Chapter 2
Community Detection

It is clear that communities are frequently present in networks, and often have a very
natural interpretation. They allow researchers to understand better the network by
reducing its complexity. Our goal here is to investigate how such communities might
be uncovered. We will first briefly explain the most common method for detecting
communities, known as “modularity” in this chapter. We will then derive modularity
from a more general framework from which some other methods can also be derived.
Some of these methods have some problems, and we will discuss and analyse them
in some detail, and provide some solutions in Chap. 3. For example, it remains a
challenge to see how “granular” partitions should be: is it better to partition the
network in many smaller communities, or in a few large communities? We address
this choosing of the correct resolution in Chap. 4. If negative weights are present
in network, modularity (and some variants) do not work well, and we will analyse
some possible alternatives in Chap. 5. Finally, we will discuss some applications of
community detection in Chap. 6.

There are two good overviews of community detection methods and algo-
rithms. One is provided by Fortunato [16] and another by Porter et al. [39]. For
a good introduction in traditional graph theory one can refer to Diestel [12], while
Newman [36] provides a “complex networks” perspective. A traditional introduction
into social network analysis from a sociological perspective is provided by Wasser-
man and Faust [50].

2.1 Modularity

Although clustering and graph partitioning have already quite a long history, they
are usually not applied to (social) networks. Sociologists have constructed methods
known as block modelling [13, 50], which are closer to “role!” detection [42] than to

1" A role describes nodes that have similar connections to other roles, something closely related to
the concept of “regular equivalence” [42, 50].

V. Traag, Algorithms and Dynamical Models for Communities and Reputation 11
in Social Networks, Springer Theses, DOI: 10.1007/978-3-319-06391-1_2,
© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-06391-1_3
http://dx.doi.org/10.1007/978-3-319-06391-1_4
http://dx.doi.org/10.1007/978-3-319-06391-1_5
http://dx.doi.org/10.1007/978-3-319-06391-1_6

12 2 Community Detection

community detection. Computer scientists have been interested in graph partitioning
for quite some time as well [36]. But the detection of groups in social networks really
started to take off with a seminal paper by Girvan and Newman [18] in 2002. Espe-
cially their follow-up paper [37] which introduced a measure known as modularity
attracted an enormous interest by a large group of researchers.

Originally, they implemented an algorithm based on the removal of edges which
are part of many shortest paths [18]. The idea was that links that fall between com-
munities are part of many such paths, because there are only few links that connect
vertices from one community to another. Removing them should then disconnect the
network at some point, in which case the communities should become visible. How-
ever, it was not clear at which point to stop removing edges. In order to determine this
point, they introduced modularity [37]. This function should give some idea about
the quality of a certain partition, and hence a clue as to when the algorithm should
stop removing edges.

The idea is that communities should have relatively many edges within commu-
nities, and only little in between. Let A be an adjacency matrix of some undirected
graph, so that A;; = Aj; = 1if there is an edge (i, j) and zero otherwise. Let us
assume we have some fixed partition, and denote by e.s the number of edges between
communities ¢ and d, corresponding to a tabulation as follows

To community

_ 1 2 - glx
§ 1lenn enn -+ e | Ky
é 20ex e o ey | Ko
o]
Q
g eq1 e - eg | K
S q|¢n g2 aq | ™q
[
Ky Ky - K |2m o

Then >, ecq = 2m equals twice the number of edges, since we are dealing
with an undirected graph, and we count each edge twice in this manner. We are
interested in > e../2m the fraction of edges within communities. Looking at this
quantity, one already gets an idea of how good the partition is. However, it should
be compared to how many edges we would expect to fall between two communities.
This is usually done by simply taking marginals—row/column totals—which are
Ke := > eca = D edc, the total number of edges linked to community ¢, as
indicated in Eq. 2.1. Of course then also >". K. = >, eca = 2m. We thus arrive
at the expected number of edges of K.K; between communities ¢ and d, which
proportional to 2m then becomes K.K,/(2m)?. Since we are only interested in
having as many links as possible within a community we arrive at the function

€cc K. 2
e -

2.1 Modularity 13

The derivation provided here is quick and dirty, and we will see how a more rigorous
derivation will also lead to modularity in the next section.

This measure seemed to do what was intended. Indeed when there are relatively
many edges within a community, this quantity is relatively high, and approaches 1
for the most modular network possible. If a partition of a network is no better than
random then Q = 0. It was thought (incorrectly) that values above about 0.30 would
be a sign of modular structure [37].

Although their original algorithm worked reasonably well, it was quite slow, and
quickly faster algorithms appeared [8, 14, 35]. But their measure of modularity
turned out to be an interesting one. Instead of using it simply to measure how well
the network was partitioned, people began to optimize the measure itself [14, 21, 38].
However, it has some deficits and problems, which we will discuss in the next chapter.
But first we will derive this measure of modularity in a more general framework, and
go over some of the other possible methods for community detection.

2.2 Canonical Community Detection

In this chapter we will derive modularity in a more general setting, starting from
first principles, similar to Reichardt and Bornholdt [41]. As stated, this more gen-
eral framework will be used throughout the thesis, and forms the backbone of our
analysis. Although not all methods can be represented in this way, it is a reasonably
general framework, and we therefore refer to it as the canonical community detection
framework.

Let us first start with some basic notation. Let G = (V, E) be an undirected graph
withnodes V = {l,...,n}and E = {(i, j):i, j € V} the undirected edges of the
graph G. Furthermore, we denote by A the adjacency matrix of G, such that A;; = 1
if thereisan (i, j) link, and A;; = 0 otherwise. For an undirected graph the adjacency
matrix A = A" is symmetric where AT denotes the transpose (i.e. A—;i = A;j). In
addition, each link might have an associated weight w;; € R, which we assume
to be positive for the moment (we will consider the possibility of negative weights
explicitly in Chap. 5). It might sometimes be useful to have a weighted adjacency
matrix where A;; = w;; when thereis an (i, j) link. If we use the weighted adjacency
matrix, this will be stated explicitly. The unweighted case then also corresponds to
a weight of w;; = 1. We denote the partition by o; € {I,..., g} where each o;
indicates the community to which node i belongs, so o is the membership vector.
Alternatively, it is sometimes useful to denote communities as sets of nodes. We
will use C = {Cy, C3, ..., C4} to denote the set of community sets, such that each
set C. = {i € V | o; = c} contains the nodes which belong to community c.
Any partition of the graph is assumed to be non-overlapping and complete. Stated
differently, every node belongs to a single community, in other words, for any valid
partition it holds that UZ=1 C. = V (all nodes are in a community) and C.NCyq =
for ¢ # d (no node is in more than one community). The size of a community (the
number of nodes in a community) will usually be denoted by n, = |C.|. When

http://dx.doi.org/10.1007/978-3-319-06391-1_5

14 2 Community Detection

referring to “the partition” this might be either to o or to C, and should be clear from
context. We will mostly focus on undirected and unweighted graphs, but most of
these quantities can be straightforwardly extended to directed and weighted graphs.
Although the overall objective—detect communities—might be clear, what
exactly constitutes a community is not undisputed. For example, one can take into
account the number of triangles within a community, the size of the largest clique, or
k-connectedness, and so forth. For example, traditional clustering works with notions
of distance d (i, j) between node i and j [51]. We shall start from a first principle
basis that is due to Reichardt and Bornholdt [41]. The basic idea is to only specify
the general framework, which can be made more specific, for example by counting
the number of triangles or common neighbours. A commonly accepted idea of a
community is that it should be a relatively dense subgraph that is relatively well
separated from the rest of the graph. This means there should be relatively:

1. many present links within communities;

2. few absent links within communities;

3. few present links between communities; and
4. many absent links between communities.

Taking these assumptions, we reward present links (a;;) and punish absent links (b;;)
within communities, while we punish present links (c;;) and reward absent links (d; ;)
between communities. Summarizing, we have the following weights:

|Aij=1A4i;=0
—cij dij

8(oi,05) =1
8(0i,07) =0

where all weights a;;, b;;, ¢;j, d;j > 0 remain to be specified and § is the Kronecker
delta

1 ifa=05>b
Saby=1 "¢ (2.3)
0 ifa#b
so that §(o;,0;) = 1 if 0; = o both i and j are in the same community, and 0

otherwise. We then denote by H the objective function
H(o) = —Z[diinj —bij(1 - Aij)]S(Gi,Gj)
ij
+ e Ay + i1 = A (1 = 861, 0.

The minus sign is only a matter of convention, and in this case we would like to
minimize this function. The optimization problem is then

2.2 Canonical Community Detection 15

min H(o), (2.4a)
stoell,... g (2.4b)

We will refer to H (o) as the cost of a partition o, and so the optimal partition has
minimal cost. Now if we suppose that links within communities should be equally
rewarded/punished as links between communities, i.e. a;; = ¢;; and b;; = d;;, we
can simplify to

H(o) = — ZaiinjQ‘S(Uh 0j) — 1) = bij(1 — Aij)(28(0i, 0j) — 1).
ij

Since we are looking for the minimum of H(o) we can remove factors that do
not depend on o, i.e. not depending on 8(o;, o). Furthermore, any multiplication
with a constant leaves the minimum unchanged. Using these observations, we can
simplify to
H(o) == > (aijAij — bij(1 = A;))8(0;, 7). 2.5)
ij

This is the objective function we will analyse in this thesis, and forms the core of
our enquiry. The weights a;; and b;; remain to be specified, but are assumed to be
non-negative a;;, b;; > 0.

Irrespective of the specific weights chosen, any community should be connected.
To show this, assume on the contrary there is a community C which is disconnected,
so that for some partition C = S U §’, with S N S’ = @, there are no edges from
S to §’. In that case, if we split the community into S and S’, we decrease the cost
function assuming there is at least one b;; > 0, so that it cannot be optimal.

Different choices for the weights a;; and b;; lead to different methods for com-
munity detection. For example, we could imagine taking into account the number of
common neighbours between i and j for absent links, so that b;; = [N (@) N N (j)l,
or the number of independent paths between i and j, similar to the original algorithm
of Girvan and Newman [18]. Numerous choices could be made, and we will review
some of the possibilities (for an overview, refer to Table 2.1).

2.2.1 Reichardt and Bornholdt

One choice consists of comparing the original network to a randomized network, a
random null model, as considered by Reichardt and Bornholdt [41]. Let us assume
the probability for a link is p;;, which we will specify later. The weight of a missing
link is b;; = yggpij, while the weight of a present link is a;; = w;; — b;;, where
w;; is the weight of the (i, j) link, or w;; = 1 if the graph is not weighed and ygg a
parameter used to weigh the importance of the randomized network. Summarizing,
the weights are

16 2 Community Detection

aij = Wij — VreDij> (2.6a)
bij = v pij- (2.6b)

In other words, whenever a link has more weight than expected in the randomized
network, we reward that link if it is within a community. Including a missing link
in a community would be punished slightly if the expected weight of a link is low.
Working out this choice leads to

Hrs = —Z [(wij — vrepij)Aij — vrepij(1 — Aij)]8(0i, o)

ij
= —Z [wijAij — vrepij] 8(oi, o)) 2.7
ij

In the following we will assume that the graph is unweighted and that w;; = 1. We
can rewrite Eq. (2.7) slightly to gain some additional insight. We gather the terms
per community, and arrive at

Hep = — Z(Aij — YrePij)8(0i, 0;)
ij
=— > D (Aij — v pij)8(0i,)8(0j, ©).
c ij

So if we write
ec =Y Aij8(0i, 0)8(0;.)

ij
for the number? of edges in community ¢ and

(ec)p; = D pijd(0i, ©)8(aj, c)

ij

for the expected number of edges in community ¢, we can rewrite Eq. (2.7) as
Hip =— z [ec - VRB<eC>pij] .
c

In general, the average of some quantity will usually be denoted by (-). In other
words, this objective function considers the difference between the actual number of
edges within a community and the expected number of edges within a community
given a random null model. Hence, there are two ways for improving this function:
by having more edges within a community, or by having less expected edges within

2 Technically twice the number of edges in community ¢ for undirected graphs.

2.2 Canonical Community Detection 17

a community. The expected edges weigh more heavily with higher g, so that it
effectively constrains the community sizes. But we will get back to this later on.
Various random null models can be chosen to specify p;;. One possibility is to
take a simple Erdos-Renyi (ER) graph [5] where each link® appears with the same
probability p = m/n?, where m = |E| the number of edges and n the number of

nodes. We then set m

Pij=17=n—2-

The expected number of edges within a community is then simply
{ec)p = pn;

where n. is the number of nodes of community c. In this case the density within a
community is expected to be about the same as the density of the graph in general.
The objective function as a sum over communities then simplifies to

HRB = Z |:ec — yRBpng] .
c

However, an ER graph is not realistic in the sense that the degree k; = > j Ajjof
a node deviates from what is empirically expected. An ER graph has a Poissonian
degree distribution so that
(k)ke=thk)

Pr(k) = T,

while in reality the degree distribution is highly skewed and heavy tailed, and follows
more a power law [36]
Pr(k) ~ k™ °.

So, another common null model is the configuration model, which takes into account
the degree. A simple way to construct a randomized network with the same degrees is
to cut all links in half, so that each link has k; stubs (one half of a link), and to connect
all the stubs randomly. We then arrive at the expected number of links between i and
j of

kik;
2m

pij = (2.8)
The derivation of the quantity is as follows. We have k; ways to choose a stub from
node i, since it has k; stubs to connect. Similarly, we have k; ways for choosing
to connect to node j. Finally, we choose from 2m stubs (twice for each link). The
expected number of links within a community is then

3 We here include the possibility of self-loops.

18 2 Community Detection

K2
(ec)cont = ﬁa (2.9)

where K. := > ; ki8(0;, c) is the sum of the degrees of the nodes in community c. If
the total degree is relatively high, we expect more edges to fall within the community.
Notice that this no longer corresponds to the density of a community. The objective

function becomes)
K=
Hyp = Z I:ec - VRB_Li| . (2.10)

2m
C

The classical modularity can then be derived by taking yrs = 1, using the con-
figuration model, and normalize by ﬁ and inverse the sign to arrive at

1 kik;
0= %Z(Aij—z—m]) 80y, 0). (2.11)

ij

or as a sum over communities, which is sometimes easier to use,

o- e (K’ 2.12
=2 m () | @12

and we retrieve the definition provided in Eq. (2.2).

2.2.2 Arenas, Ferndndez and Gomez

A particular problem of modularity (and the RB model in general) is the so-called
resolution limit, which we will analyse more in-depth later on (see Chap. 3). The
basic problem in the resolution limit is that communities are merged together while
they actually shouldn’t. This problem can be addressed to a certain extent by the
resolution parameter g in the RB model, but other solutions have been proposed.
One noteworthy solution by Arenas et al. [2] (AFG) consists of adding self-loops
to nodes so as to prevent these nodes from being merged. In other words, they use
almost the same weights as RB, but then adapted for the added self-loops of strength
Yarc- This idea translates into the weights

aij = wij = bij, (2.13a)
bij = pij(Yarc) — VaraSij (2.13b)

where §;; = 6(i, j) = 1if i = j and zero otherwise. The authors use the classical
configuration model for the null-model, and use

http://dx.doi.org/10.1007/978-3-319-06391-1_3

2.2 Canonical Community Detection 19

(ki + varc) (ki + Varc)

. - 2.14
Pij (Yarc) 2m + nYarg ()

Their model then becomes (up to multiplicative scaling)
Hara(0) = — D (Aijwij + varadij — pij(vara)) 8(0i, o)) (2.15)

ij

which is simply Eq. (2.7) with self-loops added. The benefit of this method is that
it leaves unchanged properties that depend on the eigenvectors or on the difference
of the eigenvalues. In order to see that, observe that we could also have transformed
the original matrix A to A" = A + yapcl, Where I, is the n x n identity matrix, i.e.
I, = diag(1, ..., 1). Now suppose that A is an eigenvalue and v the corresponding
eigenvector of A (i.e. Av = Av), then also A'v = Av + yarg v = (A + Yarg)V SO
that v is an eigenvector of A" and A + y,rs an eigenvalue of A’. Although the same
idea could be investigated using the ER null model this has not been considered.
Notice that the AFG model is indeed different from the RB null-model and that the
two are only equal for y,rc = 0 and yrg = 1 in general.

2.2.3 Ronhovde and Nussinov

Ronhovde and Nussinov [43] (RN) do not include any null model, in order to avoid
issues with the resolution limit, and in general set

ajj = wij, (2.16a)
bij = yrx, (2.16b)

(although for specific networks, such as with negative weights, they allow some
minor changes). Working this out we obtain

Hin(0) = — D (Aij(wij + Yex) — ¥en)8 (03,). 2.17)
ij

Notice that for unweighted graphs (i.e. w;; = 1) up to rescaling this is equal to

Vi
HRN(U)z—Z(Aij - N)5(6,‘,0]'). (2.18)
T 1 4 ke
If we compare this to the RB model with an ER null model, the RN model is equal
to the RB model if
I — vrep

VrB .

VRN =

20 2 Community Detection

For weighted graphs, the models are not necessarily the same however.

2.2.4 Constant Potts Model

A formulation that also has no null model, similar to Ronhovde and Nussinov [43],
but which resembles more closely the RB model is provided by

dijj =u),-j—b,-j, (2.193.)
bij = Ycems (2.19b)

which results in
Heen = — D_(Aijwij — Yer)8 (03, 7). (2.20)

ij

We call this the Constant Potts Model because it only compares the network to a
constant parameter ycpy [49].

As can be expected, this model is rather similar to the RN model and the RB
model. The RB and RN model are equivalent if ycpy = yip p and the ER null model
is used. The RN model is only equal to the CPM model for unweighted graphs, in

which case we have ycpy = IIRyl;N‘

2.2.5 Label Propagation

Finally, the label propagation (LP) method [40] can be shown to be equivalent to the
Potts model [48]

ajj = wjj, (2.21a)
bij = 0. (2.21b)

which results in the trivially optimized

Hip = —ZAijwija(a,»,oj) (2.22)
ij

This model is equivalent to the RB model, the RN model and CPM as long as
Yk = Yrn = Yeem = 0. This is the least interesting formulation, since there is
only one global optimum, namely all nodes belong to a single community, which is
trivial. However, the local minima could be of some interest. Furthermore, these local
minima can be relatively quickly found, rendering the complexity of the associated
algorithm essentially linear [40].

2.2 Canonical Community Detection 21

Table 2.1 Overview of different methods

Method aij bij Objective function
) k,‘k,‘ k,‘k/‘ 1 k,‘k,‘
Modularity — w;j — . m Ajjwij — m
(p- 11 ij
RB (p. 15) Wij — YrePij VrBPDij _Z(Aijwij — Yre Pij)8(0i, 0j)

ij
AFG (p. 18) w;j — byj Pij(Varc) — Vara8ij — Z(Aij Wij + Varadij — Pij(Yarc))$(0i, 0j)

ij
RN (p.19) wyj Yen = D (Aij(wij + vew) — V)8 (07, 07)
ij
CPM (p.20) wjj — Yerm Yepm - Z(Aij w;j — Yerm)d(0i, 05)
ij
LP (p. 20) w; 0 —ZAijwij‘S(Uivaj)

ij

2.2.6 Random Walker

There are also some other derivations of modularity (and some of the others models)
in terms of a random walk on a graph, by Delvenne et al. [11]. They focus on the
time it takes for a random walker to escape from a community. Since a random
walker should be trapped within a community for a considerable time, if we try to
maximize how long the walker will remain in the same community, we should find
communities.

Let us take a look at how we can represent such arandom walk on a graph. Suppose
we start our walk with a certain probability 77 (0) in some node, so that m; (0) gives
the probability we start in node i. The random walker simply follows each link with
uniform probability. So, from anode i, it follows the link (i, j) with probability 1/k;.
If we define M = (D~1A)" where D = diag(ky, k2, . . ., k,) has the degrees on the
diagonal, then M;; gives the transition probabilities for moving from node i to j.
The probability we are in a certain node after a single step is then w (t + 1) = Mn (¢),
and so (1) = M'7(0). If we assume the network to be (strongly) connected and
aperiodic, this matrix is primitive, and according to the Perron-Frobenius theorem,
in the limit

litrnrr(t) = =Mn (2.23)

this probability becomes stationary, and 7 is the dominant eigenvector of M. So,
after a sufficient long time, each node will be visited with probability 7;.

Now let us give each node some label o;. Suppose the random walker records the
labels o; of nodes visited in a random variable X;, so that if the random walker was
in node i after ¢ steps, then X; = o;. As stated, we would like to know whether the
random walker remains in the same community for a long time. Suppose that the
label o; of a node indicates the community. If a random walker stays within the same

22 2 Community Detection

community, the random variable X; is likely to be the same. This can be measured
through the autocovariance between X, and X4, with ¢t > 0, which is defined as

Cov(Xr, Xr41) = E(X; Xr40) + E(X)%

The expected value of X; can be easily calculated, if we assume the random walk to

become stationary. In that case, E(X,) = >, oim; = o'n =n"0o,and so

E(X)? = (o' m)(x o) =0 nn'o.
To calculate E(X; X ;) at stationarity we obtain that

EX; X, ;) = Zaini (M'o); =o' TIM' o,

1

where I1 = diag(sr). We encode 0 = S where « = (1,...,¢q) and Sisthen x g
community matrix, such that ;. = 1 if 0; = ¢ node i is in community ¢ and 0
otherwise (see also Sect. 2.3.4). We can then write the covariance as

Cov(Xr, Xr4y) = o' R(D)at
where
R(S, 1) =S (MM' —7"n)S

is the so called stability matrix. Each element R(S, t).4 denotes the probability to
start in community ¢ and go to community d after ¢ steps minus the probability two
random walkers are in ¢ and d. Since we are interested in maximizing the time spent
inside a community, we would like to maximize R(S,). In other words, we would
like to find maxs TrR(S, r) where TrX = > . X;; is the trace of some matrix X.
However, we should remain within the community for all time up to ¢. So we define
the stability of a partition S at time ¢ as

r(S,t) = min TrR(S, 7).
<t
and we would like to maximize this (S, ¢) for some 7. In general, we can write

TrR(S,t) = ZSI(HMI —n'm)S,. = Z(H(Mt)ij —m;im;)8(0i, o).
¢ ij

If the random walk is undirected, we have that 7; = 2]‘—}’71 Now suppose we look at
only a single step, or ¢ = 1, so that we obtain that

2.2 Canonical Community Detection 23

1 kik;
TrR(S, 1) = > Z (Aij — ﬁ) 8(oi, 0j).

ij

Hence, we recover exactly modularity for time # = 1 on undirected networks. For
directed networks this quantity differs from the null model originally proposed for
directed networks [32]. Approximating this equation around ¢ = 1, a different inter-
pretation of the resolution parameter for the RB model is obtained, namely that
vre ~ 1/t. However, this only holds approximately. Furthermore, some related type
of (continuous time) random walk gives an alternative derivation for the RB model
with an ER null model [28].

2.2.7 Infomap

A quite successful method that unfortunately doesn’t fit within this framework is
Infomap [44, 45]. We include a brief description of this method since it is one of the
best performing methods outside of this framework, although certainly not the only
one (see [1, 31]). It is based on ideas of information theory, which we will briefly
explain. Information theory concerns itself with the representation of information,
and naturally involves also the compression of information. For example, if we have
a very long piece of text which reiterates “Help! Help! Help! Help! Help!”, it would
be more efficient to simply write “Help! (5x)”. In a similar fashion, one can imagine
being able to compress other information, which these days is often used when
creating . z1ip files, but also in videos (.mp4), images (. jpg) or music (.mp3).

Infomap focuses on trying to compress the list of nodes visited by a random walker
on a graph. We record all the nodes a walker has visited, for example “1, 5, 3, 27,
meaning that the walker first visited node 1 then 5, then 3 and finally 2, similar to the
random variable X; in the previous section. If we continue this walk for a very long
time, we expect him to spend a reasonable amount of time in the same community.
We may use this to represent the list of all nodes the walker has visited in a more
efficient way. Hence, the idea of a random walker is similar to the previous section,
although the objective is different: previously the focus was on staying in the same
community as long as possible, while here the focus is on having a description of
the random walk which is as short as possible.

Let us first briefly review the basics of information theory.

Information Theory

Information theory mostly deals with how information can be represented and
quantified [9, 33]. The information value of a certain event is logarithmically inverse
to the probability of it occurring. In other words, suppose that X is a random variable
and that Pr(X = x) = p(x), then the information associated with event x is

I(x) = log ! = —log p(x). (2.24)
p(x)

24 2 Community Detection

This has two nice properties: (1) the information associated with two independent
identically distributed events x is then 27/ (x) so contains twice the information;
and (2) if x is sure to happen, so when p(x) = 1, it contains no information and
I (x) = 0. The maximum information about a certain event is then when p(x) — 0,
which makes sense. After all, if x happens almost never, it provides much information
when it actually does happen.

Given a certain distribution p(x) we can also ask what is the expected information
associated with the random variable X. This measure is also known as the entropy,
and can be written as

H(X) =E(I(X)) == > p(x)log p(x). (2.25)

If we look at the probability of X given Y,orPr(X = x | Y =y) = p(x | y), the
information content associated to x given y is then /(x | y) = —log p(x |). The
entropy of H(X | Y = y) is then

H(X Y =y)=—> plx|ylogp(x|y),

hence the conditional entropy is
HX|Y)=EHX|Y=y)=-> p() > pa|ylogpw|y)
y X

== plx,) log 2 ;j;yf). (2.26)
xy

Notice that if Y and X are independent random variables, then H(X | Y) = H(X),
and otherwise H(X | Y) < H(X). In other words, conditioning always decreases
the entropy. Furthermore, if X is completely determined by Y then H(X | Y) = 0,
which makes sense since knowing Y we also know X. Similarly, the joint entropy
can be defined as
H(X,Y) == p(x,y)logp(x,y), 2.27)
xy

and hence

HX,Y)=H(Y,X)=HY | X)+ H(X),
=H(X|Y)+ H(Y).

If X and Y are independent random variables then H(X | Y) = H(X), and so
H(X,Y)=H(X)+4+ H(Y).Since H(X | Y) > 0, we have H(X,Y) > H(X) and
H(X,Y) > H(Y), and so the joint entropy is always larger than the entropy of a
single random variable.

2.2 Canonical Community Detection 25

Now suppose we wish to represent a series of random variables, which are inde-
pendently identically distributed (iid) with distribution p(x). In this context it is
common to talk about symbols and a code to represent that symbol. For example,
suppose that our distribution gives the symbol a with probability p, and b with prob-
ability pp, and likewise p. and py. We will usually represent codes of symbols in
binary code, and so we can represent the symbols by using the following code.

Symbol Code

a 00
b 01
c 10
d 11

Here the code length b; = 2 for all codes i. So, the code for the sequence “adba”
is then “00110100”. However, if we know that some symbols occur more often
then others, we might want to assign shorter codes to symbols that are more often
used. For example if the symbols occur with probabilities p, = 0.6, p, = 0.2 and
pe = pa = 0.1, we could use the following codes.

Symbol Code

a 0

b 10
c 110
d 111

Notice that the code for a is shorter b, = 1, but the codes for ¢ and d are longer,
b. = by = 3. The code for the same sequence as before is now “0111100”, which has
a total length of 7 bits, while the original code used 8 bits. Notice that we can identify
the codes unambiguously, because no code appears in the beginning of another code,
a property known as prefix-free. In general, if we look at the expected code length
per symbol, this is

> pibi=06-1+02-240.1-340.1-3=16

1

using the adapted code, while for the original codes this was >, p;b; = 2. So,
we improved the representation of this sequence by changing the codes. The idea
is now that the number of possibilities for a codeword of a length b; should be
inversely proportional to its probability, so that 2% = 1/p;, or the number of bits*
b; = —log p;. Rare symbols then get long codes, and often occurring symbols
shorter codes. The expected code length per symbol is then

4 This could be expressed in a different base as well. Since the base only changes the properties up
to a multiplicative constant, we ignore this and simply take the natural logarithm.

26 2 Community Detection

> pibi == pilogp; = H(X),
i i

The amazing thing is that this is also the optimal code length per symbol. In other
words, we cannot represent the information in a shorter code per symbol than the
entropy. This is known as the famous Shannon source-coding theorem [9]. The actual
codes attaining this bound are known as Huffman codes. For our purposes here, we
do not need this machinery, and we will not discuss it further.

Compressing Random Walks

How can we use compression to find communities? As stated, we expected a
random walker to remain in the same community for a substantial amount of time.
The ingenious idea is then that as long as we remain in the same community we can
use shorter codes for nodes in the same community. That is, we can use the same
code for two different nodes in two different communities. Compare it to calling
somebody on a land line. If you need to call someone within the same village (or
even organisation) you usually only need a few numbers. For example, you dial your
best friend with the phone number “1105”. Now if you want to call somebody in
another village (with number “38”), you will first have to dial out (using the code
“0”), then dial the access code and then the phone number again. For example, your
other friend lives in another town and you dial “0-38-1105". Notice that the actual
phone number can be the same for both friends: “1105”. This is the same idea for
the random walker: nodes in different communities can reuse the same code.

If we do not consider any partition, by Shannon’s source coding theorem, we can
represent the list of nodes visited with H(X) = — >, 7; log ; bits per step, where
7; are the stationary probabilities of the random walker as derived in Eq. (2.23). If
we do consider a partition o, we can reuse the same codes for nodes in different
communities, which should shorten the average code length for that community.

The probability that a random walker stays within a community is then

Pe = K.
where e, = >, j A;jd(o;, o)) the total number of edges as before, and K, =

> kid(oi, c) the total degree. The probability to leave a community is then of course
1 — pc. The probability a certain community is visited is then

ge = Ym0y, c).
i

We should also define a code for moving outside a community to another com-
munity, similar to dialling a “0” for dialling out. We include this code for exiting
from community ¢ in the entropy, in order to take it into account. The entropy for
moving within a community ¢ (or exiting) is then

2.2 Canonical Community Detection 27

T T
H. = — log
‘ ZZCIC+(1_/)C) ge + (1 —pc)
1 — pc 1 —pc
— og ,
ge + (A —pc) ~qe+ (1 —pc)

so that we can choose optimal codes of average code length H, for that community.
In addition, if the random walker exits from a community, the average code length
for indicating to which community the random walker goes is then

Hq = _ZQCloqu
c

With probability g, we then incur the average code length of H,. while with probability
(1 —p):= 2 .(1— p) we incur the cost of switching communities. So, the total
expected code length is then

L(o) = (1= p)Hy + D qeH,. (2.28)

This is known as the map equation, and we try to minimize this expected code length.
The derivation here is slightly different from the original [44], but is similar in spirit.
Unlike the other models, we will not analyse this model in great detail, but it is
included for the sake of completeness.

2.2.8 Alternative Clustering Methods

As stated earlier, the approach of community detection is somewhat recent, and
different approaches have been used before. There exists a multitude of general
clustering techniques, such as hierarchical clustering or k-means clustering, which
are usually applied to datasets in some Euclidean space [15, 23, 27, 51]. By using
some graph similarity (or distance) type of measure, it is possible to apply these
existing techniques on graphs [46]. Hierarchical clustering for example merges two
groups depending on the similarity of the two groups (taking a greedy outlook),
thus resulting in a dendrogram of merges. The k-means method tries to iteratively
minimize the average within cluster distances by minimizing the distance to some
cluster average.

Similarities between nodes can be derived in many different ways. One such sim-
ilarity measure can for example be derived by considering the expected commuting
time to go from node i to node j in a random walk on a graph [52]. This can be based
on the graph Laplacian, which is defined as

L=D-A, (2.29)

28 2 Community Detection

where A is the adjacency matrix and D = diag(ky, ..., k,) is the diagonal degree
matrix. Notice that

MT[,M = ZM,'L,'juj

ij
= Z [ui(S,-jkiuj] — Z [uiAijuj]
ij

ij

= Z Ajj(u; — uj)2
ij

so that £ is positive-semidefinite and has only non-negative eigenvalues. We won’t
go into the details, but the expected commuting time C;; to go from node i to node
J can be expressed as [17]

Cij =2m(e; —ej)LT(e; —e)) (2.30)

where ¢; is the ith basis vector and L™ is the pseudo inverse of the Laplacian

-1
Lt = (/3—1) +1. (2.31)

n n

It can be proven that C;; is a proper distance metric, which can then be used in other
clustering techniques for further processing.

Another approach also based on the Laplacian is that of spectral graph partitioning
(for details, see [3, 36]). This idea is based on trying to minimize the cut-size. Assume
we have some vector s € {—1, 1}, where s; = —1 indicates node i is in group 1
and if s; = 1 it is in group 2. Then the total number of edges running between the
two groups can be written as

1 1
le:A,-jz(l —sisj) = EsTcs. (2.32)

Realising that %(l —5;8j) = 1 = 8(0y, 0;), we then recognize the trivially opti-
mized label propagation method (LP) from Eq. 2.22. The trivial solution is simply
s = (1, ..., 1) in which case s" £s = 0. That is why often in this context an addi-
tional constraint is imposed, namely that the two groups should be of roughly equal
size. Solving this leads to the eigenvector u, corresponding to the second-smallest
eigenvalue 1, of the Laplacian £, and setting s; = sgn(uz;). This eigenvector is also
known as the Fiedler vector. The first eigenvalue A1 = 0, and the second eigenvalue
A2 is only zero if the graph is disconnected. For this reason, it is also known as the
algebraic connectivity. There are also other variants of spectral graph partitioning,
for example based on the normalized Laplacian D~! £, but we won’t treat them here.

2.3 Algorithms 29

2.3 Algorithms

In this section we will review some of the more common algorithms for optimizing
modularity (and some of its alternatives). The problem of community detection is
NP-hard in general [6], so that there is no (known’) efficient (polynomial time)
algorithm for optimizing the objective function. The algorithms presented will thus
be heuristics, and usually involve some stochasticity. This implies that it will not
necessarily always find exactly the same partition. In fact, modularity often seems to
have many near optimal partitions, making it difficult to obtain the global optimum,
and the other methods are expected to show a similar degeneracy [19].

In order to test whether an algorithm is working correctly, and performs well, it
is useful to construct test networks. These test networks—also known as benchmark
networks—are constructed such that the community partition is known beforehand.
Comparing the known partition to the partition detected by the algorithm provides
evidence of how well the algorithm is performing. We will test some of the methods,
and present their results. In spite of the NP-hardness of the problem, and that the
algorithms are only heuristic, we will see they work reasonably well.

2.3.1 Simulated Annealing

Simulated Annealing (SA) is a general optimization technique [26]. The idea is that
the search is allowed to explore a large part of the landscape at the beginning, but
as the algorithm progresses, follows more and more the steepest descent trajectory
(greedily) towards a (local) minimum. The basic idea is to analyse the difference
in the objective function AH = Hafter — Hpefore When making a certain change
to the partition. We will use AH = Hafer — Hbefore throughout this thesis, so
that AH < 0 will always mean there is an improvement after some change, while
A'H > 0 indicates the prior situation was better (remember we are minimizing H).
Such a change can take many forms, but the changes usually considered are: moving
a single node from one community to another; merging two communities; or splitting
a community.

There are several choices available for accepting such a change. The idea is to also
accept changes that worsen the partition (i.e. when A’H > 0) with some probability
that decreases as the algorithm progresses. The implementation from Reichardt and
Bornholdt [41] works as follows. Consider moving node i from community ¢ to d,
and let the new communities be ¢’ and d’. In terms of the community set we thus
have that C, = C.\ i and C); = C4 Ui. The change in the objective function is then

AH(o; = c > d) = (ejg — Vrel€ia’) — (€ic — Yrel€ic') (2.33)

5 It is unlikely that any efficient algorithm will ever be found, part of the famous P = NP problem.

30 2 Community Detection

where ¢ = ec — e = 3. ; Ajj6(0;, ¢) is the number of edges from node i to
community ¢’ and (e;r) = (e.) — (ex) = > j pijé(oi, ¢’) the expected number of
edges from i to community ¢, and similarly so for d’. We consider all communities
to which node i is connected, and the associated change in the objective function of
AH(o; = ¢ — d). We then choose the new community with probability

Pr(o; = d) = %exp[—ﬁAH(m =crd)), (2.34)

where Z = >, exp BAH(0; = ¢ — d) is the normalization factor. This is known as
the Boltzmann probability distribution [24]. The parameter 8 = 1/ T is known as the
inverse temperature. A high temperature (low) gives nearly uniform probabilities,
so that every change is chosen with almost equal probabilities. As the algorithm
progresses, the temperature is lowered, for example after n changes, usually via
T' = oT where 0 < o < 1 is some decay factor. Lower temperature leads to
more narrow choices, and in the limit of 7 — 0 only the moves with the maximum
improvement of the objective function are chosen.

An alternative scheme was proposed by Guimera et al. [20, 22]. Instead of consid-
ering all possible changes, we simply choose a random new community for a node.
Similarly, a change can consist of merging two communities. Finally, a change can
consist of splitting a community in two. All changes have a certain associated change
in the objective function of AH and the change is accepted with probability

1 if A 0
Pr(accept change) = 1 " <0, (2.35)
exp(—BAH) it AH=>0.

The change for moving a node i from community ¢ to community d is already
provided in Eq. (2.33). The change when merging two communities ¢ and d into one
new community ¢’ is then

AH({c, d} > ¢) = —eca + Vi leca) py; (2.36)
while the splitting of community ¢’ into ¢ and d is just the opposite
AH(— {c,d) = —AH(c,d} —), (2.37)

with e.q = Zij A;jé(oi,c)é(oj,d) the number of edges between ¢ and d and
(ecq) the expected number of such edges. A random split is unlikely to improve
the partition, so some additional effort should be made to find a reasonably good
candidate split, for example by using the eigenvector split (see Sect. 2.3.4), but we
will not consider that here.

For both implementations the general idea remains the same. We consider a num-
ber of changes, which are accepted with a certain probability. After a certain number
of changes, we lower the temperature, and repeat the procedure. When the objective

2.3 Algorithms 31

function is no longer improved, the procedure terminates. The method moving only
nodes is provided in Algorithm 1.

The exact calculations depend on the null model used. For the configuration null
model, we have that (e.) = K 3 /2m, and if we work out we obtain

k.
AH(oj =c > d) = ejg — ei¢ — VRBE’(Kd — Ke+ k) (2.38a)
K.K
AH{c,d} — ¢') = yrs ;md —ecd (2.38b)
’ K:Ky
AH(c' = {c,d}) = ecd — Vre o (2.38¢)
m

for respectively joining nodes, merging communities and splitting communities. For
the ER null model, with {e.) = pn% where n. is the size of community c, we obtain

AH(o; =c > d) =ejg — eic — yrpp((ng + 1) — (ne — 1)) (2.39a)
AH({c.d} > ¢') = yrapncna — eca (2.39b)
AH(c' + {c,d}) = eca — Yrophcna. (2.39¢)

Similar calculations can be derived for the other models.

Algorithm 1 Simulated Annealing (SA) method
function SA(Graph G)
initialize o; < i for all nodes i
T < some high number, « %
while improvement do
for all nodes i do
Cheigh < {oj 1 (G, Jj) € E}Uo; > Communities of neighbours
for all communities d € Cejgn, do
P; < exp(BAH(o; =c+— d))
end for
0; < RANDSAMPLE(P) > Draw random community
end for
T «<—axT,B « % > Lower temperature
end while
return o
end function

32 2 Community Detection

2.3.2 Greedy Improvement

Graph partitioning itself is not new, and one heuristic method that has long been used,
and which resembles the steps from Simulated Annealing (SA), is Kernighan-Lin
(KL) improvement [25]. Although in the original formulation two nodes are swapped
from their communities in order to keep the community sizes the same, this is not
necessary for modularity optimization. So, the greedy improvement we consider here
simply amounts to moving nodes from one community to another.® The difference
with SA is that we choose greedily the best new community. In other words, the
method loops (randomly) over all nodes, and determines for each node the community
with the largest A’H. It repeats these steps as long as there remain improvements.
More specifically, when considering node i we greedily check the increase in the
objective function AH(o; = ¢ — d) if the node was moved from community c to d,
as was already calculated in Eq. (2.33). Now instead of choosing the new community
with a certain probability as defined in Eq. (2.34), we simply choose the community

s* = argmaxsAH(o; = r > 5) (2.40)
which maximizes the change. This can be seen as the limit of the simulated annealing

process for which T — 0 (or 8 — 00). We consider all nodes (perhaps in random
order), and repeat until no further improvement can be made.

Algorithm 2 Greedy method

function GREEDY(Graph G)
initialize o; < i for all nodes i
while improvement do
for all nodes i do
C <« {oj|(, j)eE}Uo; > Communities of neighbours
for all communities d € C do
Ag < AH(o; =c+—> d)
end for
o; < argmaxyAy > Greedily, maximum choice
end for
end while
return o
end function

6 There are some other greedy algorithms as well, for example [7, 8].

2.3 Algorithms 33

2.3.3 Louvain Method

The Louvain method for optimizing modularity [4] is one of the fastest and best
algorithms available for optimizing modularity [29]. It makes changes to the partition
similar to the greedy improvement, i.e. it always makes the optimal change at that
moment. The trick that makes it so fast and yet work well, is that whenever no more
changes can be made by moving nodes, we aggregate the graph, and rerun the same
algorithm on the aggregated graph. This is then repeated until modularity can be no
further increased.

Algorithm 3 Louvain method
function LOUVAIN(Graph G)
o < GREEDY(G) > Initial Greedy
Y <o > Use X for aggregate
while improvement do
G < AGGREGATE(G, X)

¥ <« GREEDY(G) > Greedy on aggregate graph
0; < X, foralli > Correct o according to X
end while
return o

end function

The important detail is then of course that moving nodes in the aggregated graph
should be equivalent to merging communities in the original graph. Hence, the aggre-
gate method depends on the exact cost function used. Using the configuration null-
model allows for a particularly straightforward aggregation. In that case, the new
aggregated weighted adjacency matrix A’ is constructed as follows

=D Aij8(0i,0)8(0), d) = eca
ij

which simply creates a new node ¢ for each community, and an edge to another new
node community d has as weight the total number of edges between community ¢
and d. The essential thing is now that joining two nodes in this graph A’ should be
equivalent to merging two communities in A. The benefit for joining nodes ¢ and d

in A is v
d

which is equivalent to joining communities ¢ and d in A since A!, = e.q =
Zi : A;j8(oi,c)d(oj,d) the number of edges between communities ¢ and d and
ki, =2>,A, =2, ;kid(0i, ¢) is the total degree in community c. Hence, join-
ing two nodes is indeed equivalent to merging two communities as specified in
Eq. (2.38b). This special feature of the configuration model (and modularity) allows
this formulation to exploit this.

34 2 Community Detection

Algorithm 4 Aggregation for configuration null-model
function AGGREGATE(Graph G, Community o)
A <« ADJACENCY(G)
A:‘d < Zij Al'j5(0,', C)(S(Gj, d)
return A’
end function

When using the ER null model this way of aggregating does not work correctly.
Let us assume for an instance that we aggregated a graph according to this method.
The benefit of merging node ¢ and d in this aggregate graph, according to the ER
null model is then

AH =Acc + Aga — Aéd — VrBP

while this should actually be
AH =Acc + Aya — Ai-d — YrePNcNd

where n, and ny are the number of nodes in community ¢ and d. Using this method
of aggregating then clearly does not work.

In order to make this step of aggregating the graph work for the ER null-model
we need to introduce the node size. In the aggregate graph, the node size will then
represent the number of nodes in the community (i.e. the community size). So, for
the initial graph we set the node size to n; = 1 for all nodes, and upon aggregating
we will set the node size n, = Zi n;8(oj, c) of community c, i.e. the new node in
the aggregated graph, equal to the sum of the node sizes within the community.

Notice that we can use the same type of aggregation for CPM (and by extension
RN). Since we can also apply the greedy algorithm to CPM, the Louvain method is
easily applied to CPM as well.

Algorithm 5 Aggregation for ER null-model & CPM

function AGGREGATE(Graph G, Community o)
A < ADJACENCY(G)
A/cd < Zij A,-jé(oi, C)(S(O’j, d)
ne < . nid(oi, c)
return A’, n’
end function

2.3.4 Eigenvector

We can also take a matrix analysis perspective [38]. If we define the modularity
matrix B with entries

2.3 Algorithms 35
Bij = ajjAij — bij(1 — Ajj) (2.41)

and S the n x ¢ community matrix, such that S;. = 1 if node i is in community ¢
and 0 otherwise, we can write our objective function as

H=—> > BiSiSjc=-TrS'BS, (2.42)

ij ¢

since S;cSjc = 1if 0; = 0 = ¢ and 0 otherwise, so that ZC SicSjc = 8(0i, 0)),
and Zi SicSia = 0 for ¢ # d. Here ST denotes the transpose of S (i.e. S;r/. = Sji).
Since each node should be in exactly one community, we have the constraint that
Sic € {0,1} and > S;c = 1. From this it also follows that TrSTS = n and that
the columns of S are mutually orthogonal. For undirected graphs B is symmetric
(i.e. B = B"), and we can decompose B = UAU' where A is a diagonal vector
containing the eigenvalues A1 > X, > ... > X, with U an orthogonal matrix (i.e.
UUT = I, is the identity matrix) containing the associated eigenvectors. Plugging
this in leads to

H=-TrSTUAU'S
= -TrAU'SS'U,

So, for all A; > 0 we should put as much weight as possible in UITS STU;. Without
the constraint that S;. € {0, 1} this would be simply optimized by taking the column
S; proportional to u; for A; > 0, and the rest 0. Because of the constraints that
Sic € {0, 1} this is not straightforward, and usually only a partitioning in two groups
is considered. This is known as (recursive) spectral bisectioning. The basic idea is to
recursively split communities, until we can no longer divide the sub parts.

For spectral bisectioning, it is simpler to use a single vector s to indicate two groups
ass; = —1lifiisingroup 1 ands; = 1ifi isin group 2. Then %(sisj—i—l) =6(0i,0)),
and we can write

1
H=— ZBijE(SiSj +1)
ij
which is up to a multiplicative and additive constant equivalent to
H = —s'Bs, (2.43)
with sTs = n. If we relax the problem by allowing s to take on real values, s' Bs
is similar to a Rayleigh quotient, for which it is well known that it is maximized

by taking s proportional to # where u is the eigenvector associated to A1 the largest
eigenvalue of B. Hence, if we take

36 2 Community Detection

1 ifu; >0,
§i = .
—1 ifu; <O,

this is the vector s with s; € {—1, 41} for which ||s — u]| is minimal.

We can then recursively apply this method to a single community. Let B¢ be the
ne X ne submatrix of B corresponding to community ¢. The improvement of H by
dividing community c¢ in two, again denoted by the vector s € {—1, 4+1}"¢, can then
be described by

1
AH = —ZBEIE(SiSj +1) — B
ij

which by removing parts that don’t depend on the optimization reduces to

AH = — Z B[stl'sj = —STBCS (2.44)
ij

similar as before. So, we follow the same procedure. However, we must ensure that
the total contribution is positive still, so that A in Eq. (2.44) must obey

AH = —s' B°s < —e' B

with e = (1, ..., 1) the vector of all ones. In other words, as long as subdividing
puts more weight within the subdivided community as there is in total within the
community, we should continue splitting. Notice that this is similar to the condition
that AH(¢' + {c,d}) > 0 for splitting community ¢’ into community ¢ and d in
Eq. (2.37). Furthermore, notice that for the RB model with yzs = 1 we have that
e Be = 0 by definition of modularity, so that we can use the same condition.

Algorithm 6 Recursive eigenvector bisection
function EIGENVEC(Modularity matrix B)
u < largest eigenvector of B
—1 ifu; >0,
1 if u; < 0.
if o' Bo > ¢' Be then > If improvement
Y1 < EIGENVEC(B(o = —1,0 = —1)) > Submatrix for o; = —1
Yy < EIGENVEC(B(oc = 1,0 = 1)) > Submatrix for o; = 1
o < Combine X and %,
else
o < 1 > Otherwise, don’t split
end if
return o
end function

O <—

2.4 Benchmarks 37

2.4 Benchmarks

In order to know whether these algorithms and methods work effectively, we now turn
to methods for testing them. This involves two parts. First we have to construct good
test networks with some planted partition, so that we can check if some community
detection method is able to uncover this planted partition. Secondly, we need some
measure to compare the computed partition to the planted partition. Finally, we will
provide some results comparing different methods.

2.4.1 Test Networks

One of the first problems in generating test networks is that there is no definitely
agreed upon definition of a community. However, as stated earlier, there is some con-
sensus on some common features: the communities should be relatively dense, and
relatively well separated from the rest of the network. Although specific details might
not be agreed upon exactly, this often is the foundation upon which test networks are
constructed. Still, we should keep in mind that different definitions of communities
or good partitions might yield a partition different from the planted partition. This
does not necessarily imply the method does not work correctly, because the defini-
tion of community simply differs. Nonetheless, if some method is unable to detect
correctly the planted partition whereas other methods do, it does indicate it might
not be the appropriate method for these type of test networks.

The first to propose such test networks were [18], and remained the common
benchmark for some time [10]. In general, test networks are constructed as follows.
We wish to build a network of ¢ communities of each n, nodes with average degree
(k). The total number of nodes is then n = gn. and the total number of edges
m = (k)n/2. Furthermore, we would like to control the difficulty of detecting com-
munities. The denser communities are, and the better separated from the rest of the
network, the easier it is to detect such communities. Hence, we will introduce a
mixing parameter 0 < u < 1 such that each node will have about (1 — w)(k) edges
within its community, and about (k) edges outside its community. Such a network
can be easily constructed as follows. We pick a random node i and with probability
w we will link to a node outside of its community, and with probability 1 — x we link
to a node within its community. We will add in total (k)n/2 edges. Easily partitioned
networks are constructed using a low w and this gets progressively more difficult
for higher w. The common test setting introduced by Mark Newman used ¢ = 4
communities of n, = 32 nodes each, with © varying from O to 1.

One question concerns until what point © we expect communities to exist. A
reasonable limit is that the average density within a community should be higher
than the average density between communities. Beyond this threshold communities
become very fuzzy (regardless of the definition) and are unlikely to be detected by
any method.

38 2 Community Detection

Let us first calculate the inner density for a community of size n.. Each of the
n. nodes has on average (1 — w)(k) edges within its community, and the density is

therefore R &)
= (2.45)
ne — 1
The rest of the i (k) edges per node will be distributed across the rest of the network.
Since these edges get distributed over n — n. nodes, they will be more dispersed in
general. The average density is then simply

(2.46)

A community of n, nodes in the test network is then well-defined as long as pj, >

Pout, Which yields

n—ne qg—1
~N— (2.47)
n—1 q

n <

In other words, the probability for a link within a community p should be smaller
than the proportion of nodes outside the community. Notice this is independent of
the total size of the network, the average degree, and the size of the communities,
and depends only on the number of communities g (up to a correction term of - .)
For the regular test setting of ¢ = 4 communities this yields u < 0.75, contrary to
what was believed earlier that the communities would be defined up to i = 0.5.

In fact, such a test network most closely resembles a random network around
uw ~ (¢ — 1)/q. For smaller p the network exhibits a community structure. For
higher ;« however, the network still has a very particular structure. In that case, there
are few links within communities, and many between communities. In other words,
it starts to show a multi-partite structure.

Although such a test network is fine, it is far from realistic. Most networks show a
skewed degree distribution with a fat-tail. They have many nodes with a low degree,
and some nodes with an extremely high degree. The above test networks on the
other hand have a Poissonian degree distribution, such that most of the nodes have
about the same degree k; ~ (k). Most empirical results of community detection
suggests the community sizes are also highly skewed, while in these test networks
each community is of exactly the same size. This could lead to a potential bias when
benchmarking methods, since it only looks to whether a method can find communities
in this particular test setting. In order to overcome these issues it was suggested to
create test networks that have a power-law degree and community size distribution by
Lancichinetti et al. [30], now commonly known as the LFR benchmark. Additionally,
weights of links can be introduced, which realistically should also take a power-law
distribution. These weights can again be distributed differently within and between
communities.

Furthermore, many complex networks show some form of hierarchical structure
[30]. In order to test for this, hierarchical test networks would be needed. So, instead

2.4 Benchmarks 39

of only having a single partition in communities, each community at the lowest level
is embedded in increasingly larger communities. Instead of specifying then a single 1
for the probability of having links outside the community, we specify w1, ua, ..., i
for [different levels, with each level i being embedded in the i — 1 level. Level 1 is
then the coarsest, highest level, and / the lowest most refined level. Of course, these
probabilities are limited to >, u; < 1.

The limits of the densities remain rather similar, but now depend on the level
we are looking at. Let us take a look to a two level hierarchy. The corresponding
densities then are

pit =1 — (k) /(e — 1)
pi"" = puik)/(n —ne.1)

Py = (1 — g — u2)(k)/(ne2 — 1)
poUt = (w1 + m2) (k) /(n — ne.)

where n. | is the community size at level 1 and n. > the community size at level 2.
The second level then remains detectable until
n—~nce2

M1+ p2 <
n—1

Similarly, the first level is well defined until

[y < I’l—nc’l
1 R

n—1

Both limits are similar to the original limit in Eq. (2.47) but, there is a trade-off
between the fine (142) and course level (11). Whenever the coarse level is less well
defined, the corresponding limit for the finer level becomes smaller.

2.4.2 Comparing Partitions

Once a test network with a known partition is available, we need a measure for stating
how well a certain method is able to recover this known partition. Various measures
are suitable for this, but two of the most common ones are the normalized mutual
information (NMI) and the variation of information (VI). The NMI measures how
much information we have about one partition knowing the other. The VI is a true
metric, and is closely related to the NMI. Benchmark results are usually provided in
NMLI, but VI seems somewhat more sensitive to small deviations.

Both measures have their origins in information theory, of which the basics have
been provided in Sect. 2.2.7 (see pp. 23-26). The mutual information is defined as

40 2 Community Detection

I(X,Y)=HX)— H(X |Y)=HY) - H(Y | X)
= H(X)+ H®Y) - H(X,Y).

Hence, if X and Y are two independent variables, H(X,Y) = H(X) + H(Y) and
I(X,Y) = 0.On the other hand, if X is completely determined by Y then H (X, Y) =
H(X)=H)andI(X,Y) = I(X, X) = H(X).Hence, we cannormalize I (X, Y)
by H(X) + H(Y) and arrive at at the normalized mutual information

20(X,Y)

NMI(X,Y) = my

(2.48)

which is always 0 < NMI(X, Y) < 1. The Variation of Information (VI) can then
be defined as

VI(X,Y)=HX)+ HY) - 2I(X,7Y), (2.49)
=2H(X,Y)—-H(X)—-H(), (2.50)

Since I(X,Y) = H(X) if and only if X is completely determined by Y then
VI(X, X) = 0. Otherwise, since 2I(X,Y) < H(X) + H(Y), we have that
VI(X, Y) > 0. Furthermore, notice that VI(X, Z) < VI(X, Y) + VI(Y, Z), since the
inequality

2H(X,Z)— H(X) — H(Z) <2H(X,Y) +2H(Y, Z)
— H(X) —2H(Y) — H(Z)

is equivalent to

H(X,Z) <HX,Y)+HY,Z)— H(®Y)
HX|2)<HX[Y)+H{Y | 2).

The last inequality holds because

HX|Y)+HY|2Z2)—-H(X|Z2)
>HX|Y,Z)+HY |Z)—H(X | Z)
=HX,Y|Z2)-HX|2)=0

In other words, the VI(X, Y) is a true metric, and can be interpreted to provide a
distance between the random variables X and Y. There are several ways to normalize
this quantity, for example by dividing by 7 (X, Y) or by max{H (X), H(Y)}, but this
is not often considered [29, 34].

When it comes to comparing partitions, these quantities are used as follows. Let C
and D be two partitions, such that there are n, nodes in community ¢ in C, ng nodes
in community d in D and n.4 nodes that are in community ¢ in C and in community

2.4 Benchmarks 41

d in D. The probability a random node is in community c is then p. = n./n, and
likewise we can define the probability p.q = n.q/n. Working this out for mutual
information, we thus arrive at

Red Ned
I1(C,D) = — Z —<log (nncnd)

cd

and ne ne
HC)=->" —log .

c

The other quantities follow readily. The baseline is that NMI = 1 (and so VI = 0)
whenever C = D the two partitions are equal. So when comparing a method to the
known partition, if a method works well, NMI ~ 1, and VI ~ 0.

Other well known measures for comparing partitions are the (adjusted) rand index
and Jaccard index [15, 47, 51]. This is based on checking how many pairs of nodes
are clustered in the same manner. The number of pairs of nodes that are clustered in
the same way in both partitions can be obtained as

a =chd, 2.51)
cd

where n.4 denotes the number of nodes that are in community ¢ in partition C and in
community d in partition D. The number of pairs of nodes that are clustered both in
different communities—so the number of pairs of nodes i and j such that they are not
in the same community in partition C and neither in partition D can be described by

b= (’;) —}—%ncd—;ng —ZC:nCD (2.52)

where n¢ refers to the number of nodes in community c in partition C. Then the rand

index is defined as
a+b

n 9
()
namely the fraction of pairs of nodes that are classified in the same manner (belonging
both to the same community is both partitions are both to different communities in
both partitions). This measure varies between 0 and 1 with 1 indicating two identical
partitions C and D while O indicates two completely different partitions. There

exists an adjusted version which takes into account the fact that the rand index for
two random partition already attains some similarity. The Jaccard index is defined as

RI(C, D) = (2.53)

a

(G -t

J(C, D) =

(2.54)

42 2 Community Detection

Compared to the VI both measures have some drawbacks [34], although no measure
is perfectly fit for all situations. For benchmarks in community detection however,
the NMI has become the standard, although the rand index, Jaccard index and other
variants are used in other domains.

2.4.3 Results

Not all models work equally well. We have tested extensively the RB model using
the configuration null model and the ER null model, CPM and Infomap. For the RB
model the “natural” parameter is ygg = 1, which then corresponds to modularity for
the configuration model. For Infomap there is no parameter present, so there is little
to choose there. For CPM there is no such “natural” parameter, and one would have
to look which ycpy Works best (we will touch upon this issue in Sect. 4.1). However,
given that we know how we generate the benchmark networks, we can calculate the
optimal parameter Y, for uncovering the planted partition. Since the CPM model
and the RB model are equal for the ER null model when using ycpy = Yrp p, this
also corresponds to the optimal parameter for the RB model with the ER null model.
For the configuration null model we can choose a similar optimal parameter value,
in order to detect the planted partition as well as possible.

Let us calculate this optimal parameter value. We denote by pi, the average density
within a community, and by poy the average density between a community and the
rest of the network. For CPM to correctly detect these communities we should set
Yepm > Pin SO that it doesn’t split communities of that density, while ycpy < pout SO
that it doesn’t merge communities either. We have already calculated these densities
before in Egs. (2.45) and (2.46), and we set

{(Pin) + {Pout)

Véom = VepP = 3

where (pin) indicates we have taken the average pj, over all community sizes.

In order to calculate a similar optimal resolution parameter for the configuration
model, notice that we should have that the inner “degree density” pj, = e
should be lower than ygg, while the outer “degree density” should be higher than
yre- The number of edges within a community is simply e, = n.(k)(1 —), and
the expected sum of degrees K. = n. (k). Furthermore, the total number of expected
edges is 2m = n(k), so that we obtain
- €c
Pin (ec)conf
ne(k)(1 — p)

(ne(k)?
(k)

n(l —p)
ne '

http://dx.doi.org/10.1007/978-3-319-06391-1_4

2.4 Benchmarks 43

The outer “degree density” can be similarly calculated. The number of external
edges remains e . = n (k) as before (where the * denote the rest of the network).
The expected number of edges is (ecx) = K:K./2m, and so becomes (e) =
ne(n — ne)(k)?/2m, so that the outer “degree density” is

~ €cx
Pout = ———
(€cs)conf
nep(k)
T ne(—ne) (k)2
n(k)

wn
n—ne

Similar as before, we set the RB resolution parameter for the configuration model at

* (ﬁin) + (ﬁout)

YR =)

Notice that we can do a similar analysis as before, trying to calculate the point at
which communities are no longer well defined, but use the “degree densities” to do
so. Working out the inequality pi, > pout We obtain that up until

n—ne q—1
n q

w<

the communities are well defined. Hence, this does not change anything in compar-
ison to our earlier analysis in Eq. (2.47).

The results for the different methods are displayed in Fig. 2.1. On the y-axis it
shows the NMI as defined earlier, while on the x-axis the mixing parameter p is
shown. For each value of the mixing parameter u we generate 100 LFR benchmark
networks. We have used the Louvain algorithm for all models, since earlier analysis
showed the Louvain algorithm works at least as well as many other algorithms, but
is much faster. For a more extensive comparison between different algorithms, refer
to Lancichinetti and Fortunato [29].

It can be clearly seen that CPM performs well. The difference in performance of
the CPM model in comparison to the RB model using the ER null model is especially
striking. Obviously then, setting ycpy = p is in general not a very good strategy, and
for general networks one should carefully analyse at which resolution the network
contains meaningful partitions, a topic we will review briefly in Sect. 4.1.

A similar effect also shows for modularity (or the RB model using the config-
uration model), such that when ygp is chosen appropriately (i.e. using yrg = ¥uy)
the method will perform better than at the ordinary resolution yg = 1. Indeed,
the results of the CPM model and the RB model using the configuration null model
using ypp are rather comparable, although the latter’s performance drops less quickly,
and then outperforms CPM. Interestingly, when we use the ordinary resolution
re = 1, it becomes more difficult to detect communities in large networks using the

http://dx.doi.org/10.1007/978-3-319-06391-1_4

44 2 Community Detection

Fig. 2.1 Benchmark results

]
e

L]
A

NMI
o
o
—

0 0.2 04 o4 06 0.8 1.0
CPM ER RB Conf Mod. Inf.
y=v" v=p YRB=Vgg YRB=L
n=10° © o < A O
n=10* e * . A]
Fig. 2.2 Hierarchical bench- 1 Level 1 (Large) Level 2 (Small)

mark results

Infomap

14 4

o
4
=
=

configuration model. This contrasts with the results when we choose the appropriate
resolution parameter ¥, ¥as and indeed also for the Infomap method. Indeed the
communities should become more clearly discernible for larger networks when the
community sizes remain similar. The limit of community detection as calculated ear-
lier is about pu* = qT‘l ~ 0.92 for n = 103 and p* ~ 0.99 for n = 10*. The models
with the tuned resolution parameters work quite well and approach this upper limit

to some extent. Surprisingly, both methods outperform the Infomap method, which

2.4 Benchmarks 45

performed superbly in previous tests [29], when the appropriate resolution parameter
is chosen.

We have also performed extensive tests on hierarchical networks, where the
method also performs well, and is able to extract the two different levels of communi-
ties effectively, as displayed in Fig. 2.2. For relatively low > < 0.7, the first (larger)
level becomes more clear for low |, while the second (smaller) level becomes
more clear for larger p1. This is both the case for a recent hierarchical version of
the Infomap method [45] and the CPM method. The Infomap method seems to be
slightly better at detecting the planted communities, but the CPM method remains
highly competitive. The possibility for having various scales of description of the
network seems important, as many networks seem to have at least some hierarchical
structure.

References

1. Aldecoa R, Marin I (2013) Surprise maximization reveals the community structure of complex
networks. Sci Rep 3:1060. doi:10.1038/srep01060
2. Arenas A, Fernandez A, Gomez S (2007) Analysis of the structure of complex networks
at different resolution levels. New J Phys 10(5):23. doi:10.1088/1367-2630/10/5/053039.
arXiv:physics/0703218
3. Bichot CE, Siarry P (2011) Graph partitioning. Wiley, New York. ISBN 184821233X
4. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities
in large networks. J Stat Mech Theory Exp 2008(10):P10008. doi:10.1088/1742-5468/2008/
10/P10008
5. Bollobds B (2001) Random graphs, 2nd edn. Cambridge University Press, Cambrige
6. Brandes U, Delling D, Gaertler M, Goerke R, Hoefer M et al (2006) Maximizing modularity
is hard. arXiv:physics 0608255. arXiv:physics/0608255
7. Brandes U, Delling D, Gaertler M, Gorke R, Hoefer M et al (2008) On modularity clustering.
IEEE Trans Knowl Data Eng 20(2):172-188. doi:10.1109/TKDE.2007.190689
8. Clauset A, Newman M, Moore C (2004) Finding community structure in very large networks.
Phys Rev E 70(6):1-6. doi:10.1103/PhysRevE.70.066111
9. Cover, TM and Thomas, JA (2012). Elements of Information Theory, vol 2012. Wiley, New
York. ISBN 1118585771
10. Danon L, Diaz-Guilera A, Duch J, Arenas A (2005) Comparing community structure identifi-
cation. J Stat Mech Theory Exp 2005:P09008. doi:10.1088/1742-5468/2005/09/P09008
11. Delvenne JC, Yaliraki SN, Barahona M (2010) Stability of graph communities across time
scales. Proc Natl Acad Sci USA 107(29):12755-12760. doi:10.1073/pnas.0903215107
12. Diestel R (2010) Graph theory, 4h edn. Springer, Berlin. ISBN 978-3-642-14278-9
13. Doreian P, Batagelj V, Ferligoj A (2005) Generalized blockmodeling. Cambridge University
Press, Cambridge. ISBN 9780521840859
14. Duch J, Arenas A (2005) Community detection in complex networks using extremal optimiza-
tion. Phys Rev E 72(2):1-4. doi:10.1103/PhysRevE.72.027104
15. Everitt BS, Landau S, Leese M (2001) Cluster analysis. Wiley, New York. ISBN
9780340761199
16. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3-5):75-174. doi:10.1016/
j-physrep.2009.11.002
17. Fouss F, Pirotte A, Renders JM, Saerens M (2007) Random-walk computation of similarities
between nodes of a graph with application to collaborative recommendation. IEEE Trans Knowl
Data Eng 19(3):355-369. doi:10.1109/TKDE.2007.46

http://dx.doi.org/10.1038/srep01060
http://dx.doi.org/10.1088/1367-2630/10/5/053039
http://arxiv.org/abs/physics/0703218
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://arxiv.org/abs/physics/0608255
http://dx.doi.org/10.1109/TKDE.2007.190689
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1073/pnas.0903215107
http://dx.doi.org/10.1103/PhysRevE.72.027104
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1109/TKDE.2007.46

46

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

2 Community Detection

Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc
Natl Acad Sci USA 99(12):7821-7826. doi:10.1073/pnas.122653799

Good BH, de Montjoye YA, Clauset A (2010) Performance of modularity maximization in
practical contexts. Phys Rev E 81(4):046106. doi:10.1103/PhysRevE.81.046106

Guimera R, Mossa S, Turtschi A, Amaral LAN (2005) The worldwide air transportation net-
work: anomalous centrality, community structure, and cities’ global roles. Proc Natl Acad Sci
USA 102(22):7794-7799. doi:10.1073/pnas.0407994102

Guimera R, Nunes Amaral LA (2005) Functional cartography of complex metabolic networks.
Nature 433(7028):895-900. doi:10.1038/nature03288

Guimera R, Sales-Pardo M, Amaral L (2004) Modularity from fluctuations in random graphs
and complex networks. Phys Rev E 70(2):025101. doi:10.1103/PhysRevE.70.025101

Jain A, Dubes R (1988) Algorithms for clustering data. Prentice-Hall, Englewood Cliffs. ISBN
978-0130222787

Jaynes E (1957) Information theory and statistical mechanics. Phys Rev 106(4):620-630.
doi:10.1103/PhysRev.106.620

Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst
Tech J 49(1):291-307

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science
(NY) 220(4598):671-680. doi:10.1126/science.220.4598.671

Kolaczyk ED (2009) Statistical analysis of network data: methods and models. Springer, Berlin.
ISBN 9780387881461

Lambiotte R, Delvenne JC, Barahona M (2008) Laplacian dynamics and multiscale modular
structure in, networks, pp 1-29. arXiv:0812.1770

Lancichinetti A, Fortunato S (2009) Community detection algorithms: a comparative analysis.
Phys Rev E 80(5):056117. doi:10.1103/PhysRevE.80.056117

Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community
detection algorithms. Phys Rev E 78(4):46110. doi:10.1103/PhysRevE.78.046110
Lancichinetti A, Radicchi F, Ramasco JJ, Fortunato S (2011) Finding statistically significant
communities in networks. PloS ONE 6(4):e18961. doi:10.1371/journal.pone.0018961

Leicht E, Newman M (2008) Community structure in directed networks. Phys Rev Lett
100(11):1-4. doi:10.1103/PhysRevLett.100.118703

MacKay D (2003) Information theory, inference and learning algorithms. Cambridge Univer-
sity Press, Cambridge. ISBN 9780521642989

Meild M (2007) Comparing clusterings-an information based distance. J Multivar Anal
98(5):873-895. doi:10.1016/j.jmva.2006.11.013

Newman M (2004) Fast algorithm for detecting community structure in networks. Phys Rev E
69(6). doi:10.1103/PhysRevE.69.066133

Newman M (2010) Networks: an introduction. Oxford University Press, Oxford. ISBN
0199206651

Newman M, Girvan M (2004) Finding and evaluating community structure in networks. Phys
Rev E 69(2):026113. doi:10.1103/PhysRevE.69.026113

Newman MEJ (2006) Finding community structure in networks using the eigenvectors of
matrices. Phys Rev E 74(3):036104+. doi:10.1103/PhysRevE.74.036104

Porter MA, Onnela JP, Mucha PJ (2009) Communities in networks. Not AMS 56(9):1082—
1097. arXiv:0902.3788

Raghavan U, Albert R, Kumara S (2007) Near linear time algorithm to detect community struc-
tures in large-scale networks. Phys Rev E 76(3):036106. doi:10.1103/PhysRevE.76.036106
Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E
74(1):016110+. doi:10.1103/PhysRevE.74.016110

ReichardtJ, White DR (2007) Role models for complex networks. Eur Phys J B 60(2):217-224.
doi:10.1140/epjb/e2007-00340-y

Ronhovde P, Nussinov Z (2010) Local resolution-limit-free Potts model for community detec-
tion. Phys Rev E 81(4):046114. doi:10.1103/PhysRevE.81.046114. arXiv:0803.2548v4

http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1073/pnas.0407994102
http://dx.doi.org/10.1038/nature03288
http://dx.doi.org/10.1103/PhysRevE.70.025101
http://dx.doi.org/10.1103/PhysRev.106.620
http://dx.doi.org/10.1126/science.220.4598.671
http://arxiv.org/abs/0812.1770
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1371/journal.pone.0018961
http://dx.doi.org/10.1103/PhysRevLett.100.118703
http://dx.doi.org/10.1016/j.jmva.2006.11.013
http://dx.doi.org/10.1103/PhysRevE.69.066133
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://arxiv.org/abs/0902.3788
http://dx.doi.org/10.1103/PhysRevE.76.036106
http://dx.doi.org/10.1103/PhysRevE.74.016110
http://dx.doi.org/10.1140/epjb/e2007-00340-y
http://dx.doi.org/10.1103/PhysRevE.81.046114
http://arxiv.org/abs/0803.2548v4

References 47

44.

45.

46.

47.

48.

49.

50.
51.
52.

Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal commu-
nity structure. Proc Natl Acad SciUSA 105(4):1118-1123. doi:10.1073/pnas.0706851105
Rosvall M, Bergstrom CT (2011) Multilevel compression of random walks on networks reveals
hierarchical organization in large integrated systems. PloS ONE 6(4):e18209. doi:10.1371/
journal.pone.0018209. arXiv:1010.0431

Schaeffer SE (2007) Graph clustering. Comput Sci Rev 1(1):27-64. doi:10.1016/j.cosrev.2007.
05.001

Theodoridis S, Koutroumbas K (2006) Pattern recognition. Academic Press, New York. ISBN
9780080513614

Tibély G, Kertész J (2008) On the equivalence of the label propagation method of community
detection and a Potts model approach. Phys A Stat Mech Appl 387(19-20):4982-4984. doi:10.
1016/j.physa.2008.04.024

Traag VA, Van Dooren P, Nesterov Y (2011) Narrow scope for resolution-limit-free community
detection. Phys Rev E 84(1):016114. doi:10.1103/PhysRevE.84.016114. arXiv:1104.3083
Wasserman S, Faust K (1994) Social network analysis. Cambridge University Press, Cambridge
Xu R, Wunsch D (2008) Clustering. Wiley, New Jersey. ISBN 9780470382783

Yen L, Fouss F, Decaestecker C, Francq P, Saerens M (2009) Graph nodes clustering with the
sigmoid commute-time kernel: a comparative study. Data Knowl Eng 68(3):338-361. doi:10.
1016/j.datak.2008.10.006

http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1371/journal.pone.0018209
http://dx.doi.org/10.1371/journal.pone.0018209
http://arxiv.org/abs/1010.0431
http://dx.doi.org/10.1016/j.cosrev.2007.05.001
http://dx.doi.org/10.1016/j.cosrev.2007.05.001
http://dx.doi.org/10.1016/j.physa.2008.04.024
http://dx.doi.org/10.1016/j.physa.2008.04.024
http://dx.doi.org/10.1103/PhysRevE.84.016114
http://arxiv.org/abs/1104.3083
http://dx.doi.org/10.1016/j.datak.2008.10.006
http://dx.doi.org/10.1016/j.datak.2008.10.006

2 Springer
http://www.springer.com/978-3-319-06390-4

Algorithms and Dynamical Models for Communities and
Reputation in Social Networks

Traag, V.

2014, XM, 229 p. 40 illus., 19 illus. in color., Hardcover
ISBN: 978-3-319-06390-4

	2 Community Detection
	2.1 Modularity
	2.2 Canonical Community Detection
	2.2.1 Reichardt and Bornholdt
	2.2.2 Arenas, Fernández and Gómez
	2.2.3 Ronhovde and Nussinov
	2.2.4 Constant Potts Model
	2.2.5 Label Propagation
	2.2.6 Random Walker
	2.2.7 Infomap
	2.2.8 Alternative Clustering Methods

	2.3 Algorithms
	2.3.1 Simulated Annealing
	2.3.2 Greedy Improvement
	2.3.3 Louvain Method
	2.3.4 Eigenvector

	2.4 Benchmarks
	2.4.1 Test Networks
	2.4.2 Comparing Partitions
	2.4.3 Results

	References

