of excitation condition

(
s ∈ [−γ,−γ + α]when γ < 0

)

required in some system identification tasks. Also, wpl
fi
is the HONN weights with

i = 1, 2, . . . , n, p = 1, 2, . . . , q and l = 1, 2, . . . , k.
Thus, Eq. (2.7) can be written as

N p
i (x(t), u(t); w, k) =

k∑

l=1

wpl
fi

sl(x(t), u(t)), (2.9)

where sl(x(t), u(t)) are high-order terms of sigmoid functions of the state and/or
input.

The next lemma (Kosmatopoulos and Christodoulou 1996) states that a HONN of
the form in Eq. (2.9) can approximate the weighted indicator function (WIF),

(
I ′)p

i .

Lemma 2.1 Consider the WIF
(
I ′)p

i and the family of HONN’s N p
i (x(t), u(t); w, k).

Then for any ε
p
i > 0, there is a vector of weights w and a number of k high-order

connections such that:

sup
(x(t),u(t))∈�

{ (
I ′)p

i (x(t), u(t)) −
k∑

l=1
wpl

fi
sl(x(t), u(t))

}
< ε

p
i

The magnitude of approximation error ε
p
i > 0 depends on the choice of the

number of high-order terms.

Under the definition of WIFs and the above lemma, one could rewrite the rules
of the fuzzy system as follows:

R p
i : IF (x(t), u(t)) ∈ �

p
fi
THENHONNp is

(
I ′)p

i (t) .

Following the above analysis and Eq. (2.6), actually we give a weighting value
according to the output fuzzy partitioning, as shown in Fig. 2.1, to every HONN that
participates to the estimation of fi (x, u).

As a consequence, we have the following definition:
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Fig. 2.1 Fuzzy partitioning
of the system output

x,u

fi

Definition 2.4 The center weighting value (CWV) x̄ p
fi
which is the p-th fuzzy center

of the i-th state variable (or equivalently fi ) influences a HONN by a degree of
implementation x̄ p

fi
.

Therefore, rule R p
i can be equivalently expressed as

R p
i : IF (x(t), u(t)) ∈ �

p
fi
THEN HONNp is

(
I ′)p

i (t) with CWV x̄ p
fi
.

Now, we can group the rules that participate in the construction of the i-th state
variable output according to the following form:

Ri : IF (x(t), u(t)) ∈ � fi THEN HONN1 is
(
I ′)1

i (t) with CWV x̄1fi
and HONN2

is
(
I ′)2

i (t) with CWV x̄2fi
and · · · and HONNq is

(
I ′)q

i (t) with CWV x̄q
fi
.

It then follows easily that, the i-th state variable of the system output is determined
as follows:

Ri : IF (x(t), u(t)) ∈ � fi THEN

fi (x, u) = (
I ′)1

i (t) · x̄1fi
+ (

I ′)2
i (t) · x̄2fi

+ · · · + (
I ′)q

i (t) · x̄q
fi
,

where each
(
I ′)l

i , l = 1, . . . , q is replaced by the respective HONN. It is clear that
the information about the antecedent partitioning of the rules as well as the number of
rules is not necessary to be determined here. Therefore, the rules are not treated here
in the classical way of Mamdani or Takagi-Sugeno definition but their consequent
parts are determined directly from F-HONNs.

Following the above notation, Eq. (2.6) in conjunctionwith Eq. (2.9) can be rewrit-
ten as

f̂i (x(t), u(t)) =
q∑

p=1

x̄ p
fi

·
(

k∑

l=1

wpl
fi

· sl(x(t), u(t))

)

, (2.10)
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or in a more compact form:

˙̂f = X f W f s f (x, u). (2.11)

An alternative, recurrent NF form of Eq. (2.1) whichwill be used in the subsequent
analysis of this thesis is: ˙̂x = Ax̂ + f̂ . (2.12)

Considering that f is approximated by the NF model described above, Eq. (2.12)
can be rewritten as ˙̂x = Ax̂ + X f W f s f (x, u), (2.13)

where A is a n × n stable matrix, which for simplicity can be taken to be diagonal
as A = diag[−a1,−a2, . . . ,−an], with ai > 0. Also, X f is a matrix containing the
centers of the partitions of every fuzzy output variable of f(x, u), s f (x, u) is a vector
containing high-order combinations of sigmoid functions of the state x and control
input u. Also, W f is a matrix containing respective neural weights according to (2.9)
and (2.10). For notational simplicity we assume that all output fuzzy variables are
partitioned to the same number, q, of partitions. Under these specifications X f is a
n × n · q block diagonal matrix of the form X f = diag(x̄ f1 , x̄ f2 , . . . , x̄ fn ), with x̄ fi

being a q-dimensional row vector of the form:

x̄ fi =
[
x̄1fi

x̄2fi
· · · x̄q

fi

]
,

or in a more detailed form:

X f =

⎡

⎢
⎢
⎣

x̄1f1 · · · x̄q
f1

0 · · · 0 0 · · · 0
0 · · · 0 x̄1f2 · · · x̄q

f2
0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0 x̄1fn

· · · x̄q
fn

⎤

⎥
⎥
⎦ . (2.14)

Also, s f (x) = [
s1(x) . . . sk(x)

]T , where each sl(x) with l = 1, 2, . . . , k, is a
high-order combination of sigmoid functions of the state variables and input signals.
Finally, W f is a n · q × k matrix with neural weights. W f assumes the form W f =
[
W f1 · · · W fn

]T , where each W fi is a matrix
[
wpl

fi

]

q×k
and is given as:

W fi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

w11
fi

w12
fi

· · · w1k
fi

w21
fi

w22
fi

· · · w2k
fi

...
... · · · ...

wq1
fi

wq2
fi

· · · wqk
fi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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or in a more detailed form:

W f =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w11
f1

w12
f1

· · · w1k
f1

w21
f1

w22
f1

· · · w2k
f1

...
...

. . .
...

wq1
f1

wq2
f1

· · · wqk
f1

...
...

. . .
...

w11
fn

w12
fn

· · · w1k
fn

w21
fn

w22
fn

· · · w2k
fn

...
...

. . .
...

wq1
fn

wq2
fn

· · · wqk
fn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

From the above definitions and Eq. (2.10), it is obvious that the accuracy of the
approximation of fi (x, u) depends on the approximation abilities of HONNs and on
an initial estimate of the centers of the output membership functions. These centers
can be obtained by experts or by offline techniques based on gathered data. Any other
information related to the input membership functions is not necessary because it is
replaced by the HONNs.

Figure2.2 shows the overall scheme of the proposed NF modeling that approxi-
mates function fi (x, u) depending only on measurements of x, u. When these mea-
surements are given as inputs to theNF network (input layer) that includes high-order
sigmoidal terms, the output of indicator layer gives the weighted IF outputs that
influence the corresponding rules according to output fuzzy center (rule layer). The
appropriate summation of all rules at each sampling time instant gives the overall
output of the function fi (x, u) (output layer).

2.2 Approximation Capabilities of the Neurofuzzy Model

The approximation problem consists of determining whether by allowing enough
high-order connections and fuzzy centers, there exist weights W f , such that the F-
RHONNs model could approximate the input–output behavior of a complex dynam-
ical system of the form (2.1). In this equation the input u belongs to a class Uc of
(piecewise continuous) admissible inputs.

By adding and subtracting Ax , where A is a Hurwitz matrix, (2.2) is rewritten as

ẋ = Ax + g(x, u) (2.15)
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Fig. 2.2 Overall scheme of the proposed NF model that approximates function fi (x, u) using state
measurements x and input signals u

where g(x, u) := f (x, u) − Ax .
In order to have awell-posed problem, wewill impose the followingmild assump-

tions on the system to be approximated:

Assumption 2 Given a class Uc ⊂ Rq of admissible inputs, for any u ∈ Uc and
any finite initial condition x(0), the state trajectories are uniformly bounded for any
finite T > 0 . Meaning that we do not allow systems processing trajectories that
escape at infinite, in finite time T , T being arbitrarily small. Hence, |x(T )| < ∞.

Assumption 3 Functions fi are continuous with respect to their arguments and
satisfy a local Lipschitz condition so that (2.2) has a unique solution for any finite
initial condition x(0) and u ∈ Uc, in the sense of Caratheodory (Hale 1969).

Based on the above assumptions, we obtain the following theorem:

Theorem 2.1 Suppose that the system (2.1) and the model (2.10) are initially at the
same state x̂(0) = x(0), then for any ε > 0 and any finite T > 0, there exist integers
k, q, a matrix W 	

f ∈ Rk×q×n and appropriately selected fuzzy output centers x̄ p
fi

such
that the state x̂(t) of the F-RHONNs model (2.10) with k high-order connections, q
fuzzy centers and weight values W f = W 	

f which satisfies:

sup
0≤t≤T

∣
∣x̂(t) − x(t)

∣
∣ ≤ ε.

Proof Following a procedure similar to the work of Kosmatopoulos et al. (1995),
we proceed as follows: By assumption, (x(t), u(t)) ∈ � for all t ∈ [0, T ], where �

is a compact subset of Rn+m .
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Let �e = {
(x, u) ∈ Rn+m : ∣∣(x, u) − (xy, uy)

∣
∣ ≤ ε, (xy, uy) ∈ �

}
. It can be

readily seen that �e is also a compact subset of Rn+m and � ⊂ �e. That is, �e

is ε larger than �, where ε is the required degree of approximation. Since s f is a
continuous function, it satisfies a Lipschitz condition in �e, i.e., there is a constant
l such that for all (x̂1, u), (x̂2, u) ∈ �e:

∣
∣s f

(
x̂1, u

) − s f
(
x̂2, u

)∣
∣ ≤ l |x1 − x2| . (2.16)

In what follows, we show that the function X f W 	
f s f satisfies the conditions of

Stone–Weirstrass Theorem (Stone 1948; Bishop 1961) and can approximate any
continuous function over a compact domain.

The dynamic behavior of F-RHONNs model is described by (2.13). Since x̂(0) =
x(0), the state error e = x̂ − x satisfies the differential equation

ė = Ae + X f W f s f − g(x, u), (2.17)

where e(0) = 0.
Therefore, it can be readily shown that if k, q are sufficiently large, then there

exist weight values W f = W 	
f such that X f W 	

f s f (x, u) can approximate g(x, u)

to any degree of accuracy, for all (x, u) in a compact domain. Hence, there exists
W f = W 	

f such that

sup
(x,u)∈�e

∣
∣
∣X f W ∗

f s f (x, u) − g(x, u)

∣
∣
∣ ≤ δ, (2.18)

where δ is a constant to be designed in the sequel. The solution of (2.17) is

e(t) =
t∫

0

eA(t−τ) X f W ∗
f s f (x̂(τ ), u(τ )) dτ −

t∫

0

eA(t−τ)g(x(τ ), u(τ )) dτ

=
t∫

0

eA(t−τ) X f W ∗
f s f (x̂(τ ), u(τ )) dτ −

t∫

0

eA(t−τ) X f W ∗
f s f (x(τ ), u(τ )) dτ

+
t∫

0

eA(t−τ) X f W ∗
f s f (x(τ ), u(τ )) dτ −

t∫

0

eA(t−τ)g(x(τ ), u(τ )) dτ .

(2.19)

Since A is a Hurwitz matrix, there exist positive constants c, α such that
∥
∥eAt

∥
∥ ≤

ce−αt for all t ≥ 0. Also, let k = cl
∥
∥
∥X f W 	

f

∥
∥
∥. Based on the aforementioned defini-

tions of the constants c, α, k, ε, let δ in (2.18) be chosen as
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δ = εα

2c
e− k

α > 0. (2.20)

First consider the case where (x(t), u(t)) ∈ �e for all t ∈ [0, T ]. Starting from
(2.19), taking norms on both sides and using (2.16), (2.18) and (2.20), the following
inequalities hold for all t ∈ [0, T ]:

|e(t)| ≤
t∫

0

∥
∥
∥eA(t−τ)

∥
∥
∥
∥
∥
∥X f W ∗

f

∥
∥
∥
∣
∣s f (x̂, u) − s f (x, u)

∣
∣ dτ

+
t∫

0

∥
∥
∥eA(t−τ)

∥
∥
∥
∣
∣
∣X f W ∗

f s f (x, u) − g(x, u)

∣
∣
∣ dτ

≤
t∫

0

e−α(t−τ)k |e (τ )| dτ +
t∫

0

δce−α(t−τ) dτ

≤ k

t∫

0

e−α(t−τ) |e (τ )| dτ + ε

2
e− k

α . (2.21)

Then, using the Bellman–Gronwall Lemma (Hale 1969), we obtain:

|e(t)| ≤ ε

2
e− k

α · e

t∫

0
ke−α(t−τ) dτ

≤ ε

2
e− k

α · e
k
α ≤ ε

2
. (2.22)

It should be noted here that the assumption of x̂(0) = x(0) can be easily relaxed
without affecting the conclusion of the theorem. In this case, one should consider
that an exponentially fast decaying error term is added in ε.

The above theorem proves that if sufficiently large number of connections are
allowed in F-RHONNs model then it is possible to approximate any dynamical
system to anydegree of accuracy.This result does not provide uswith any constructive
method for obtaining the optimal weights W 	

f . In what follows, we consider the
learning problemof adjusting theweights adaptively, such that theNeurofuzzymodel
identifies general dynamic systems.

2.3 Learning Algorithms for Parameter Identification

We proceed now to develop weight updating laws assuming that the unknown sys-
tem is modeled exactly by an F-RHONNs architecture of the form (2.13). In the
next section, we extend this analysis to cover the case where there exists a nonzero
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mismatch between the system and F-RHONNs model with optimal weight values,
that is, we assume the existence of modeling errors.

Following the standard practice in system identification algorithms, we will
assume that the input u(t) and the state x(t) remain bounded for all t ≥ 0. Based
on the definition of s f (x, u), X f as given by (2.8), (2.14) this implies that s f (x, u),
X f are also bounded. In the sections that follow, we present different approaches for

estimating the unknown parameters
(

wpl
fi

)	

of F-RHONNs model.

2.3.1 Simple Gradient Descent

In developing this identification scheme, we start again from the differential equation
that describes the unknown system with no modeling error which is given by

ẋi = −ai xi + x̄ fi W 	
fi

s f (x, u). (2.23)

Based on (2.23), the identifier is now chosen as

˙̂xi = −ai x̂i + x̄ fi W fi s f (x, u), (2.24)

where W fi is again the estimate of the unknown optimal weight matrix W 	
fi
. In this

case, the state error ei = x̂i − xi satisfies

ėi = −ai ei + x̄ fi W̃ fi s f (x, u), (2.25)

where W̃ fi = W fi − W 	
fi
.

The next theorem gives the error F-RHONNs model with the gradient method for
adjusting the weights.

Theorem 2.2 Consider the error F-RHONNs model given by (2.25) whose weights
are adjusted according to equation

Ẇ fi = −x̄ T
fi

ei s
T
f Pi . (2.26)

Then for i = 1, 2, . . . , n, the following properties are guaranteed:

1. ei , W̃ fi ∈ L∞, ei ∈ L2,
2. limt→∞ ei (t) = 0,
3. limt→∞ Ẇ fi (t) = 0.

Proof (1) Consider the Lyapunov candidate function:

V = 1

2

n∑

i=1

e2i + 1

2

n∑

i=1

tr
{

W̃ fi P−1
i W̃ T

fi

}
. (2.27)



2.3 Learning Algorithms for Parameter Identification 35

Taking the time derivatives of the Lyapunov function candidate (2.27) and after
substituting Eq. (2.25) we obtain

V̇ =
n∑

i=1

ei ėi +
n∑

i=1

tr
{

Ẇ fi P−1
i W̃ T

fi

}

= −
n∑

i=1

ai |ei |2 +
n∑

i=1

(
ei x̄ fi W̃ fi s f + tr

{
Ẇ fi P−1

i W̃ T
fi

})

= −
n∑

i=1

ai |ei |2. (2.28)

Considering that in deriving (2.28) we assumed that

tr
{

Ẇ fi P−1
i W̃ T

fi

}
= −ei x̄ fi W̃ fi s f ,

and using matrix trace properties we result in Eq. (2.26).
Thus, V̇ is negative semidefinite. Since V̇ ≤ 0, we conclude that V ∈ L∞,
which implies that ei , W̃ fi ∈ L∞. Furthermore, W fi = W̃ fi + W ∗

fi
is also

bounded. Since V is a nonincreasing function of time and bounded from below,
the limt→∞ V = V∞ exists; therefore, by integrating V̇ from 0 to ∞ we have

∞∫

0

n∑

i=1

ai |ei |2dt ≤ [V (0) − V∞] < ∞,

which implies that ei ∈ L2.
(2) Since ei ∈ L2 ∩ L∞, using Barbalat’s Lemma we conclude that limt→∞ ei (t) =

0.
(3) Finally, using the boundedness of x̄ fi , s f (x, u) and the convergence of ei (t) to

zero, we have that Ẇ fi also converges to zero (Ioannou and Fidan 2006).

Remark 2.1 The above theorem does not imply that the weight estimation error
W̃ fi = W fi − W ∗

fi
converges to zero. In order to achieve convergence of the weights

to their correct value, the additional assumption of persistent excitation needs to be
imposed on the vector s f (x, u) because x̄ fi satisfies this condition by definition. In
particular, s f ∈ Rk is said to be persistently exciting if there exist positive scalars
β1, β2 and T such that for all t ≥ 0:

β1 I ≤
t+T∫

t

s f (τ )sT
f (τ ) dτ ≤ β2 I, (2.29)

where I is the k × k identity matrix.

This can be achieved if the constant γ in Eq. (2.8) is selected such that: s f ·sT
f > 0.
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2.3.2 Pure Least Squares

The basic idea behind least squares (L S) method is to fit a mathematical model to
a sequence of observed data by minimizing the sum of the squares of the difference
between the observed and computed data. This way, any noise or inaccuracies in the
observed data are expected to have less effect on the accuracy of the mathematical
model (Ioannou and Fidan 2006).

The method is simple to apply and analyze in the case where the unknown para-
meters appear in a linear form, such as in Eq. (2.23). The pure LS algorithm can
be thought as a gradient algorithm with a time-varying learning rate and could be
written as follows:

Ẇ fi = − x̄ T
fi

ei zT
i Pi

∣
∣x̄ fi

∣
∣2

, W fi (0) = W f0 , (2.30)

Ṗi = − Pi zi zT
i Pi

n2
s

, Pi (0) = P0,

where Pi is the gain matrix which is positive definite and n2
s ≥ 1 is a normalization

signal designed to guarantee that zi
ns

is bounded, with zi defined in the following
lemma 2.2. The property of ns is used to establish the boundedness of the estimated
parameters even when zi is not guaranteed to be bounded. A straightforward choice
for ns is n2

s = 1+αzT
i zi , α > 0. If zi is bounded, we can take α = 0. The following

lemma is useful in the development of the adaptive identification algorithm, which
is presented in this section.

Lemma 2.2 The system described by Eq. (2.23) can be expressed as

żi = −ai zi + s f , zi (0) = 0, (2.31)

xi = x̄ fi W 	
fi

zi + e−ai t xi (0). (2.32)

Proof From (2.31) after integrating we have

zi (t) =
t∫

0

e−ai (t−τ)s f (x(τ ), u(τ )) dτ ,

therefore,

x̄ fi W 	
fi

zi + e−ai t xi (0) = e−ai t xi (0) +
t∫

0

e−ai (t−τ) x̄ fi W 	
fi

s f (x(τ ), u(τ )) dτ .

(2.33)
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Using (2.32), the right-hand side of (2.33) is equal to xi (t) and this concludes the
proof.

Using the above lemma the dynamical system is described by the following equa-
tion:

xi = x̄ fi W 	
fi

zi + εi , (2.34)

where εi = e−ai t xi (0) is an exponentially decaying term that appearswhen a nonzero
initial state is applied. After ignoring the exponentially decaying term εi (Rovithakis
and Christodoulou 2000), the F-RHONNs model can be written as

x̂i = x̄ fi W fi zi . (2.35)

The state error equation ei = x̂i − xi , after substituting (2.34), (2.35) becomes

ei = x̄ fi W̃ fi zi − εi . (2.36)

The cost function J (W fi ) is chosen as

J (W fi ) =

n∑

i=1
e2i

2
=

n∑

i=1

[(
x̄ fi W fi zi − x̄ fi W 	

fi
zi

)
− εi

]2

2
. (2.37)

If we use the LS method described by (2.30) and (2.31), a problem that may be
encountered in the application of the LS’s algorithm is that Pi may become arbitrarily
small and thus slow down adaptation in some directions. Therefore, we can use one of
various modifications that prevent Pi (t) from going to zero as follows: if the smallest
eigenvalue of Pi (t) becomes smaller than ρ1 then Pi (t) is reset to Pi (t) = ρ0 I , where
ρ0 ≥ ρ1 > 0 are some design constants (Rovithakis and Christodoulou 2000).

Theorem 2.3 The pure LS algorithm given by (2.30), (2.31)guarantees the following
properties:

1. ei , Ẇ fi ∈ L2 ∩ L∞, W fi , Pi ∈ L∞.

2. limt→∞ ei (t) = 0,
3. limt→∞ Ẇ fi (t) = 0.

Proof (1) From (2.31) we have that Ṗi ≤ 0, i.e., Pi (t) ≤ P0. Because Pi (t) is
nonincreasing and bounded from below (i.e., Pi (t) = PT

i (t) ≥ 0) it has a limit,
i.e.,

lim
t→∞ Pi (t) = P̄i ,

where P̄i = P̄T
i ≥ 0 is a constant positive definite diagonal matrix and thus

Pi ∈ L∞.
Let us now consider the Lyapunov candidate function
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V = 1

2

n∑

i=1

[(
x̄ fi W̃ fi

)
P−1

i

(
x̄ fi W̃ fi

)T +
∫ ∞

t
ε2i (τ ) dτ

]

. (2.38)

Taking the time derivatives of the Lyapunov function candidate (2.38) and con-
sidering the equations, d

dt

(
P−1

) = −P−1 Ṗ P−1, (2.30), (2.31), (2.36)weobtain

V̇ =
n∑

i=1

(
x̄ fi Ẇ fi P−1

i W̃ T
fi

x̄ T
fi

)
+ 1

2

n∑

i=1

[(
x̄ fi W̃ fi

)
Ṗ−1

i

(
x̄ fi W̃ fi

)T − ε2i

]

= −
n∑

i=1

(
x̄ fi W̃ fi zi ei

)
+ 1

2

n∑

i=1

⎡

⎢
⎣

∣
∣
∣x̄ fi W̃ fi zi

∣
∣
∣
2

n2s
− ε2i

⎤

⎥
⎦

= −
n∑

i=1

[
ei (ei + εi )

] + 1

2

n∑

i=1

(
(ei + εi )

2

n2s
− ε2i

)

= −1

2

n∑

i=1

[
e2i + (ei + εi )

2
]

+ 1

2

n∑

i=1

(ei + εi )
2

n2s

≤ −1

2

n∑

i=1

ei
2 ≤ 0. (2.39)

Equation (2.39) implies that V ∈ L∞, and therefore W̃ fi ∈ L∞. Then, Eq. (2.36)
in conjunction with the boundedness of zi , gives ei ∈ L∞. Furthermore, W fi =
W̃ fi + W ∗

fi
is also bounded. Since V is a nonincreasing function of time and

bounded from below, the limt→∞ V = V∞ exists; therefore, by integrating V̇
from 0 to ∞ we have

1

2

∞∫

0

n∑

i=1

ei
2 ≤ [V (0) − V∞] < ∞,

which implies that ei ∈ L2. From (2.30) we have

∥
∥Ẇ fi

∥
∥ ≤ |ei | |zi | ‖Pi‖∣

∣x̄ fi

∣
∣

. (2.40)

Since x̄ fi , Pi , zi , ei ∈ L∞, and ei ∈ L2, we have Ẇ fi ∈ L2 ∩ L∞.
(2) Since ei ∈ L2 ∩ L∞, using Barbalat’s Lemma we conclude that limt→∞ ei (t) =

0.
(3) Finally, using the boundness of x̄ fi , s f (x, u) and the convergence of ei (t) to

zero, we have that Ẇ fi also converges to zero (Ioannou and Fidan 2006).

Also, if a persistency of excitation condition such as Remark2.1 is valid then
W fi (t) → W 	

fi
as t → ∞.
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2.4 Robust Learning Algorithms

Due to an insufficient number of high-order terms or fuzzy output centers in the F-
RHONNs model, we have to deal with unmodeled dynamics, noises, disturbances,
and other frequently encountered uncertainties. In such cases, if standard adaptive
laws are used for updating the weights, then the presence of modeling error in prob-
lems related to learning in dynamic environments may cause the adjusted weight
values (and consequently the estimation error ei ) to drift to infinity. Examples of
such behavior can be found in the adaptive control literature of linear systems (Ioan-
nou and Fidan 2006).

In this section, we modify the weight updating laws to avoid the parameter drift
phenomenon. To formulate the problem we note that by adding and subtracting

−ai xi +
k∑

l=1
x̄ fi W l	

fi
sl(x, u), the dynamic behavior of each state of the system (2.2)

can be expressed by the following differential equation:

ẋi = −ai xi +
k∑

l=1

x̄ fi W l	
fi

sl(x, u) + μi (t), (2.41)

where the modeling error μi (t) is given by

μi (t) = fi (x (t) , u (t)) + ai xi (t) −
k∑

l=1

x̄ fi W l	
fi

sl (x (t) , u (t)). (2.42)

The unknown optimal weight matrix W l	
fi
is defined as the value of the weight

vector W l
fi
that minimizes the L∞-norm difference between fi (x, u) + ai xi and

∑k
l=1 x̄ fi W l

fi
sl(x, u) for all (x, u) ∈ � ⊂ Rn+m , subject to the constraint that

∣
∣
∣x fi · W l

fi

∣
∣
∣ ≤ ρl , where ρl is a large design constant.

The region � denotes the smallest compact subset of Rn+m that includes all the
values that (x, u) can take, i.e., (x (t) , u (t)) ∈ � for all t ≥ 0. Since by assumption
u(t) is uniformly bounded and the dynamical system to be identified is bounded
input bounded output (BIBO) stable, the existence of such � is ensured.

In particular, for i = 1, 2, . . . , n, the optimal weight vector W l	
fi
is defined as

W l	
fi

:= arg min∣
∣
∣x̄ fi Wl

fi

∣
∣
∣≤ρl

{

sup
(x,u)∈�

∣
∣
∣
∣
∣

fi (x, u) + ai xi −
k∑

l=1

x̄ fi W l
fi

sl(x, u)

∣
∣
∣
∣
∣

}

.

The formulation developed above follows the methodology of Kosmatopoulos
et al. (1995) closely. Using this formulation, we now have a system of the form (2.41)
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Fig. 2.3 Pictorial represen-
tation of outer parameter
hopping during the identifica-
tion procedure

instead of (2.23). It is noted that since x(t) and u(t) are bounded, the modeling error
μi (t) is also bounded, i.e., supt≥0 |μi (t)| ≤ μ̄i for some finite constant μ̄i .

Now, it is also of practical use to ensure that
∑k

l=1 x̄ fi W l
fi

sl(x, u) does not
approach even temporarily infinity because in this case themethodmay become algo-

rithmically unstable. To avoid this situation we have to ensure that
∣
∣
∣x̄ fi · W l

fi

∣
∣
∣ < ρl ,

with ρl being a design parameter determining an external limit for x̄ fi · W l
fi
. We note

that, since x̄ fi and W l
fi
are row and column vectors, respectively, and since x̄ fi has

constant values, their product is linear in respect to the elements of W l
fi
and x̄ fi · W l

fi
can describe a hyperplane. In the sequel, we consider the forbidden hyperplanes

being defined by the equation
∣
∣
∣x̄ fi · W l

fi

∣
∣
∣ = ρl . When the weight vector reaches one

of the forbidden hyperplanes
∣
∣
∣x̄ fi · W l

fi

∣
∣
∣ = ρl and the direction of updating is toward

the forbidden hyperplane, a parameter hopping is introduced that moves the weights
inside the restricted area. A more analytical and general description of the novel
method of parameter hopping is presented in Chap.3 Sect. 3.2.2.

The above procedure is depicted in Fig. 2.3, in a simplified two-dimensional rep-

resentation. The magnitude of hopping is − κl Pl
i

(
x̄ fi Wl

fi
(x̄ fi )

T
)

tr{(x̄ fi )
T x̄ fi }

being determined by

following the vectorial proof given in Chap. 3 (where b = W l
fi
and our plane is

described by equation x̄ fi · W l
fi

= ρl , with x̄ fi the normal to it), with κl a positive

constant (such as, 0 < κl Pl
i < 1) decided appropriately from the designer and Pl

i is
the l-th element of the gain matrix Pi .

In what follows, we develop a robust learning algorithm based on the F-RHONNs
identifier employing the parameter hopping. Hence, the identifier is chosen as in

http://dx.doi.org/10.1007/978-3-319-06364-5_3
http://dx.doi.org/10.1007/978-3-319-06364-5_3
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(2.24) where W l
fi
is the estimate of the unknown optimal weight matrix W l	

fi
. Using

(2.24), (2.41), the state error ei = x̂i − xi satisfies:

ėi = −ai ei + x̄ fi W̃ fi s f (x, u) − μi (t), (2.43)

or in a more detailed form:

ėi = −ai ei +
k∑

l=1

x̄ fi W̃ l
fi

sl − μi (t) . (2.44)

Owing to the presence of the modeling error μi (t), the learning law given
by (2.26) is modified by performing parameter hopping, when x̄ fi · W l

fi
reaches

the outer forbidden planes as depicted in Fig. 2.3. x̄ fi · W l
fi
is confined in space

S =
{

x̄ fi · W l
fi

:
∣
∣
∣x̄ fi · W l

fi

∣
∣
∣ ≤ ρl

}
, lying between these hyperplanes. The weight

updating law for W l
fi
can now be expressed as

Ẇ l
fi

= − (
x̄ fi

)T
ei sl Pl

i −
σlκl Pl

i

(
x̄ fi W l

fi

(
x̄ fi

)T
)

tr
{(

x̄ fi

)T
x̄ fi

} , (2.45)

with

σl =
⎧
⎨

⎩

0 if x̄ fi W l
fi

= ±ρl

and x̄ fi Ẇ l
fi

<> 0
1 otherwise

. (2.46)

In the current notation, the “±” symbol has a one to one correspondence with the
“<>” one,meaning that “+” case corresponds to “<” case and “−” case corresponds
to “>” case.

The above weight adjustment law is the same as (2.26) if x̄ fi W l
fi
belongs to a

hypersphere of radius ρl . If initially x̄ fi W l
fi
(0) belongs to this hypersphere, one

strategy that can be followed is to apply a “hopping” to the weight updating equation
whenever a vector is approaching the forbidden outer hyperplane and is directed
toward it. The “hopping” could send the weight back to the desired hyperspace
allowing thus the algorithm to search the entire space for a better weight solution.
Thus, in the case that the weights leave this hypersphere, the weight adjustment law

is modified by the addition of a hopping term − κl Pl
i

(
x̄ fi Wl

fi

(
x̄ fi

)T
)

tr
{(

x̄ fi

)T x̄ fi

} , whose objective

is to prevent the weight values from drifting to infinity. This modification appeared
first in Boutalis et al. (2009). As it is explained in Chap.3 (Remark 3.2) the weight
hopping does not affect the existence of solutions of the dynamic equations of the
model, so that Lyapunov stability arguments can be safely applied.

Now, we are ready to state the following theorem:



42 2 Identification of Dynamical Systems

Theorem 2.4 Consider the F-RHONNs model given by (2.24) whose weights are
adjusted according to (2.45), (2.46). Then for i = 1, . . . , n and l = 1, . . . , k the
following properties are guaranteed:

1. ei , W l
fi
, Ẇ l

fi
∈ L∞,

2. there exist constants r, s such that :∫ t
0 |ei (t)|2 dτ ≤ r + s

∫ t
0 |μi (t)|2 dτ .

Proof (1) Consider the Lyapunov candidate function:

V = 1

2

n∑

i=1

(∣
∣x̄ fi

∣
∣2 e2i

)
+ 1

2

n∑

i=1

k∑

l=1

[(
x̄ fi W̃ l

fi

)T (
Pl

i

)−1 (
x̄ fi W̃ l

fi

)]

. (2.47)

Taking the time derivatives of the Lyapunov function candidate (2.47) and taking
into account (2.44), (2.45) we obtain

V̇ =
n∑

i=1

(∣
∣x̄ fi

∣
∣2 ei ėi

)
+

n∑

i=1

k∑

l=1

[(
x̄ fi Ẇ l

fi

)T (
Pl

i

)−1 (
x̄ fi W̃ l

fi

)]

= −
n∑

i=1

(
ai
∣
∣x̄ fi

∣
∣2 e2i + ∣

∣x̄ fi

∣
∣2 eiμi

)

+ ∣
∣x̄ fi

∣
∣2

n∑

i=1

(
k∑

l=1

x̄ fi ei W̃ l
fi

sl −
k∑

l=1

x̄ fi ei W̃ l
fi

sl

)

+
n∑

i=1

∣
∣x̄ fi

∣
∣2

k∑

l=1
σlκl

(
x̄ fi W l

fi

) (
x̄ fi W̃ l

fi

)

∣
∣x̄ fi

∣
∣2

= − ∣
∣x̄ fi

∣
∣2

n∑

i=1

(
ai |ei |2 + eiμi

)
−

n∑

i=1

k∑

l=1

[
σlκl

(
x̄ fi W l

fi

) (
x̄ fi W̃ l

fi

)]
.

(2.48)

Since W̃ f = W f − W ∗
f , we have that

(
x̄ fi W l

fi

) (
x̄ fi W̃ l

fi

)
= x̄ fi

(
W̃ l

fi
+ W l∗

fi

) (
x̄ fi W̃ l

fi

)

=
(

x̄ fi W̃ l
fi

) (
x̄ fi W̃ l

fi

)
+
(

x̄ fi W l∗
fi

) (
x̄ fi W̃ l

fi

)

=
∣
∣
∣x̄ fi W̃ l

fi

∣
∣
∣
2 +

(
x̄ fi W l∗

fi

) (
x̄ fi W̃ l

fi

)

= 1

2

∣
∣
∣x̄ fi W̃ l

fi

∣
∣
∣
2 + 1

2

[∣
∣
∣x̄ fi W̃ l

fi

∣
∣
∣
2 + 2

(
x̄ fi W l∗

fi

) (
x̄ fi W̃ l

fi

)]

= 1

2

∣
∣
∣x̄ fi W̃ l

fi

∣
∣
∣
2 + 1

2

∣
∣
∣x̄ fi W l

fi

∣
∣
∣
2 − 1

2

∣
∣
∣x̄ fi W l∗

fi

∣
∣
∣
2
. (2.49)
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Since, by definition,
∣
∣
∣x̄ fi · W l∗

fi

∣
∣
∣ ≤ ρl and

∣
∣
∣x̄ fi · W l

fi

∣
∣
∣ > ρl for σl = 1, we have

that:
n∑

i=1

k∑

l=1

[
σlκl

2

(∣
∣
∣x̄ fi W l

fi

∣
∣
∣
2 −

∣
∣
∣x̄ fi W l∗

fi

∣
∣
∣
2
)]

≥ 0,

therefore (2.48) becomes:

V̇ ≤
n∑

i=1

[
− ∣
∣x̄ fi

∣
∣2
(

ai |ei |2 + eiμi

)]
−

n∑

i=1

[
k∑

l=1

σlκl

2

∣
∣
∣x̄ fi W̃ l

fi

∣
∣
∣
2
]

(2.50)

≤
n∑

i=1

[

−
∣
∣x̄ fi

∣
∣2

2
ai |ei |2 −

k∑

l=1

κl

2

∣
∣
∣x̄ fi W̃ l

fi

∣
∣
∣
2
]

+
n∑

i=1

[

(1 − σl)

k∑

l=1

κl

2

∣
∣
∣x̄ fi W̃ l

fi

∣
∣
∣
2
]

−
n∑

i=1

[∣
∣x̄ fi

∣
∣2

2

(
ai |ei |2 + 2μi ei

)
]

≤ −
n∑

i=1

∣
∣x̄ fi

∣
∣2

2
ai |ei |2 −

n∑

i=1

k∑

l=1

κl

λmax

(
P−1

i

)V
(

ei , W̃ l
fi

)

+
n∑

i=1

[

(1 − σl)

k∑

l=1

κl

2

∣
∣
∣x̄ fi W̃ l

fi

∣
∣
∣
2 + μ2

i

]

, (2.51)

where λmax

(
P−1

i

)
> 0 denotes the maximum eigenvalue of P−1

i . Since,

n∑

i=1

[

(1 − σl)

k∑

l=1

κl

2

∣
∣
∣x̄ fi W̃ l

fi

∣
∣
∣
2
]

=

⎧
⎪⎪⎨

⎪⎪⎩

n∑

i=1

k∑

l=1

κl
2

∣
∣
∣x̄ fi W̃ l

fi

∣
∣
∣
2
if x̄ fi W l

fi
= ±ρl

and x̄ fi Ẇ l
fi

>< 0
0 otherwise

,

we obtain
n∑

i=1

[

(1 − σl)
k∑

l=1

κl
2

∣
∣
∣x̄ fi W̃ l

fi

∣
∣
∣
2
]

≤
k∑

l=1
κlρ

2
l . Hence (2.51) can be writ-

ten in the form
V̇ ≤ −d − bV + c,

where d =
n∑

i=1

ai
∣
∣x̄ fi

∣
∣2

2 |ei |2, b =
n∑

i=1

k∑

l=1

κl

λmax

(
P−1

i

) and c =
n∑

i=1

(
k∑

l=1
κlρ

2
l + μ̄2

i

)

with μ̄i an upper bound for μi . Therefore, when V
(

ei , W̃ l
fi

)
≥ V0 = c

b , we
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have V̇ ≤ 0, which in the sequel implies that V is bounded. Hence, W̃ l
fi

∈ L∞
and μi ∈ L∞ thus from (2.44) we result to ei ∈ L∞. Furthermore, using (2.45)
and the fact that x̄ fi , ei , sl , Pl

i , W l
fi

∈ L∞, we obtain Ẇ l
fi

∈ L∞.
(2) Continuing the analysis, we note that by deleting the second square term in (2.50)

we obtain

V̇ ≤ −
n∑

i=1

∣
∣x̄ fi

∣
∣2
(

ai |ei |2 + eiμi

)

≤
n∑

i=1

[

−
∣
∣x̄ fi

∣
∣2

2
ai |ei |2 + μ2

i

]

. (2.52)

Integrating both sides of (2.52) yields

V (t) − V (0) ≤
n∑

i=1

⎛

⎝−
∣
∣x̄ fi

∣
∣2 ai

2

t∫

0

e2i (τ ) dτ

⎞

⎠ +
n∑

i=1

⎛

⎝

t∫

0

μ2
i (τ ) dτ

⎞

⎠

≤ −
∣
∣x̄ fi

∣
∣2 ai

2

t∫

0

|ei (τ )|2 dτ +
t∫

0

|μi (τ )|2 dτ .

Therefore,

t∫

0

|ei (τ )|2 dτ ≤ 2
∣
∣x̄ fi

∣
∣2ai

[V (t) − V (0)] + 1
∣
∣x̄ fi

∣
∣2ai

t∫

0

|μi (τ )|2 dτ

≤ r + s

t∫

0

|μi (τ )|2 dτ

where r :=
(

2
∣
∣x̄ fi

∣
∣2ai

)

supt≥0 [V (t) − V (0)] and s := 1
∣
∣x̄ fi

∣
∣2ai

. This proves the

second part of Theorem 2.4.

One can observe that if the modeling error is removed, i.e., μi = 0, then the
parameter hopping will not guarantee the ideal properties of the adaptive law since
it introduces a disturbance of the order of the design constant κl . This is one of the
main drawbacks of parameter hopping that is removed with the next remark. One of
the advantages of parameter hopping is that no assumption about bounds or location
of the unknown W l∗

fi
is made.

Remark 2.2 The drawback of parameter hopping is eliminated using a switching
term κs , which activates the small feedback term around the integrator when the
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magnitude of x̄ fi W l
fi
exceeds a certain value ρ0. The assumptions we make in this

case are that
∣
∣
∣x̄ fi W l∗

fi

∣
∣
∣ ≤ ρ0 and ρ0 is known. Since ρ0 is arbitrary, it can be chosen

to be high enough to guarantee
∣
∣
∣x̄ fi W l∗

fi

∣
∣
∣ ≤ ρ0 in the case where limited or no

information is available about the location of W l∗
fi
. The switching parameter constant

is given by

κs(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if
∣
∣
∣x̄ fi W l

fi

∣
∣
∣ ≤ ρ0

(∣
∣
∣x̄ fi Wl

fi

∣
∣
∣

ρ0
− 1

)q0

κ0 if ρ0 <

∣
∣
∣x̄ fi W l

fi

∣
∣
∣ ≤ 2ρ0

κ0 if
∣
∣
∣x̄ fi W l

fi

∣
∣
∣ > 2ρ0

, (2.53)

where q0 is any finite integer andρ0, κ0 are design constants satisfyingρ0 >

∣
∣
∣x̄ fi W l∗

fi

∣
∣
∣

and κ0 > 0. The switching from 0 to κ0 is continuous to guarantee the existence and
uniqueness of solution of the weight updating differential equation.

The gradient algorithm with the switching parameter constant κs given by (2.53)
is described as

Ẇ l
fi

= − (
x̄ fi

)T
pi ei sl −

κs Pl
i

(
x̄ fi W l

fi

(
x̄ fi

)T
)

tr
{(

x̄ fi

)T
x̄ fi

} . (2.54)

As shown in Ioannou and Fidan (2006), the adaptive law (2.53), (2.54) retains all the
properties of (2.45), (2.46) and, in addition, guarantees the existence of a unique solu-
tion, in the sense of Caratheodory (Hale 1969). The issue of existence and uniqueness
of solutions in adaptive systems is treated in detail in Polycarpou and Ioannou (1993)
and Ioannou and Fidan (2006).

2.5 Simulation Results

To demonstrate the performance of the proposed identification scheme, we present
simulations testing its approximation abilities. First, we present the identification
of a system having identical model structure with the NF model, where we investi-
gate the weight convergence to their optimal values. Next, we compare the proposed
F-RHONNs scheme against the simple RHONNs in approximating the angular posi-
tions of joints 1, 2 of a two link robotic manipulator.
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Table 2.1 Parameters of
F-RHONNs simulations

Parameters F-RHONNs values

Recursion constant a = 0.5
Sigmoidal α = 4

β = 0.3
γ = −1

High-order terms First order
s f = (s(x), s(u))

Fuzzy centers x̄ f = [
1.5 3 4

]

Learning rate P = 0.05
Initial weights W f = [0]

Optimal weights, scenario 1 W 	
f =

⎡

⎣
−0.0908 0.2809
−0.1816 0.5618
−0.2421 0.7491

⎤

⎦

Optimal weights, scenario 2 W 	
f =

⎡

⎣
0.818 0.298
2.392 0.878
3.408 1.252

⎤

⎦

2.5.1 Parameter Identification in a Known Model Structure

In order to test the ability of the presented modeling and identification approach in
regard to the convergence of weights to their optimal values during the identification
procedure, we create a known NF structure of the form:

ẋ = −ax + X f W 	
f s f , (2.55)

and an F-RHONNs approximator:

˙̂x = −ax̂ + X f W f s f , (2.56)

with the same parameter values as shown in Table2.1, except the weights that are
adjusted according to the simple gradient descent learning law (2.26).

In the sequel, we consider two different scenarios.

Scenario 1: In this scenario, the train phase consists of 2,500 epochs where each one
holds for 3 s, with sampling time 10−2 s and control input randomly selected values
in the interval [−1, 1]. We recall that both x, u participate in the model through s f .
Every epoch trains our algorithm with the same data coming from the known NF
structure (2.55). The initial values for the NF structure as well as for the F-RHONNs
identifier are

[
x(0)

] = [
x̂(0)

] = [
0.2

]
.

After each epoch, the weight evolution is plotted together with their optimal
values, as shown in Fig. 2.4. One can observe the fine behavior of the identifier that
finally converges almost perfectly to the known NF structure.
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Fig. 2.4 Weight convergence to their optimal values during the training phase by using gradient
descent learning law

Scenario 2: In this scenario, we repeat the same procedure with the same parameters
as before except the optimal weight matrix target and the learning law, which is now
the pure LS with Eqs. (2.30), (2.31). As we can see in Fig. 2.5, the weights converge
faster to their optimal values when we use adaptive learning rate.

2.5.2 Two Link Robot Arm

The planar two-link revolute arm shown in Fig. 2.6 is used extensively in the literature
for easy simulation of robotic controllers.

Its dynamics are given as (Lewis et al. 1993):

ẋ1 = x3
ẋ2 = x4

[ẋ3 ẋ4]
T = −M−1 (N + τ) , (2.57)

where x1 = θ1 is the angular position of joint 1, x2 = θ2 is the angular position of
joint 2, x3 = θ̇1 is the angular velocity of joint 1, and x4 = θ̇2 is the angular velocity
of joint 2. Also, the matrices M , N have the following form:
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Fig. 2.6 Two-link planar
elbow arm

M =
[

M(1, 1) M(1, 2)
M(2, 1) M(2, 2)

]

,

with

M(1, 1) = (m1 + m2) a2
1 + m2a2

2 + 2m2a1a2 cos (x2) ,

M(1, 2) = m2a2
2 + m2a1a2 cos (x2) ,
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M(2, 1) = m2a2
2 + m2a1a2 cos (x2) ,

M(2, 2) = m2a2
2,

and

N =
[

N (1, 1)
N (2, 1)

]

,

with

N (1, 1) = −m2a1a2
(
2x3x4 + x24

)
sin (x2)

+ (m1 + m2) ga1 cos (x1) + m2ga2 cos (x1 + x2) ,

N (2, 1) = m2a1a2x23 sin (x2) + m2ga2 cos (x1 + x2) .

We took the arm parameters as a1 = a2 = 1m, m1 = m2 = 1kg. In the
simulations carried out, the aim is not the control of the system but only to test the
identification performance of the proposed scheme. Therefore, we use Eqs. (2.57)
as a means for deriving training data. These data help the designer to choose the
appropriate fuzzy centers with the help of one of the well-known clustering methods
such as fuzzy c-mean clustering. After that, the simulations take place in two different
phases, which are presented below.

2.5.2.1 Training Phase

In this phase, our main purpose is to calculate the optimal weight matrix W 	
f after

training our F-RHONNs model with the gradient descent algorithm given by (2.26),
in conjunction with the switching parameter hopping condition given by Eqs. (2.53),
(2.54). The training phase consists of 1,000 epochs where each one lasts for 2 s, with
sampling time 10−3 s. Every epoch trains our algorithm with the same data coming
from the real system with the same inputs randomly selected in the interval [−1, 1].
The initial values for the real system states are:

[
x1(0) x2(0) x3(0) x4(0)

] = [−0.8 −0.4 0 0
]
,

while for the F-RHONNs algorithm are

[
x̂1(0) x̂2(0) x̂3(0) x̂4(0)

] = [
0 0 0 0

]
.

Theweights extracted from every epoch becomes the initial values for the weights
during the next run (epoch).

In Tables2.2 and 2.3 we present the parameter values that have been used for the
simulations of F-RHONNs and RHONN approaches (as described in Sect. 1.2 and
Rovithakis and Christodoulou (2000)), respectively.

http://dx.doi.org/10.1007/978-3-319-06364-5_1
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Table 2.2 Parameters of
F-RHONNs algorithm and
updating law for robot two
link simulations

Parameters F-RHONNs values

Recursion constant a1 = 7.7
a2 = 4.04

Sigmoidal α = 6.08
β = 0.3
γ = −7.696

High-order terms First order
s f = (s(x1), s(x2), s(x3), s(x4),
s(u1), s(u2))

Fuzzy centers x̄ f1 = [−2.1 −1.7 −1.2 −0.5
]

x̄ f2 = [−1.8 −1.4 1.5 1.8
]

Learning rate P1 = 0.00428
P2 = 0.00384

Initial weights W f1 = [0]
W f2 = [0]

Hopping constants κl = 0.675
ρl = 181

Table 2.3 Parameters of
RHONN algorithm and
updating law for robot
two-link simulations

Parameters RHONN values

Recursion constant a1 = 5.06
a2 = 5.19

Sigmoidal α = 7.93
β = 0.25
γ = −7.74

High-order terms First order
s f = (s(x1), s(x2), s(x3), s(x4),
s(u1), s(u2))

Learning rate P1 = 0.00692
P2 = 0.00766

Initial weights W f1 = [0]
W f2 = [0]

2.5.2.2 Testing Phase

When the training stops, we proceed to test the abilities of the trainedNFmodel using
as input signal, values constraint in the interval [−1, 1], which have the following
form:

u1(k) =
16∑

j=1

j

196
· sin

( π

100
· j · k

)
, (2.58)
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Fig. 2.7 Evolution of input signals u1 and u2

u2(k) =
16∑

j=1

j

196
· cos

( π

100
· j · k

)
. (2.59)

Figure2.7 shows the evolution of the input signals (2.58) and (2.59), respectively.
The weight matrix derived from the training phase, which corresponds to the

angular position of joint 1, 2, is given for the F-RHONNs as

W 	
f1,2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2.0785 −0.0284 −0.2853 0.0154 1.2161 1.1566
−4.9884 −0.0680 −0.6847 0.0370 2.9187 2.7759
−7.0669 −0.0964 −0.9699 0.0524 4.1348 3.9325
−8.7297 −0.1190 −1.1982 0.0647 5.1076 4.8578
−0.1399 −2.5484 0.0234 −0.7536 1.5823 1.8583
−0.1089 −1.9821 0.0182 −0.5862 1.2307 1.4453
0.1166 2.1236 −0.0195 0.6279 −1.3186 −1.5485
0.1399 2.5484 −0.0234 0.7536 −1.5823 −1.8583

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

while for the RHONN as:

W 	
f1,2 =

[
8.0216 −0.1592 1.8826 −0.0931 −4.7609 −5.0891

−0.7083 9.1152 −0.0492 1.9712 −4.9517 −5.4681

]

.



52 2 Identification of Dynamical Systems

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

A
ng

ul
ar

 p
os

iti
on

 o
f j

oi
nt

 1

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

A
ng

ul
ar

 p
os

iti
on

 o
f j

oi
nt

 2

Time (sec)

F−RHONN
RHONN
Desired

Fig. 2.8 Approximation of robot angular position 1 and 2
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Finally, we run our algorithm and RHONN approach for the above optimal weight
matrices and the same control sequence with sampling time 10−3 s for 1 s. It is our
intention to compare the approximation abilities of the proposeddynamicNFnetwork
(2.24) with RHONNs, (Rovithakis 2000) in approximating Eq. (2.57).

Figure2.8 gives the approximation of robot states x1, x2 while Fig. 2.9 presents
the evolution of identification errors, for RHONN and F-RHONNs models. The
MSE measured as 0.0042, 0.0056 for F-RHONNs and 0.0148, 0.0194 for RHONN
concerning states x1, x2, respectively. One can see that the dynamic NF networks are
more powerful than the simple neural networks.

Once again, we test our approximator capabilities against RHONNs changing
the frequency of input signals (divided by 2) and the initial values of both methods
that are equal to the initial values of real system. Figure2.10 shows that when the
initial conditions of the robotic system and F-RHONNs identifier become equal the
behavior of our approximator remains or becomes even better.
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2.6 Summary

In this chapter, we presented a new recurrent neurofuzzy model, termed F-RHONN,
for the identification of unknownnonlinear dynamical systems. It is based onmultiple
HONN approximators and the fuzzy partitioning of a fuzzy system output. Every
HONN is specialized to work in a small region of the whole unknown system around
the fuzzy output center.

In the sequel, we investigated the approximation capabilities of the proposed F-
RHONNs when they are trained by different algorithms such as gradient descent
and pure LS, which are proved to be Lyapunov stable. Furthermore, we examine the
robustness of the training algorithms by employing a novel approach of switching
parameter hopping instead of the classical σ -modification and prove once again that
it is Lyapunov stable.

In the simulation results section, we demonstrated the approximation capabilities
of our approach by presenting the convergence of identifier weights to their optimal
values when we use a known model structure. In the sequel, the F-RHONN model
was compared with simple RHONN showing the superiority of the NF model in
approximating two link robot arm state variables.
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