
Chapter 1
Basic Crystallography and Other Properties
Linked with Symmetry

This chapter treats of crystallography, basic physical properties linked to the crystal
structure. It also gives a few elements of basic group theory.

1.1 The Hexagonal Point Symmetry Deduced from the Shape
of Natural Wurtzitic Crystals

Atomic organisation of wurtzitic semi-conductors follows the crystallographic
structure named "zincite", that was, to the author’s knowledge, first described as red
oxide of zinc by American mineralogist Archibald [1] at the dawn on the nineteenth
century. Some sulfide minerals also crystallize according to this atomic organisation,
among which are greenockite (CdS), first observed in 1840 in Bishopton, Scotland,
and named after the landowner Lord Greenock. The term “wurtzite” is correlated
with the description of the hexagonal form of zinc sulfide crystals in 1861 and named
after French chemist Charles-AdolpheWurtz. The wurtzite group also includes, ram-
bergite (MnS) discovered in sediments and named at the end of the twentieth century
after the Norwegian-Swedish mineralogist, Hans Ramberg. We also wish to indicate
that cadmoselite CdSe (artificially synthesized before it was identified as a min-
eral stone) was discovered in 1957. In the language of semi-conductorists, these
materials belong to the group of II–VI compounds: the cation (resp. anion) is a
group II (resp. VI) element of Mendeleev’s table. Apart from the II–VI family, III-
nitrides (III-N’s) are also important semi-conductors the cation is a group-III element
generally boron, aluminium, gallium or indium. The most energetically favourable
atomic organisation for boron nitride is not wurtzite; BN is a layered compound like
graphite. Themost stable crystalline structure of AlN, GaN and InN semi-conductors
is wurtzitic. Thesematerials are not extracted frommines as binary compounds prob-
ably due to the high stability of the nitrogen molecule (9.3 eV per bond) or to the
chemical reactivity of ammoniac. NH3 is a very stable molecule: nitrogen single
atoms are highly reactive and donot live long without binding to the most abundant
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Fig. 1.1 Photograph of a natural wurtzitic crystal. Note the needle-like shape and the existence of
many facets with different orientations illustrating the hexagonal symmetry

Fig. 1.2 Left Photograph of an artificial crystal of bulk gallium nitride (courtesy Dr. I. Grzegory,
Polish Academy of Sciences). Right Photograph of an aluminum nitride bulk artificial single crystal
(courtesy Prof. Zlatko Sitar, North Carolina State University)

elements in nature: H, O, etc. Therefore, the necessary conditions to associate nitro-
gen and group III element in order to form pure III-Ns are never met in nature, to the
best of our knowledge. The existence of AlN was demonstrated in 1862 by Briegler
and Geuther [2] and Mallet synthesized it in 1876 [3] with metallic aluminum and
sodium carbonate reactant at high temperatures. The growth of GaN was achieved
in 1932 by Johnson et al. [4] later achieved, in 1938, the growth of indium nitride
was later achieved, in 1938 [5]. The hexagonal symmetry of wurtzite crystals was
quantitatively calibrated during the nineteenth century from the orientation of the
directions orthogonal to the facets of crystals found in mines. Crystals are most
generally found as small needles, exhibiting specific shapes as shown in Fig. 1.1.

Artificially grown bulk semi-conductors like gallium nitride (Fig. 1.2-left) or
aluminum nitride (Fig. 1.2-right) are also obtained under faceted crystalline shapes.
Although the shape of the crystals presented in Fig. 1.2 (left) and 1.2 (right) are
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Fig. 1.3 Photograph of
wooden tutorial object
designed such as to show
a typical repeat of basic build-
ing blocks which at the end to
form the whole crystal shape

fairly different, they share a common property. The shape of the bunch of directions
orthogonal to the crystal facets constitutes some kind of figure of merit.

The figure obtained after the stereographic projection of the ensemble of the
directions that are orthogonal to the facets of these crystals is compatible with the
symmetry of a regular hexagonal polygon. This figure is a constant quantity typ-
ical of the crystalline structure according to the first law of crystallography. It is
known as “the law of constant angles between crystal facets”, early initiated by
Danish Nicolas Steno’s seminal work in 1669 and later formulated by French min-
eralogist Jean-Baptiste Romé de l’Isle in 1772. For wurtzitic semi-conductors, this
figure permits to reveal a six-fold symmetry along a given direction, the existence
of a three-fold and two-fold symmetries collinear to the six fold one and six sym-
metry planes parallel to the six-fold symmetry axis. These symmetry elements are
generic of the crystalline form named di-hexagonal pyramidal by mineralogists. In
terms of modern group theory language, from the shape of these needles, one estab-
lishes that the orientation (or point symmetry) of wurtzite crystals is a subgroup
(labelled C6v in Schoenflies notation or P6mm in the Hermann-Mauguin one) of the
full hexagonal symmetry (labelled D6h in Schoenflies notations or P6/mmm in the
Hermann-Mauguin one). French abbot René-Just Haüy in 1774 carefully observed
facets of minerals and proposed the second law of crystallography: crystals consist
of three-dimensional stacking at a macroscopic scale of a given microscopic basic
building block as tentatively illustrated in Fig. 1.3. This kind of wooden crystal were
still used as tutorial examples to teach students in themiddle of the twentieth century.

In 1849, French scientist Auguste Bravais postulated the principle of specific
three-dimensional translational invariance (existence of translational symmetry oper-
ations on the basic building block imagined by Haüy). From this postulate results
the notion of three-dimensional periodic crystalline lattice which is the basic
principle used to determine the crystallographic structure of materials using radio-
crystallography. Before discussing this very recent technique since X-rays were dis-
covered by German physicist Wilhelm Conrad Röntgen in 1895, it is worthwhile
allocating some time to simple mathematical analysis of crystal properties in line
with their symmetries. We will restrict ourselves to wurtzite and, in particular, catch
the opportunity to show how powerful the first laws of crystallography are. From the
bunch of angles made by the directions normal to the crystal’s facet, we can deter-
mine the ratio c/a or a/c of the basic hexagonal building block parameter—along
the six-fold symmetry axis—to the one orthogonal to it.
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Fig. 1.4 Representation of
the crystallographic axes
�a1, �a2 and �c that generate
the unit hexagonal cell (blue
lines). The full hexagonal cell
is shown for the completeness

1.2 The Hexagonal Lattice, Its Reticular Planes and Their
Description Using Simple Euclidian Geometry

The hexagonal crystallographic system is based on two vectors �a1 and �a2 of identical
length a at 120◦ from each other, and a third one, of length c orthogonal to the plane
generated by the preceding two, as described by French scientist Auguste Bravais in
1849 and as illustrated in Fig. 1.4.

Lengths a and c being the dimensions of the lattice vectors of the hexagonal cell,
we associate them to unit vectors �i, �j and �k.
This gives:

�i · �k = �j · �k = 0

and
�i · �j = cos(120◦) = −1/2

We now consider the (hk�) reticular plane in terms of its so-called Miller indices.
This notationwas proposed byBritishmineralogistWilliamHallowesMiller in 1839.

By definition, the (hk�) plane intersects the reticular axes at lengths a
h ,

a
k and c

�
from the origin as shown in Fig. 1.5.

Letters h, k and � are algebraic integer numbers. There are some specific simple
orientations for such planes:

• Miller indices (100) represent a plane parallel to the (�j, �k) plane,
• Miller indices (010) represent a plan e parallel to the (�i, �k) plane,
• Miller indices (001) represent a plane parallel to the (�i,�j) plane.

The notation {hk�} is traditionally used to identify all the planes equivalent to
(hk�) by the symmetry of the lattice. As an example, (100) and (010) planes belong
to the {100} family.

Thanks to hexagonal symmetry, and in contrast to the cubic case, {100} �= {001}.
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Fig. 1.5 Orientation of the
reticular plane (hk�) with
respect to the crystallographic
axes of the hexagonal lattice

Let [hk�]—with square brackets—represent a direction in the basis of the direct
lattice vectors: [hk�] is equivalent to ha�i+ka�j+c�k. The notation< hk� > is used for
all the directions that are equivalent to [hk�] by symmetry operations of the crystal.

In the most general case, and for non-cubic crystals, direction [hk�] is NOT
orthogonal to plane (hk�).

Given an (hk�) plane, we define three unit vectors ( �U,�V , �W ) orthogonal to each
other, two of them ( �U and �V ) being vectors of the (hk�) plane, whilst the third one
( �W ) is orthogonal to it.

The �U direction ( �U is parallel to vector �AB in Fig. 1.5) is chosen as [-kh0], and
thus lies in the (�i,�j) plane. �U satisfies the sonal equation and corresponds to a crystal
direction.

The [-�0h] direction (vector �AC in Fig. 1.5 ) connects intersections of the (hk�)
plane with crystallographic directions �a1 and �c at lengths a

h and c
�
from the origin. It

forms with �U a basis of the (hk�) plane. This direction is not orthogonal to �U, which
is not the best choice for mathematical calculations. Thus, it is more appropriate to
determine, using an orthonormalization procedure a vector �V lying in the (hk�) plane
and perpendicular to �U. This vector is parallel to vector �DO + �OC with

‖ �DO‖ = a
√
3

2
√

h2 + hk + k2

and ‖ �OC‖ = c
�
as indicated in Fig. 1.5.

It also satisfies the zone equation for the (hk�) plane, demonstrating that it cor-
responds to a crystal direction.

To this couple of vectors vectors ( �U, �V ), we add �W , also obtained after an ortho-
normalization procedure.

In the hexagonal (�i,�j, �k) basis, the coordinates of these unit vectors are:
⎡
⎣

�U
�V
�W

⎤
⎦ =

⎡
⎢⎣

−Ak Ah 0
−Aa�Bac(2h + k) −Aa�Bac(2k + h) 2c Bac

A
2√
3

cBac(2h + k) 2√
3

cBac(2k + h)
√
3�aBac

⎤
⎥⎦
⎡
⎣

�i
�j
�k

⎤
⎦ (1.1)
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Table 1.1 Values of the ratio c/a for various wurtzitic semi-conductors

Material BN GaN InN AlN ZnS ZnSe CdS CdSe ZnO

c/a 1.64 1.62 1.61 1.6 1.64 1.63 1.62 1.63 1.60

The number of digits is compatible with the determination method

where

A = 1√
h2 + hk + k2

and

Bac = 1√
3�2a2 + 4c2(h2 + hk + k2)

The angle between the [001] direction and �W is given as:

� = arccos

⎡
⎣ 1√

1 + 4c2

3a2
(h2+hk+k2)

�2

⎤
⎦

that depends on the value of the three Miller indices and on the ratio c/a.
At this stage, elementary Euclidian algebraic calculations demonstrate the pos-

sibility to determine the c/a ratio in wurtzitic crystals from the orientation of the
directions of the crystal facets. The only issue is to have crystals with a large enough
number of facets. Thus, we gain access to a well documented set of experimental
values of �, so that their associated h, k and � numbers can be determined simulta-
neously with the value of c/a. Table 1.1 summarizes the results of c/a ratio typical
of the most common wurtzitic semi-conductors.

1.3 The Four-Index Bravais-Miller Representation of the
Orientation of Reticular Planes in Hexagonal Crystals

In the case of the hexagonal (and rhomboidal) lattice systems, one alternative con-
vention is to use a 4-numbers representation (h k i �) for reticular planes, where
i = −(h + k). In this case, h, k and � are identical to the Miller indices, and i
is redundant: four independent vectors cannot generate a three-dimensional space.
Figure 1.6 illustrates some typical orientations of (hk�) planes that are found in
natural crystals.

This four-indices scheme for labelling planes in a hexagonal lattice is very con-
venient to illustrate the identical nature of reticular planes by permutation of the
indices. For example, we better spot the similarity between planes (112̄0) and (12̄10)
than when they are written as (110) and (12̄0).
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Fig. 1.6 Sketches of typical orientations of reticular planes of interest forwurtzitic semi-conductors.
The four-indices Miller-Bravais indexing system is used to represent the orientations

1.4 Representation of Hexagonal Crystal Directions
Using Four Indices

In some books of mineralogy, we find another four-indices system for the directions
in hexagonal crystals.

Let:
�D = ha�i + ka�j + �c�k

This direction may be also noted as [hk.�] and is fully determined with respect to
the hexagonal cell.

The corresponding Weber four indices are defined as: [hk.�] → [h′k′t�′] and the
relationships are:

h′ = n(2h − k)

3

k′ = n(2k − h)

3
t = −(h′ + k′)

�′ = n�

where n is a factor used to transform the new indices into smaller integers. To avoid
confusion, we will not use this notation.
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1.5 The Reciprocal Lattice

The reciprocal lattice is not necessary for geometric crystallography. However, it
facilitates some calculations, and its utilization is mandatory when studying X-ray
diffraction by periodical structures or, out of the context of crystallography, to treat
band structure phenomena, or light propagation. The reciprocal lattice is the Fourier
transform of the direct lattice. It generates a three-dimensional (3D) space via basis
vectors �a∗

1, �a∗
2 and �c∗ that are defined from the basis vectors �a1, �a2 and �c of the direct

lattice:

�ai�a∗
j = δij

�c.�c∗ = 1

�a∗
i .�c∗ = 0

One deduces then, that �a∗
1 is orthogonal to both �a2 and �c, which dictates that:

�a∗
1 = α(�a2 ∧ �c)

�a1 · �a∗
1 = α�a1.(�a2 ∧ �c) = α.Vol = 1

Vol is the volume (�a1 ∧ �a2).�c = �a1.(�a2 ∧ �c)

α = 1

Vol

then

�a∗
1 = �a2 ∧ �c

Vol

Similarly, one obtains �a∗
2 and �c∗:

�a∗
2 = �c ∧ �a1

Vol

and

�c∗ = �a1 ∧ �a2
Vol

In line with the definitions of the direct and reciprocal lattices, it is possible to
generate operations like scalar or vectorial products, using vectors from both spaces:

Let:
�R = r1�a1 + r2�a2 + r3�c
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and
�N∗ = n1�a∗

1 + n2�a∗
2 + n3�c∗

Scalar product:
�R · �N∗ = r1n1 + r2n2 + r3n3

Let us consider a series of reticular planes (hk�) and choose the closest to the
origin O.

Let A, B and C be the intersections of this plane with the three axes (see Fig. 1.5).
Vectors �AB and �AC both belong to that plane, their directions are respectively [−k

h 0] and [−� 0 h].

�AB = �AO + �OB = −�a1 1
h

+ �a2 1
k

�AC = −�a1 1
h

+ �c 1
�

Let �N∗
hk�

be a vector of the reciprocal lattice:

�N∗
hk� = h�a∗

1 + k�a∗
2 + ��c∗

This vector defines the [hk�]∗ family in the reciprocal lattice.
The three integer numbers (h, k, et �) being primes between each other, the extrem-

ity of �N∗
hk�

is the first node of the reciprocal lattice from the origin along the �N∗
hk�

direction.

�AB · �N∗
hk� =

(
−�a1 1

h
+ �a2 1

k

)
· (h�a∗

1 + k�a∗
2 + ��c∗) = −�a1 · �a∗

1 + �a2 · �a∗
2 = 0

�AC · �N∗
hk� =

(
−�a1 1

h
+ �c 1

�

)
· (h�a∗

1 + k�a∗
2 + ��c∗) = −�a1 · �a∗

1 + �c · �c∗ = 0

The two vectors �AB and �AC of the (hk�) plane are orthogonal to the vector �N∗
hk�

of the reciprocal lattice, which gives birth to the very important statement below:
The direction [hk�]∗ of the reciprocal lattice is orthogonal to the reticular plane

(hk�) of the direct lattice.
After some simple geometrical calculation, one could also demonstrate that the

length of �N∗
hk�

is connected with the distance dhk� between adjacent reticular (hk�)

planes of the direct lattice by:

�N∗
hk� · �dhk� = 1

dhk� = ac
√
3√

4c2(h2 + hk + k2) + 3a2�2
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Fig. 1.7 Relative orientations
of the vectors of the reciprocal
(starred symbols) and direct
(unstarred letters) lattice of
the hexagon in the (0001)
plane. Vectors c and c* are
both orthogonal to that plane

We wish to outline that, in the most general way, direction [hk�] in the basis of
the direct lattice vectors IS NOT orthogonal to (hk�) plane expressed in the basis of
the direct lattice vectors, since they do not form an orthogonal basis.

On Fig. 1.7 are represented the direct and reciprocal lattices basis vectors for the
hexagon in the (0001) plane.

Relatively to the crystallographic basis set, the vectors of the reciprocal lattice
express as:

⎡
⎢⎢⎣

�a∗
1

�a∗
2

�c∗

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

4

3a

2

3a
0

2

3a

4

3a
0

0 0 1
c

⎤
⎥⎥⎥⎥⎦

·
⎡
⎢⎣

�i
�j
�k

⎤
⎥⎦ (1.2)

We note that mathematical calculations can be made using any of these two bases.

�N∗
hk� = h�a∗

1 + k�a∗
2 + ��c∗

may be expressed in terms of direct-lattice basis-vectors �a1, �a2 and �c as:

�N∗
hk� = h�a∗

1 + k�a∗
2 + ��c∗ = 2

3a2
(2h + k)�a1 + 2

3a2
(2k + h)�a2 + �

c2
�c

that we rewrite versus (�i,�j, �k):

�N∗
hk� = 2

3a
(2h + k)�i + 2

3a
(2k + h)�j + �

c
�k

After renormalisation of �N∗
hk�

with its length, one obtains a unit vector
�N∗

hk�

‖ �N∗
hk�

‖
identical to �W .

Hence, zone indices of the direction perpendicular to plane (hk�) are, in suitably
normalized triplet form, simply:

[
2h + k, h + 2k,

3a2

2c2
�

]
,

that are not, in general, three integer numbers.
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1.6 The Orthogonal Basis Set

In order to express tensors and matrices, that represent physical properties of crys-
tals, it is recommended to use a new set of axes: (�x, �y, �z) which are always mutually
perpendicular. Starting from now, the calculations will be made in the international
orthogonal (�x, �y, �z) basis. The relationship between the unit vectors of the interna-
tional basis and those of the hexagonal one are:

⎡
⎣

�x
�y
�z

⎤
⎦ =

⎡
⎢⎢⎣

2√
3

1√
3
0

0 1 0
0 0 1

⎤
⎥⎥⎦ ·
⎡
⎢⎣

�i
�j
�k

⎤
⎥⎦ (1.3)

Vector �x is orthogonal to �j—and, therefore, �y—and makes a 30◦ angle with �i.
This basis change leads to the following expressions relating ( �U, �V , �W) and

(�x, �y, �z):
⎡
⎣

�U
�V
�W

⎤
⎦ =

⎡
⎢⎣

−
√
3
2 Ak 1

2A(2h + k) 0

−
√
3
2 Aa�Bac(2h + k) − 3

2Aa�Back 2c Bac
A

AcBac(2h + k)
√
3AcBack

√
3�aBac

⎤
⎥⎦
⎡
⎣

�x
�y
�z

⎤
⎦ (1.4)

The unit vectors of the crystallographic basis and the vectors of the reciprocal
lattice express as follow in terms of the unity vectors of the international basis set:

⎡
⎢⎢⎣

�i
�j
�k

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

√
3
2 − 1

2 0

0 1 0

0 0 1

⎤
⎥⎥⎦ ·
⎡
⎢⎣

�x
�y
�z

⎤
⎥⎦ (1.5)

and ⎡
⎢⎢⎣

�a∗
1

�a∗
2

�c∗

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2
a
√
3
0 0

1
a
√
3

1
a 0

0 0 1
c

⎤
⎥⎥⎦ ·
⎡
⎣

�x
�y
�z

⎤
⎦ (1.6)

respectively.

1.7 The Determination of the Lattice Parameters
by X-ray Diffraction

Soon after the discovery of the X-rays by Wilhelm Conrad Röntgen in 1895, people
were hesitating regarding their nature. It was, however, believed that they had very
short wavelengths (10−9 m). After some measurements, German physicist Arnold
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JohannesWilhelm Sommerfeld had determined the ratio between the wavelengths of
visible light and X-rays was close to 10,000. Italian chemist Amedeo Avogadro had
claimed in 1811 that two equal volumes of different gases, in identical temperature
and pressure conditions contained identical numbers of atoms. One century later, this
inspired in 1912 Max von Laüe to suggest from the values of Avogadro’s number
and molar weights of species, the sizes of atoms and molecules. He then proposed
that crystals could be used as diffraction gratings for X-rays. He determined theo-
retically the way to observe such a diffraction and, in addition, proposed diffraction
patterns. The experiment was carried out by German scientists Walter Friedrich and
Paul Knipping. After a few initial failures, they met with success on April 23, 1912.
X-rays when travelling through the crystal formed the pattern of bright spots that
proved Laüe’s hypothesis was correct. The explanation of the phenomenon is the fol-
lowing and ruled by two differentmechanisms: first, each atom scatters the impinging
beam in all directions of the three dimensional space. Then, the scattered propagat-
ing waves interfere, thus creating the observed diffraction patterns. British physicist
George Paget Thompson (the son of Scottish physicist Joseph John Thompson who
discovered the electron in 1897) has produced a theory, treating the scattering of
X-rays by an atom with Z electrons like Z scatterings independent of each other.
This model, which neglects the influence of the nucleus of this atom, predicts the
scattered intensity to be proportional to Z. X-rays poorly detect a light atom, like H
or Li, whilst a heavy one like gold for instance is easily spotted, thus explainig its
use in contemporary medicine.

1.7.1 Diffraction by a Linear Grating

Regarding the interference pattern, let us consider a reticular plane. In this plane,
atoms are by definition regularly arranged according to a two-dimensional lattice.
There exists a family of identical planes parallel to the considered one. They are
regularly spaced by a quantity we call d here. Each atom behaves like a point source
and diffuses X-rays in all dimensions of the 3D space. The scattered beams interfere.
The phenomenon is identical to the diffraction of light by a linear grating but it is
much more difficult to address because it occurs at three dimensions.

Let us consider a network of parallel slits {. . ., S, S′, . . .} separated by a constant
distance d. An incident beam, normal to the plane of the slits—so that, all slits are
excited in phase and emit accordingly—is diffracted by the series of slits in a direction
making the angle θ with the incident direction.

Figure 1.8 illustrates the geometrical aspects of the diffraction phenomenon in
a plane orthogonal to the plane of slits. The plane of the figure then contains both
incident and transmitted (or diffracted) beams. The condition for having light in the
BB′ plane is that the difference in optical paths between all beams be an integer
number times the wavelength, which writes:

S′B′ − SB = nλ



1.7 The Determination of the Lattice Parameters by X-ray Diffraction 13

Fig. 1.8 Geometrical aspects of the diffraction phenomenon in a plane orthogonal to the plane of
slits

This quantity equals SH may be identified to d sin θ.
Therefore, we get:

d sin θ = nλ

or, alternatively
θ = arcsin(nλ/d)

In case the incident beam makes an angle i with the plane’s normal, this equation
becomes:

d(sin θ − sin i) = nλ

or, alternatively:
θ = arcsin(nλ/d + sin i)

The angle θ varies with the diffraction order n.

1.7.2 Diffraction by a Linear Lattice, and by a Planar One

Let us now consider a linear chain of equidistant atoms shined by a monochro-
matic beam of X-rays. Such a situation is encountered when rotating a crystal
around a given crystallographic direction. This configuration is called the rotating-
crystal diffraction method. The X-ray detector can be either a cylinder photographic
sheet (detector of the old days) or a linear/bi-dimensional array of X-ray detectors
(a smarter detection system but more expensive too…). Now, the elementary scat-
tering sources are individual points. In contrast to the linear slits, the scattering is
now isotropic around each source. The scattering occurs in the 3D space, and the
diffracted beams of different orders n form a series of cones parallel to the linear
chain, each one having an apex angle φ = π/2− θ forming diffraction surfaces. See
Fig. 1.9 (left) and (right).
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Fig. 1.9 Left Geometrical representation of the X-ray diffraction in a plane that contains the linear
chain, the incoming beams and the reflected ones. Right Geometrical representation of the X-ray
diffraction surfaces plane that is parallel to the linear chain. Note the cones have different angles
when n changes

Let us nowconsider a planar two-dimensional periodic arrangement of atoms.One
can demonstrate that each plane reflects the incident beam as if it was reflected by a
plane mirror whatever the incidence angle, similarly with the laws of light reflection.
To avoid confusion, we emphasize here that the origin of this behaviour is correlated
to interferences whereas the reflexion of light by a mirror has to be interpreted using
Maxwell’s equations.

1.7.3 Diffraction by a Three-Dimensional Lattice

Let us consider a family of reticular planes (hk�) with interplane reticular distance
d. Each plane reflects the X-rays, as mentioned above, whatever the incident angle.
The beams reflected by all planes interfere, with extinctions at specific angles.
A global reflexion occurs for specific angles, what is called selective reflectivity.
Let us consider in Fig. 1.10, the optical paths A′B′C′ and ABC of X rays impinging
two adjacent planes under an angle θ.

AA′ and CC′ are orthogonal to AB and BC respectively. The incidence and reflex-
ion angles are equal.

The necessary condition to observe a diffracted radiation in the plane orthogonal
to BC and B′C′ is:

A′B′C′ − ABC = nλ.

Let G (resp. H) be the projection of BC (resp. AB) on A′B′ (resp. B′C′). We
remark that:

HB = GB′ = d sin θ
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Fig. 1.10 Geometrical sketch
showing the orientation of
incident and relected beams
on a family of reticular planes

Then:
A′B′C′ − ABC = 2d sin θ

Then, the so-called “Bragg relation” is obtained:

nλ = 2d sin θ

which is of paramount importance in radio-crystallography. It indicates that, when
an X-ray beam encounters a family of reticular planes, it is diffracted under an angle:

θ = arcsin
nλ

2d

Back to the hexagonal lattice, keeping in mind that the distance dhk� between
adjacent reticular (hk�) planes of the direct lattice is correlated with the norm of the
reciprocal lattice vector N∗

hkl by:

�N∗
hk� · �dhk� = 1

For any lattice, a simple calculation leads us to express analytically theBragg relation:

θhk� = arcsin

⎡
⎣nλ

2

√
4

3a2
(h2 + hk + k2) + �2

c2

⎤
⎦

X-ray diffraction angles lead to the determination of a and c.
Table 1.2 summarizes the values of c and ameasured forwurtzite semi-conductors

as well as values of the c/a ratio that should be compared with optical values. We
have also included information regarding hexagonal boron nitride and graphite. For
these two cases, one notices large values of c with respect to a, due to the loose
chemical bound along the six-fold symmetry axis. These compounds are layered
compounds. For boron nitride, the wurtzitic phase is metastable.
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Table 1.2 Values of the lattice parameters c and a together with the ratio c/a for various wurtzitic
semi-conductors

Material BN GaN InN AlN ZnS CdS ZnO hex-BN hex-C

c ( 10−10 m) 4.170 5.185 5.708 4.980 6.260 6.714 5.213 6.661 6.708
a (10−10 m) 2.550 3.188 3.539 3.110 3.822 4.136 3.253 2.504 2.461
c/a (X-ray) 1.635 1.627 1.613 1.610 1.638 1.623 1.602 2.66 2.725
c/a (optics) 1.64 1.62 1.61 1.6 1.64 1.62 1.60 – –

The two right-hand columns correspond to layer compounds, which are found under the crystalline-
layered compound hexagonal system; which differ fromwurtzite. Values of c/a obtained using both
X-rays and optics are given. The number of digits is compatible with the determination method

1.8 The Determination of Space Symmetry by X-ray Analysis

1.8.1 The First Brillouin Zone

German physicist Max Von Laüe has proposed to compute, at a recording distance
much larger than the size of the studied crystal, the amplitude of a wave elastically
scattered from �k to �k′:

A =
∑
uvw

exp
[
−i2π �ρuvw · ��k

]

The summation is extended over all the sites of the lattice generated by vectors
�a1, �a2 and �c:

�ρuvw = u�a1 + v�a2 + w�c

This summation reaches a maximum when all scattering centres are in phase, i.e.
when

�ρuvw · ��k = n(with n ∈ N)

This requires to simultaneously fulfill three equations:

�a1 · ��k = p

�a2 · ��k = q

and
�c · ��k = r

with
(p, q, r) ∈ N3

These three identities are the Laüe equations: they indicate that ��k is by definition
a vector of the reciprocal lattice.
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We now write:
��k2 = (�k′ − �k)2 = (�k − �G)2 − �k2

by introducing a vector of the reciprocal lattice �G.
Thanks to energy conservation in case of elastic scattering: ��k2 = 0 which leads

us to rewrite:

��k2 = (�k′ − �k)2 = (�k − �G)2 − �k2 = �k2 − 2�k �G + �G2 − �k2

This gives the important relation:

2�k · �G − �G2 = 0

We rewrite this equation:
2�k · �G = �G2

can be rearranged into:
�k · ( �G/2) = ( �G/2)2

It means that �k is a half-vector of the reciprocal lattice:

�k = �G/2

The locus of these �k’s is called the Wigner-Seitz cell or the first Brillouin zone of
the reciprocal lattice.

1.8.2 The Structure Factor

In the preceding sections, we have considered the interferences made by atoms form-
ing families of reticular planes. From the interferences patterns made by the atomic
arrangement and these atoms, a simple geometrical analysis led us to obtain the
Bragg relation, correlating a diffraction angle to the wavelength of the X-rays and
to the separation between adjacent reticular planes. The pattern obtained by inter-
cepting the diffracted beam with a recording system gives an accurate description
of the reciprocal lattice, which basic building block is interpreted in terms of the
Wigner-Seitz cell of the reciprocal lattice, often called the first Brillouin zone. Typ-
ical diffraction angles being measured for different reticular planes, one can, at the
end, reach the value of the lattice parameters. In the case of simple structures, an
extended version of the equation is:

A =
∑
uvw

exp
[
−i2π �ρuvw · ��k

]
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can be alternatively written:

A =
∫

n(ρ)exp
[
−i2π �ρ · ��k

]
dV

where n(�ρ) is the local electronic density.
Let us suppose that each cell contains several atoms (s for example); the nucleus

of the jth atom located at position:

�ρj = xj�a1 + yj�a2 + zj�c

relatively to the position of the node:

�ρuvw = u�a1 + v�a2 + w�c

(xi, yi, zi) ∈ [0, 1]3

Let the origin be �ρ000 so that we can write the total electronic density in the crystal
n(�ρ) as a double summation over all atomic positions in one cell, and through all
cells:

n(�ρ) =
∑
uvw

∑
j=1,s

cj(�ρ − �ρj − �ρuvw)

where cj is the electronic density associated with atom j. Then:

A
��k =

∑
uvw

∑
j=1,s

∫
cj �(ρ − �ρj − �ρuvw)exp

[
−i2π �ρ · ��k

]
dV

A
��k =

∑
uvw

∑
j=1,s

∫
cj(�ρ − �ρj − �ρuvw)exp

[
−i2π(�ρ − �ρj − �ρuvw)��k

]

exp
[
−i2π(�ρj + �ρuvw)��k

]
dV

This equation becomes:

A
��k =

∑
uvw

∑
j=1,s

Fjexp
[
−i2π(�ρj + �ρuvw) · ��k

]
dV

where quantities Fj are defined as:
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Fj =
∫

cj(�x)exp
[
−i2π�x��k

]

A
��k =

∑
uvw

exp
[
−i2π �ρuvw · ��k

] ∑
j=1,s

Fjexp
[
−i2π �ρj��k

]

We know, from above, that
∑

uvw exp
[
−i2π �ρuvw · ��k

]
doesnot vanish—if and

only if—��k is a vector �G of the reciprocal lattice.
Then, the quantity:

S �G =
∑
j=1,s

Fjexp
[
−i2π �ρj �G

]

is called structure factor.
Let

�Ghk� = h�a∗
1 + k�a∗

2 + ��c∗,

then:
Shk� =

∑
j

Fjexp
[−i2π(hxj + kyj + �zj)

]

This equation leads to selection rules on (h, k and �), depending on the relative
positions of atoms within the cell, when the argument of the complex exponential
vanishes. Beyond the scope of point group symmetry, from the relative positions of
similar atoms in the cell, are defined complementary symmetry operations within
the cell that give access to the space group of the crystal. There are 32 point groups
and 230 space groups. Studying them is beyond the scope of this monography.

1.8.3 The Perfect Wurtzite Structure

The wurtzite structure is more complex than this: as demonstrated by W.L. Bragg in
1914, it consists of two interpenetrating Hexagonal Closed Packed sub-lattices, one
for each atomic species, offset along the c axis by 5/8 of the cell height. The atomic
positions in the unit cell are (0, 0, 0) and (2/3, 1/3, 1/2) for the anions, and (0, 0, 3/8)
and (2/3, 1/3, 7/8) for the cations and the positions of the atoms in a hexagonal cell
are indicated in Fig. 1.11.

It is worthwhile noticing that the structure factor is the sum of contributions from
the cations and from the anions:

Shk� =
(
1 + exp

[
−iπ

2h + 4k + 3�

3

])(
Fcation + Fanionexp

[
−i

3π�

4

])
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Fig. 1.11 Plot of the positions
of the atoms in a hexagonal
cell of a wurtzite crystal

We know from the properties of the exponential function that:

1 + exp

[
−iπ

2h + 4k + 3�

3

]

= 2 cosπ
2h + 4k + 3�

6
(cosπ

2h + 4k + 3�

6
− i sin π

2h + 4k + 3�

6
)

cosπ
2h + 4k + 3�

6
= 0

when

π
2h + 4k + 3�

6
= p

π

2
with p ∈ Z

This equation indicates that extinguished radiations correspond to (h, k,−(h +
k), �) reticular planes for which 2h + 4k + 3� = 3p, with p ∈ Z

This equation is called a selection rule.

On Fig. 1.12 is reported the diffraction pattern recorded by shining a powder
of indium nitride with the CuKα X-ray radiation (λ = 0.15 nm). The powder is
constituted with micro-crystals randomly oriented so that artefact selection rules
due to specific configuration of the crystals in the context of the geometry of the
diffraction experiment can be disregarded.

The intensity of the diffraction pattern corresponding to a given set of Miller
indices {h, k, �} is given by the square of the diffraction amplitude, ‖Ahk�‖2.

Identification of the (hk�) sets that lead to a given peak in the context of an overall
consistency is a tricky problem. Signatures of specific planes are at last identified,
indicating the existence of selection rules. The cell parameters are a0 = 3.5390Å and
c0 = 5.7083 Å.We note that these values are given with a large number of digits, this
is not systematic, and have to be correlated with the experiment’s temperature (here
room temperature), and with doping since the presence of foreign atoms modifies
the lattice constants. The corresponding space group indicating the site symmetry
for the wurtzite is No. 186 (in International Union of Crystallography classification)
or P63mc in Hermann-Mauguin notation or C3

6V in Schoenflies notation.
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Fig. 1.12 Powder diffraction pattern of indium nitride recorded at room temperature using the
CuKα radiation (λ = 0.15 nm)

1.8.4 The Internal Displacement Parameter

The internal displacement parameter u is defined as the anion-cation bond length that
is also the nearest-neighbour distance in the crystal divided by the c lattice parameter.
The interatomic distances are expressed versus this parameter.

In an ideal wurtzite structure represented by four touching hard spheres, the values

of the axial ratio and the internal parameter are c/a =
√

8
3 = 1.633 and u = 3/8 =

0.375, respectively. In the hexagonal basis, the atomic positions in the unit cell are
(0, 0, 0) and (2/3, 1/3, 1/2) for the anions, (0, 0, u) and (2/3, 1/3, (u+1/2)) for the
cations.

In Cartesian coordinates, the crystallographic vectors of wurtzite are:

⎡
⎢⎣

�a1
�a2
�c

⎤
⎥⎦ = a

⎡
⎢⎢⎢⎣

√
3

2
−1

2
0

0 1 0

0 0 c
a

⎤
⎥⎥⎥⎦ ·
⎡
⎢⎣

�x
�y
�z

⎤
⎥⎦ (1.7)

The atomic positions are (0, 0, 0), and a( 1√
3
, 0, c

2a ) for anions.

For cations, positions are a( 1√
3
, 0, ( 12 − u) c

a ), and a(0, 0, (1 − u) c
a ).

The nearest-neighbour bond length along the c direction is:

b = cu

and off-axis nearest-neighbour bond length is, as indicated in Fig. 1.13:
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Fig. 1.13 Relative positions
of the atoms in the wurtzite
structure, directions to nearest
neighbours. The c axis is
vertical

Table 1.3 The evolution of
a, c/a and u for wurtzitic
III-nitrides

Material GaN InN AlN

a (10−10 m) 3.1879 3.5390 3.110
c/a 1.626 1.613 1.610
u 0.377 0.379 0.382

b1 =
√

a2

3
+ (1 − u2)c2

The four nearest neighbours of each atom form a trigonal pyramid.
We remark that there are three types of second-nearest neighbours designated as:

b′
1 = (1 − u)c

b′
2 =

√
a2 + u2c2

and

b′
3 =

√
a2

3
+ (

1

2
− u)2c2

In many wurtzitic semi-conductors such as nitrides, experimentally observed c/
ratios and values of internal displacement parameter u differ from the ideal values.
These discrepancies are due to atoms being real quantum objects, departing more or
less from the hard sphere description, either in vacuum or when chemically bonded
to other atoms. It should be pointed out that a strong correlation exists between the
c/a ratio and the u parameter so that when c/a decreases, u increases in a manner to
keep the four tetrahedral distances nearly constant through a distortion of tetrahedral
angles. Table 1.3 illustrates the evolution of c/a and u for wurtzitic III-nitrides.
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Fig. 1.14 Relative ordering of the atomic planes in the wurtzite structure along the c direction

Table 1.4 The evolution of spontaneous polarization Psp, ratio c/a and internal displacement
parameter u for wurtzitic semi-conductors

Material GaN InN AlN ZnO BeO

Psp (Cm−2) −0.0339 −0.0413 −0.0898 −0.057 −0.045
c/a 1.626 1.613 1.610 1.60 1.622
u 0.377 0.379 0.382 0.382 0.378

1.9 The Spontaneous Polarization Along the c Axis

In Fig. 1.14, we present a sketch of the atomic planes along the six-fold symmetry
axis, which consists of successive stacking of planes that only contain cations or
anions, the so-called ABAB stacking.

The important point to outline from the figure is the non-overlap of the center of
gravity of reticular planes of cations (positive charges) and anions (negative charges)
that produces an electronic dipole along the c direction of the crystal. There is a
spontaneous polarization internal to the wurtzitic crystal. This quantity is not easy
to measure in bulk crystals, due to the polar nature of the surface. This surface eas-
ily traps impurities so that the total polarization drop through the crystal vanishes.
Impurities, topological defects may create electric fields and compensate this quan-
tity too. This quantity has been computed by several group of theorists, using very
sophisticated approaches in the context of the quantum mechanics description of the
chemical bonds. These so-called ab-nitio calculations have furnished some numer-
ical values for these quantities. It can be seen in Table 1.4 that the spontaneous
polarization Psp in III-Ns (resp. II-Os) has a negative value. The conventional [0001]
direction taken as positive goes from the group III- (respectively group II-) element
atom to the group V- (respectively group VI-) element and opposes to Psp. In nitrides
for instance, the negative value indicates that the electric dipole is oriented from the
N atom towards the group III-element (Al, Ga, or In) one.
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Fig. 1.15 relative orientation
of the atomic stackings and
non equivalence of the (0001)
and (0001̄) surface. By con-
vention, the (0001) plane only
contains metallic atoms

It is worthwhile noticing, from Fig. 1.15, that when cutting the [0001] bonds
above a group III- (respectively group II-) element, we define the (0001) surface only
composedwithmetallic atoms. If cutting the [0001] bonds below the reticular plane of
group V- (respectively group VI-) element, the (0, 0, 0, 1̄) surface contains now non
metallic atoms. The chemical composition of the (0, 0, 0, 1) surface differs from that
of the (0, 0, 0, 1̄) surface. These two surfaces are not equivalent. One can anticipate
that they will behave very differently, when studying, for instance, their responses
to chemical aggressions. Let’s define the metallic surface as the (0001). One can
easily demonstrate that the (3, 0, 3̄, 1̄) surface only contains metallic atoms whereas
(3, 0, 3̄, 1) does not contain any. In contrast, some surfaces such as (1, 1, 2̄, 2) contain
both kinds of atoms.

There are no real correlations between the values of Psp and the c/a ratio, the
internal displacement parameter. This indicates that Psp is a real effect, deriving from
the quantum nature of the chemical bonds, that depends on the specific stacking of
the different atoms. The important point to outline here is that, thanks to the quantum
origin of the value spontaneous polarization, its value in an alloy like In1−xGaxN is
not obtained by averaging the spontaneous polarization in both binaries, since local
modifications of the crystal composition due to chemical disorder in the cation lattice
may lead to significant departure of the real value from the predicted one.

In the case of nitride reticular planes having arbitrary (hk�) orientations, according
to the relation that connects the ( �U, �V , �W) vectors and the international basis set,
the spontaneous polarization has components in the �V and �W directions only. These
components are obtained by simple matrix algebra as follows:

⎡
⎢⎣

(Psp)U

(Psp)V

(Psp)W

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−
√
3

2
Ak

1

2
A(2h + k) 0

−
√
3

2
Aa�Bac(2h + k) −3

2
Aa�Back 2c

Bac

A
AcBac(2h + k)

√
3AcBack

√
3�aBac

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

0

0

Psp

⎤
⎥⎦ (1.8)
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Fig. 1.16 Basal stacking faults along the [0001] direction. Courtesy Gordon Schmidt, Frank
Bertram and Juergen Christen, University Otto von Gericke of Magdeburg

1.10 Defects in the Lattice

There are sometimes some departures from the perfect crystal arrangements. Such
departures constitutes defects which may have deleterious influence on optical and
transport properties. Among such defects are basal stacking faults. In Fig. 1.16 are
represented basal stacking faults which are some of the possible lattice defects.
Studying defects is out of the scope of this book.

1.11 Piezoelectric Effects in Wurtzitic Semi-conductors

Asdiscussed in the preceding section, the non-overlap of positive and negative atomic
charges produces a polarization field along the six-fold symmetry axis of wurtzitic
semi-conductors. This effect is sometimes called the pyroelectric effect because its
magnitude may change when temperature of the crystal changes, leading to change
of the c/a ratio for instance. Among the thirty-two possible point groups required
to describe the orientational symmetries for bulk crystals, only ten are pyro-electric
crystals, i.e. they exhibit a spontaneous polarisation field of given orientation with
respect to the crystallographic axes. These point groups are in general moderate
symmetry sub-groups of the seven groups that describe the full symmetry of the seven
crystallographic systems. Among the twenty-one non centro-symmetric groups, ten
do not exhibit inversion symmetry with respect to a center point of the cell. In
addition, they also possess a complementary property that does not exist in the eleven
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Table 1.5 Piezoelectric and pyroelectric properties of the 32 point groups

32 symmetry classes

12 non piezo-electric classes 20 piezo-electric classes
O and the 11 centro-symmetric classes: 10 non pyroelectric or non polar classes:

O, Ci, C2h, D2h, D4h, C3i, D3d , C6h, D2, D2d , D3, D4, S4, D6, C3h, D3h, T , Td

D6h, Th, Oh 10 pyroelectric or polar classes:
C1, C2, C3, C4, C6, Cs, C2v, C3v, C4v, C6v

centro-symmetric groups and groupO—this one, due to redunding symmetry effects:
upon application of a strain field, a complementary polarization may be induced in
the crystal. This strain-induced polarization is called piezo-electric polarization and a
crystal behaving accordingly is named piezo-electric. Symmetry considerations and
utilization of group representations have enabled researchers to determine whether
a crystal is piezo-electric, pyro-electric, both or none. The results are compiled in
Table 1.5. Some cubic crystals like the zinc-blende semi-conductors (Td symmetry)
are piezo-electric crystals like rhomboedral quartz (D3 symmetry).Quartz is not pyro-
electric whilst the most symmetrical wurtzite (C6v symmetry) exhibits spontaneous
and may be piezo-electrically polarized. The impossibility to tune the spontaneous
polarization in wurtzite crystals—we remind that it is oriented along the six-fold
symmetry axis—is a rigid situation, compensated by a flexible situation regarding
the piezo electric one. The orientation, magnitude and sign of the latter can be tuned
almost at will (Table 1.6).

Given a strain field described by a two-dimensional strain tensor which compo-
nents are εxx, εyy, εzz, εxz, εxz and εxy the components of the piezo electric polarization
are given by:

⎡
⎣

Px

Py

Pz

⎤
⎦ =

⎡
⎣

0 0 0 0 2e15 0
0 0 0 2e15 0 0

e13 e13 e33 0 0 0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

εxx

εyy

εzz

εyz

εxz

εxy

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.9)

where quantities eij are the components of the piezo-electric tensor.
In the case of nitride reticular planes having arbitrary (h, k, �) orientations, accord-

ing to the relation that connects the ( �U, �V , �W) vectors and the international basis set,
the piezo-electric polarization has components in the �U, �V and �W directions.

These components are obtained by simple matrix algebra as follows:

⎡
⎢⎣

(Ppz)U

(Ppz)V

(Ppz)W

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−
√
3

2
Ak

1

2
A(2h + k) 0

−
√
3

2
Aa�Bac(2h + k) −3

2
Aa�Back 2c

Bac

A
AcBac(2h + k)

√
3AcBack

√
3�aBac

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

Px

Py

Pz

⎤
⎥⎦ (1.10)
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Table 1.6 The components
of the piezo electric tensor for
wurtzitic semi-conductors

Material GaN InN AlN

e13 (Cm−2) −0.338 −0.413 −0.533
e33 (Cm−2) −0.372 −0.454 −0.623
e15 (Cm−2) −0.167 −0.112 −0.351

Fig. 1.17 relative orientation
of the components of the stress
tensor

1.12 Stresses and Strains

1.12.1 The Stress Tensor

Let us consider an elastic solid at the equilibrium with the directions orthogonal to
its facets parallel to the �x, �y and �z directions that we propose to represent as �x1, �x2
and �x3 respectively. It is well known from continuous media mechanics that side i of
facets located at the origin O, which elementary surface is dsi = dxjdxk experiences
an elastic force:

d �Fi = �σidsi = �σidxjdxk

Here, the (i, j, k) triplet designs a circular permutation through triplet (1, 2, 3).
The components of such a force along the � direction is:

dFi� = σi�dxjdxk

as shown on Fig. 1.17.
We obtain 3 equations d �Fi = �σidsi = �σidxjdxk and 9 equations dFi� = σi�dxjdxk .
The scalar quantities σi� are the components of the stress at the origin O.
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|σi�| � |σ0
i�| + |∂σ0

i�|
∂xi

dxi

In the context of homogeneous stress:

|σi�| � |σ0
i�| + |∂σ0

i�|
∂xi

dxi = |σ0
i�|

One can further demonstrate that the scalar quantities σi� are the components of a
rank-two symmetric tensor called the stress tensor that we write as follows:

[ ��σ
]

=
⎡
⎣

σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

⎤
⎦ (1.11)

From the technical point of view, it is very convenient to write the stress tensor:

[ ��σ
]

=
⎡
⎣

σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

⎤
⎦ =

⎡
⎣

σ1 σ6 σ5
σ6 σ2 σ4
σ5 σ4 σ3

⎤
⎦ (1.12)

where couples of indices 11, 22, 33, 23, 13, and 12 are one by one represented by
one index running from 1 to 6.

Alternatively, the stress tensor may be written under the useful form below:

[ ��σ
]

=
⎡
⎣

σ1 σ6 σ5
σ6 σ2 σ4
σ5 σ4 σ3

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1
σ2
σ3
σ4
σ5
σ6

⎤
⎥⎥⎥⎥⎥⎥⎦

. (1.13)

1.12.2 The Strain Tensor

Let us consider two close points A and B of a solid at the equilibrium in the absence
of any mechanical perturbation. We write their coordinates relatively to the origin
O, in terms of the orthogonal vectors �x, �y and �z as follows:

[−→
OA
]

=
⎡
⎣

x1
x2
x3

⎤
⎦ and

[−→
OB
]

=
⎡
⎣

x1 + dx1
x2 + dx2
x3 + dx3

⎤
⎦ (1.14)
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That gives:
[−→

AB
]

= [ �ds
] =

⎡
⎣

dx1
dx2
dx3

⎤
⎦ (1.15)

Under the influence of the stress, A shifts to A′ and B shifts to B′ as follows

[−→
AA′

]
= [ �u ] =

⎡
⎣

u1
u2
u3

⎤
⎦ and

[−→
BB′

]
= [ �u + d�u ] =

⎡
⎣

u1 + du1
u2 + du2
u3 + du3

⎤
⎦ (1.16)

The coordinates of A′ and B′ are:

[−→
OA′

]
=
⎡
⎣

x1 + u1
x2 + u2
x3 + u3

⎤
⎦ (1.17)

and
[−→

OB′
]

=
⎡
⎣

u1 + du1 + x1 + dx1
u2 + du2 + x2 + dx2
u3 + du3 + x3 + dx3

⎤
⎦ (1.18)

Then
−→
ds is transformed into

−→
ds ′

[−−→
A′B′

]
=
[−→

ds ′
]

=
⎡
⎣

du1 + dx1
du2 + dx2
du3 + dx3

⎤
⎦ (1.19)

We now write for every component i:

dui = ∂ui

∂x1
dx1 + ∂ui

∂x2
dx2 + ∂ui

∂x3
dx3

or, by introducing a (3 × 3) matrix [β] which components are βij = ∂ui
∂xj

:

[−→
du
]

= [β ] . [ �dx
]

(1.20)

Here, [β] is the matrix representation of the strain tensor ��β.
[β] is the sum of an antisymmetric matrix [
] plus a symmetric one [ε].

⎡
⎣

β11 β12 β13
β21 β22 β23
β31 β32 β13

⎤
⎦ =

⎡
⎣

0 
12 
13
−
12 0 
23
−
13 −
23 0

⎤
⎦+

⎡
⎣

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε13

⎤
⎦ (1.21)
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Fig. 1.18 Sketch of a stretching under the effect of the diagonal components of the strain tensor

Fig. 1.19 Sketch of a shear (right) acting on an unstrained sample (left) under the effect of the
off-diagonal components of the strain tensor

where


ij = 1

2

(
∂ui

∂xj
− ∂uj

∂xi

)

and

εij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)

One can demonstrate that the antisymmetric tensor has the symmetry of a pseudo-
vector which can be represented by a three-component axial vector of components

23, 
31, and 
12. This contribution shall be disregarded here.

The symmetric tensor represents the variation of the lengths between the different
points of the solid.

The diagonal elements εii are the stretching components of the strain field.
On Fig. 1.18 is illustrated a typical stretching of a barrel: the length is increased

along one direction, reduced along the remaining two. On Fig. 1.19 is illustrated a
typical shear of a barrel:

The off-diagonal elements εij with i �= j are the shear components of the strain
field. The symmetric tensor represents the variation of the lengths between the dif-
ferent points of the solid.

One may have to represent the symmetrical strain tensor as a six-component
vector:
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⎡
⎢⎢⎢⎢⎢⎢⎣

ε1
ε2
ε3
ε4
ε5
ε6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε33
2ε23
2ε31
2ε12

⎤
⎥⎥⎥⎥⎥⎥⎦

. (1.22)

1.12.3 The Stiffness and Compliance Tensors

Hooke’s law is a well known proportionality relation that correlates the deformation
experienced by a solid with the stress it is submitted to. In our case, a tensorial
relation connects the rank-two strain tensor with the rank-two stress one. It writes:

[��ε
]

=
[ ��S
]

·
[ ��σ
]

(1.23)

where ��S is the compliance tensor, a rank-four tensor.
Reversely, one can write:

[ ��σ
]

=
[ ��C
]

=
[��ε
]

(1.24)

where ��C is the stiffness tensor, a rank-four tensor.

Both ��S and ��C have 34 = 81 independent components—all are scalar numbers—
that are represented by Sijkl or Cijkl with each of the four indices running from 1 to 3.

Fortunately, the number of these components can be reduced to 36, thanks to
symmetry considerations.

Components of both ��S and ��C are governed by the same symmetry rules.

Let us here take ��C for the sake of the illustration.
One can demonstrate that Cijkl = Cjikl = Cijlk = Cklij.
Then, it is possible to represent any of these rank-four tensors using a (6 × 6)

matrix.
We remind the reader that both the stress and strain tensors can be represented by

6-component vectors.
The relationships between the indices of the six-component vectors and those of

the (3 × 3) symmetrical tensors are the following: the indices of the six-component
vectors run from 1 to 6 when where couples of indices are 11, 22, 33, 23, 13, and 12
respectively.

The components of the stress tensor are: σm = σij.
The components of the strain tensor and of its representative vector are, in addition,

connected by a complementary relation:
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εm = f (m)εij

with:

f (m) = 1 when m ∈ {1, 2, 3}
f (m) = 2 when m ∈ {4, 5, 6}

Here, we have to write the following relationships:

Cmn = g(m, n)Cijkl

with:

g(m, n) = 1 when (m, n) ∈ ({1, 2, 3}, {1, 2, 3})
g(m, n) = 2 when (m, n) ∈ {(1, 2, 3}, {4, 5, 6}) or when (m, n) ∈ ({4, 5, 6}, {1, 2, 3})
g(m, n) = 4 when (m, n) ∈ ({4, 5, 6}, {4, 5, 6})

Then, the compliance and stiffness rank-four tensors can be represented using
(6 × 6) matrices of the kind below:

[ ��S
]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 S14 S15 S16
S12 S22 S23 S24 S25 S26
S13 S23 S33 S34 S35 S36
S14 S24 S34 S44 S45 S46
S15 S25 S35 S45 S55 S56
S16 S26 S36 S46 S56 S66

⎤
⎥⎥⎥⎥⎥⎥⎦

;
[ ��C
]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 SC12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.25)

The relations between the strain and the stress now write:

[ �ε ] =
[ ��S
]

· [ �σ ] and
[ �σ ] =

[ ��C
]

· [ �ε ] (1.26)

We wish here to insist on the fact that these objects are representations in the Voigt’s
notation of tensors of the three-dimensional space and that we can not applicate
to them classical algebraic calculations, typical of Euclidian spaces like matrix
equations for rotation of axes. In such cases, one has to use relations for tensors.

1.12.4 The Stiffness and Compliance Tensors in Wurtzitic
Semi-conductors

It may be demonstrated that, in line with the six-fold symmetry along the �z ( �x3 axis),
directions �x1 and �x3 are equivalent. Then, the compliance and stiffness tensors take
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the simplified forms given below:

[ ��S
]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 0 0 0
S12 S11 S13 0 0 0
S13 S13 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 S66

⎤
⎥⎥⎥⎥⎥⎥⎦

;
[ ��C
]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.27)

Adding the complementary equation:

S66 = 2(S11 − S12)

C66 = 1

2
(C11 − C12)

Then, the wurtzite symmetry prescripts five components to be different and inde-
pendent for stiffness and compliance tensors.

We would like to indicate that:

[ �ε ] =
[ ��S
]

·
[ ��C
]

· [ �ε ] (1.28)

The matrix product of the compliance and stiffness tensors gives the identity
(6 × 6) matrix: [ ��S

]
·
[ ��C
]

= [ 1 ] (1.29)

The Cijs can be expressed as functions of the Sijs and vice versa:

S11 = C33C11 − C2
13

(C11 − C12)
[
C33(C11 + C12) − 2C2

13)
]

S12 = C2
13

(C11 − C12)
[
C33(C11 + C12) − 2C2

13)
]

S13 = − C13

C33(C11 + C12) − 2C2
13)

S33 = C11 + C12

C33(C11 + C12) − 2C2
13)

S44 = 1

C44

The recommended values of the stiffness coefficients of nitride semi-conductors
are given in Table 1.7.
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Table 1.7 Values of the
stiffness coefficients of nitride
semi-conductors (at room
temperature)

Material GaN InN AlN

C11 (GPa) 390 ± 15 190 410 ± 10
C12 (GPa) 145 ± 20 104 149 ± 10
C13 (GPa) 106 ± 20 121 99 ± 4
C33 (GPa) 398 ± 20 182 389 ± 10
C44 (GPa) 105 ± 10 100 125 ± 5

1.12.5 The Energy of a Strained Crystal

Let us consider an unstrained crystal, initially shaped as a unit cube, experiencing
a small homogeneous strain field of components represented by εi in the context of
matrix notation.

When the strain changes from εi to εi + dεi, one can demonstrate that the work
due to the stress components σi acting on the cube faces is:

dW =
∑

i

σidεi

that we re-write, using Einstein’s notation to get rid of the summation symbol on
index repeated twice:

dW = σidεi

This can be rearranged into:

dW = Cijεjdεi

still using Einstein’s notation.
After integration, taking into account Cji = Cij, one arrives at:

W = 1

2
Cijεjεi

W has the dimension of a pressure (GPa) and represents the strain energy per unit
volume of the crystal.

1.13 Basic Elements of Group Theory

1.13.1 The Concept of Algebraic Groups

– A group G is a collection of elements {A, B, C, . . .}which are inter-related accord-
ing to certain rules.
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Table 1.8 Multiplication
table of group G

G E A B . . . U V

E E A B . . . U V
A A AA AB . . . AU AV
B B BA BB . . . BU BV
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

U U UA UB . . . UU UV
V V VA VB . . . VU VV

– The product of two elements of the group must be an element of the group:
∀(A, B) ∈ G × G; AB = C, with C ∈ G. When AB = BA the group is called
Abelian.

There exists one identity element E:
E ∈ G and ∀(A) ∈ G; AE = EA = A. E—comes from German word Einheit—is
called identity element.

– The associative law of multiplication must hold:

∀(A, B, C) ∈ G × G × G; (AB)C = A(BC)

.– Any element A of a group must have a reciprocal element. This reciprocal element
may be noted A−1.

∀(A) ∈ G, ∃B ∈ G so that AB = BA = E.

– The reciprocal of a product of two or more elements is equal to the product of the
reciprocals in reverse order.

(ABC..XY)−1 = Y−1X−1B−1A−1

Groups may have a finite number of elements (they are called finite groups) or
unlimited numbers of elements (infinite groups). The number of elements of a group,
generally represented G is called the order of the group.

– The multiplication table of the symmetry elements (Table 1.8) is a table of h rows
and h columns. At the intersection of column X and row Y is the product XY.
Each row and each column in the group multiplication table lists each of the group
elements once and only once: this is the rearrangement theorem. Two rows may
not be identical, nor may be two columns. Thus, each row and each column is a
rearranged list of the group elements.
When groups are Abelians, the multiplication table is symmetric: AB = BA.

– A group has subgroups, labelled H, which are collections of elements of G that
are themselves forming a group. E belongs to all subgroups of G. E alone is a
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subgroup of G. Let h be the order of H. Then, as prescripted by the theorem of
Lagrange, g/h is an integer number.

– A group may be separated into various smaller sets of elements called classes.
Let A and X be two elements of a group G and B a third element of G, so that
B = X−1AX. B, the similarity transform of A by X, is the conjugate of A. Three
important properties may be derived from this definition: each element is itself-
conjugate; and ifA is conjugate ofB, thenB is conjugate ofA; and ifA is conjugated
of B and C, then B and C are conjugate with each other. A complete set of elements
conjugate one to another is called a class of the group.
The orders of classesmust be integral factors of the order of the group. The identity
constitutes a class. In an Abelian group, each element constitutes its own class.
Classes are symmetry operations of the same kind.

– Two groups G and G ′ are isomorphic if there exists a function that sets up a one-
to-one correspondence between the elements of the groups in a way that respects
the given group operations. Such a function is called an isomorphism. From the
standpoint of group theory, isomorphic groups have the same properties (same
order, same multiplication table,…) and need not be distinguished.
An isomorphism from a group (G, ·) to itself is called an automorphism of this
group. Thus, it is a bijection f : G → G such that f(A) · f(B) = f(A ·B), ∀(A, B) ∈
G × G.
An automorphism always maps the identity to itself. The image under an auto-
morphism of a conjugacy class is always a conjugacy class (the same or another).
The image of an element has the same order as that element.

– Besides the one-to-one correspondence between two groups, many-to-one corre-
spondence may exist. The groups are said to be homomorphic. The isomorphism
preserves the structure of the original group, but a homomorphism causes some
of the structure of the original group to be lost. Both properties are reflected in
the behaviour of multiplication tables. The orders of the two homomorphic groups
may be different.

– The direct product of groups G and H which orders are g and h respectively is a
group of order g · h, noted G × H. Its elements are, by construction, the products
of all the elements of G by all the elements of H. If G has p classes and H has p′
classes, then G ×H has p.p′ classes. A condition for a group to be a direct product
of two groups is that neither its order nor its number of classes are prime numbers.

1.13.2 Representations of Finite Groups by Matrices

Let us consider a n-dimensional vectorial space En with its eigenvectors { �en}.
Let X =∑j Xj �ej ≡ Xj �ej (with Einstein’s notation for sommation) a vector of En.
Let the operator A so that Y = AX.
This may be written Yk = AkjXj.
The (n ×n) matrix with elements Akj is a representation of operator A in the basis

{ �en}. k (resp. j) is the column (resp. row) index.
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The trace of the matrix representative of operator A −∑k Akk—is an invariant
under any basis transformation. It is called the character of matrix A.

The full set of the matrices representating in the basis { �en} all the operators A of a
n-dimensional group G forms a group and forms a n-dimensional representation of
the operators A of the n-dimensional group G. Any representation of a finite group
G is equivalent to a unitary representation of this group (all matrices are unitary
matrices).

Note:When twooperatorsA andB are represented bymatricesMA andMB respec-
tively: A �= B � MA �= MB. Isomorphisms and homomorphisms may exist between
G and the group of matrices M representing the operators of G. Homomorphisms
often occurs: several operators of G are represented by the same matrix.

The abstract basis of irreducible representations is of paramount importance
for representing symmetries. Let �ν(A) and �μ(A) be two matrix representations of
a group G. These representations are of dimensions ν and μ respectively. If for each
element of the group we define a matrix of dimension ν + μ as:

�(A) = �ν(A) 0
0 �μ(A)

= �ν(A) ⊕ �μ(A)

The matrices � form a representation of G. This representation leads to block-
diagonal matrices. It is said to be reducible; it is the direct sum of representations �ν

and �μ. The summation differs from a classical summation; it is a summation over
two different vectorial spaces εν and εμ.

� = �ν

⊕
�ν and ε = εν

⋃
εμ.

A representation with a block-diagonal shape is a reducible representation. Once
the ultimate sizes of the blocks are reached, i.e. when no similarity operation is sus-
ceptible to reduce the sizes of such blocks, the representation is named irreducible.

There is an infinite number of possible representations for a group, just like an
idea may be formulated using as many languages as one can invent. The number of
irreducible representations of a group is limited: it is equal to the number of classes
of the group. The number of irreducible representations of an Abelian group is equal
to the number of its elements.

Let us compare the full set of irreducible representations to the finite number
of Chinese ideograms. Any language spoken by a person can be written with these
Chinese ideograms. An assembly of people speaking different tongues can hardly
communicate. But writing their sayings using the Chinese ideograms allows anyone
knowing Chinese ideograms to understand every word. Since it is possible to asso-
ciate many sounds to a Chinese ideogram, each of the irreducible representations
has an infinite number of possible basis vectors. Any representation can be expanded
along the set of irreducible representations by manipulating with an ad-hoc algebra
the representation characters to reduce with the characters of the irreducible rep-
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Table 1.9 Table of
characters of group G

G C1 C2 C3 C4

�1 χ11 χ12 χ13 χ14

�2 χ21 χ22 χ23 χ24

�3 χ31 χ32 χ33 χ34

�4 χ14 χ24 χ34 χ34

resentations. We will develop this quantitatively. To achieve that, it is necessary to
construct the table of character of the group.

1.13.3 Character Tables and Irreducible Representations

The table of characters is a table with as many rows as irreducible representations
( �is), and as many columns as classes (Cjs). Let n be this number, it is a n × n table
sketched in Table 1.9 when n = 4.

Quantity χij is the character of matrices representing elements of class Cj in
irreducible representation �i. these quantities may be complex numbers.

Trick: a quick method to calculate the character of a matrix representing an oper-
ator A in a given representation is to consider the number of basis vectors unchanged
under A (character 1) diminished from the number of basis vectors transformed into
their opposite under A (character −1). The vectors transformed differently under A
have a vanishing contribution to the characters of the representation.

There are a few orthogonality relations that help to construct the table of irre-
ducible representations: ∑

A

χj(A)χ∗
i (A) = gδij

Let class CA of A have NA elements. Then, the equation above becomes:

∑
CA

NAχj(CA)χ∗
i (CA) = gδij

∑
CA

NAχj(CA)χ∗
i (CB) = gδAB

– Given an irreducible representation, the sum of the squared modulii of characters
through all operators A is the order of the group:

∑
A

|χj(A)|2 = g
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– The sum of the squared modulii of characters of the identity through all irreducible
representations (�’s) is the order of the group:

∑
�

|χj1|2 = g

Since χj1 is the dimension nj of irreducible representation �j, the sum of the squared
dimensions of the irreducible representations is the order of the group.

∑
�

|nj|2 = g

This permits us to decompose a reducible representation � into irreducible represen-
tations. Starting from:

� =
∑

i

ai�i

and
χ(�) =

∑
i

aiχ(�i)

The number of times ai the representation �i appears in the decomposition of � is:

ai = 1/g
∑

A

χ�(A)χ
∗
i(A)

ai = 1/g
∑
CA

NAχ�(CA)χ∗
i (CA)

The direct product of two representations is a representation which has for each
class and each irreducible representation a character with value the product of the
characters for this class and this irrediucible representation. It is sometimes an irre-
ducible representation but not always. The notation is: � = �1

⊗
�2. The multiplica-

tion table is a (n × n) table with n rows and n columns. At the intersection of ith row
and jth column is the product �i

⊗
�j expressed as an expansion of irreducible rep-

resentations. An example is sketched below (Table 1.10) in case of four irreducible
representations.

It is important to note there are relationships between wave functions of the
Schrödinger equation and irreducible representations.

One can demonstrate that the non-degenerate solutions of the Schrödinger equa-
tion are basis functions of unidimensional irreducible representations of the group
that describe the system under examination.

A k-degenerate wave function generates a representation of dimension k which
can be irreducible or reducible.
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Table 1.10 Multiplication table of the irreducible representations of group G

Multiplication table �1 �2 �3 �4

�1 �1 �2 �3 �4

�2 �2 �2
⊗

�2 �2
⊗

�3 �2
⊗

�4

�3 �3 �3
⊗

�2 �3
⊗

�3 �3
⊗

�4

�4 �4 �4
⊗

�2 �4
⊗

�3 �4
⊗

�4

Any wave function can be decomposed as a linear combination of irreducible
representations of the group of the Schrödinger equation:

�(�r) =
∑

P

∑
n=1,np

�P
n (�r)

where �P
n (�r) is the nth basis function of state P of irreducible representation �P,

of degeneracy np. To go further, if the calculation of symetrized wave functions is
necessary, one has to determine thematrix that represents the action of each symmetry
operator in the basis set chosen to treat the problem one wants to solve. Then, one
applicates projection operators to the basis set in order to obtain a new basis which
basis functions are those of the irreducible representations.

A projector is an operator which applicated to an arbitrary function f transforms
it specifically. To each irreducible representation �μ of dimension nμ can associated
a projector Pμ which is built as an appropriate linear combination of the symmetry
operations A. Group theory permits to demonstrate that operator Pμ is defined as a
summation through all symmetry operations weighted by the character of the class
this operation has in irreducible representation �μ:

Pμ =
∑

A

χμ(A)A

Then:
Pμf ν

i = 0 when μ �= ν,∀i, i = 1, . . . , nν

and
Pμf μ

i = g/nμf μ when μ = ν.

1.13.4 The Point Group C6v

Each of the following are symmetry elements of group C6v and constitute a class:

– The identity.
– Two six-fold symmetry axis parallel to the [001] direction: one corresponds to a
rotation of 2π/6 and the second to a rotation of −2π/6 (or 10π/6).
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Fig. 1.20 Geometrical rep-
resentation of some of the
reflection planes of C6v rela-
tively to the hexagon

– A rotation of 2π/3 around the [001] direction rotation of −2π/3 (or 4π/3) around
the [001] direction.

– A rotation of π around the [001] direction rotation.
– Three reflection planes making π/3 with each other. These planes are generated
by (�y, �z) and are noted σd .

– Three reflection planes making π/3 with each other, orthogonal to the precedent
three. These planes are generated by (�x, �z) and are noted σv. The geometrical
representation of these reflection planes relatively to the hexagon is shown in
Fig. 1.20.

1.13.5 Application of Group Theory to the Calculation
of Integrals

Let integral: ∫
�∗

αFβ�γdτ

where �α and �γ are wave vectors corresponding to eigenvalues Eα and Eγ of a
quantum problem. The quantity Fβ is an operator, the elementary volume of the
integration space is dτ .

Let us suppose that the relationship between the quantifies (�α, �γ , Fβ) and
irreducible representations (�∗

α, �γ , �β) has been established.
The product �∗

αFβ�γ transforms like �∗
α

⊗
�γ
⊗

�β

If, using an appropriate basis transformation, we are able to reduce the product
representation into:

�∗
α

⊗
�γ

⊗
�β = �δ

⊕
�μ

⊕
�ν

⊕
. . .
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Then, the product �∗
αFβ�γ = ϕδ + ϕμ + ϕν + · · ·

where ϕδ is a function belonging to the functional space which basis generates
irreducible representation �δ .

The use of projectors permits us to establish that, if �δ does not appear in the
decomposition of �∗

α

⊗
�γ
⊗

�β , there is no term ϕδ in the above expansion. Then:

Pδ�∗
α

⊗
�γ

⊗
�β = 0

In particular, if �∗
α

⊗
�γ
⊗

�β /∈ �1 then
∫

�∗
αFβ�γdτ P1�∗

α

⊗
�γ
⊗

�β = 0 or

P1�∗
α

⊗
�γ

⊗
�β = 0

that may also be written after introducing the expression of P1:

∑
A

�∗
α

⊗
�γ

⊗
Fβ = 0

Conclusion:

if �∗
α

⊗
�γ

⊗
�β /∈ �1 then

∫
�∗

αFβ�γdτ = 0

This identity constitutes the conditions for matrix elements to vanish.

1.13.5.1 Selection Rules for Optical Transitions

Time-dependent perturbation theory and Fermi Golden rule permit to calculate the
radiative recombination rate ω for a transition between an initial level |i〉 and a final
level |f 〉 as proportional to the square of the matrix element between levels |i〉 and
|f 〉 under the action of operator H. This writes:

ω ∼ |〈i|H|f 〉|2

In the frame-work of the dipolar interaction, H transforms like a vector of the three-
dimensional space. It will transform like �1 or �5 depending on the photon polar-
ization field, as indicated by the tables of C6v. Then, straightforward application of
multiplication table permits to calculate the selection rules between any initial level
|i〉 and any final level |f 〉 for both polarizations of the electric field of the photon.
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1.13.6 Group Theory and Perturbations

We consider a crystal with initial Hamiltonian H0 under an external perturbation V .

H = H0 + V .

The Hamiltonian H0 (resp. external perturbation V ) has symmetry G0 (resp. G1).
G1 symmetry is in general lower than G0 one.

We will consider two possible situations here.

• Case a: G0 = G1, the perturbation does not change the symmetry of the crystal.

The eigen-values of the Schrödinger equations are already classified, according to
the irreducible representations of G0. The classification and degeneracies of energy
levels inH are identical to those ofH0, the eigenvalues are shifted byVμ = 〈f μ|Vf μ〉.
The perturbation does not lead to a dissociation of the degenerated levels except in
case of accidental degeneracy when the wave functions of the un-perturbed problem
transform like a reducible representation of G0.

We now consider two wave functions |i〉 and |j〉, both transforming like an irre-
ducible representation �μ of G0. In addition, let: Ei = 〈fi|H0|fi〉 and Vij = 〈fi|V |fj〉.

H0 and V transform like �1 of G0. Then, matrix element 〈fi|�1|fj〉 transforms like
�μ ⊗ �μ = �1 ⊕ ... Then, both Ei �= 0 and Vij �= 0.

1.13.6.1 Levels of Identical Symmetry are Coupled
by a Non-symmetry-Breaking Perturbation

Eigenstates are obtained as the solution of the (2 × 2) Hamiltonian:

∣∣∣∣
E1 + V11 − E V12

V∗
12 E2 + V22 − E

∣∣∣∣

when E1 = E2, the degeneracy is lifted except if, simultaneously, E1 + E2 + V11 +
V22 = 0 and V12 = 0, a possible but very restrictive situation.

If E1 = E2 and wave functions (|i〉, |j〉) belong to different irreducible representa-
tions of G0, V12 = 0; then, the degeneracy of the two levels is lifted via V11 and V22.

• Case b:G0 > G1, the perturbation reduces the symmetry of the crystal.

In that case, G1 is a sub-group of G0; the eigen values of H have to be classified,
according to the irreducible representations of G1. Each irreducible representation
� of G0 is a representation γ of G1. That representation γ may be reducible or
irreducible in G1.

� =
∑

i

aiγi
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Irreducible representation � of G0 must be equivalent to γ of G1 for all symmetry
operations g belonging to both G0 and G1. The characters of representations are in
the following relationship:

χ[�(g)] =
∑

i

aiχ[γi(g)]

The relationships between the �s of G0 and the γs of all possible G1s are given
in the compatibility table.

1.13.7 Angular Momenta and Group Theory: Simple and Double
Groups

When an atom is located in the free space, the group of symetrie of the Schrödinger
equation belongs to the group of rotations, and its wave functions are the spherical
harmonics Y�

m�
. The ensemble of the rotations in the three-dimensional space formq

an infinite group, with an infinite number of classes (all the rotations of any angle
around an axis of arbitrary orientation). A rotation of the function of an angle α
around z—equivalent to rotating the axes of −α on the Y�

m�
—writes:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−i�α 0
0 e−i(�−1)α 0

0
. . .

. . . 0
0 ei(�−1)α 0

0 ei�α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The character is:

χ�(α) = sin
[(

� + 1
2

)
α
]

sin[α/2]
Angular momentum algebra indicates this equation holds for any value of the total
angular momentum �J = �L + �S, where �S is the spin operator.

We remark that:

χJ(α + 2π) = χJ(α)(−1)2J

χJ(α + 4π) = χJ(α)

We remark that, if J is half-integer, we will have to consider for identity a rotation
of 4π. In this specific case, a supplementary operation occurs, as well as supplemen-
tary irreducible representations. These 4π and 2π symmetries double the number
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of elements and add complementary irreducible representations. The double group
represents the symmetries of Fermions (J is half-integer) while the simple group
represents the symmetries of Bosons (J is integer).

For the simple group, we had the relation:
∑

� |nj|2 = g.
For the double group, we now have:

∑
� |nj|2 = 2g.

In the specific case of C6v, we have a simple group twelve-fold with six classes
and six irreducible representations: 12 = 1 + 1 + 1 + 1 + 22 + 22.

The double group C6v is twenty-four-fold with 9 classes and 9 irreducible repre-
sentations: 24 = 1 + 1 + 1 + 1 + 22 + 22 + 22 + 22 + 22.

Note 1: The symmetry operations are not always rotations. When the point group
of the crystal contains a symmetry plane, or other symmetry operations like reverse
rotations, we use the isomorphism between this point group and the holoaxial group
of the same singony.

Note 2: Identical values of total angularmomenta can be obtained in very different
conditions. For example, J = 1 is obtained either from a spherical harmonics Y�

m�

with � = 1, odd function in real space or by coupling two J= 1/2 spins giving an even
function in real space. It is, then, mandatory to take the partial parity of the wave
function into account. The symmetry of an angular momentum with even spatial
parity is noted D+

J whilst the symmetry of an angular momentum with even spatial
parity is noted D−

J in the compatibility tables with the full rotation group.

1.13.8 Character Tables, Compatibility Table and Multiplication
Tables

In this section, we give the tables required to handle group theory when dealing with
C6v and its subgroups. The notations are the following ones:

– E represents the identity,
– Cn represent rotations of 2π/n around the six-fold axis, σv and σd ,
– Operations of the double group are over-lined.—Some wave functions of angular
moment J = +3/2 and +1/2 are represented as |J, mJ〉 in the columns of the
wave functions.

Character table and basis functions for C6v
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C6v E Ē (C2, C̄2) 2C3 2C̄3 2C6 ¯2C6 (3σd, ¯3σd) (3σv, ¯3σv) basis functions
�1 1 1 1 1 1 1 1 1 1 z
�2 1 1 1 1 1 1 1 −1 −1
�3 1 1 −1 1 1 −1 −1 1 −1 x3 − 3xy2

�4 1 1 −1 1 1 −1 −1 −1 1 y3 − 3yx2

�5 2 2 −2 −1 −1 1 1 0 0 (x, y)
�6 2 2 2 −1 −1 −1 −1 0 0 �3

⊗
�5

�7 2 −2 0 1 −1
√
3 −√

3 0 0 |1/2,±1/2〉
�8 2 −2 0 1 −1 −√

3
√
3 0 0 �3

⊗
�7

�9 2 −2 0 −2 2 0 0 0 0 |3/2,±3/2〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Multiplication table for C6v

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1 �2 �3 �4 �5 �6 �7 �8 �9

�1 �1 �2 �3 �4 �5 �6 �7 �8 �9

�2 �1 �4 �3 �5 �6 �7 �8 �9

�3 �1 �2 �6 �5 �8 �7 �9

�4 �1 �6 �5 �8 �7 �9

�5 �1 + �2 + �6 �3 + �4 + �5 �7 + �9 �8 + �9 �7 + �8

�6 �1 + �2 + �6 �8 + �9 �7 + �8 �7 + �8

�7 �1 + �2 + �5 �3 + �4 + �6 �5 + �6

�8 �1 + �2 + �5 �5 + �6

�9 �1 + �2 + �3 + �4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Full rotation compatibility table for C6v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D+
0 �1 D−

0 �2

D+
1 �2 + �5 D−

1 �1 + �5

D+
2 �1 + �5 + �6 D−

2 �2 + �5 + �6

D+
3 �2 + �3 + �4 + �5 + �6 D−

3 �1 + �3 + �4 + �5 + �6

D+
1/2 �7 D−

1/2 �7

D+
3/2 �7 + �9 D−

3/2 �7 + �9

D+
5/2 �7 + �8 + �9 D−

5/2 �7 + �8 + �9

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Compatibility table for C6v and some of its subgroups

C6v �1 �2 �3 �4 �5 �6 �7 �8 �9
C2v �1 �3 �2 �4 �2 + �4 �1 + �3 �5 �5 �5

Cs(E = x) �1 �2 �1 �2 �1 + �2 �1 + �2 �3 + �4 �3 + �4 �3 + �4
Cs(E = y) �1 �2 �2 �1 �1 + �2 �1 + �2 �3 + �4 �3 + �4 �3 + �4
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1.13.9 The Translation Group

The properties of crystals are unchanged under translations �τn = n1 �a1+n2 �a2+n3 �a3
where the ni’s are integers and the �ai’s are the primitive translation vectors. This may
be written as {E|�τn} using the symbol of Seitz.

Obviously, from the definition above, {E|�τn + �τn′ } = {E|�τn+n′ } and as (Z, +) form
an Abelian group, the ensemble of translations {E|�τn} constitutes an Abelian finite
translation group with N1N2N3 elements.

The cyclic boundary conditions for crystals of finite dimensions N1 �a1, N2 �a2 and
N3 �a3 write

{E|�τN1,0,0} = {E|�τ0,N2,0} = {E|�τ0,0,N3} = {E|�0}

Further defining a vector of the reciprocal lattice �N∗
hkl = h �a∗

1 + k �a∗
2 + l �a∗

3, and using
cyclic boundary conditions leads to:

�k = (h/N1) �a∗
1 + (k/N2) �a∗

2 + (l/N3) �a∗
3

{E|�τn} may be represented by e−i�k. �τn .

1.13.10 The Space Group

Let �t1, �t2, . . . �tj be the positions of identical atoms in the unit cell.
For the wurtzite C6v structure, �t1 = �0, and �t2 = 2/3 �a1+1/3 �a2+�c/2 for the anions;

and �t3 = 3/8�c and �t4 = 2/3 �a1 + 1/3 �a2 + 7/8�c for the cations.
The elements of the space group write {A| �α} where A is a symmetry operator of

the point group and �α = �τn +�t. In this notation, �t is a fractional translation operator.
Let

{A| �α} · tj = �τn′ + �tj′

where �tj′ represents the position of an atom in the unit cell— �tj′ may coincide with
�tj—and �τn′ is a suitable translation vector. Since {A| �α} is a symmetry operation of
the crystal, �tj′ and �tj correspond to similar atoms.

In summary, operator {A| �α} contains the operators of the point group A, and
accounts for the translational symmetry at the scale of the crystal via �α. The
translational symmetry operator �α has two contributions: an intra-elementary cell
contribution—�t—and an inter-elementary cell—�τ .

It can be easily verified that

{A| �α} · {B| �β} = {AB|S �β + �α}

and that:
{A| �α}−1 = {A−1| − A−1 �α}.
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1.13.10.1 The Ensemble of Operators {A| �α} Constitutes the Space
Group of the Crystal

The wurtzite space group is identified as P63mc or C4
6v in the international tables.
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