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Abstract In this paper we consider the problem of the occurrence of spurious modes
when computing the eigenvalues of Dirac operators, with the motivation to describe
relativistic electrons in an atom or a molecule. We present recent mathematical results
which we illustrate by simple numerical experiments. We also discuss open problems.

Computing the eigenvalues of an operator on a computer can be a subtle task, in
particular when one is interested in those lying in a gap of the spectrum. In this case,
spurious modes can sometimes appear and persist when the size of the discretization
basis is increased. The phenomenon, called spectral pollution, is well-known and
well documented. For instance, it is encountered when dealing with perturbations
of periodic Schrödinger operators [6, 8] or Sturm-Liouville operators [1, 30, 31].
It also appears in elasticity, electromagnetism and hydrodynamics [2, 3, 7, 9, 15,
22, 24, 25].

In this paper we are interested in relativistic computations based on the Dirac
operator, like those used in quantum chemistry and atomic physics. The spectrum of
the free Dirac operator is (−∞,−mc2]∪ [mc2,∞) and adding an external potential
usually creates eigenvalues in the gap (−mc2, mc2). Computing them might lead to
spurious modes. Practical solutions to overcome this problem have been proposed a
long time ago [4, 12, 13, 16, 19, 23, 27, 29], the most famous of them being the
kinetic balance method. Until recently, these methods had not been studied from a
mathematical perspective. The purpose of this paper is to review and illustrate the
results of our article [20], where we rigorously investigated the validity of these
methods. In particular, we show under which precise condition the kinetic balance
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prescription is guaranteed to avoid spurious eigenvalues. Several open problems
remain, however, and we will discuss them as well.

Relativistic effects were almost always neglected in quantum chemistry
calculations, until it was realized in the 1970s that they are actually very impor-
tant to account for some elementary properties of heavy atoms. The problem of
spurious modes can in principle appear in any calculation based on the Dirac oper-
ator. For a general presentation of the Dirac equation from the point of view of
quantum chemistry, we refer to [26] and Chap. “Relativistic Quantum Theory of
Many-Electron Systems” by Simmen and Reiher in this book. We remark that, in
applications of Density Functional Theory, relativistic effects are rarely considered.
They are often implicitly included into pseudo-potentials of the nuclei which includes
the inner (relativistic) electrons (see, in particular, Chap. “Computational Techniques
for Density Functional-Based Molecular Dynamics Calculations in Plane-Wave and
Localized Basis Sets” by Tzanov and Tuckerman, of “Application of (Kohn–Sham)
Density Functional Theory to Real Materials” by Ghiringhelli, and of “Towards the
Computational Design of Compounds from First Principles” von Lilienfeld).

1 What is Spectral Pollution?

In this section we quickly review some general properties of spectral pollution, with
an emphasis on the Dirac case.

1.1 Self-Adjointness, Domains and All That

In quantum mechanics, we have to manipulate self-adjoint operators A, which have
a real spectrum and for which Schrödinger’s equation i�∂tψ = Aψ(t) has a unique
solution, by Stone’s theorem. In infinite dimension, the concept of a self-adjoint
operator is not always easy [28, 32]. Finding a self-adjoint realization of an operator
A in a Hilbert space1 H amounts to choosing a domain D(A) ⊂ H on which A is
well-defined and has certain good properties that we do not give in detail here [10].

In the good situations (namely when A is essentially self-adjoint on a natural
subspace) there is no ambiguity for D(A) and this is the case for most perturbations
of differential operators in R

N . When H = L2(�), with � an open bounded subset
in R

N , then D(A) should include boundary conditions and a choice has to be made.
This is of course important as the spectrum of A, which is our primary interest here,
depends on these boundary conditions.

Let us now give two examples.

1 In our examples we will have H = L2(�), the space of square-integrable functions on a domain
� in the N -dimensional space R

N . We will encounter two main cases: that of the whole physical
space � = R

3 and that of the half line � = (0,∞) useful to deal with radial functions.
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2Δ/(2m)+V (r) Spec D0 +V (r)
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Fig. 1 The typical spectrum of the non-relativistic Schrödinger operator (left) and the dirac operator
(right), in an external potential V (r)

In the non-relativistic case we have A = −�
2Δ/(2m) where Δ is the Laplace

operator and H = L2(R3), the space of square-integrable functions on R
3. We then

take

D
( − �

2Δ/(2m)
) =

{
ψ : R3 → C

∣∣∣
∫

R3

(|ψ(r)|2 + |Δψ(r)|2)d3r is finite

}

which is a Sobolev space often denoted as H2(R3). The assumption that Δψ is
square-integrable is mandatory to ensure that A maps functions in the domain D(A)

into the ambient Hilbert space H = L2(�). The spectrum of the Laplacian on this
domain is the half line

Spec

(
− �

2

2m
Δ

)
= [0,∞).

There is no eigenvalue in this spectrum. Namely there does not exist any square-
integrable function ψ such that −�

2Δ/(2m)ψ = λψ . There only exist approxi-
mates eigenvectors, which means a sequence (ψn)n�1 such that

∫
RN |ψn|2 = 1 and

−�
2Δ/(2m)ψn − λψn → 0 as n → ∞.2 In this special situation, one speaks of

continuous spectrum.
If we add an electric potential V (r) to our kinetic energy operator −�

2Δ/(2m),
and if V (r) is smooth enough and decays at infinity, then the domain of

− �
2

2m
Δ + V (r)

will be the same as for V ≡ 0. The spectrum will still contain the half line [0,∞).
Negative eigenvalues can appear if V is sufficiently negative in some part of space,
corresponding to bound states of the system. They all have a finite multiplicity, and
they can only accumulate at 0 (Fig. 1).

For relativistic particles, one has to use the Dirac operator, which acts on 4-spinors,
that is, on square-integrable functions on R

3 taking values in C
4. It is given by

2 Take for instance ψn(r) = exp(ip ·r/�)n−N/2χ(r/n) for some smooth χ with
∫

RN |χ(r)|2dN r =
1 and a momentum p such that p2 = 2mλ.
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D0 = −ic�

3∑

k=1

αk
∂

∂xk
+ mc2β,

and its domain of definition is now the Sobolev space

D(D0) = H1(R3):=
{
Ψ : R3 → C

4
∣∣
∣

∫

R3

(|Ψ (r)|2 + |∇Ψ (r)|2 )
d3r is finite

}
.

Its spectrum is the union of two intervals,

Spec (D0) = (−∞,−mc2] ∪ [mc2,∞),

which follows from charge-conjugation symmetry. It is again a purely continuous
spectrum, without any eigenvalue. If we add an external electric potential V (r)
which is smooth and decays at infinity, then the domain D(D0 +V ) and the essential
spectrum do not change. Eigenvalues can appear in the gap (−mc2, mc2) (see Fig. 1),
and we are interested in computing them numerically.

The situation is more subtle when the potential is the one generated by a pointwise
nucleus (say of charge eZ ):

V (r) = −e2 Z

r
,

see [33]. The domain of D0+V is again the same as for D0, provided e2 Z � �c
√

3/2.
The spectrum then contains a sequence of positive eigenvalues in the gap, converging
to mc2. For �c

√
3/2 � e2 Z � �c the domain is different and contains a further

boundary condition at the origin. For e2 Z > �c, there are infinitely many possibilities
for D(D0 + V ) none of which seems to have a particular physical meaning. In order
to simplify our exposition, we always assume for simplicity that e2 Z � �c

√
3/2,

so that D(D0 + V ) = D(D0) = H1(R3). We also choose a system of units such
that m = c = � = 1. We are therefore only left with α = e2, the coupling constant
which must satisfy αZ �

√
3/2.

In a central potential we can look at the restriction of D0 + V to a particular
symmetry subspace. For example, in the sector of total angular momentum j = 1/2,
azimuthal angular momentum jz = 0 and spin orbit number κ = −1 (in which lies
the ground state), the wave functions take the special form

Ψ (r) = u(r)

r

⎛

⎜⎜
⎝

1
0
0
0

⎞

⎟⎟
⎠ + v(r)

r

⎛

⎜⎜⎜
⎝

0
0

1√
3

Y 0
1 (ω)

−
√

2√
3

Y 1
1 (ω)

⎞

⎟⎟⎟
⎠

,

where ω = r/r is the angular part of r and the Dirac eigenvalue equation becomes
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⎛

⎜
⎝

1 − αZ

r
− d

dr
− 1

r
d

dr
− 1

r
−1 − αZ

r

⎞

⎟
⎠

(
u
v

)
= λ

(
u
v

)
(1)

in the Hilbert space L2(R+, dr). Expressed in terms of the functions u and v, the
domain becomes

{
u, v:R+ → C

∣∣
∣

∫ ∞

0

(
|u(r)|2 + |v(r)|2 + |u′(r)|2 + |v′(r)|2

)
dr is finite

}
.

1.2 Approximating the Spectrum

To find an approximation on a computer of the eigenvalues of the Dirac operator in
an electrostatic potential V (r),

DV :=D0 + V (r),

we choose a finite-dimensional space W ⊂ D(D0 +V ) = H1(R3), and we compute
the matrix of the restriction of DV to W . Simply, if b1(r), . . . , bd(r) is a basis of W ,
then the associated d × d matrix is (DV )|W = (

〈
bi , DV b j

〉
)1�i, j�d , where d is the

dimension of W . Its eigenvalues now solve the generalized eigenvalue equation

(DV )|W x = λSx, (2)

where S = (
〈
bi , b j

〉
)1�i, j�d is the overlap matrix. Here and elsewhere we use the

notation

〈Ψ,Φ〉 =
∫

R3
Ψ (r)∗Φ(r)d3r =

4∑

j=1

∫

R3
Ψ (r) jΦ(r) j d

3r

to denote the ambient scalar product for 4-spinors. We have assumed that W ⊂
D(DV ) = H1(R3) which guarantees that

〈
bi , DV b j

〉
makes sense, but this is not the

optimal condition. The scalar product
〈
bi , DV b j

〉
is usually well-defined on a larger

space called the quadratic form domain of DV , but we do not discuss this further,
for simplicity.

Having found the spectrum of the d × d matrix (DV )|W , we want to know if the
obtained eigenvalues are good approximations to the elements of the spectrum of
DV . This approximation must improve when the size of the basis grows and, for this
reason, it is customary to instead consider a sequence of discretization spaces Wn ,
such that dim Wn → ∞, and ask whether the approximate eigenvalues converge to
the true ones as n → ∞.
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It is clear that if we hope for a good representation of the eigenfunctions of DV ,
then the approximation sequence Wn must be adapted to DV in some way. One
condition is that Wn approximates the domain H1(R3) of DV . This means that for
any Ψ ∈ H1(R3), there exists an approximating sequence (Ψn)n�1 ⊂ H1(R3) with
Ψn ∈ Wn such that

lim
n→∞

∫

R3

(
|Ψn(r) − Ψ (r)|2 + |∇(Ψn − Ψ )(r)|2

)
d3r = 0. (3)

This completeness condition is satisfied for most approximation schemes, like the
finite element method for instance. In the paper [18], Klahn and Bingel provided
some simple conditions (based on the so-called Mntz theorem) which imply that (3) is
satisfied for a basis made of gaussian functions, as is used in most quantum chemistry
programs.

It is well-known that the condition (3) ensures that we ind the whole spectrum of
DV in the limit of a large basis set (see, e.g., [5, Prop. 2]):

Theorem 1 (The spectrum is well-approximated) If Wn approximates the Sobolev
space H1(R3) in the sense of (3), then, for any λ in the spectrum of DV , there exists
λn in the spectrum of (DV )|Wn converging to λ as n → ∞. Similarly, any non-
degenerate eigenfunction of DV is approximated in H1(R3) by an eigenfunction of
(DV )|Wn in the limit n → ∞.

Since (DV )|Wn is a finite matrix, an eigenfunction is here just an eigenvector of
this matrix. Another equivalent definition is given in (5) below.

1.3 Spurious Eigenvalues

That we are sure to get the spectrum of DV in the limit of a large basis set does
not mean at all that we are in a good situation. Indeed, it can happen that in the
limit we get much more than only the spectrum of DV , and this is precisely what
spectral pollution is about. We can give a precise definition of a spurious eigenvalue
as follows:

Definition 1 (Spurious spectrum) A real number λ ∈ (−1, 1) is called a spurious
eigenvalue of DV (relative to the approximation scheme Wn), if there exists λn in
the spectrum of (DV )|Wn converging to λ as n → ∞, such that

• either λ is not in the spectrum of DV ;
• or λ is an isolated eigenvalue of finite multiplicity M of DV , but its multiplicity

is overestimated in the limit n → ∞. This means that there are more than M
eigenvalues of (DV )|Wn counted with multiplicity in the interval (λ − εn, λ + εn),
for some εn → 0.
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In practice one calls λn the spurious mode instead of its limit λ (but in principle
the limit should be taken to be sure that the spurious mode persists).

In order to clarify the situation, we will now immediately give two simple examples
of spurious eigenvalues. We start with an academic example, before turning to the
Dirac operator in a Coulomb potential.

1.3.1 An Academic Example

We take H = L2(0, 2π) as Hilbert space and recall the Fourier basis

{1, cos(nr), sin(nr)}n�1.

Any function in H can be expanded in this basis as follows,

f (r) = a0√
2π

+ 1√
π

∑

n�1

an cos(nr) + bn sin(nr),

where ∫ 2π

0
| f (r)|2dr = |a0|2 +

∑

n�1

|an|2 + |bn|2.

We now introduce the orthogonal projection P onto the odd modes,

(P f )(r) = 1√
π

∑

n�1

bn sin(nr).

The operator P is bounded and hence can be defined on the whole space D(P) =
L2(0, 2π), there is no subtlety of domain for P . The operator P is diagonal in the
Fourier basis, which are thus its eigenvectors. Its spectrum is simply

Spec (P) = {0, 1}

where the two eigenvalues 0 and 1 have an infinite multiplicity.
Now we choose our approximation space Wn by picking all the even and odd

modes less or equal than n − 1, and mixing the two n modes as follows:

Wn = span
{
1, sin(r), cos(r), . . . , sin((n − 1)r),

cos((n − 1)r), cos(θ) cos(nr) + sin(θ) sin(nr)
}
.

This is of course very artificial but it helps to understand the phenomenon of spectral
pollution in more practical situations. The matrix of P|Wn in this basis is
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P|Wn =

⎛

⎜⎜⎜⎜⎜⎜
⎜
⎝

0
1

0
1

. . .

sin2(θ)

⎞

⎟⎟⎟⎟⎟⎟
⎟
⎠

and thus
Spec (P|Wn ) = {0, sin2(θ), 1}

for all n. The eigenvalue sin2(θ) persists in the limit n → ∞ and it is spurious.
The corresponding eigenfunction is π−1/2 sin(nr) which oscillates very fast. Of
course, by mixing several modes in the same way, we can create an arbitrary number
of spurious modes, having any value in the gap (0, 1). By taking a number of spurious
modes tending to infinity, we can even fill the whole interval (0, 1) with spurious
eigenvalues.

This academic example reveals most of the nature of spectral pollution. A spurious
mode is obtained when states from the spectrum above and below the considered gap
are mixed together. It is because there are infinitely many states above and below
that this can happen for a large basis set. The corresponding spurious eigenfunction
will usually behave badly. It will oscillate very fast, or concentrate at the boundary
of the domain, for instance.

Before turning to an example involving the Dirac operator, let us make an impor-
tant remark. As we have explained, spurious modes appear in gaps of the essential
spectrum, because of the two infinite-dimensional “reservoirs” below and above the
gap. Spurious modes will never appear below or above the essential spectrum, when
the considered operator is bounded from below or from above. This claim can be
proved by using the well-known min-max characterization of eigenvalues, which is
usually referred to as the Hylleraas-Undheim-MacDonald (HUM) theorem in the
quantum chemistry literature [17, 21], and as the Rayleigh-Ritz variational principle
in mathematics. This principle does not apply to eigenvalues in gaps. There exists
a min-max characterization of the eigenvalues in gaps [11, 14] but it is much more
complicated and it does not prevent the occurrence of spurious modes in general.

1.3.2 A Numerical Example with the Dirac Operator

We can now provide a more practical example involving the (radial) Dirac operator.
We restrict ourselves to the sector of total angular momentum j = 1/2 and spin-orbit
κ = −1 mentioned before in (1), and we choose a basis made of gaussians, for the
radial parts u(r) and v(r). We take the same basis for u(r) and v(r), we do not impose
any kinetic balance as we will later do in Sect. 2.2. To this basis, we add a vector
which is a mixture of an upper and lower spinor, in the same spirit as in the previous
example:
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Table 1 The coefficients a1α
−2 < · · · < anα−2 of the 6-31G basis set for Z = 30 and n = 22

82,400.940 12,372.550 2,818.3510 1,732.5690 794.57170
412.71490 254.72320 133.67800 87.138800 69.364920
50.385850 23.620820 20.583580 10.184710 8.5059400
4.3340820 2.8238420 1.8109180 1.0395430 0.7148410
0.1432640 0.0492960

Wn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e−a1r2

⎛

⎜⎜
⎝

1
0
0
0

⎞

⎟⎟
⎠ , e−a1r2

⎛

⎜⎜⎜
⎝

0
0

1√
3

Y 0
1 (ω)

−
√

2√
3

Y 1
1 (ω)

⎞

⎟⎟⎟
⎠

, . . . , e−anr2

⎛

⎜⎜
⎝

1
0
0
0

⎞

⎟⎟
⎠ ,

e−anr2

⎛

⎜⎜⎜
⎝

0
0

1√
3

Y 0
1 (ω)

−
√

2√
3

Y 1
1 (ω)

⎞

⎟⎟⎟
⎠

, cos θe−br2

⎛

⎜⎜
⎝

1
0
0
0

⎞

⎟⎟
⎠ + sin θe−br2

⎛

⎜⎜⎜
⎝

0
0

1√
3

Y 0
1 (ω)

−
√

2√
3

Y 1
1 (ω)

⎞

⎟⎟⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(4)

where a1, . . . , an are the coefficients of the (uncontracted) gaussians of the 6-31G
basis for Zinc (Z = 30) given in Table 1.

In Fig. 2 we show the spectrum of the Dirac operator D0 − 30α/r computed in
the basis set (4), with b = 106α2 and as a function of the mixing parameter θ . We
notice the presence of a spurious mode which varies a lot when θ is changed. The
true ground state energy is

λtrue
1 =

√
1 − (30α)2 � 0.975729

and, without the additional mode, its 6-31G approximation is found to be λ
app
1 �

0.975739. With the additional spurious mode, the value of the approximate ground
state energy deteriorates to λ

spu
1 � 0.996578 at θ = 0.5. This decrease of quality in

the approximation for the ground state eigenvalue is a clear motivation to construct
a better basis set.

1.4 Weak Limit of Spurious Eigenvectors

We have seen that there can be spurious eigenvalues in Dirac calculations, and we
have given a simple example of such a phenomenon. Here we quickly discuss an
important property of spurious eigenvectors.

Consider a sequence of approximation spaces Wn and assume that λ /∈ Spec (DV )

is a spurious eigenvalue. Then there is a solution to the eigenvalue equation

(DV )|Wn xn = λn Sn xn
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Fig. 2 Spectrum of D0 − 30α/r computed in the basis set (4) and plotted vertically in terms of
the parameter θ

in Wn , for some sequence of spurious eigenvalues λn → λ. Introducing the corre-
sponding approximate eigenfunction

Ψn(r) =
dn∑

j=1

(xn) j b j (r) ∈ Wn, with
∫

R3
|Ψn(r)|2d3r = 1,

this means that we have
∫

R3
Φn(r)∗

(
D0 + V (r) − λn

)
Ψn(r)d3r = 0, for allΦn ∈ Wn . (5)

We recall that Ψn is said to weakly converge to 0 if
∫
R3 Φ(r)∗Ψn(r)d3r → 0, for

any fixed Φ ∈ L2(R3). In other words, it becomes asymptotically orthogonal to any
fixed state Φ in the limit n → ∞.

The following is an important property of spurious eigenvectors.

Lemma 1 (Spurious eigenvectors weakly tend to 0) If λ /∈ Spec (DV ) is a spurious
eigenvalue as above, then we must have Ψn ⇀ 0 weakly in L2(R3).

The proof of the lemma is elementary. First, we use that DV is symmetric:

∫

R3
Φn(r)∗

(
D0 + V (r) − λn

)
Ψn(r)d3r =

〈
(DV − λ)Φn, Ψn

〉
= 0.
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By the approximation property (3) of Wn we know that we can approximate any
function Φ ∈ H1(R3), that is we can find a sequence Φn ∈ Wn such that DV Φn →
DV Φ. On the other hand, since

∫ |Ψn|2 = 1 for all n, we know that Ψn admits
a subsequence which weakly converges to some Ψ . Passing to the limit we get〈
(DV − λ)Φ,Ψ

〉 = 0. But this is true for all Φ ∈ H1(R3) and this now implies
(DV − λ)Ψ = 0. Since λ is not in the spectrum of DV by assumption, then we must
have Ψ ≡ 0. We have proved that the limit of any weakly convergent subsequence
is zero. This says that Ψn ⇀ 0 weakly, and the proof is finished.

The result requires to have λ /∈ Spec (DV ). As we said there is another type
of spurious modes corresponding to a λ which belongs to the true spectrum, but
whose multiplicity is over-estimated. This situation is more complicated [5] and we
do not consider it here. Indeed, this almost never happens in practice. As can be seen
from the numerical experiments, spurious modes are usually very unstable: they tend
to move a lot when the parameters of the basis are changed, contrary to the other
eigenvalues of the discretized spectrum. Typically, spurious modes will therefore not
end up exactly on a true eigenvalue of DV .

1.5 How to Identify the Spurious Spectrum?

In this section we discuss a simple strategy to construct spurious modes, which does
not rely on any chosen approximate basis set. The method is based on the previous
remark that spurious eigenvectors necessarily tend to zero weakly.

Suppose that we can construct a sequence Ψn of normalized functions, such that

1.
〈
Ψn, DV Ψn

〉 → �

2. Ψn ⇀ 0 weakly in L2(R3), that is, 〈Φ,Ψn〉 → 0 for all Φ ∈ L2(R3).

Then we can use this sequence to construct a spurious mode, by starting from any nice
approximation basis. The idea is simply to add the vector Ψn with n � 1, to a given
space Wk . The matrix of DV in the space span(Wk ∪ {Ψn}) becomes block-diagonal
in the limit n → ∞, (

(DV )|Wk � 0
� 0

〈
Ψn DV Ψn

〉 � �

)
.

The off-diagonal terms tend to zero due to the fact that Ψn becomes asymptotically
orthogonal to DV Φ, for any fixed Φ ∈ Wk . One can therefore choose n = nk � 1
to have an eigenvalue as close to � as we desire. In the limit k → ∞, � will be a
spurious eigenvalue.

So, we see that everything reduces to constructing sequences Ψn satisfying the
previous two conditions. This technique (and an improvement of it that is discussed
later) was used in [20] to study spurious modes for the Dirac operator. The results
obtained in [20] are summarized in the next section.
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2 Strategies to Avoid Spurious Modes in Dirac Calculations

The problem of spurious modes for the Dirac equation has a long history, starting
with the celebrated computation of Drake and Goldman [12] in a Slater-type basis
set. Several solutions to avoid this phenomenon have been proposed in the literature
[4, 12, 13, 16, 19, 23, 27, 29]. Our purpose here is to present the rigorous results
which we have obtained in [20] concerning the mathematical validity of these
techniques.

In the whole section we assume that V is a potential that tends to 0 at infinity,
and we systematically distinguish the case of V being bounded over the whole space
R

3, from attractive Coulomb-type potentials. The latter means for us that there are
finitely many points R1, . . . , RM (the locations of the nuclei) at which V behaves
asymptotically like

V (r) ∼
R→Rm

− αZm

|r − Rm | , with 0 � αZm �
√

3

2
,

and that V is bounded outside of these points Rm (and tends to 0 at infinity). More
general potentials can be considered, but we stick to the previous example for sim-
plicity. We usually do not assume V (r) to have a specific sign.

There are two simple motivations for considering general potentials V (r) instead
of just V (r) = −αZ/r . First, the potential of a finite-radius nucleus

V (r) = −αZ
∫

R3

n(r′)
|r − r′|d3r ′

is always bounded if n is a smooth function. Secondly, in practice V (r) is a self-
consistent function containing both the (negative) nuclear and (positive) electronic
potentials, the latter being smoother than the one of pointwise nuclei.

2.1 Pollution in Upper/Lower Spinor Basis

It is natural to use a basis which is made of upper and lower spinors, that is of
functions of the form (

ϕ

0

)
and

(
0
χ

)
.

In the radial case (1), this amounts to choosing two independent basis sets for the
functions u and v. It may be checked that a basis of this form never pollutes for the
free Dirac operator D0 and therefore one might think that it would not pollute for
D0 + V (r). But this is actually not true, it is possible to get spurious modes even
with a very nice bounded potential V .
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V (r)

−1

1

1+ inf(V )

−1+ sup(V )

=

Fig. 3 Possible location of spurious modes in upper/lower spinor basis, depending on the size of
the negative and positive parts of the external potential V (r) (Theorem 2)

Theorem 2 (Pollution in upper/lower spinor basis [20, Thm 2.7]) There exists an
increasing sequence of spaces Wn spanned by functions of the form

(
ϕ

0

)
and

(
0
χ

)
, (6)

for which the intervals

[
max(−1, 1 + inf(V )), 1

]
and

[ − 1, min(1, sup(V ) − 1]] (7)

are completely filled with spurious modes. This basis can be chosen to consist of
gaussian functions multiplied by polynomials.

There cannot be any spurious modes outside of the above two intervals for a basis
of the form (6).

Note that since V → 0 at infinity by assumption, then we always have inf(V ) � 0
and sup(V ) � 0. For a negative potential V , the previous result says that we can fill
the whole interval [max(−1, 1 + inf(V )), 1] with spurious modes. In the Coulomb
case we have inf(V ) = −∞, and therefore we can get spectral pollution everywhere
in the gap. For a bounded potential V such that |V (r)| � 2, we can only get pollution
in [−1,−1+sup(V )]∪[1+ inf(V ), 1] (see Fig. 3). The result also says that spurious
modes cannot appear outside of these intervals, but the minimax characterization of
eigenvalues for Dirac operators proved in [11] implies that the true eigenvalues indeed
exactly lie in these intervals where pollution can occur.

We conclude that choosing a basis made of upper/lower spinors can sometimes
lead to spurious modes, if no further constraint is imposed. This is certainly well-
known in the chemistry literature [12].

The proof of Theorem 2 is intuitively easy. If we take an upper spinor, we get

〈(
ϕ

0

)
, (D0 + V )

(
ϕ

0

)〉
=

∫

R3

(
1 + V (r)

)|ϕ(r)|2d3r.

Recall that in our units m = c = 1. Now we can make this converge to 1+V (r0), for
any fixed r0 ∈ R

3 by choosing a sequence ϕn which gets more and more concentrated
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at this point, like a delta function. Such a sequence ϕn converges weakly to 0 in
L2(R3), hence we conclude from the discussion in Sect. 1.5 that 1 + V (r0) can be
made a spurious eigenvalue for any r0 such that V (r0) < 0. The same argument
applied to lower spinors gives the result for the lower part of the gap.

2.2 Kinetic Balance

The most celebrated method used in practice to avoid spurious eigenvalues is the
so-called kinetic balance [26, Chap. 5]. It is implemented in all the quantum chemistry
computer programs. The starting point is to write the eigenvalue equation as

{
(mc2 + V )ϕ + cσ · (−i∇)χ = (mc2 + μ)ϕ,

cσ · (−i∇)ϕ + (−mc2 + V )χ = (mc2 + μ)χ,

where we have re-introduced the speed of light c for clarity. Here Ψ =
(

ϕ

χ

)
is again

written in the upper/lower component decomposition. Solving the second equation
for χ gives

χ = c

2mc2 + μ − V
σ · (−i∇)ϕ. (8)

Of course this is not of great help since the eigenvalue μ is unknown a priori. For
c � 1, however, we can hope that

χ � 1

2mc
σ · (−i∇)ϕ,

and this suggests to impose this relation between the basis for the upper spinor and
that of the lower spinor. So, the kinetic balance method consists in choosing a basis
ϕ1, . . . , ϕn for the upper spinor and taking the basis σ · ∇ϕ1, . . . , σ · ∇ϕn for the
lower spinor [12, 16, 19, 29].3

It is a common belief that the kinetic balance method is a useful tool to avoid spu-
rious modes. The following theorem confirms this intuition for bounded potentials,
but shows that the problem persists for Coulomb potentials.

Theorem 3 (Pollution with kinetic balance [20, Thm 3.4] If V (r) � 2 is bounded
from below, there is never any spurious mode in a kinetically balanced basis in[

max(−1, inf(V ) + 1), 1
]
, but there may be some in

[ − 1, min(1, sup(V ) − 1]].
If V is of Coulomb type, then there exists an increasing sequence of spaces Wn

spanned by functions of the form

3 Sometimes the basis is rather taken to be σk∂kϕn , which multiplies the number of lower spinors
by 3.
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V (r)

−1

1−1+ sup(V )

=

Fig. 4 Possible location of spurious modes in a kinetically balanced basis, for a bounded potential
V (r) (Theorem 3). As compared to Fig. 3, the spurious modes corresponding to the attractive part
of V (r) are suppressed. In a Coulomb potential, spurious modes can in principle fill completely the
interval [−1, 1]

(
ϕ

0

)
and

(
0

σ · ∇ϕ

)
,

for which there is pollution in the whole interval [−1, 1]. The basis can be chosen
to consist of gaussian functions multiplied by polynomials.

The theorem says that, in the case of bounded potentials, spurious eigenvalues are
avoided in the upper part of the spectrum, but a priori not in the lower part (Fig. 4).
This is because the kinetic balance condition is based on a non-relativistic limit for
electrons in which the upper spinor is dominant. In particular, the result says that for
negative bounded potentials, there will be no pollution at all.

On the other hand, the theorem says that, for Coulomb potentials, kinetic balance
does not avoid the occurrence of spurious modes in general. Of course, this does not
mean that they will necessarily show up in a given basis set, it only means that this
is in principle possible.

We do not discuss here the proof that kinetic balance does not pollute for bounded
potentials. The mathematical analysis is involved, and the interested reader should
look at the details in [20]. Rather, we quickly explain the strategy used in [20] to
prove the existence of spurious modes in the Coulomb case. The idea is very similar
to that explained in Sect. 1.5. The main difference is that we cannot add only one
vector to a given basis set, because we have to include both (ϕn, 0) and its kinetically
balanced counter part (0, σ ·∇ϕn). However, it is clear that if we can find a sequence
ϕn such that

1. the 2 × 2 matrix of D0 + V in the basis

(
ϕn

0

)
,

(
0

σ · ∇ϕn

)
has � in its spectrum

in the limit n → ∞;
2. ϕn ⇀ 0 and σ · ∇ϕn ⇀ 0 in L2(R3),

then the argument is the same as in Sect. 1.5. The matrix of DV in the space spanned
by {Wk , (ϕnk , 0), (0, σ · ∇ϕnk )} is almost diagonal by blocks

(
(DV )|Wk � 0

� 0 (DV )|(ϕnk
0 ),( 0

σ ·∇ϕnk
)

)

.
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Fig. 5 Spectrum of D0 − 30α/r computed in the kinetically-balanced basis set (10), in terms of
the parameter 10−4δ

For V = −αZ/r , the idea of [20] is to take a contraction (that is, a linear combination)
of two gaussians concentrated at the origin, where the Coulomb potential blows up4:

ϕn =
(

e−nr2 + δ1/4e−nδr2
)(

1
0

)
. (9)

It is a tedious but simple calculation to verify that the 2 × 2 matrix of DV in the
associated basis can have one eigenvalue lying in the gap (−1, 1), for any n large
enough, provided that δ is tuned appropriately.

In Fig. 5 we display the spectrum of DV in a (radial) kinetically balanced basis,
using for the upper component

e−a1r2
(

1
0

)
, . . . , e−anr2

(
1
0

)
,
(

e−br2 + δ1/4e−bδr2
)(

1
0

)
(10)

where the ai are as before the gaussian parameters of the 6-31G basis set for zinc,
Z = 30, b = 106α2 and where δ is varied in a neighborhood of ∼104. Again we
observe a clear spurious mode due to the additional test function (9).

4 Actually, in [20], the function is taken of the form ϕn = (
f (nr2) + g(δnr2)

) (1
0

)
where f and g

are chosen with disjoint support, which simplifies some calculations.
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2.3 Atomic Balance

It is clear from the previous section that the occurrence of spurious modes in
kinetically balanced basis sets is purely due to the singularity at zero of the Coulomb
potential. This fact is also well-known to chemists [13, 23]. Taking into account
this singularity amounts to modifying the kinetic balance condition at 0. Indeed, for
r � 1, then (8) rather becomes

χ(r) � c

2mc2 − V (r)
σ · (−i∇)ϕ(r)

since V (r) can be very negative. This suggests to impose the relation (in units such
that m = c = 1) χn = (2 − V )−1σ · ∇ϕn for the lower spinor basis, a technique
which is called atomic balance.

Theorem 4 (Pollution for atomic balance [20, Thm 3.5]) For V � 0 a purely attrac-
tive bounded or Coulomb type potential, a basis constructed by the atomic balance
method does not yield any spurious mode in the gap (−1, 1).

If V has a positive component, then one can still get spurious modes in the interval[ − 1, min(1, sup(V ) − 1]].
We see that the atomic balance condition allows to avoid spurious modes, even

in the Coulomb case. This is of course at the cost of a higher numerical complexity,
since the factor (2 − V )−1 will certainly raise some complications. The atomic basis
method does not seem to have spread out much in quantum chemistry packages.

2.4 Dual Kinetic Balance

In the previous sections we have considered two possible methods (the kinetic and
atomic balance) and we have explained in which situation these avoid spurious eigen-
values in the upper part of the spectrum. These methods are based on a special relation
between the upper and lower spinors in the non-relativistic limit, and they can only
properly deal with electrons. They cannot help to avoid positronic spurious modes.

In this and in the following section, we consider two methods which are completely
symmetric with respect to exchanges of electrons into positrons. The first is the so-
called dual kinetic balance method which was introduced by Shabaev et al in [27].
It consists in taking basis elements of the special form

(
ϕ

−iεσ · ∇ϕ

)
and

(−iεσ · ∇ϕ

−ϕ

)
, (11)

see [27, Eqs. (24)–(25)]. In the original article, the parameter is ε = 1/(2mc2) = 1/2
but we will keep it free here to emphasize its role.
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Theorem 5 (Pollution with dual kinetic balance [20, Thm 3.9]) Let 0 < ε � 1. We
can find an increasing sequence of spaces Wn spanned by functions of the form

(
ϕn

−iεσ · ∇ϕn

)
and

(−iεσ · ∇ϕn

−ϕn

)
, (12)

for which the intervals

[
max

(
−1, 1 + 2

(
1

ε
− 1

)
+ inf(V )

)
, 1

]

and [
−1, min

(
1, sup(V ) − 1 − 2

(
1

ε
− 1

))]

are completely filled with spurious modes. The basis can be chosen to consist of
gaussian functions multiplied by polynomials. However, there are no spurious modes
outside of these two intervals in a basis of the form (12). In particular, we can fill
the gap (−1, 1) with spurious modes for Coulomb potentials.

We see that the dual kinetic balance behaves well in both the upper and lower
parts of the gap, for bounded potentials, in the sense that the two intervals in which
spurious modes can appear, are shifted by the same amount 2(1/ε − 1) (Fig. 6).
In particular, spurious modes will be completely avoided if

ε � 1

2 + |V (r)| ,

for all r. Note that this is impossible for Coulomb potentials which are unbounded.

2.5 Absence of Pollution in Free Basis

So far, we seem to have encountered no perfect method. The kinetic balance technique
works well in the upper part of the spectrum for bounded potentials, but it is inefficient
in the lower part. The atomic balance behaves better for attractive Coulomb potentials
but the problem is not at all solved for the spurious modes associated with the positive
component of the potential V (r). Finally, the dual kinetic balance method can be
tuned to work for a bounded potential whatever its sign, but it is not adapted to
Coulomb singularities.

We would like to present in this last section a method that works in all situations,
independently of the sign of V (r) and of its local singularities. Of course, there is a
price to pay and the numerical cost might be increased a lot. Nevertheless, it seems
to not have been tested yet in practice and we would like to advertise it.
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V (r)

−1

1

1+ inf(V )+ 2 1
ε −1

−1+ sup(V )−2 1
ε −1

=

Fig. 6 Possible location of spurious modes in a dual kinetically balanced basis, for a bounded
potential V (r) (Theorem 5). As compared to Fig. 3, the two intervals where spurious modes can
appear are shifted by the same amount 2(1/ε − 1)

The idea is to use a basis that is adapted to the free Dirac operator D0. In momen-
tum space, the latter may be diagonalized as follows

(
1 σ · p

σ · p −1

)
= U (p)∗

(√
1 + p212

0 −√
1 + p212

)

U (p)

where U (p) is the unitary matrix

U (p) =
√

1 + (1 + p2)−1/2

2
14 +

√
1 − (1 + p2)−1/2

2
βα · p

p
.

The electronic states form an infinite-dimensional space defined as

H+ =

⎧
⎪⎪⎨

⎪⎪⎩
Ψ ∈ L2(R3, C

4)

∣
∣∣∣ U (p)Ψ̂ (p) ∈ span

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

1
0
0
0

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

0
1
0
0

⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

⎫
⎪⎪⎬

⎪⎪⎭
.

There is a similar definition for the positronic space H− and the full Hilbert space
is the direct sum of the previous two, L2(R3, C

4) = H+ ⊕ H−. The result is the
following.

Theorem 6 (Absence of pollution in free basis [20, Thm. 2.10]) Let V be a bounded
or (repulsive or attractive) Coulomb-type potential. Consider a sequence of dis-
cretization spaces Wn admitting a basis of functions, belonging either to H+ or to
H−. Then there are never any spurious modes.

So if we use a basis which is adapted to the free Dirac operator D0 in the sense
that it only contains electronic and positronic free states, there is never any spurious
eigenvalues. This result is intuitive because it is clear that such a basis cannot pollute
when V ≡ 0, and so one might expect that it also does not pollute for V �= 0. One has
to be careful with such arguments. Recall the upper/lower spinor basis discussed in
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Table 2 Summary of the results

Bounded V 0 BoundedV 0 0 Coulomb

Upper/lower
Kinetic balance
Atomicbalance
Dual kinetic balance
Free basis

Sect. 2.1 which never has spurious modes when V ≡ 0 but may have some when
V �= 0.

The main question is how to implement this in practice. If we have a given basis
set, we could project it onto the electronic and positronic subspaces H±, but this
can only be done approximately. It is an interesting question to investigate which
precision is necessary to avoid spectral pollution in a given sub-interval of the gap. No
explicit error bounds are known and they would be very useful for the development
of an efficient strategy in this direction.

3 Conclusion and Open Problems

In this paper we have considered several methods which can be used to avoid
spurious modes when computing eigenvalues of Dirac operators, typically in a
Coulomb potential. Our findings are summarized in Table 2.

Let us emphasize that we have considered here the most pessimistic point of view.
We are not able to say if spurious modes will appear in a given basis. We are only
able to prove that spurious modes will never appear for a certain class of methods, in
a region of the spectrum or, on the contrary, to construct counterexamples showing
that pollution is possible with the given constraints. The counterexamples may of
course seem to be ad hoc but they already give a hint of the possible problems that
may arise in practical calculations.

It is a widely open problem to find simple criteria which could be applied to a
given basis set, instead of a whole class of basis sets as we did here. For gaussians,
one may think of a criterion in phase space which would measure how the latter
is progressively filled up. Our counterexamples are always based on spatially very
spread-out or very concentrated functions, which would look completely isolated
from the other elements of the basis in phase space. Turning this intuition into a
rigorous statement is an interesting open problem.
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