Chapter 2
Identification of Dynamical Systems Using
Recurrent Neurofuzzy Modeling

2.1 The Recurrent Neurofuzzy Model

Let us consider a nonlinear function f(x, u), where f : R"™™ — R" is a smooth
vector field defined on a compact set W C R"*", with input space u € U, C R™
and state-space x € X C R". Also, we assume that the dynamic equation which
describes the i/o behavior of a system has the following form (Christodoulou et al.
2007; Theodoridis et al. 2009, 2012):

x(1) = f(x@), u(r)), (2.1)
or in a per-state form:

Xi(t) = fi(x(@), u(1)), (2.2)
where f;(-),i = 1,2,...,n,is a continuous function and ¢ denotes the temporal

variable. In order to proceed further we have to state the following assumption:

Assumption 1 Notice that since ¥ C %" then W is closed and bounded set.
Also, it is noted that even if W is not compact we may assume that there is a time
instant 7 such that (x(¢), u(#)) remain in a compact subset of W forallt < T';i.e. if
W7 = {(x(),u(t)) € ¥,t < T}. The interval W7 represents the time period over
which the approximation is to be performed.

We consider that function f(x, u) is approximated by a fuzzy system using appro-
priate fuzzy rules. In this framework, let Q2 r be defined as the universe of discourse
of (x,u) € X UU C R"™ belonging to the (ji, jo, ..., jurm)th input fuzzy
patch and pointing—through the vector field f(-)—to the subset that belongs to the
l1, 1y, ..., Iyth output fuzzy patch. Also, €2, is a subset of 2 containing input pair
values associated with f;. Furthermore, QF | with p =1,2,..., g the number of
fuzzy partitions of the i-th state variable, is defined as the p-th subregion of Q . such

that Qp = U%_, 2F.
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26 2 Identification of Dynamical Systems

Definition 2.1 According to the above notation the indicator function (IF) connected
to SZ’;i is defined as follows:

af (x(0), u(0) if (x(1), u(1) € 2

P _
17 (x (1), u(n)) = 0 otherwise

(2.3)

where oeip (x(t), u(t)) denotes the firing strength of the rule.

Then, assuming a standard defuzzification procedure (e.g., centroid of area or
weighted average, see Sect. 1.3.1), the functional representation of the fuzzy system
that approximates the real one can be written as

i 17 x5
i@, u) = "= 24)
17
pgl l

where the summation is carried over all the available fuzzy rules.

Definition 2.2 Using the notation presented in Sect. 1.3.1, we can define as weighted
IF (WIF) the following equation:

17
(1)) = (2.5)
> 1f

p=1

which is the IF defined in (2.3) divided by the sum of all IF participating in the
summation of (2.4).

Thus, Eq. (2.4) can be rewritten as

q
7 _ P zp
fite@, u@) =" (1) - x4 (2.6)
p=1
Based on the fact that functions of high-order neurons are capable of approximat-
ing discontinuous functions (Kosmatopoulos and Christodoulou 1996; Christodoulou

et al. 2007), we use high-order neural networks (HONNS) to approximate a (1')?.
Thus, we have the following definition:
Definition 2.3 A HONN is defined as:
k
NP G u@iw by = > wh [T o7, 2.7)

=1 jel
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where I} = {Iy, I, ..., I} is a collection of k not-ordered subsets of {1,2,...,n+
m}, d;(l) are nonnegative integers. @ ; are the elements of the following vector:

D =[D) ... Oy Dyt .. Puym] =[s0c) o s s@1) 5]

where s denotes the sigmoid function defined as:

o

S(.x) = —1 T e—ﬂx

-, (2.8)

with o, 8 being positive real numbers and y being a real number.

Special attention has to be given in the selection of parameters «, §, y so that
s(x) fulfill the persistency of excitation condition (s €[—y,—y +alwheny < 0)
required in some system identification tasks. Also, w%l is the HONN weights with
i=12,....,n,p=12,...,gandl =1,2,... k.

Thus, Eq. (2.7) can be written as

k
NP (o), u(e): wk) = > whlsi(x(0). u(r)), 2.9)
=1

where s;(x(¢), u(t)) are high-order terms of sigmoid functions of the state and/or
input.

The next lemma (Kosmatopoulos and Christodoulou 1996) states that a HONN of
the form in Eq. (2.9) can approximate the weighted indicator function (WIF), (1')?.

Lemma 2.1 Considerthe WIF (I’);." andthe family of HONN'’s Nip (x(t), u(t); w, k).
Then for any eip > 0, there is a vector of weights w and a number of k high-order
connections such that: .
sup {(1/)5’ (0. u(0) = 3wl s (e, u(t))} <&l
(x(),u(t))ew =1
The magnitude of approximation error &
number of high-order terms.

p

;> 0 depends on the choice of the

Under the definition of WIFs and the above lemma, one could rewrite the rules
of the fuzzy system as follows:

R IF (x (1), u(1)) € Q’}i THEN HONN,, is (1’)f @) .

Following the above analysis and Eq. (2.6), actually we give a weighting value
according to the output fuzzy partitioning, as shown in Fig. 2.1, to every HONN that
participates to the estimation of f; (x, u).

As a consequence, we have the following definition:
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Fig. 2.1 Fuzzy partitioning f4
of the system output

v

X,u

Definition 2.4 The center weighting value (CWV) X% which is the p-th fuzzy center
of the i-th state variable (or equivalently f;) 1nﬂuences a HONN by a degree of

implementation x J[% .

Therefore, rule Rip can be equivalently expressed as

RP:IF (x(t), u(t)) € sz’;[ THEN HONN,, is (1')/ (1) with CWV x]';.

Now, we can group the rules that participate in the construction of the i-th state
variable output according to the following form:

R;:IF (x(t), u(t)) € Q. THEN HONNj is (I’)1 (1) with CWV x '1 . and HONN>

is (1 ) (t) with CWV x xf and - - - and HONN,, is (1 ) (¢) with CWV x
It then follows easily that, the i-th state varlable of the system output is determlned
as follows:

R; : IF (x(t), u(r)) € @, THEN
fiowy = () @35 + ()] @55+ + (1) @) 7%,

where each (I ’)f , I =1,...,q is replaced by the respective HONN. It is clear that
the information about the antecedent partitioning of the rules as well as the number of
rules is not necessary to be determined here. Therefore, the rules are not treated here
in the classical way of Mamdani or Takagi-Sugeno definition but their consequent
parts are determined directly from F-HONNS.

Following the above notation, Eq. (2.6) in conjunction with Eq. (2.9) can be rewrit-

ten as L
q
fite@), u@) =D & - (Z wh - si(x (o), u(r))), (2.10)
=1

p=1
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or in a more compact form:

F=XWespx,u). .11

An alternative, recurrent NF form of Eq. (2.1) which will be used in the subsequent
analysis of this thesis is:

A

i=A%+ f. (2.12)

Considering that f is approximated by the NF model described above, Eq.(2.12)
can be rewritten as .
X =AX+ X Wysy(x, u), (2.13)

where A is a n x n stable matrix, which for simplicity can be taken to be diagonal
as A = diag[—ay, —as, ..., —a,], with a; > 0. Also, X is a matrix containing the
centers of the partitions of every fuzzy output variable of f(x, u), s (x, u) is a vector
containing high-order combinations of sigmoid functions of the state x and control
input u. Also, W is a matrix containing respective neural weights according to (2.9)
and (2.10). For notational simplicity we assume that all output fuzzy variables are
partitioned to the same number, g, of partitions. Under these specifications Xy is a
n x n - q block diagonal matrix of the form X y = diag(x s, Xp,, ..., Xy,), with X,
being a g-dimensional row vector of the form:

Ri= 5] & 5]

- =q
xf...xfl_()...o 0 .-
X, = 0 -+ 0x 0

0
e _q, P
R 0ol (2.14)

0O---0 0 ---0 i}n"'f?n

- —

Also, sp(x) = [s1(x) ... sk(x)]T, where each s;(x) with = 1,2,...,k, is a
high-order combination of sigmoid functions of the state variables and input signals.
Finally, Wy is an - ¢ x k matrix with neural weights. W assumes the form Wy =

[Wg - Wffz]T, where each W is a matrix [w?l] . and is given as:
Ji qX

1m 12 1k

Wi Wi Wy
21 22 2k
Wi Wi Wi,
Wg=1 . B
ql g2 qk
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or in a more detailed form:

o1l 12 1k

WaWa o Wh
21 22 2k
Wi Wi Wi
ql g2 gk
Wi Wh Wi
Wi = D
.12 1k
VT Y
21,22 2k
Wi W Y
gl ~ q2 gk
LW W Wi

From the above definitions and Eq. (2.10), it is obvious that the accuracy of the
approximation of f;(x, u) depends on the approximation abilities of HONNs and on
an initial estimate of the centers of the output membership functions. These centers
can be obtained by experts or by offline techniques based on gathered data. Any other
information related to the input membership functions is not necessary because it is
replaced by the HONNS.

Figure 2.2 shows the overall scheme of the proposed NF modeling that approxi-
mates function f;(x, u) depending only on measurements of x, «. When these mea-
surements are given as inputs to the NF network (input layer) that includes high-order
sigmoidal terms, the output of indicator layer gives the weighted IF outputs that
influence the corresponding rules according to output fuzzy center (rule layer). The
appropriate summation of all rules at each sampling time instant gives the overall
output of the function f;(x, u) (output layer).

2.2 Approximation Capabilities of the Neurofuzzy Model

The approximation problem consists of determining whether by allowing enough
high-order connections and fuzzy centers, there exist weights W, such that the F-
RHONNSs model could approximate the input—output behavior of a complex dynam-
ical system of the form (2.1). In this equation the input u# belongs to a class U, of
(piecewise continuous) admissible inputs.

By adding and subtracting Ax, where A is a Hurwitz matrix, (2.2) is rewritten as

&= Ax + g(x,u) 2.15)
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Input layer Indicator layer Rule layer Output layer

(x,u)

Sk

[

(x,u)

Fig. 2.2 Overall scheme of the proposed NF model that approximates function f; (x, u) using state
measurements x and input signals u

where g(x, u) := f(x,u) — Ax.
In order to have a well-posed problem, we will impose the following mild assump-
tions on the system to be approximated:

Assumption 2 Given a class U, C R? of admissible inputs, for any u € U, and
any finite initial condition x (0), the state trajectories are uniformly bounded for any
finite 7 > 0 . Meaning that we do not allow systems processing trajectories that
escape at infinite, in finite time 7', T being arbitrarily small. Hence, |x(T)| < oo.

Assumption 3 Functions f; are continuous with respect to their arguments and
satisfy a local Lipschitz condition so that (2.2) has a unique solution for any finite
initial condition x (0) and u € U,, in the sense of Caratheodory (Hale 1969).

Based on the above assumptions, we obtain the following theorem:

Theorem 2.1 Suppose that the system (2.1) and the model (2.10) are initially at the
same state X (0) = x(0), then for any ¢ > 0 and any finite T > 0, there exist integers
k, q, a matrix W]*C € R¥*9X" and appropriately selected fuzzy output centers )E‘;i such
that the state x(t) of the F-RHONNs model (2.10) with k high-order connections, q
fuzzy centers and weight values Wy = W} which satisfies:

sup |)€(t) — x(t)| <e.
0<t<T

Proof Following a procedure similar to the work of Kosmatopoulos et al. (1995),
we proceed as follows: By assumption, (x(¢), u(t)) € W for all ¢ € [0, T], where ¥
is a compact subset of R"*"™,
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Let W, = {(x,u) € R™™ : |(x,u) — (xy, uy)| < e, (xy,uy) € U}. It can be
readily seen that W, is also a compact subset of R"*" and ¥ C W,. That is, ¥,
is & larger than W, where ¢ is the required degree of approximation. Since sy is a
continuous function, it satisfies a Lipschitz condition in W,, i.e., there is a constant
[ such that for all (X1, u), (X2, u) € W,:

lsp (R u) —s5 (82, u)| <1lx1 — x2f. (2.16)

In what follows, we show that the function X s W%s ¢ satisfies the conditions of
Stone—Weirstrass Theorem (Stone 1948; Bishop 1961) and can approximate any
continuous function over a compact domain.

The dynamic behavior of F-RHONNSs model is described by (2.13). Since x(0) =
x(0), the state error e = x — x satisfies the differential equation

ée=Ae+ X Wysy —g(x,u), 2.17)

where ¢(0) = 0.

Therefore, it can be readily shown that if k, g are sufficiently large, then there
exist weight values Wy = W7 such that X s W}s £(x, u) can approximate g(x, u)
to any degree of accuracy, for all (x, «) in a compact domain. Hence, there exists
Wy = W% such that

<, (2.18)

sup XfW}ka(x, u) — g(x, u)
(x,u)evw,

where § is a constant to be designed in the sequel. The solution of (2.17) is

t 1

e(t) = /eA(t_T)XfW;Sf()?(‘E),u(r))dr —/eAU—f)g(x(r),u(r))dr

0 0
t t

— / AN Wisp(R(1), u(r)) dr — / AN Wisp(x(), u(r)) dr

0 0
t t

+/eA<’—f>Xfw;sf(x(r),u(r))dz —/eA(’_’)g(x(r),u(t))dr.

0 0
(2.19)

Since A is a Hurwitz matrix, there exist positive constants c, « such that || et || <

ce ¥ forall t > 0. Also, let k = ¢l HX r W;- H Based on the aforementioned defini-
tions of the constants ¢, «, k, &, let § in (2.18) be chosen as
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5=t 0. (2.20)
2c

First consider the case where (x(¢), u(t)) € W, for all t € [0, T']. Starting from
(2.19), taking norms on both sides and using (2.16), (2.18) and (2.20), the following
inequalities hold for all ¢ € [0, T']:

le(r)] < / et
0

t
+/ HeA(t—r)
0

t 1

< /e—“<’—f>k|e(r)| dr +/5ce—“<’—f> dr

0 0

H XfW; H |Sf()?, u) —sy(x, u)| dr

‘XfW;Sf(x, u) — g(x, u)‘ dr

t
< k/e*““*f) le ()] dt + %e*? 2.21)
0

Then, using the Bellman—Gronwall Lemma (Hale 1969), we obtain:

t
& fke"”(”r)dr
le(r)| < 7€ ” - e0 <

e

e

k
o

cea < (2.22)

| ™
N ™

It should be noted here that the assumption of X(0) = x(0) can be easily relaxed
without affecting the conclusion of the theorem. In this case, one should consider
that an exponentially fast decaying error term is added in €.

The above theorem proves that if sufficiently large number of connections are
allowed in F-RHONNs model then it is possible to approximate any dynamical
system to any degree of accuracy. This result does not provide us with any constructive
method for obtaining the optimal weights W7%. In what follows, we consider the
learning problem of adjusting the weights adaptively, such that the Neurofuzzy model
identifies general dynamic systems.

2.3 Learning Algorithms for Parameter Identification

We proceed now to develop weight updating laws assuming that the unknown sys-
tem is modeled exactly by an F-RHONNSs architecture of the form (2.13). In the
next section, we extend this analysis to cover the case where there exists a nonzero
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mismatch between the system and F-RHONNSs model with optimal weight values,
that is, we assume the existence of modeling errors.

Following the standard practice in system identification algorithms, we will
assume that the input u(¢) and the state x(¢) remain bounded for all # > 0. Based
on the definition of s 7 (x, u), X  as given by (2.8), (2.14) this implies that s s (x, u),
X  are also bounded. In the sections that follow, we present different approaches for

estimating the unknown parameters (w’;il) of F-RHONNS model.

2.3.1 Simple Gradient Descent

In developing this identification scheme, we start again from the differential equation
that describes the unknown system with no modeling error which is given by

X = —aixi + Xy, W}isf-(x, u). (2.23)
Based on (2.23), the identifier is now chosen as
Xi= —aiki + X Wsp(x,u), (2.24)

where Wy is again the estimate of the unknown optimal weight matrix Wf*’ In this
case, the state error ¢; = x; — x; satisfies

é = —aje; + Xy Wf,-sf(xy u), (2.25)

where Wy, = Wy, — Wi
The next theorem gives the error F-RHONNSs model with the gradient method for
adjusting the weights.

Theorem 2.2 Consider the error F-RHONNs model given by (2.25) whose weights

are adjusted according to equation

Wy,

= —)E}; eis; Pi. (2-26)

Then fori = 1,2, ..., n, the following properties are guaranteed:

1. e, Wﬁ € Lo, e € Lo,
2. im0 ei (t)y=0,
3. im0 Wr (1) =0.

Proof (1) Consider the Lyapunov candidate function:

1 — 1 - -
V=3De s W p WL (2.27)
i=1 i=1
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Taking the time derivatives of the Lyapunov function candidate (2.27) and after
substituting Eq. (2.25) we obtain

n n
V= Ze,'éj + Ztr {sz Pi_IW};]
i=1 i=1

= iai lei|* + i (eiif,- Wpsp+te {W.ﬂ- P W;})

i=1 i=1

n
== a;leil”. (2.28)

Considering that in deriving (2.28) we assumed that
. S .
tr{WfiPi Wfi} = —ejxWgsy,

and using matrix trace properties we result in Eq. (2.26).

Thus, V is negative semidefinite. Since V < 0, we conclude that V € L,
which implies that e;, Wf € L. Furthermore, Wy, = Wf, + Wf is also
bounded. Since V is a nonincreasing function of time and bounded from below,
the lim;_, oo V = Vi exists; therefore, by integrating V from 0 to oo we have

o0
[ S ailefdr <1V - Vol < o0,
i=I

0

which implies that e; € L.

(2) Sincee; € Lo N Lo, using Barbalat’s Lemma we conclude that lim;_, » €; () =
0.

(3) Finally, using the boundedness of x,, sy (x, u) and the convergence of ¢; (7) to
zero, we have that W 1, also converges to zero (Ioannou and Fidan 2006).

Remark 2.1 The above theorem does not imply that the weight estimation error
W f=Wyp— W* converges to zero. In order to achieve convergence of the weights
to their correct value the additional assumption of persistent excitation needs to be
imposed on the vector s (x, u) because X 7, satisfies this condition by definition. In
particular, sy € R is said to be persistently exciting if there exist positive scalars
B1, B2 and T such that for all ¢ > 0:

t+T

pii = [ 5@ @ dr < pa. (2.29)

t

where [ is the k x k identity matrix.

This can be achieved if the constant y in Eq. (2.8) is selected such that: s -s; > 0.
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2.3.2 Pure Least Squares

The basic idea behind least squares (LS) method is to fit a mathematical model to
a sequence of observed data by minimizing the sum of the squares of the difference
between the observed and computed data. This way, any noise or inaccuracies in the
observed data are expected to have less effect on the accuracy of the mathematical
model (Ioannou and Fidan 2006).

The method is simple to apply and analyze in the case where the unknown para-
meters appear in a linear form, such as in Eq.(2.23). The pure LS algorithm can
be thought as a gradient algorithm with a time-varying learning rate and could be
written as follows:

: Xjeiz] P
Wye = - W (0) = Wy, (2.30)
%]
. Piziz! P;
b= - RO =P,

N

where P; is the gain matrix which is positive definite and n > 1 is a normalization
signal designed to guarantee that Z' is bounded, with z; deﬁned in the following
lemma 2.2. The property of ny is used to establish the boundedness of the estimated
parameters even when z; is not guaranteed to be bounded. A straightforward choice
for ny is n% =1 —i—aziTzi, o > 0.1If z; is bounded, we can take « = 0. The following
lemma is useful in the development of the adaptive identification algorithm, which
is presented in this section.

Lemma 2.2 The system described by Eq.(2.23) can be expressed as
Zi = —a;zi +s5, zi(0) =0, (2.31)
xi =Xy, W}i zi + e %'x;(0). (2.32)

Proof From (2.31) after integrating we have

t

(1) = / e ™D (x(1), u(r)) dr,

0

therefore,

t
Xy W}izi + e % (0) = e %" x;(0) +/ —ai(t= t)_f Wf sy (x(r), u(r)) dr.
0

(2.33)
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Using (2.32), the right-hand side of (2.33) is equal to x;(¢) and this concludes the
proof.

Using the above lemma the dynamical system is described by the following equa-
tion:
X; = )_Cf[. W;l Zi + &, (2.34)

where &; = e~ %"x;(0) is an exponentially decaying term that appears when a nonzero
initial state is applied. After ignoring the exponentially decaying term ¢; (Rovithakis
and Christodoulou 2000), the F-RHONNSs model can be written as

% =xWrazi. (2.35)
The state error equation ¢; = X; — x;, after substituting (2.34), (2.35) becomes
ei =X Wrzi — e (2.36)
The cost function J(Wy,) is chosen as

n 2
> [(Xf Wrzi =X, W5 z,~) - Ei]
J(Wp) = ’:12 == 5 . (2.37)

n

If we use the LS method described by (2.30) and (2.31), a problem that may be
encountered in the application of the LS’s algorithm is that P; may become arbitrarily
small and thus slow down adaptation in some directions. Therefore, we can use one of
various modifications that prevent P; () from going to zero as follows: if the smallest
eigenvalue of P; () becomes smaller than p; then P; (¢) isresetto P;(t) = pol, where
po > p1 > 0 are some design constants (Rovithakis and Christodoulou 2000).

Theorem 2.3 The pure LS algorithm given by (2.30), (2.31) guarantees the following
properties:

1. e;, W, € LaNLso, Wy, Pi € L.
2. limy_ oo e (1) =0,
3. lim— oo W (1) = 0.

Proof (1) From (2.31) we have that I5,~ < 0,1ie., Pi(t) < Py. Because P;(¢) is
nonincreasing and bounded from below (i.e., P;(t) = Pl.T (t) > 0) it has a limit,
i.e.,

lim P;(t) = P;,
11— 00

where P, = I3iT > 0 is a constant positive definite diagonal matrix and thus
P € L.
Let us now consider the Lyapunov candidate function
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n

Vzég[(iﬁwﬁ) Pl._1 ()Eﬁvf/ﬁ)T+/toosl-2(r) d‘[i|_ (2.38)

Taking the time derivatives of the Lyapunov function candidate (2.38) and con-
sidering the equations, % (P_l) =—P~1pP~1 (2.30),(2.31),(2.36) we obtain

V= i (%W P WEET) + %i [(ff,- W) B (% Wf,.)T - 83]

i=1 i=1

~ 2
! 1 < ‘xf Wi

=—Z()€ﬁﬁ’fizie,~)+§z 72—812

i=1 i=1 s

n 1 : i2
= —Z[ei (ej +e)]+ 22((628) —81-2)
i=1

‘ ns
i=1 §

n

1 1< (e +¢;)2
=7§Z[e?+(ei +8i)2] +EZ%
i=1 s

i=
n

< Iser<o (2.39)

Equation (2.39) implies that V € L, and therefore Wf,. € L. Then, Eq.(2.36)
in conjunction with the boundedness of z;, gives e; € L. Furthermore, Wy, =
Wﬁ + W;’Ei is also bounded. Since V is a nonincreasing function of time and
bounded from below, the lim;_, o, V = V exists; therefore, by integrating 1%
from O to co we have

n

%/Zeﬂ < [V(0) = Vil < 00,
i=1

0

which implies that ¢; € L. From (2.30) we have

leil 1zil 117

%

Since X, P;, zi, e;i € Lo, and ¢; € Ly, we have Wﬁ € LrN L.

(2) Sincee; € L> N Lo, using Barbalat’s Lemma we conclude that lim,_, o e; () =
0.

(3) Finally, using the bpundness of Xz, s¢(x,u) and the convergence of ¢;(t) to
zero, we have that Wy, also converges to zero (Ioannou and Fidan 2006).

Wy | (2.40)

=

Also, if a persistency of excitation condition such as Remark2.1 is valid then
Wpr(t) — W}’_ ast — 00.
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2.4 Robust Learning Algorithms

Due to an insufficient number of high-order terms or fuzzy output centers in the F-
RHONNSs model, we have to deal with unmodeled dynamics, noises, disturbances,
and other frequently encountered uncertainties. In such cases, if standard adaptive
laws are used for updating the weights, then the presence of modeling error in prob-
lems related to learning in dynamic environments may cause the adjusted weight
values (and consequently the estimation error e;) to drift to infinity. Examples of
such behavior can be found in the adaptive control literature of linear systems (Ioan-
nou and Fidan 2006).

In this section, we modify the weight updating laws to avoid the parameter drift
phenomenon. To formulate the problem we note that by adding and subtracting

k
—aixi + > % fi W}:sl (x, u), the dynamic behavior of each state of the system (2.2)
=1
can be expressed by the following differential equation:

k
g = —aixi + D X WsiOe ) + pi (), (241)
=1

where the modeling error p; (¢) is given by

k
pi(t) = fi (e (), u () +aixi (1) = DX Wiks (x (1), u (). (2:42)

=1

The unknown optimal weight matrix Wf‘:‘ is defined as the value of the weight
vector Wﬁ.’_ that minimizes the L,-norm difference between f; (x, u) + a;x; and
Z;‘zli £ Wlf-[_ si(x,u) for all (x,u) € ¥ C R"™, subject to the constraint that

‘x fie W}i ’ < pi1, where pj is a large design constant.

The region ¥ denotes the smallest compact subset of R"™" that includes all the
values that (x, u) can take, i.e., (x (t), u (t)) € W for all + > 0. Since by assumption
u(t) is uniformly bounded and the dynamical system to be identified is bounded
input bounded output (BIBO) stable, the existence of such W is ensured.

In particular, fori = 1, 2, ..., n, the optimal weight vector W}l* is defined as

The formulation developed above follows the methodology of Kosmatopoulos
etal. (1995) closely. Using this formulation, we now have a system of the form (2.41)

W}f ‘= arg min [ sup

k
fiGe,w) +aixi — D% Wisi(x, u)
‘;f; Wlf[_‘fp, (x,u)ew

=1
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Fig. 2.3 Pictorial represen- w,
tation of outer parameter )
hopping during the identifica- . Weight updating

- dlrechon

tion procedure /xw:o
Outer.
Hopping™ K .-

\ s

Outer
Hopping

w,

instead of (2.23). It is noted that since x(¢) and u(¢) are bounded, the modeling error
i (1) is also bounded, i.e., sup, ¢ [1; (¢)| < p; for some finite constant ;.

Now, it is also of practical use to ensure that Z;‘zl Xy W}i s;(x, u) does not
approach even temporarily infinity because in this case the method may become algo-

rithmically unstable. To avoid this situation we have to ensure that ‘)E £ W} ‘ < pl,

with p; being a design parameter determining an external limit for x 7, - W} . We note
that, since X s, and W} are row and column vectors, respectively, and since X s, has

constant values, their product is linear in respect to the elements of W' f and X, - wl .
can describe a hyperplane. In the sequel, we consider the forbidden hyperplanes

being defined by the equation )x £ Wlﬂ_ ‘ = p;. When the weight vector reaches one

of the forbidden hyperplanes ‘)"c fie W};_ ‘ = p; and the direction of updating is toward
the forbidden hyperplane, a parameter hopping is introduced that moves the weights
inside the restricted area. A more analytical and general description of the novel
method of parameter hopping is presented in Chap. 3 Sect.3.2.2.

The above procedure is depicted in Fig.2.3, in a simplified two-dimensional rep-
K P! ()?fi Wl G, )T)

(@) )
following the vectorial proof given in Chap.3 (where b = W}i and our plane is

resentation. The magnitude of hopping is — being determined by

described by equation X, - W}i = p, with X, the normal to it), with k7 a positive

constant (such as, 0 < k; Pl.l < 1) decided appropriately from the designer and Pil is
the /-th element of the gain matrix P;.

In what follows, we develop a robust learning algorithm based on the F-RHONNs
identifier employing the parameter hopping. Hence, the identifier is chosen as in


http://dx.doi.org/10.1007/978-3-319-06364-5_3
http://dx.doi.org/10.1007/978-3-319-06364-5_3
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(2.24) where W]lcl_ is the estimate of the unknown optimal weight matrix WJZC* Using
(2.24), (2.41), the state error ¢; = x; — x; satisfies:

i = —aje; + X Wesp(x,u) — (1), (2.43)

or in a more detailed form:

!
éi = —aje; + Zif,- le‘isl — Wi (7). (2.44)
=1

Owing to the presence of the modeling error w;(z), the learning law given
by (2.26) is modified by performing parameter hopping, when X, - W/l‘}- reaches

the outer forbidden planes as depicted in Fig.2.3. xy, - W]lcl_ is confined in space
S = {)E £ W}i : ’)E fie WJZCI‘ < ,01}, lying between these hyperplanes. The weight
updating law for W}i can now be expressed as

e wl (7T
ok P | xy, Wﬁ (xfl.)

r{(%s)" %

_ T
Wi =—(i5) esP - , (2.45)

with
0 if xp Wf =%
o = and X, Wf <>0. (2.46)
1 otherwise

In the current notation, the “+” symbol has a one to one correspondence with the
“<>" one, meaning that “+4” case corresponds to “<” case and “—” case corresponds
[ 2

to ">" case.
The above weight adjustment law is the same as (2.26) if X, Wl belongs to a

hypersphere of radius p;. If initially X, Wl _(0) belongs to this hypersphere one
strategy that can be followed is to apply a “hoppmg to the weight updating equation
whenever a vector is approaching the forbidden outer hyperplane and is directed
toward it. The “hopping” could send the weight back to the desired hyperspace
allowing thus the algorithm to search the entire space for a better weight solution.
Thus, in the case that the weights leave this hypersphere, the weight adjustment law
apl (35w (55)")

w|(e5)" % |
is to prevent the weight values from drifting to infinity. This modification appeared
first in Boutalis et al. (2009). As it is explained in Chap.3 (Remark 3.2) the weight
hopping does not affect the existence of solutions of the dynamic equations of the
model, so that Lyapunov stability arguments can be safely applied.

Now, we are ready to state the following theorem:

is modified by the addition of a hopping term — , whose objective
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Theorem 2.4 Consider the F-RHONNs model given by (2.24) whose weights are
adjusted according to (2.45), (2.46). Then fori = 1,...,nand! = 1,...,k the
following properties are guaranteed:

L ej, Wi, Wi € L,
2. there exist constants r, s such that :
Jo lei O dT < r+s [y lui (0] dr.

Proof (1) Consider the Lyapunov candidate function:
1 TR CNT N
V=< Z(}xﬂ ) +5 22| (®wh) (P)  (RaW)) | @D
i=1 i1 =1

Taking the time derivatives of the Lyapunov function candidate (2.47) and taking
into account (2.44), (2.45) we obtain

=3 o)+ B ) () o)

= —Z (ai %5 e+ |55 |2€iﬂi)
i=l1
5 n k _ k .
SR pRUREN AL
i=1 \I=1 I=1

k
2 s wl (5.1l
ZOIKI(XﬁW,)(Xf}W,)
I=1 I I
-2
%7 |

n
2
Z (di lei|* + €im) -
i=1

%,

n
2
i=1

=— %

Since Wf =Wy — W}, we have that
(2 wh) (25 W) = 25 (W) + wh) (2, W1)
= (if,- W};) (’?fi Wf,-) + (;zﬂ Wﬁ) (’ffi W};)
ol P (= wi) (= vl
= ‘xfi Wf,») + (xﬁ W/";k) (xfi Wf;-)
_1—~121—~12 . .
= E ‘Xfini‘ + = ‘Xfini) +2()Cf Wf) ()CﬁWﬁ)

(2.49)

=gl gawil = 3 v
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X W

ZZ [mm (‘xﬂwf ’ ‘xf,w

therefore (2.48) becomes:

Since, by definition,
that:

< p; and ‘if, . W}l’ > p; for o7 = 1, we have

K

V<Z[ % | (ai|ei|2+e,-m)]—i[i% f,Wf’] (2.50)

i—
<Z |J: DAL a2 — i'(lx er
i1€i = ) fi"V
K o
+Z[(1—a,)zi‘xﬁw}i( ]
i=1 =1
S |)Ef2 2
->. > (ai lei ] +2Mi€i)
i=1

n = 2
E—Z|x§| a; lei|* — ZZ = (ei,WJlg.)
)

i=1 I=1 Amax i
k
n Ki|o w2, 2
+> (1—01)23‘”%( + 2, (2.51)
i=l1 =1

where Amax (Pi_l) > () denotes the maximum eigenvalue of Pi_l. Since,

n k
" Sk o 2 ' 112‘1% X f’ if 55 W), = 0
- S lewh| | =1 ’
2 ( Ul);2 X Wy, andxjcl.W}_ ><0
= = [
0 otherwise

k
Xy, Wf ‘ i| Z 1,01 Hence (2.51) can be writ-

we obtain Z [(1 — o) Z L
i=1
ten in the form

V<—-d—bV+c,

n n n k
whered = > ‘M lei|? Z —P)andc =, (Z K17 +/ll-2>

i=1 i=11=1 f\max( i=1 \I=1
with fz; an upper bound for ;. Therefore, when V (e,-, W}l ) > Vy = %, we
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have V < 0, which in the sequel implies that V is bounded. Hence, Wf € Lo
and u; € L thus from (2. 44) we result to ¢; € L. Furthermore, using (2.45)
and the fact that X, ¢;, s, Pl , W}i € Lo, we obtain W}i € Loo.

(2) Continuing the analysis, we note that by deleting the second square term in (2.50)
we obtain

V< —Z %] (a, lei | +@iMi)
e 55|
2| - 2

i=1

IA

ai leil* + u?}. (2.52)

Integrating both sides of (2.52) yields

n

Z |xf’| al/e (7) dt +Z /,uiz(r)dr

i=1

_ 2
—ixf'é' @ /|e,- ()P dr+/|m (0P dr.
0 0

V() — V(0)

IA

IA

Therefore,

t

t
2 1
/|ei P dr < —2 [V(t)—V(O)]+|_—2/|ui O de
xfi a;

; A

t
§r+8/|m (1)) de
0

————. This proves the

B

where r = (}X/Z " ) sup,5o [V(#) — V(0)] and s :=
second part of Tklleorem 2.4.

One can observe that if the modeling error is removed, i.e., u; = 0, then the
parameter hopping will not guarantee the ideal properties of the adaptive law since
it introduces a disturbance of the order of the design constant «;. This is one of the
main drawbacks of parameter hopping that is removed with the next remark. One of
the advantages of parameter hopping is that no assumption about bounds or location
of the unknown Wlf:“ is made.

Remark 2.2 The drawback of parameter hopping is eliminated using a switching
term kg, which activates the small feedback term around the integrator when the
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magnitude of x W]’ci exceeds a certain value pg. The assumptions we make in this

< po and pg is known. Since py is arbitrary, it can be chosen

= [x
case are that ’x fi Wﬁ

to be high enough to guarantee ’)Ef[. W}:" < po in the case where limited or no

information is available about the location of W}’,‘. The switching parameter constant
is given by

0 if ‘xﬁw%‘ <0
Xr WL qo
Ky (1) = ‘fp_of _ 1) ko if oo < ‘xf,. W}i‘ <20 , (2.53)
) if ‘ifi W}“ > 200

where qq is any finite integer and py, o are design constants satisfying pg > ‘)E fi W}:"
and k¢ > 0. The switching from 0 to k(¢ is continuous to guarantee the existence and
uniqueness of solution of the weight updating differential equation.

The gradient algorithm with the switching parameter constant « given by (2.53)
is described as

ks P (%5 W5 (84)")
w{(F)" %

As shown in Ioannou and Fidan (2006), the adaptive law (2.53), (2.54) retains all the
properties of (2.45), (2.46) and, in addition, guarantees the existence of a unique solu-
tion, in the sense of Caratheodory (Hale 1969). The issue of existence and uniqueness
of solutions in adaptive systems is treated in detail in Polycarpou and Ioannou (1993)
and Ioannou and Fidan (2006).

Wy, =~ (%5)" pieis — (2.54)

2.5 Simulation Results

To demonstrate the performance of the proposed identification scheme, we present
simulations testing its approximation abilities. First, we present the identification
of a system having identical model structure with the NF model, where we investi-
gate the weight convergence to their optimal values. Next, we compare the proposed
F-RHONNSs scheme against the simple RHONNS in approximating the angular posi-
tions of joints 1, 2 of a two link robotic manipulator.
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Table 2.1 Parameters of
F-RHONNSs simulations

2 Identification of Dynamical Systems

Parameters

F-RHONNS values

Recursion constant
Sigmoidal

High-order terms
Fuzzy centers

Learning rate
Initial weights

a=20.5
a=4

B=03
y=-1

First order

sp=(s(x),s(u))

Xr=[1534]
P =0.05
Wy =10]

—0.0908 0.2809

Optimal weights, scenario 1 W; = | —0.1816 0.5618
—0.2421 0.7491
0.818 0.298

Optimal weights, scenario 2 W% = 12.392 0.878
3.408 1.252

2.5.1 Parameter Identification in a Known Model Structure

In order to test the ability of the presented modeling and identification approach in
regard to the convergence of weights to their optimal values during the identification
procedure, we create a known NF structure of the form:

X=—ax+ Xy W}Sf, (2.55)
and an F-RHONNSs approximator:
X =—af+ X Wysy, (2.56)

with the same parameter values as shown in Table 2.1, except the weights that are
adjusted according to the simple gradient descent learning law (2.26).
In the sequel, we consider two different scenarios.

Scenario 1: In this scenario, the train phase consists of 2,500 epochs where each one
holds for 3's, with sampling time 10~ s and control input randomly selected values
in the interval [—1, 1]. We recall that both x, u participate in the model through s 5.
Every epoch trains our algorithm with the same data coming from the known NF
structure (2.55). The initial values for the NF structure as well as for the FF-RHONNSs
identifier are [x(O)] = [)?(O)] = [0.2].

After each epoch, the weight evolution is plotted together with their optimal
values, as shown in Fig.2.4. One can observe the fine behavior of the identifier that
finally converges almost perfectly to the known NF structure.
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Fig. 2.4 Weight convergence to their optimal values during the training phase by using gradient

descent learning law

Scenario 2: In this scenario, we repeat the same procedure with the same parameters
as before except the optimal weight matrix target and the learning law, which is now
the pure LS with Egs. (2.30), (2.31). As we can see in Fig. 2.5, the weights converge
faster to their optimal values when we use adaptive learning rate.

2.5.2 Two Link Robot Arm

The planar two-link revolute arm shown in Fig. 2.6 is used extensively in the literature
for easy simulation of robotic controllers.
Its dynamics are given as (Lewis et al. 1993):

J'C] = X3
)'62 = X4
354 = =M~V (N + 1),

(2.57)

where x| = 6 is the angular position of joint 1, xo = 6, is the angular position of
joint 2, x3 = 0 is the angular velocity of joint 1, and x4 = 65 is the angular velocity
of joint 2. Also, the matrices M, N have the following form:



48 2 Identification of Dynamical Systems
— - — - Adaptive weights
=09 ——— Optimal weights ||
: 0.8F - ptimal weignts |
> 070 |
= 0.6 I
500 1000 1500 2000 2500
— T T T T
“\_J» 041 B
T o3 -
z 0.2 L I I |
500 1000 1500 2000 2500
.25 T - T
; 2 _ 1 1 1 1
; 5O 500 1000 1500 2000 2500
Eq . T T T T
o
=z 1 e ‘ I s
500 1000 1500 2000 2500
__35 . ——— T T
5
; 3 r: 1 1 1 1 ]
0 500 1000 1500 2000 2500
— 2 r T T T T
(aY]
S 15F _ b
; 1 \‘ — \7 — 1 1
0 500 1000 1500 2000 2500
epochs

Fig. 2.5 Weight convergence

algorithm

Fig. 2.6 Two-link planar

elbow arm

with

to their optimal values during the training phase using pure LS

A
y

(x,Y.)

|

M(1, 1) M(1,2)
M2, 1) M(2,2)

M(,2) = mza% + mpaiap cos (x7) ,

Ik

M, 1) = (my + my) a% —l—mza% + 2mpaya; cos (x2)
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M2, 1) = mza% + mpaiay cos (x2)
M(2,2) = mya3,

and VL1
N = [Nﬁzj 13}
with
N(1,1) = —moaian (2x3x4 + x‘%) sin (x3)
+ (my +m2) gaj cos (x1) + magas cos (x1 +x2) ,
N2, 1) = mzalagxg sin (x2) 4+ mogas cos (x1 + x2) .
We took the arm parameters as a; = a» = 1m, m; = my = lkg. In the

simulations carried out, the aim is not the control of the system but only to test the
identification performance of the proposed scheme. Therefore, we use Eqgs. (2.57)
as a means for deriving training data. These data help the designer to choose the
appropriate fuzzy centers with the help of one of the well-known clustering methods
such as fuzzy c-mean clustering. After that, the simulations take place in two different
phases, which are presented below.

2.5.2.1 Training Phase

In this phase, our main purpose is to calculate the optimal weight matrix W} after
training our F-RHONNSs model with the gradient descent algorithm given by (2.26),
in conjunction with the switching parameter hopping condition given by Egs. (2.53),
(2.54). The training phase consists of 1,000 epochs where each one lasts for 2 s, with
sampling time 1073 s. Every epoch trains our algorithm with the same data coming
from the real system with the same inputs randomly selected in the interval [—1, 1].
The initial values for the real system states are:

[xl(O) x2(0) x3(0) x4(0)] = [—0.8 —-040 O] ,
while for the F-RHONNS algorithm are
[£1(0) %2(0) £3(0) £4(0)] = [0000].
The weights extracted from every epoch becomes the initial values for the weights
during the next run (epoch).
In Tables 2.2 and 2.3 we present the parameter values that have been used for the

simulations of F-RHONNs and RHONN approaches (as described in Sect. 1.2 and
Rovithakis and Christodoulou (2000)), respectively.


http://dx.doi.org/10.1007/978-3-319-06364-5_1
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Table 2.2 Parameters of
F-RHONN:S algorithm and
updating law for robot two
link simulations

Table 2.3 Parameters of
RHONN algorithm and
updating law for robot
two-link simulations

2.5.2.2 Testing Phase

2 Identification of Dynamical Systems

Parameters

F-RHONNS values

Recursion constant

Sigmoidal

High-order terms

Fuzzy centers

Learning rate

ay =7.7

ay = 4.04

o = 6.08
B=03

y = —7.696
First order

spo= (s(x1),s(x2), 5(x3), 5(x4),
s(u1), s(uz))
Xp=[-21-17-12 -05]
Xp=[-18-141518]

Py =0.00428

P, =0.00384
Initial weights Wy =1[0]

Wy, =[0]
Hopping constants k1 = 0.675

o = 181
Parameters RHONN values
Recursion constant a; = 5.06

ar) =5.19
Sigmoidal a =793

B =0.25

y =-17.74

High-order terms

Learning rate

Initial weights

First order

spo= (s(x1), s(x2), s(x3), s(xa),
s(ui), s(u2))

P = 0.00692

P, =0.00766

Wy =10]

Wy, =[0]

When the training stops, we proceed to test the abilities of the trained NF model using
as input signal, values constraint in the interval [—1, 1], which have the following

form:

uy(k) =

16

= 196

L . sin (% - -k), (2.58)
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Fig. 2.7 Evolution of input signals «1 and u»

16 .
J T
k) => = .cos(— - j k).
<196 (100 )

j=

0.8

0.9

(2.59)

Figure 2.7 shows the evolution of the input signals (2.58) and (2.59), respectively.
The weight matrix derived from the training phase, which corresponds to the

angular position of joint 1, 2, is given for the F-RHONNS as

[—2.0785 —0.0284 —0.2853 0.0154 1.2161
—4.9884 —0.0680 —0.6847 0.0370 2.9187
—7.0669 —0.0964 —0.9699 0.0524 4.1348
—8.7297 —0.1190 —1.1982 0.0647 5.1076

Wfl~2 = 1 —0.1399 —2.5484 0.0234 —0.7536 1.5823
—0.1089 —1.9821 0.0182 —0.5862 1.2307
0.1166 2.1236 —0.0195 0.6279 —1.3186 —1.5485
L 0.1399 2.5484 —0.0234 0.7536 —1.5823 —1.8583_]
while for the RHONN as:

8.0216 —0.1592 1.8826 —0.0931 —4.7609 —5.0891

1.1566
2.7759
3.9325
4.8578
1.8583
1.4453

Wflv2:|:—0,7083 9.1152 —0.0492 1.9712 —4.9517 —5.4681

)
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F-RHONN
— — RHONN
Desired 1

Angular position of joint 1

Angular position of joint 2

Time (sec)

Fig. 2.8 Approximation of robot angular position 1 and 2

1

F-RHONN
—-— RHONN

Time (sec)

Fig. 2.9 Identification errors of robot angular positions 1 and 2 when we use different initial
conditions
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Fig. 2.10 Identification errors of robot’s angular positions 1 and 2 when we use the same initial
condition

Finally, we run our algorithm and RHONN approach for the above optimal weight
matrices and the same control sequence with sampling time 10~ s for 1s. It is our
intention to compare the approximation abilities of the proposed dynamic NF network
(2.24) with RHONN:S, (Rovithakis 2000) in approximating Eq. (2.57).

Figure 2.8 gives the approximation of robot states xi, x while Fig.2.9 presents
the evolution of identification errors, for RHONN and F-RHONNSs models. The
MSE measured as 0.0042, 0.0056 for F-RHONNS and 0.0148, 0.0194 for RHONN
concerning states x1, xa, respectively. One can see that the dynamic NF networks are
more powerful than the simple neural networks.

Once again, we test our approximator capabilities against RHONNs changing
the frequency of input signals (divided by 2) and the initial values of both methods
that are equal to the initial values of real system. Figure2.10 shows that when the
initial conditions of the robotic system and F-RHONNS identifier become equal the
behavior of our approximator remains or becomes even better.
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2.6 Summary

In this chapter, we presented a new recurrent neurofuzzy model, termed F-RHONN,
for the identification of unknown nonlinear dynamical systems. It is based on multiple
HONN approximators and the fuzzy partitioning of a fuzzy system output. Every
HONN is specialized to work in a small region of the whole unknown system around
the fuzzy output center.

In the sequel, we investigated the approximation capabilities of the proposed F-
RHONNSs when they are trained by different algorithms such as gradient descent
and pure LS, which are proved to be Lyapunov stable. Furthermore, we examine the
robustness of the training algorithms by employing a novel approach of switching
parameter hopping instead of the classical o -modification and prove once again that
it is Lyapunov stable.

In the simulation results section, we demonstrated the approximation capabilities
of our approach by presenting the convergence of identifier weights to their optimal
values when we use a known model structure. In the sequel, the FFRHONN model
was compared with simple RHONN showing the superiority of the NF model in
approximating two link robot arm state variables.
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