Chapter 2
Nonlinear Time Series Models

2.1 Some Probabilistic Aspects of Nonlinear Processes

2.1.1 Linear Representations and Linear Models

Assume that for ¢t € Z, (Z;) and (Z;) are respectively uncorrelated and independent
sequences of r.v’s having identical marginal distribution F(-), with zero mean and
variance 0% < oo. For any ¢, define the time series

o
Yo=Y %iZi @.1)
i=0
and
o0
X =Y "z, 2.2)

i=0

such that ) ;2 7 < 0o, so thatboth ¥, and X, are mean-square convergent, having
finite variances. In the representation (2.2), specification of the marginal distribution
for the independent r.v’s (Z;) is enough to specify the finite dimensional distri-
butions of the output series X,. Therefore (2.2) is a fully specified model for X;.
However, the specification of the marginal distribution for uncorrelated r.v’s (Z;)
is not enough to specify fully the finite dimensional distributions of the process
Y, given in (2.1), unless Z, is a Gaussian sequence. In this case, we can merely
calculate uniquely the first two moments, namely the mean, the variance and the
autocovariance function of the series Y;. Therefore (2.1) is not a probabilistic model
for Y;, but can be called a representation. Since this representation uniquely specifies
the second-order moments, we will call it the second-order representation for the
time series Y. Wold decomposition theorem (see for example Brockwell and Davis
1991) shows that under fairly general conditions any stationary time series will have
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the causal linear representation (2.1), but these processes are not necessarily linear
processes given in (2.2) and in fact, they can be highly nonlinear processes. Hence,
Y, in (2.1) is a representation for infinitely many time series, having the same (finite)
second-order moments. On the other hand, if (Z;) in (2.1) have marginal Normal
distribution N (0, 02), then they must also be independent. In this case, (2.1) and
(2.2) are identical Gaussian processes. Uncorrelated versus independent innovations
in (2.1) and (2.2) also have significant different effects on predictions. Y;4; can be
written as

oo
Yoot = D ViZitiei

i=0

oo
=VoZit1 + ) ViZig1

i=1

oo
= YoZi+1 + ) Vin1 Zisi.

i=0
Similarly
o0
X1 =VoZ[, + Z Vit1Z,-;.
i=0

Let Bz(t) be the o-field generated by the r.v’s (Z;,s < t). The best mean-square
predictor of Y;4; in terms of (Z,, Z,—1,...) is given by the conditional expectation

E(Yi11Bz(1)) = YoE(Zi1|Bz(0) + Y Vin1 Zi
i=0

with
E(Zi411B2(1)) = / xdFy,, )0 ().

where Fz, ,5,)(x) is the distribution of Z, 4, conditional on (Z;, Z,i, ... ). Note
that Z,, is not independent of Z;, Z;_1, ..., hence, in general

Fz, . 18,0)(X) # Fz, ., (x)

and

E(Z141|Bz (1)) # 0.
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In fact, this term will typically be complex, nonlinear function of (Z;, Z;_;,...).
Hence, the best predictor of Y,y in terms of (Z,, Z,—;,...) will be a nonlinear
function. If the process (2.1) is invertible, then the sigma fields generated respec-
tively by (Zy,s < t) and (Y, s < t) are identical, hence

E(Yi11Ys.s <t) = E(Yi411Zs, 5 < 1),

so that E(Y;4+1|Ys,s < t) in general is a nonlinear function of (Yy,s < t). If (Z;)
have Normal distribution, then the best predictor of Y, in this case is a linear
function of the past observations (Y (s), s < ). On the other hand, F A0 (x) =

FZ,*+1 (x) and E(Z[,|B7(t)) = 0, so that
E(Xi+1|Xs,8 <1) = E(X;1|Z),s <1),

is a linear function of (X;,s < t), irrespective of the marginal distribution F(-)
of Z;.

In order to understand better the relation between best predictions and nonlinear-
ity, we look at the geometric interpretation of predictions.

2.1.2 Linear and Nonlinear Optimal Predictions

Consider a probability space (2, F, P) and the collection C of all r.v’s defined on
this space with zero-mean and finite second-order moments. For any elements X, Y
of C, define the inner product <X,Y > = E(XY), so that the norm is given by
[|X]| = v/ E(X?). Thus, two elements X and Y of C are orthogonal iff £(XY) = 0,
in which case we write X 1 Y. For simplicity in notation, we assume that the
elements of C have zero means. Alternatively, rather than restricting the class to 0
mean r.v’s, we can define the inner productonC as <X, Y > = E(XY)—E(X)E(Y)
and the norm || X|| = E(X — E(X))?, and the properties would still hold. The
norm convergence of any sequence X, is then given by

lim || X, — X|]> = lim E|X, — X|> =0,
n—00 n—0o0

which is the usual mean-square convergence and we denote it by
X, 5 X.
Note that X, = X, iff
E(X, — Xn)*—0,

as m,n — oo, in which case we call the sequence a Cauchy sequence.



26 2 Nonlinear Time Series Models

If all sequences of C converge in mean-square, then C is complete and hence is a
Hilbert space (e.g., Brockwell and Davis 1991). Let (X,,) be a stationary time series,
such that E(X?) < oo. The norm convergence or mean-square convergence implies
that if

X, B x
and

Y, 5 Y.
then

1. E(X,) — E(X),

2. E|X,|*> — E|X|? so that the variance of X, converges to the variance of X ;

3. E(X,Y,) — E(XY), so that the covariance and correlations between X, and Y,
converge to the covariance and correlation between X and Y.

Now, let C; be any closed subspacei of C. Then, from the projection theorem, for any
Y € C, there is a unique element X = P¢, X € C; such that

|Y — Pe,X||* = inf ||Y — X|]* = inf E|Y — X|~.
XeC; Xec
We know that the value of X which minimizes the mean-square error E|Y — X|?
is given by E(Y|X), so that the projection Pc, X is the conditional expectation of
Y given C;, and we denote it by E¢,(Y). By the projection theorem E¢, (Y) is a
unique element X of C; which satisfies

E(XE¢,(Y)) = E(XY),

for every X € C;. We now define this conditional expectation in terms of

multivariate r.v’s in time series setting: let (X, X5,..., X,) be r.v’s defined on
{Q,F,P}and Y € C. Define the subspace C; = C;(X1, X, ..., X,) as the space
of r.v’s consisting of X, X»,..., X, and all other r.v’s obtained by measurable

transformations f (X1, X5,..., X,). C; is a closed subspace of C. For any Y € C,
let Pe,Y = Pex,,. x,)Y the projection of ¥ in Ci(Xy,...,X,). We define
Peyx,...xnY = Ec,x,...x,)(Y) to be the conditional expectation of Y given
(X1,...,X,). By the projection theorem, this conditional expectation is unique and
can be obtained from the prediction equation

E(XEc¢,(x,.x,...x,)(Y)) = E(XY), (2.3)
for every element X € Ci(Xy,...,X,). However, elements X € (; are in
general nonlinear functions f(Xy,..., X,) of (X1,..., X,) and therefore obtaining

this unique conditional mean using the prediction equation (2.3) in general is
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very difficult. However, there is one particular case, when this unique projection
PCI(XLXZ ..... X,Z)X = ECI(XLXZ ..... X”)(Y) = EX1 _____ X, (Y) can be calculated with
ease: Restrict C;(X1, ..., X») to be the closed span of (Xi,..., X,) so that we
only consider linear functions f(Xi,...,X,) = Z?:] «; X;, and any element
of X € Ci(Xy,...,X,) is given by X = Y '_, & X;. In this case the optimal
E(Y|X1,...,Xn) = Z?zla;"X,-.

We call Y the best linear predictor for Y. This unique function can be obtained
from the prediction equation by solving the set of equations

Y ofE(XiX;) = E(YX)), (2.4)
i=1
for j = 1,2,...,n. However, the best linear predictor need not be the best predictor,
since the best linear predictor is chosen within the closed span of (X1, ..., X,),

Ci :={X1, X,,..., X, and all linear functions of (X1,...,X,)},
whereas the best predictor is chosen within the closed subspace
Cy :={X1, X2, ..., X, and all measurable functions of (X1, ..., X,)}.

Clearly C; C C{. The following definition is immediate.

Definition 2.1.1. A best linear prediction of Y in terms of a countable collection of
r.v’s (X;,t € T) is defined to be the element of the closed span C; of (X;,z € T)
which has the smallest mean-square distance from Y, and by the projection theorem
is unique. On the other hand, the best predictor of ¥ in terms of the collection
(X;,t € T) is defined to be the element of the closed subspace C; formed by all
measurable functions of (X;,¢ € T).

This definition will be extremely useful in discussing linear and nonlinear time
series models. In general, C; £ Cf and C; = Cf, if (Y, X,,t € T) have joint
multivariate Normal distribution.

Example 2.1.1 (Brockwell and Davis 1991). Assume that Y = X2 + Z, where
X and Z are independent standard Normal r.v’s. Let C*(X) be the closed space
formed by X and all measurable functions ¢ of X. By the projection theorem, the
best mean-square predictor of ¥ in C*(X) is the unique element E¢(x)(Y) of C(X),
which satisfies

E@(X)Ecix)(Y)) = E@(X)Y).

Ec+x)(Y) is an element of C*(X), so that Ecxxy)(¥Y) = ¢*(X) for some
measurable function ¢* of X so that
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E(@(X)¢" (X)) = E@(X)Y)
= E@(X)X?) + E(¢(X)2),
since X and Z are independent, for any measurable function ¢, ¢(X) and Z are also

independent, hence E(¢pZ) = E(¢) E(Z) = 0. Now, the only measurable function
¢* of X which satisfies

E($(X)¢* (X)) = E(@(X)X?),

is *(X) = X2, hence by the projection theorem, the best mean-square predictor
Ec+x)(Y) of Y is indeed the conditional expectation E(Y |X) = X2 (E(Z|X) =0
due to the independence of X and Z).

Now consider the best linear mean-square predictor of Y, that is, the best mean-
square predictor of Y residing in C(X), the closed span of X. Then Ecx)(Y) =
aX + b, satisfying

E[(aX +b)p(X)] = Elp(X)(X* + Z)],

for any ¢(X) in C(X). In particular, ¢(X) = 1 and ¢(X) = X are in the closed
span of X. Consequently from the prediction equations

<aX+b,1>=<y,1>=EY)=EX?* =1,
and
<aX+b,X>=E(YX)=0.

Solving for a and b gives a = 0 and b = 1, and the best linear predictor of Y in
terms of X is given by Pc(x)(X) = 1. The prediction error of the best predictor is

IEY|X)-Y|? = E(Z* =1,
whereas the prediction error of the best linear predictor is
1X?4+Z—-1|P=EX*+Z—-1) =EXHY+EZ>)-1=3.

Hence, the best linear predictor has three times as much prediction error as the best
mean-square predictor, showing its clear inferior performance.

The above arguments can be applied to predict a future value of a time series.
Consider a discrete parameter time series (X;) defined on (2, F, P), with zero
mean and autocovariance function y(4). Consider the problem of best predictor of
Xu+1 in terms of Xy, X», ..., X,,. Clearly X, 4+, and Xi,..., X,, are all elements
of the Hilbert space with inner product < X;, X;+, >:= E(X;Xi+n) = y(h),
and norm ||X;||> = y(0). (Note that the mean is assumed to be zero, so that
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E(X;X;4+n) = y(h). Otherwise, we either study the series X, — E(X,), or
equivalently define the inner product to be

< Xi, Xitn >= E((X; — E(X;))(Xi4n — E(Xi41))) = y(h).

Therefore, the assumption of zero mean is not restrictive.)

Consider the closed subspace Cf which includes the r.v’s Xi,..., X, and all
measurable functions of (X1, ..., X,). Clearly such closed subspace will include
the closed span C; of (Xi,..., X,). From the projection theorem, the best predictor
of X,,4+1 as a function of (X1, ..., X,) is a unique element of ¥ € C; which has the
smallest mean-square distance from X, that is a function Y = f(X1,..., X))
such that

X4t =Y |* = inf E|X,41 = Y]
YeC,

The projection theorem also says that Y = ECT (Xn+1) = E(Xp1] X1, Xa, .0, X0,
can uniquely be obtained by solving the prediction equations

EYY)=EXYXut1),

for every Y € C. Since, Y is any (nonlinear) measurable function f(Xi,..., X,),
it is not easy to get the optimal predictor of X, using the prediction equation (2.3).
However, if we restrict ourselves to the closed span C; of (X1, ..., X,), we can solve
the prediction equation to obtain the best projection of X, into the closed span Cj,
namely the unique best linear mean-square predictor. In this case, all elements of C;
are of the form Y = Z?Zl o; X;, for some real numbers «;,i = 1,...,n therefore
the best linear predictor of X, 4+; is an element

n
> *
Xu+1 = E o; X,

i=1

where o] are obtained uniquely from the prediction equations given by

n
Y efEXiX;) = E(Xy1 X)), j =1.2,....n. (2.5)

i=1

Writing o* := (o}, ..., ), and

o2 y(@) - y(n—1)
y() o? ---y(n—2)

J/(n._l) -:. -.: 0:2
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and y, := (y(1),...,y(n)), we can write (2.5) as

To, =y, (2.6)
This system of equations will have a unique solution, provided I',, is not singular,
which is satisfied when the function y (k) positive definite. If T',, is singular, then the
best linear predictor of X, will have infinitely many alternative representations in
terms of Xq,...,X,.

Although simpler to calculate, best linear predictors often are inferior to best

predictors, unless the relationship between X,+; and Xi,..., X, is linear; see
Example 2.1.1. Note that if X, is a Gaussian time series, then the conditional
expectation E(X,+1|X1,...,X,) is a linear function of (X1,..., X,) and in this

case the best mean-square predictor and the best linear mean-square predictors
coincide.

Example 2.1.2 (Brockwell and Davis 1991). Consider the stationary discrete time
series

X; = Acos(wt) + Bsin(wt), t € Z, 2.7
where w € (0,7) is a constant, A and B are uncorrelated r.v’s with zero-mean
and variance o2. The mean and the variance of the series are given respectively by
E(X;) =0and

V(X,) = cos*(wt)V(A) + sin®(wt)V(B) = o°.

For any &

y(h) = E(X: X;44)
= o2 (cos(wt) cosw(t + h) + sin(w?) sinw(t + h))

= o?cos(wh),

so that the time series (2.7) is second-order stationary. Now consider the best linear
predictor of X3 given by

)23 = X +ax Xs.

From (2.6) it follows that

2
[ ][] [r0]. 08
y() o a y(2)
Solving (2.8) for (al,gz), we get @) = 2cos(w), ap = —1, so that the best linear
predictor is given by X3 = 2 cos(w) X, — X;. Note that the prediction error is
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E(X; — X3)* = E((X3 —2cos(®) X + X1))?
= E((X3 — X1)? — 4cos(w) X2(X3 — X)) + 4cos*(w) X3)
=202 —2y(2) + 4cos*(w)o?
= 202(1 — cos(2w)) + 4 cos’(w)o?
=0,

since for any w, cos(2w) = 2cos?(w) — 1. Hence Xj is predicted from X, and X;
without any error, which means that

X3 =2cos(w) X, — X;.
Similarly, from stationarity
)24 = 2cos(w) X3 — X»,

with a mean-square error 0. The projection theorem guarantees that there is a
uniquely defined predictor X4. However, X, has infinitely many linear represen-
tations in terms of X, X», X3, but by the projection theorem they should give
the same predictor. This is due to the fact that (o1, ®, ®3) in the representation
S 3 .

Xy =) i, o X; satisfies

o2 y()y@2) ] [ y(1)
y() o2 y() || | =] yQ) |- (2.9)
y(2) y(1) o2 a3 y(3)

However, the 3 x 3 matrix on the right and side of Eq.(2.9) is singular, giving
infinitely many solutions for (a1, @z, @3). It is easy to check that the determinant

1  cos(w) cos(Qw)
T3] = | cos(w) 1  cos(w) | =0.
cos(2w) cos(w) 1

In fact, for any & > 0, the future values of the time series X, given in (2.7) can be
predicted with 0 mean-square error in terms of the linear combination of its observed
values. Notice also that the time series (2.7), as well as its covariance function, is
periodical with period 2.

Definition 2.1.2. We call a time series deterministic, if for any 4 > 0, the optimal
predictor of X4, X4, can be predicted in terms of (X;, X;—1,...) with zero
prediction error.
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2.1.3 Nonlinear Representations

In the previous section, we saw that if we are interested only in linear predictors due
to its simplicity, then from (2.6), we only need to know the second-order moments
to calculate the best linear predictor. Due to the Wold decomposition theorem,
(2.1) is the most general model we can use for obtaining such linear predictions.
However, we also see that unless the process is Gaussian, the best linear predictor
is inferior to the best predictor which is a nonlinear function of the observed time
series. Suppose that our time series is not Gaussian and we are not content with the
best linear predictor. In this case, we will have to look beyond linear processes and
second-order covariance structures. This situation is very common particularly in
environmental sciences and economy.

The crucial restriction in the Wold decomposition theorem is that the linear
representation is given in terms of an uncorrelated white noise process, so that this
representation serves as a model only for the second order moments of the stationary
process. Under what conditions, can we represent a (strictly) stationary process in
terms of an independent and identically distributed input process (Z;)? If this is
possible, then we should be able to model the whole probability structure of the
process in terms of this independent and identically distributed input process.

In Sect.2.1.2, in order to obtain best linear predictor we looked at the Hilbert
space generated by the closed span C; of (X;,s < t), with the inner product
< X,Y >= Cov(X,Y). The members of this Hilbert space are made up of
only the linear combinations of (X;,s < t) and their mean-square limits. The
projection theorem then gave us the optimal linear predictors for X,y; as projection
of X, in this closed span. If we want to extend these results to optimal (nonlinear)
projections, we need to look for much more general setup. Now, consider again
the set (X;,s < t) and consider the set of all r.v’s with finite variance which are
measurable with respect to this set, that is the set

Cr :={Y = g(X;),s <t:G measurable and V(Y) < oco}.

This subspace is a Hilbert space and clearly contains the closed span of (Xy,s < 1).
If we can find a closed orthogonal basis for this subspace, then any element ¥ of this
subspace can be written as a linear combination of the orthogonal basis functions,
and projection theorem will give us the optimal projection of X, in terms of the
elements of this subspace.

Definition 2.1.3. Hermite polynomials H, (x) of degree n are defined as

o0
/ H,(x)H, (x) exp(—xz/Z)dx =nl,,, n,m=0,1,2,... (2.10)
—0oQ0

1
N2
where

1, n =m;

I =
. 0, n # m.



2.1 Some Probabilistic Aspects of Nonlinear Processes 33

These polynomials form a closed and complete orthogonal system in the Hilbert
space L2(R, B, —= exp(—x2/2)dx) where the inner product is defined as

V2
< fg>= /_ F08() = exp(—x*/2)dx. @.11)

Hence, every Borel measurable function g such that

> 1
/ g (x) Ners exp(—x?/2)dx < oo,

can be written as a linear combination (or as a limit) of these Hermite polynomials

N
~ m S &
glx) = lim_ E P H,(x), (2.12)
n=0
where, the coefficients g, are given by

gn = /_ e, (x)%exp(—xz/zwx.

The convergence of (2.12) is in the mean-square sense

N

o0
. _ &n 2 |1 ) _
Jim [ (e D T H 0P el e =0
Hermite polynomials are given by
Hy(x) = (=1)" — 25 L —x%/2
(0 = (1= exp/2) o exp(—x7/2),

and they can also be calculated from the recursions

d
Hn+l(x) = XH,,(X) - —H,(x),
dx
or
Hn(x) = XHn(x) - an—l(x)~
The first five Hermite polynomials are given by

Ho(x) =1
Hi(x) =x
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HQ(X) = x2 —1
Hi(x) = x> —3x
Hy(x) = x* —6x2 4 3.

Note that the inner product (2.11) is an integral with respect to the standard Gaussian
density and hence the Hermite polynomials are orthogonal with respect to the
standard normal probability distribution. Instead of Hermite polynomials, we can
define Hermite functions

— l — 2
Y (x) = —n!znmexp( x°/2)H, (x).

Hermite functions are normalized versions of the Hermite polynomials therefore
they form a closed and complete orthonormal basis for £>(RR, B, f exp(—x2/2)

dx). The Hermite polynomials are orthogonal with respect to the standard Normal
distribution, although it is possible to define Hermite polynomials which are
orthogonal with respect to the Normal distribution N (0, 0%). The closed linear span
of Hermite polynomials is the space of all polynomials, therefore any element of
LR, B, f exp(—x2/2)dx) can be written as a polynomial of finite- or infinite-

order. Elements of £2(RR, B, f exp(—x?/2)dx) are deterministic functions. How
can we pass from polynomial representation for deterministic functions to random
functions? Consider now the simple case: let X be a standard Gaussian random
variable and consider the set of all r.v’s ¥ which are measurable functions of X
with finite variances, that is the set

C(X):={Y = g(X) : g measurable and V(Y) < oco}.

Define the inner product < Y;,Y, >= Cov(Y1,Y,) on this set. This set forms
a Hilbert space. The above results on Hermite polynomials immediately suggest
the construction of the orthogonal base for this Hilbert space; let H,(X),n =
0,1,2,... ber.v’s, where H,(x) are Hermite polynomials defined in (2.10). Then
any measurable function Y (of X) can be written as

| ]

H,(X),

where
8n = COV(Y, Hn (X))

and
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N
lim V(Y -) %H,,(X)) — 0.
=0 "

N—o00

Note that if we restrict ourselves to the Hilbert space of the closed span generated
by X, then any member of this space is a linear function of X. If we extend this
space to include all measurable functions with finite variances, then the elements
are again represented by a linear function, but this time a linear combination of
(random and nonlinear) Hermite polynomials or simply polynomials of finite- or
infinite-order.

Now let us introduce more complexity and start with a collection of standard
Gaussianr.v’s (X, s < t) and consider the space of all measurable functions defined
on this collection with the usual inner product defined over it. Any element of
this Hilbert space can be written as a linear combination of products of Hermite
polynomials. Here we will not enter into details, which can be found in Terdik
(1999). As an example, consider standard Gaussian r.v’s (X1, X»,..., X,) with
covariances r (i, j). The first five (random) Hermite polynomials which form the
orthogonal basis for the Hilbert space of all measurable functions defined on
(X1, X2, ..., X,) are given by

Ho =1
H\(X)) = X,
Hy(X1, X2) = X1 X> — r(1,2)
Hy(X1, X2. X3) = X1 X2X3 — r(1,2) X3 — r(1,3)X> — r(2,3) X,
Hy(X1, X2, X3, X4) = X1 X0 X3 X4 — r(1,2) X3 X4 — r(1,3) X2 X4
—r(LHXX; —r2.3) X1 X4 — r2. X1 X3 — r3, ) X1 X»
+r(1,2)r(2.3) + r(1,3)r(2,4) + r(1,4)r (2, 3).

Therefore any element of this Hilbert space can be represented as sums of products
of polynomials given in the form

o0 o0
E E ail,»z...,»pl_[X,»v,

p=0i1=1  ip=1 v=1

o]

with the convention ['_, X;, = 1.
The following remarkable result due to Nisio (1960) extends this polynomial
representation to any strictly stationary time series.

Definition 2.1.4. Let Z; be independent, standard Gaussian r.v’s. The polynomial
representation
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m oo oo oo p
Yz(m) ZZ Z Z Z giliZ"'imHZI_iv
p=lij=—00 ir=—00 im=—00 v=1
o
= Z g Zi—i
i1=—00
o0 o0
+ Z Z ZiinZi—iy Zi—iy
i1=—00 i)=—00
o0 o0 o0
+ Z Z Z Giririsn Li—iy Li—in Li—is
i1|=—00 ip=—00 i3=—00
+ .o
+ Z Z Z Girigin Li—is Li—in *** Li—iy

i1=—00 ip=—00 im=—00

is called a Volterra series of order m. We will call
o) 0o fele) 00 P
Y= 2" D> Y G | [ Zima 2.13)
4 ip=—00 y=1

the (infinite-order) Volterra series expansion.

Theorem 2.1.1 (Nisio 1960). Let X, be any strictly stationary time series. Then
there exists a sequence of Volterra series Y,(m) such that

lim ¥ £ x,,

m—>00

in the sense that for any n and for any 6;,|j| < nasm — oo,

|E exp(i0_,X—p + -+ +i0,X,) — Eexp(i6_, Y + .- +i6,Y™)| — 0.

—n

If further X, is Gaussian, then X, can be represented by

o0
X, = Z g Zi—;.
j=—00

The proof of the result above is beyond the scope of this book. However, we only
mention that the proof is centered around first finding a polynomial representation
for a uniformly bounded time series using Hermite polynomials and then extending
the results to any time series using Slutsky type arguments. Although assumption
of independence of the innovations Z, is essential, normality is not essential.
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One can define Hermite polynomials orthogonal with respect to any probability
distribution and therefore the Volterra representation can be given in terms of any
other distribution.

Nisio’s theorem essentially says that although most stationary time series will
have a linear representation in terms of uncorrelated innovations (Wold theorem), it
will have very complicated, nonlinear representations in terms of the independent
innovations. Therefore Nisio’s theorem can be seen as the extension of the Wold
decomposition theorem. While modeling with ARMA classes, we often require that
the innovations are Gaussian, hence the modeling is restricted to the Volterra series
of order 1. Note that (2.13) is a representation for the whole probability structure
of the time series as contrast to the representation (2.1), which is representation for
the covariance structure of the series. Let us give some examples to highlight this
difference.

Example 2.1.3. Consider the process
Xi=Z +aZi1Zi, t €7,

where (Z,) is a zero-mean i.i.d. sequence with finite variance. It is easy to verify
that X, is covariance stationary with zero mean and constant variance and

COV(XIX[_Fh) =0.

Hence, X, is an uncorrelated time series, whose correlation structure is equivalent
to that of the independent innovation process Z,. However, the probability structure
of X, is different from that of Z,. For example,

EXi(|Xi—1. Xi—2,...) =aZi1Z;5,
whereas
E(Z|Z;i—,...)=0.

Hence, by looking at the second-order properties, we can decide that there is no
structure in X; to model, but certainly X, has structure which should be studied by
its higher-order moments. In fact, if Z; are also Gaussian, then all cumulants higher
then the second-order are zero. However, it is easy to check that the higher-order
cumulants of X; are not identically equal to zero.

Example 2.1.4 (All-pass models). The class of uncorrelated but not independent
processes is quite rich. In fact, one can encounter uncorrelated but not independent
linear processes. The class of all pass models (Andrews et al., 2006) is one example,
which can be constructed within the ARMA class by choosing autoregressive and
moving average polynomials in such a manner that the roots of the autoregressive
polynomial are reciprocals of the roots of the moving average polynomial or
vice-versa. Assume that ¢,(z) = 1 — ¢z — -+ — ¢,z” is a causal autoregressive



38 2 Nonlinear Time Series Models

polynomial so that ¢, (z) # O for |z| < 1. Define the moving average polynomial

y4 —1
ep(Z) = Lo ) qi}(f )
4

=—(B" - ¢IBP_1 T ¢p)/¢pv
and consider the time series which satisfies the difference equation
¢p(B)Xt = ep(B)Zz,

where (Z;) is an i.i.d. sequence with zero-mean and finite variance 0. The time
series X, has some interesting properties.

1. X; is not invertible, but is causal.
2. The time series satisfies the difference equation

Xi—p1Xi1 =+ —9pXi—)
bp—1 ol 1
A A U A
t _¢p t ¢p t—p ¢p t—p

so that, when p = 1, and |¢| < 1, first order all-pass model is given by
1
Xo = Xem =2 — —Zi
¢

and the second-order all-pass model is given by

X = Xi = Xs o =Z + 1/ Zi1 — 1/ Z, .

3. The spectral density of X is given by the constant function
o2
1) = g
for every w € [—m, 7], so that the X, process is uncorrelated. Further, if Z, are
Gaussian, then X; is an i.i.d. sequence with distribution N (0, ¢;202). However,
if Z, are not Gaussian, then for p > 1, X; is not an independent sequence.

4. Since all-pass processes are uncorrelated but not independent, the usual second-
order techniques based on autocorrelation and partial autocorrelation functions
cannot identify an all-pass model, as these functions will report that the data
have no structure. Inferential methods based on Gaussian likelihood or least
squares do not give the desired results when fitting all-pass models. Instead,
inferential techniques based on cumulants of order greater than two are often
used; see Andrews et al. (2006) for details. The need for inferential methods
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based on cumulants higher than two or approximate methods based on non-
Gaussian likelihoods are quite universal while modeling nonlinear data.

Let us make a summary of the results:

1. Y, = Z?o:() V¥;Z;—j, Z, uncorrelated r.v’s is called a linear, causal representa-
tion.

2. Y, = Z?io V;Z,—j, Z; ii.d. r.v’s is called a linear causal model.

3. If further, Z, are Gaussian, then any linear representation is also a linear model
and Y, = Zj’;o Y ; Z;—; is called the Gaussian causal linear model.

4. (Almost) all non-deterministic, second-order stationary time series X; have a
unique linear representation in terms of uncorrelated innovations. In this case,
moments of X, and ¥; up to second-order coincide. However, moments of order
higher then two, need not coincide, except when X, is Gaussian.

5. (Almost) all strictly stationary time series X, has a (infinite-order) Volterra series
expansion

oo 00 00 0 4
YIZZ Z Z Z giliz"'ipl_[Zt_iV’

p=lij=—00 ir=—00 ip=—00 v=1

for some i.i.d. innovation sequence Z;.

6. Therefore, X; has a linear causal model in terms of an i.i.d. innovation sequence
Z, iff it has a first order, one-sided Volterra series expansion, that is, iff X; is a
Gaussian process. Hence, the class of causal, linear models is not dense within
the class of stationary time series.

7. If we want only the best linear predictors for future values of the time series, then
we can work with linear causal representations, as we do not need information
other than the second-order moments to obtain best linear predictors.

8. On the other hand, if we want the best predictor, then we need to look for models
within the general class of Volterra series expansions.

Working with linear models, particularly with Gaussian linear model, is relatively
simple, whereas working directly with the general, infinite order Volterra series is
very difficult, if not impossible. For example, it not possible to give conditions of
stationarity on the kernels g;,;,...; ” Further, time series such as

Xi=Z +aZi 12,
or
X, =Z +aZ:,,

where Z, is a sequence of independent r.v’s, are not invertible (Granger and
Andersen 1978). Hence, one would expect that Volterra series expansions have
limited use as models for predicting future values, unless the input process (Z;)
is observable. Therefore, to model nonlinear data, we need to look for sub-classes
of Volterra series expansions which are easier to study.
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There are many ways a process can be nonlinear. Therefore, in order to come up
with fairly general and useful classes of nonlinear models, we need to look at certain
aspects of the probability structure of the processes to understand and describe
the underlying nonlinear behavior. Since linear and nonlinear processes differ on
moments higher than order two, particular emphasis has to be given to studying the
higher moments and tails of the stationary distributions of the processes. We now
look at certain aspects of nonlinear processes which may indicate how we should
construct useful nonlinear models.

2.1.4 Sensitive Dependence on Initial Conditions, Lyapunov
Exponents

The most striking feature of nonlinear processes is the strong dependence on initial
conditions and the noise amplification. Let us start with deterministic difference
equations, representing some dynamic system in discrete time. Suppose that x, =
f(x,—1) defines a deterministic difference equation, for some function f. Starting
from the initial condition X, let

X = fP0) = F(fC- (f(x0)))
be the value of the system after n iterations. Now let us disturb the initial starting

value x¢ by a small number §; to xy + §y. We would be interested in the impact of
this initial disturbance on the dynamic system after # iterations, namely

8y = £ (x0 + 80) — £ ™ (x0),

and in particular, we may be interested in the limit as n — co and §o — 0. If f isa
linear function so that

Xy = Xyt + B,
then it is easy to verify that
Xp=0o"xg+ B@ a4 4 1),
so that
8, = a8y
and

S (xo 4 80) — £ ™ (x0)
£ (xo)

= 0(5).
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On the other hand, consider the logistic difference equation
Xn+1 = O[X,,(l - xn)~ (2.14)

Here, « is called the driving parameter. Now start with an initial value x, € (0, 1).
This difference equation has a peculiar behavior for different values of «. If o €
[0, 3), then as n — o0, the difference equation converges to a single number. When
o = 3.0, then x, no longer converges but oscillates between two values. As « is
increased, in the limit x,, oscillates between increasingly different numbers, and for
o > 3.57 the sample path behavior of xi,...,x, is chaotic, resembling a sample
path of a random process. This chaotic behavior is due to the sensitive dependence of
the difference equation on the initial value x, for increasing values of the parameter
«. In fact, when o = 4, this difference equation has an analytical solution

x, = sin?(2" ),

where § € [0, 1) is a function of the initial value xo. When xo € [0, 1] then 8 is
almost surely an irrational number which will have different dyadic representation
for each iteration n causing a chaotic behavior of the sample path xi,...,x,.
This chaotic behavior caused by the dependence on the initial condition is quite
common for nonlinear difference equations and measuring this dependence on
initial conditions may give a degree of nonlinearity that exists in a difference
equation (Fig. 2.1).

Lyapunov exponent A of a dynamic system is a quantity that characterizes this
dependence on the initial conditions through the relationship

8y ~ €"*5y. (2.15)
One can give an heuristic argument for the definition of the Lyapunov exponent.

Assume that x, = f(x,—) and f is everywhere differentiable. Then using first-
order Taylor series approximation,

8 = f ™M (x0) — £ (x0 + &)
d
~ 50&]?(")(360)‘

Here,

d d
) _ ) s
wf (x0) ﬁf (x + o),

calculated at x = xq. Since

SO0 = fUC(fEN),
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Fig. 2.1 Simulated samples of 100 observations from the logistic difference equation; (a) ¢ =
1.0; (b) @ = 2.0 with xo = 0.5; (¢) @ = 3.0; and (d) @ = 3.9

by the chain rule

d d
af(")(xo) ~ exp(n log af(xo)),

assuming that each of the factors % fxn) ~ (%{ f(x0) have comparable sizes.
Therefore it is reasonable to consider

1. d
A= lim —In|— f™(xo)|,
Jim - n |- £ (xo)|

as an indicator of the degree of dependence on the initial conditions, or equivalently,
as an indicator of the degree of nonlinearity through the relationship (2.15). When
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A < 0, the dynamic system is called dissipative or non-conservative. Such a dynamic
system exhibits asymptotic stability, typically resulting from damped harmonic
oscillations. When A = 0, the system is called conservative and is said to be
Lyapunov stable. The case A > 0 corresponds to an unstable system, resulting in
chaotic sample paths.

Quantifying the degree of dependence on initial conditions or equivalently quan-
tifying the degree of nonlinearity of stochastic difference equations representing
dynamic random systems needs more attention. This is due to the fact that the
system in each iteration is perturbed by a random noise. Since each sample path
of the dynamic system will have different realizations of random shocks, it makes
sense to consider the divergence of expected values (ensemble average) of these
sample paths.

Example 2.1.5. Consider the stochastic difference equation
Xnt+1 = A, Xy + By, n > 0. (2.16)

Here, for each n, A, and B, are dependent scalar r.v’s, but the pair (4,, B,) is
an i.i.d. sequence. The stochastic difference equation in (2.16) and its multivariate
versions, where X,, B, are random vectors in R? and A,, are d x d matrices, often
appear as basis for studying many different forms of nonlinear time series and will
be revisited in future chapters. Starting from X, and upon # iterations the process
will be in the state (Brandt 1986)

n—1 n—1 n—1
Xo=>_ | [T 4| Bi-jmr + (]‘[ Ai) Xo.
j=0 \i=n—j i=0

Conditional on the two initial values Xo = xo, Xo = xo + 89, we can quantify the
deviation in the sample paths with

8 = f " (x0) — ™ (x0 + &)

Note that §, is a random variable. Lyapunov exponent A can now be defined as the
expected deviation on the sample paths upon 7 iteration, conditional on two initial
realizations Xy = x¢, Xo = X0 + 8o through the relation

E(8,) = ™6,
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in which case

1
A= ELtog(|Aoll 1]+ )]
= Elog(Ap).

(Here, | A; | rather than A; appear in the expression to insure that % f(x,) = A, have
comparable sizes and contributions). Brandt (1986) also shows that if the process is
dissipative, that is, A = E log |Ap| < 0 and E(log |Bo|)* < oo then

00 n—1

nl—iigo Xn = Z 1_[ Ai Bn—j—la

j=0 \i=n—j

is the unique stationary solution of (2.16). If A > 0, one would expect a chaotic
behavior, without a stationary limit for the difference equation. Hence, the existence
of stationary solutions for the stochastic difference equation given in (2.16) depends
on the degree of dependence on the initial conditions.

Example 2.1.6 (Fan and Yao 2003). Consider again the dynamic system defined
by the deterministic difference equation x; = f(x,—1), where f is an everywhere
differentiable function. But now we disturb the dynamic system at each iteration by
a small i.i.d. noise Z;, resulting in the stochastic difference equation

X, = f(Xt—l) + Z;.

The process that satisfies this difference equation is called the first order nonlinear
autoregressive model of order 1 (NLA(1)). In order to facilitate arguments, assume
further that Z, are independent of (X;,s < ¢). It may be interesting to know
how much these additive noises affect the variation in this process after n steps.
Again, let us consider two sample paths of this process, starting from Xy = x, and
Xo = x¢ + 8o and look at how much (on average) these two sample paths diverge
after n iterations. Note that, if f is a linear function, then with any uncorrelated
noise with finite variance, the divergence between these two sample paths would be
of order O(8y). Let f™ = f(f(--- f(x))) be the n fold composition of f. Then
by the arguments given in Fan and Yao (2003) which are based on iterative Taylor
series expansions,

n—1 n—1
X, = X))+ ) [/ Knt)Zu—jir + Zo. 2.17)
j=lk=j
In general the derivatives f'(X,—) are functions of Z,_, Z,—f—1,...7Z.

However, if we assume that the random shocks are of small order, that is
|Z,] < n < 1 almost surely for every n, then by (2.17) for any fixed n,
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f(X,) ~ f™(Xo) + O(n), and this can be used as a second-order approximation
in the arguments of the derivates to give

n—1 n—1
SX) ~ fOX) + Y [ S P XNZuj + Zu +0(). (2.18)
j=lk=j
Let 62(x) := V(X,|Xo = xo) be the variance of the process after n iterations.
Then from (2.18),
n—1 n—1
op(x0) = (1+ Y [T S (F P xe)’0” + o).
J=lk=j

Hence, even when the shocks Z; are almost surely small, the variance of the process
after n iterations is amplified by a quantity (1 + Z'j’:l ]_[Z:] £(f®(x0)))?, which
may be quite significant.

2.1.5 Limit Cycles

We have seen that the logistic difference equation given in (2.14) can have very
different sample paths, from a constant to total chaotic behavior depending on the
value of its parameter «. The region o € [3.0, 3.7) is interesting, as the sample paths
oscillate among a finite number of states. This type of limiting behavior is quite
common in deterministic and stochastic dynamic systems, particularly involving
population dynamics and is called limit cycle. Typically, dynamics of a population
depends on many internal and external factors, the size of the population being one
of these factors. As the population increases in size over passing a critical threshold,
typically this has a negative influence on the reproductive and survival capacities
of the population, lowering its growth rate. Moreover, as the population size goes
down, these capacities tend to increase, increasing its growth rate. Hence, under
equilibrium conditions the sample paths of a population size will show limit cycles,
switching at random epochs. For example, consider the deterministic difference
equation

b
Nip1 = Ntm,
often used for modeling annual plant population. Here a, b and ¢ are parameters
of the model. The parameter a does not affect the dynamics of the model, whereas
the parameter ¢ has a very strong effect on the dynamics. Again, this deterministic
difference equation will have very different sample path properties, depending
basically on the values of the parameters b and c¢. For example, when ¢ = 1, for
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Fig. 2.2 Limit cycles of simulated samples of 100 observations (a) a=1,b=1,c=1;
®da=1,b=10,c =3;(¢)a=1,b=50,c =4;and (d)a = 1,b = 150,c = 10

any value of b, the sample paths will converge monotonically to a constant, whereas
when ¢ > 2 and b = 10, the sample paths will show damped oscillations, finally
converging to a constant. This sample path behavior then starts getting ever more
erratic as b and ¢ increase. For values of » = 50 and ¢ > 3.5, the sample paths
oscillate between fixed number of population sizes, and this behavior is called the
stable limit cycles. Ultimately, for » > 100 and ¢ > 5, the sample paths behave
in a chaotic way. The limit cycles generated by several samples of size n = 500
are presented in Fig.2.2. In random dynamic systems, stable limit cycle behavior
can manifest itself in many different ways. For example, rather than switching
between fixed number of values, the process can switch between different linear
models at random epochs, depending on internal or external factors, resulting in
many different piecewise linear models such as threshold models. These models
will be discussed in Sect. 2.2.1.



2.1 Some Probabilistic Aspects of Nonlinear Processes 47

a b

T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
t t

Fig. 2.3 Simulated Gaussian AR(1) model, n = 500 and parameter 0.7 (a). In (b) the same model
with Gamma(4,1) residuals

2.1.6 Time Reversibility
A process X, is time reversible if

d
(tha Xlzﬂ ceey Xt,,) = (XI,,7X[,,_17 ceey Xt])’

for every n and 11, ...,1,. Gaussian processes are time reversible, and except for
few special cases, non-Gaussian processes are time irreversible. In general, if a
stationary time series is stationary and time reversible then for every k, kth order
cumulants satisfy

C(—ul,—uz,...,—uk) = C(ul,uz,...,uk).

This a very strong condition and it is very unlikely that there will be many
non-Gaussian processes that satisfy this condition. Therefore, time irreversibility
must be a rule among nonlinear processes. Note that if X, is a stationary time
series and Y; = h(X;) is a one-to-one transformation, then Y; is time reversible
if and only if X, is time reversible. Therefore, fitting Gaussian time series models to
transformed data cannot be a adequate method of dealing with nonlinearity. In other
words, in most cases, we cannot get rid of nonlinearity by transformation of the
data. The simplest way of checking reversibility is by plotting the data. In general,
for a reversible stationary time series, the plots of x,,, X,—1,...,x;and x;, X, ..., X,
should look the same. Similarly, since time irreversibility is a characteristic of
Gaussian data rather than linearity, a time series which is non-Gaussian should be
treated as irreversible (see Fig. 2.3).
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2.1.7 Invertibility

When studying stochastic difference equations of the general form
Xo = f({Xs, Zs,s < 13),

representing a dynamic system, we restrict our study to relationships (X;, Z;)
in which X, is measurable with respect to (Z,,s < t). These restrictions are
called the conditions of stationarity. Typically in these difference equations, what
is observed is the time series X;, and the innovations are unobserved. However,
almost all statistical properties of the relationship in (X;, Z,) are given in terms of
the innovations Z,. Therefore, in order to be able to make inference and predictions
on the dynamic system, the residuals should be recovered from the observations
Xg,8 < t. The set of conditions which guarantee this possibility are called the
conditions of invertibility, under which the innovations Z; are measurable with
respect to (X;,s < t). Note that, conditions of invertibility and stationarity are
joint properties of the processes (X;, Z;), rather than being a property of X; alone.
Unfortunately these conditions, particularly conditions of invertibility, are not so
easy to obtain for general nonlinear difference equations, except for some special
cases. We will look at these conditions for specific cases, whenever possible.

2.2 A Selection of Nonlinear Time Series Models

According to Tjgstheim (1994), nonlinear models can be broadly classified into the
following categories;

1. Parametric models

* Parametric models for the conditional mean

* Parametric models for the conditional variance

* Mixed parametric models for the conditional mean and variance
* Generalized state space models

2. Semiparametric and nonparametric models

The above classification is by no means exhaustive and mutually exclusive. In its
most general form, a nonlinear model can be written as a stochastic difference
equation

Xt - f(X[_l, e ,X[_p, Z[, Zt_l, ceey Zt_q,o), (2.19)

for some integers p and ¢, model parameters # and some measurable function f
which renders a stationary causal solution. Such general representation contains
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both nonlinear conditional mean and conditional variance components for X, in
terms of the past values. Often, it is easier to look at a simpler class of models

Xt = f(Xl‘—lv"'7Xl‘—p17Zt—la"'5Zt—qlﬁol)
+ g(X[—ly"~7X[—pzvzt—b"-5Zl—q2502)th (220)

for measurable functions f and g, separating the nonlinear models for the condi-
tional mean and the conditional variance components. Taking g as a constant, for
various combinations of f functions, we get subclasses of nonlinear models for the
conditional mean, whereas taking f constant and for various combinations of g,
we get subclasses of models for the conditional variance. The general class (2.19)
can be classified as the class of mixed models, although Tj@stheim (1994) classifies
(2.20) as the class of mixed models.
In this chapter, we give a brief description of some of these models.

2.2.1 Parametric Models for the Conditional Mean

These models represent the conditional mean function of the process X, as a
nonlinear function of the past observations, keeping the conditional variance
constant. Hence, an appropriate general model is given as

Xi = f(Fi-1.0) + Z,.

Here, the function f has a known parametric form, F;_, is the sigma-field generated
by X, up to time ¢t — 1, Z, is an i.i.d. sequence and 6 is an unknown parameter
vector to be estimated. In some cases, the function f may also depend on other
external processes. Several different forms of f give different classes of nonlinear
models. One important subclass is the regime models or regime switching models.
Models in this class are typically made up of several piecewise linear processes
and the generating process switches from one linear model to another, depending
on the value of an indicator. This indicator may be a random variable, such as the
delayed value of the series itself, or it can be the value of a different, possibly latent
process. Depending on the parameter values, such piecewise linear regime models
are stationary but nonlinear, in the sense that they cannot be represented in the
form (2.1). This class of models include threshold models, first introduced by Tong
(1990), and later enriched by other classes of similar nature. The fundamental reason
for introducing such classes of models is the need to model random cyclic behavior
that exists in many time series; see Sect.2.1.5 for further details. As we will see,
the class of bilinear processes, which is by far the most general class of nonlinear
models, in the sense that they form a dense subset of the Volterra expansions, cannot
generate limit cycles (e.g., Tong 1990) and therefore the threshold models have
gained importance on their own right in modeling time series. For general treatment
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of regime models see Hamilton (2008), Granger and Terésvirta (1993), and Franses
and Van Dijk (2000). Regime models may also switch at deterministic but unknown
times, in which case the process will be linear but not stationary. Such models are
called segmented time series (e.g., Davis et al. 2008). We now look at some of the
regime models.

Threshold Autoregressive (TAR) and Self-Exciting Threshold (SETAR)
Models

The basic idea behind this class is as follows: we start with a linear model for X,
and allow the parameters of the model to vary according to the values of a finite
number of past values of X;, or a finite number of past values of an associated series
Y:. Hence, such regime models in general can be written as

al’ + Y alV X + 2, i Y, < r
. , 2.21)
a((>2) +372 ai(Z)Xt—i +Z, ifY, >r

where r is the threshold and Y; is a switching process which can be a latent or an
observable process, determining which regime describes the process in a certain
moment of time. Such processes are called Threshold autoregressive (TAR) models.
When the switching process is the time series itself observed at a certain lag, we
have the SETAR sub-class. In its simplest form a first-order SETAR is given as

aXi—1 + Z,, if X,—y € AY

X, = s
wXi—1+ Z,,  if X,—y € A®

where A?) are some regions. Typically, these regions are intervals such as A =
{X;_1 <r},and A® = {X,_| > r}, for some threshold r. We can generalize this
class of models to

4
Xo=Y X+ 27, Xioh..... X)) €eAD i=12..1 (222
j=l1

having different error structures in each segment. Note that when / = 1, the first-
order threshold model can be seen as a piecewise linear approximation to the general
nonlinear first order model

X, = f(Xim) + Z;,

whereas the pth order model in (2.22) is a linear piecewise approximation to the
general nonlinear equation
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X, = f(Xt—l, Xi—,..., Xt—p) +Z;.

In practice it is not feasible to fit a model of the form (2.22) with a large p, since
the identification of the threshold regions would involve search in a p-dimensional
space. A sub-class of the form

P
Xi=ay +> ayX_; + 2", X,_q A",
j=l1

where A% is in R can be considered, thus simplifying the identification of such
models. These models can still be extended to include cases when switching
between sets of parameters is determined by the past values of a different process
Y:, extending the TAR model given in (2.21)

mj l[
Xo=ao+ Y agXe;+ Y bYi; + 2. Y4 e AD.

Jj=1 Jj=1

Such models are known to be very useful, particularly in modeling data which shows
random cyclic movements.

Smooth Threshold Autoregressive (STAR) Models

As mentioned above, TAR/SETAR models should be used when the process to
be modeled shifts from one regime to another abruptly. However, if the transition
is gradual, then the STAR models are more appropriate. A two-regime STAR(p)
model is defined by Chan and Tong (1986) as follows:

p p
Xi_yg—a
Xi=co+ Y apiXi—i + G (—’ ‘2 ) (cl + al,,-X,_,) + 7,

i=1 i=1

where d is the delay parameter, a and b represent the location and scale parameters
of G, respectively. The transition function G, that enables the transition between one
regime to the other, is a smooth, continuous and monotonically increasing function,
satisfying the inequality 0 < G(z) < 1. Two subclasses of STAR models are the
exponential and logistic STAR models, when the function G respectively is given
by the expressions

G(z) =1 —exp[—a(z—b)?], a >0,

1

,a>0.
1 +expl—az—b)] “

G(z) =
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Chan and Tong (1986) give an alternative STAR model with Gaussian smooth
transition function

G(z) = Cb[a(z — b)],

where ®(-) the cdf of the standard Normal distribution. The parameter b can be
regarded as the threshold and a controls how fast and how abrupt the model shifts
from one regime to another (see e.g., Zivot and Wang 2006).

Markov Switching AutoRegressive (MAR) Models

This class of models was developed by Hamilton (1989), based on ideas previously
proposed by Goldfeld and Quandt (1973). Let S; be a discrete first-order homo-
geneous Markov chain with state space S = {0,1,...,k}. Each member of S
corresponds to a regime. Let P(S; = j | S;—1 = i) = p;; be the transition matrix
given by

b1 P12 --. Pk
p— P.zl P.zz P.zk
p;cl P;cz p;dc
Each state, at time ¢, has an associated probability given by 7, := (Py, P2, ..., Px),

where 7 = P’m. A k-regime MAR model is given as
X = MUs; +X1710S, + Z;,

where X,—1 = (X;—1,X;—2,...,X;—p), and ug,, @, are the model parameters
that switch between k different values according to the latent Markov chain. Z; is
assumed to be a Gaussian sequence with mean zero and the variance can be taken
as constant, or may switch between k different values depending on the realization
of S;. A classical application of a two-state MAR model to the US GNP time series
is given in Hamilton (1989).

Random Coefficient Models
Sometimes it may be useful to introduce random regime switch into the model
parameters, giving rise to a different class of models. A simple model within this

class is the first order AR model

X, = 1ﬁth—l + Z;,
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Fig. 2.4 Sample path of size
n = 500 of the model (2.23) & 7
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where Y, is a homogeneous Markov chain with a finite space and transition
probabilities p;;, for example taking values a; and a,. In this case, the process X,
will alternate between the two processes

X, =a1Xi-1 + Z4,
and
Xi =ar X1+ Z4,

according to the transition probabilities (p;;) for i, j = 1,2. Smoother changes in
the parameter can be modeled by state space type model

X, = tht—l + Z;,
Y =ay—1 + vy,

where Z; and v; are independent i.i.d. sequences. In general, a regime model will
take the form (X, S;), where, (S;) is a latent process, typically a homogeneous
Markov chain with a finite state space, such that at any time ¢, X; conditional on
S; = j follows a linear model ARMA(p;,q;). Hence the process will alternate
among various linear models in accordance with the transient behavior of the
unobserved process S;. The estimation, identification and diagnostics for these
models are complicated although not impossible, due to the fact that the process S; is
not observed. Note that if the residual process is made to depend on the unobserved
Markov chain then the variance of the process also changes from one regime to
another. In Fig. 2.4, we have a sample path of the process

X, =CY) 405X, + Z,, (2.23)
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Fig. 2.5 Sample path of size
n = 500 of the model (2.24) g
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where Z; are i.i.d. N(0,1) and

coo )2 S =1
10 ifS, =2

where S, is a homogeneous Markov chain with transition matrix
0.90.1
P = .
[ 0.4 0.6 }

For this matrix, the stationarity limit distribution is given by = = (0.8,0.2).
A sample path of the extended process

X, = 05X, + 2%, (2.24)
where

S0 _ §NQ.1) s =1
! N(0,10) ifS, =2

is presented in Fig. 2.5.

Segmented Time Series

Davis et al. (2008) introduced a broad class of nonlinear and non-stationary time
series segmented into several pieces. Each segment is assumed to be a stationary
time series modeled by a parametric class of time series, whereas the number and
the locations of the break points or the segments are treated as unknown model
parameters. Thus the observed time series y; is assumed to be generated by a time
series Y; of the form
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Y, = X,.j, Tj—1 =1 <71y, j = 1,...,m,

where 7;, j = 1,...,m are the break-points or segments of unknown number m
and each segmented X, ; are stationary times series independent of each other.
Typically, these time series can be AR(p;) or GARCH(p,, g;) models. In a more
general form, each segment may be composed of time series having different state
space representations. The model choice, namely the identification of the number
of segments and their respective locations, as well as the order of the models in
each segment is then performed by using a genetic algorithm. Simulation results
indicate that these models perform well and the availability of software to fit these
models makes this class of models a good candidate for regime models. The main
difference between segmented time series and threshold models is that, whereas in
threshold models, the transition between models is triggered by lagged values of the
time series, in segmented time series, the changes occur at specified time points.
Examples of time series models studied by Davis et al. (2008) include:

o Segmented AR process:
In this case, each segment X; ; is assume to be an AR(p;) process given by

Xij=aj X+ +ap jXipj+ 2,

where Z;; ~ WN(O,U}). Here the (unknown) parameters of the model are

0j = (pj,tlj,O'jz).l
» Segmented GARCH(p;,q;) process:
In this case, each segment Y; is modeled by a GARCH(p,, ¢;) given by

Xz,_/' = Oy, Z;,
where Z; ~ WN(0, 1) and

2 — . . 2 .o .
o, =ajo+a1 X +--+aj, X

2 2
J +bj.1‘7t—1,j +"'+bj.,qj0t—qj.jv

2 .
t=pj.j

Tj—1 =1t <71y,

where to satisfy stationarity of each segment, the parameters are restricted by
aop,; > 0, b().j > (0 and

Pj qj
Za,»,j + Zbi’j < 1.

i=1 i=1

Here, the model parameters are givenby 8 ; := (p;,q;.a;,b;).

A discrete counterpart of conventional segmented AR processes, based on the thinning operator
in (1.5), was proposed by Kashikar et al. (2013).
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o Segmented state space models:
In this case the jth segment Y; ; has a state space representation given by the
equations

pj(yl‘|le) = Pj(J’t|xt.j»Xt—l.j7Yt—l), 7:j—l <t = ‘L—j

and the state process X; ; follows a AR(p;) process.

2.2.2 Exponential Autoregressive Models

Consider for example, the second-order autoregressive model
Xi=a1 X1 +ax X, + Z4,

where a1, a, instead of being constants, are functions of X;_;. Specifically, assume
that they are exponential functions of X 12—1 taking the form

ay = ¢ + mexp(—y X7 ),
ar = ¢ + myexp(—y X7 ).

Such a model then is called second-order EAR(2) model. Note that for large | X,—|,
a; ~ ¢1, a, ~ ¢, whereas for small | X,_;|, a; ~ ¢ + w1, ay ~ ¢, + 77, so that
the EAR model behaves like the threshold AR model where the coefficients change
smoothly between two extreme parameter values. EAR models are capable of
producing amplitude dependent frequency effect, limit cycles and jump phenomena;
see Tong (1990) or Priestley (1981). The coefficients a;, a, can be defined as a
function of X,_; in different ways to assure smooth transitions. For example, in the
case of EAR(1) model, a; can be parameterized as

ar = 01 Xi—1 + 6:X,—1{[1 + exp(65(Xi—1 — 62))] 7' — 1/2}, 65 >0,

in which case the model is called logistic exponential model. These models can be
generalized to the form

k
X, =dX, o+ Zbifpi()’;xt—l) + Z;,

i=1

where X,—; = (X;-1,Xi—2.....X;—p), and @' = (ai,....ap), ¥y =
(y1,...,yp) are p-dimensional parameter vectors and ¢;(-) are known specific
functions. Although such models are used, it is evident that there would be problems
of estimation as the parameter space increases.
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2.2.3 Polynomial-Type Models

One can also use nonlinear regression type models based on polynomials of the form

k
X =) aX/_ +Z.

i=1

More general polynomial models can be devised by introducing terms depending on
X,—2,X;—3,..., X;—p and cross terms. These models are not very much used due to
the feedback of X, into itself, causing explosive behavior.

2.2.4 Bilinear Models

The process X; is said to be a bilinear process BL(p, ¢, m, ) if it satisfies the
difference equation

P q m 1
Xo = X+ 6, Zij+ Y D byiXiiZimj + Zs. (2.25)

j=I j=I i=1j=1

The conditional mean of the process (2.25) is given by

E(Xt|ﬁ 1)—Z¢/xl j+20jzl /"’Zzbt]xt—lzl Jj

i=1j=1

whereas the conditional variance is given by V(X,|F,—1) = 02. Hence the bilinear
model given in (2.25) represents the nonlinear dynamics present in the mean. This
class obviously can be extended to include cross terms of (X;_i, ..., X,—,;) with Z,
resulting in models

qu,xl ,+Ze Z ,+ZZb,,X, iZi—j + Zi. (2.26)

i=1j=0

In this case, V(X,|F;—1) will also be a function of passed values of the series,
therefore bilinear models described in (2.26) fall in the class of mixed models for
the conditional mean and variance.

The class of bilinear models plays an important role in modeling nonlinearity
for various reasons. The class is an obvious generalization of ARMA(p, r) models
resulting in nonlinear conditional mean. Under fairly general conditions, bilinear
processes approximate finite order Volterra series expansions to any desired order
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of accuracy over finite time intervals (Brockett 1976). Due to Nisio’s theorem,
Volterra series expansion are a dense class within the class of nonlinear time
series, therefore, under fairly general conditions, bilinear processes are also a dense
class within nonlinear processes, approximating any nonlinear process to a desired
level of accuracy. However, it is well known that bilinear processes cannot capture
random cyclic movements, such as limit cycles and jump phenomena. The class
is fairly well-studied, and conditions for the existence of unique and stationary
solutions are known. Although identification, estimation and diagnostic techniques
are available, much of the work on the class remains to be completed. Volterra
series expansions and bilinear processes are often used in the control theory and
are somewhat different from the context within which they are used in time series.
In the control theory, the output X/, as well as the input process Z, are observable,
making the probabilistic structure simple. For example conditional on the passed
values of Z;, the process X, is linear, and conditional on the passed values of X,
the process Z; is also linear. In the time series context, the input random process Z,
is not observed and unfortunately, the lack of verifiable conditions for invertibility
(except for very simple bilinear processes) limits the use of these processes as
models. Bilinear processes are capable of producing sudden bursts of large values
and hence are suitable for modeling time series showing heavy tailed phenomena.

The bilinear process BL(p, ¢, m, ) given in (2.26) can be written in the form
(Resnick and Van den Berg 2000)

X = A1 X,—1 + By,
where
B, = 07z,

® isa p x (1 + ¢g) matrix given by

16 ...0,-10,
00. 0 0
e=|00. 0 01,
00. 0 0
A,_jisa p X p matrix given by
1+ by Ziy b+ Y b Zi bp+ Y1 bpZiej
1 0 ... 0 0
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and X and Z, are respectively (p — 1) x 1 and ¢ x 1 column vectors
X, =X, Xi—15-.., Xt—P'H)/’
Z, = (Zt, Zi—1,..., Zt—q),'

The general bilinear model (2.25) can also be written in an equivalent state space
form with the observation equation

X = H/Wt—l + 7,
and the state equation
W, =AW, +C,.

Here, the state vector W, is a Markov chain, and A;, C, are random matrices,
depending on the specific form of the general bilinear process given in (2.25).
The general form is quite complicated (e.g., Fan and Yao 2003) but simpler
bilinear models can conveniently be written in this form. For example the model
BL(p,0, p, 1) given by

P P
X = Z¢th—j + ZbilXt—iZt—l + Z,
j=l1 i=1
can be written in the vector state space form (e.g., Priestley 1981)
X, =HW, + CZ,
W, = (A + BVVt)Wtfl + (A + BZI)CZh
where
W, =X, Xi—1,..., Xt—p)/,
Hix, :=(1,0,...,0),
C,x1:=(1,0,...,0),

b1 42 - ap
10--0
010
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b11 b21 bp1

0 0...0
B,x, =

0 0 ---0

Note that W,_; is independent of the coefficient (A + BZ;) and the error (A +
BZ,)CZ,, and is a Markov chain. Note also that the pair (A+BZ;, (A+BZ,)CZ,),
forms an i.i.d. sequence of random matrices, but the components of this pair
are not independent of each other. This state space representation, due to its
Markovian nature facilitates the study of the probabilistic properties of the process.
For example, if the process W, is stationary, then so is X;. Due to its Markovian
structure, it is relatively easy to study the conditions under which W, is stationary;
see Meyn and Tweedie (2009) for the study of probabilistic properties of Markov
processes.
If we solve the difference equation given by

Wt = Ath—l + Cts

where (A,, C;) is an i.i.d. sequence of random matrices, iteratively n times, the
partial solution for W, is given by

n—1j—1

HAf Wi+ Y []A=C;.

i=0 j=li=1
so that the convergence in probability

n—1j—1

Z 1_[ Al—iCt—j — 0,

j=li=1

is a sufficient condition for the existence of a stationary solution. For example,
consider the simple bilinear process

X, =aX;— +bX, 1 Z—1 + Z;.

Solving iteratively for X, upon n iterations we get

X, =[]@+bZ-)X.-,

i=1

n—1 j

+Y [le+bz-»z,;.

j=li=1
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and, if in probability

[[@+bz—;)—o. (2.27)
j=1

then

o J
X =Y Tla+bz-)z;. (2.28)

j=li=1

A sufficient condition for (2.27) is given by Pham and Tran (1981). If Z; are i.i.d.
zero-mean r.v’s with E(Z?2) = 0% and E(Z?) < oo, then (2.27) converges in mean-
square if a®> + b?0? < 1, in which case, (2.28) is the unique stationary solution.
This is also a sufficient condition for invertibility. However, it is far from being a
necessary condition for stationarity and invertibility. Note that (2.28) is a moving
average representation

o0
X =Y 6;Z,.

Jj=1

with random coefficients

J
0; =[]@+bz).

i=1

Therefore, one would expect that the second-order properties of this process
resembles that of a linear process. Indeed, assuming 0> = 1 simple calculations
show that

oo

nw=EX) = Zaj_lba2
j=1

b

1—a

’

1 +2b7
1—52"

y(1) = E(X, Xi—1) = 257,

E(X}) =

and for k > 2,

y(k) = ay(k —1).
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Fig. 2.6 ACF and PACF of the bilinear model (2.29)
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Note that this is exactly the covariance structure of a linear MA(1, 1) process.
Similarly, the autocovariance function of a BL(p, ¢, m, [) process behaves like the
autocovariance function of the process MA(p, go) where g := max(q, [); see Fan
and Yao (2003) for details. It is clear once again that one cannot differentiate a
nonlinear model from a linear model by studying only the second-order properties.
In Figs.2.6 and 2.7 below, we give respectively the autocorrelation and partial
autocorrelation functions based on a data of dimension 500, simulated from the
models

and

X =05X,.1+0.6X,1Z,_, + Z;,

Xl == O.Sthl + 0.6217] + Z[

(2.29)

(2.30)
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with i.i.d. standard Normal innovations.

Unfortunately, like for most nonlinear processes, the condition of invertibility
which is crucial for estimation and prediction, is not well understood and cannot be
checked except for some simple bilinear processes (see Chap. 4, for some empirical
ways of checking invertibility). Therefore, although bilinear processes have desired
properties as models, their use in practice is quite restricted.

Here we note a fundamental difference between the bilinear and threshold
models. Threshold models, as in the case of bilinear models, can be put in the state
space representation

X, =HW,,
W, =AW, +BYZ",

for some properly chosen state vector W;, and constant matrices A, B() and
regions R®¥). However, the essential difference between threshold models and
bilinear models is that whereas in bilinear processes the nonlinearity is introduced
by the cross terms Z;_; X,_;, in the threshold models the relation between W,
and W ,_; is nonlinear (that is a nonlinear function of X, s < t), with residuals
still entering the model linearly. This difference has strong influence on the type
of nonlinear behavior. Bilinear processes, due to this cross terms, in general, are
capable of producing extreme observations but cannot produce limit cycle behavior,
hence each class has its own use in modeling different nonlinear phenomena.

2.2.5 Parametric Models for the Conditional Variance

These models are special case of the representation (2.20) with f = 0 and are based
on modeling the function g in different forms. A useful conceptual division of these
models can be made as

1. Observation-driven models and

2. Parameter-driven models.

Observation-Driven Models

Lets assume that for each ¢, the time series satisfies
X/|o? ~ N(0,0}).

The observation-driven models are based on representing 6 as a function of lagged
values of X, taking the general form
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Xt = g(‘7:l—1 ) 02)217
giving rise to the rich classes of ARCH and GARCH models. Since
V(X(|Fi1) = g2(Fi-1,02)03.

it is customary to represent the function g by o;.

Since the seminal paper of Engle (1982) traditional time series tools such as the
ARMA models for the mean have been extended to essentially analogous models
for the variance. Autoregressive conditional heteroscedasticity (ARCH) models are
now widely used to describe and forecast changes in volatility of financial time
series. For a survey of ARCH-type models and various extensions, see Bollerslev
et al. (1992, 1994), Pagan (1996), Palm (1996), Shephard (1996), Berkes et al.
(2003), Bauwens et al. (2006), Silvennoinen and Terésvirta (2009), and Terdsvirta
(2009). According to Engle (2004) the original idea was to find a model to assess the
validity of the conjecture of Friedman (1977) that the unpredictability of inflation
was a primary cause of business cycles. Uncertainty due to this unpredictability
would affect the investor’s behavior. Pursuing this idea requires a model which
characterizes the time dynamics of this uncertainty.

Financial time series, such as relative returns of stock indices, share prices and
foreign exchange rates, often show the following features (usually referred to as
stylized facts):

e The sample mean of the data is close to zero whereas the sample variance is of
the order 10™* or smaller;

* Exceedances of high/low thresholds tend to occur in clusters. This property
indicates that there exists dependence in the tails;

* Return data exhibit heavy-tailed marginal distributions;

e The sample autocovariance function of such data is statistically insignificant
at all lags (with a possible exception of the first lag), whereas the sample
autocovariance function of the absolute values or the squares of the time series
are different from zero for a large number of lags and stay almost constant and
positive for large lags.

¢ As one increases the time scale on which returns are calculated, their distribution
looks more and more a Gaussian. This means that the peakedness around zero
and the heavy-tailedness of the empirical distribution turn into bell shapedness.

The list above is far from being complete. An exhaustive analysis of stylized facts
can be found in Cont (2001).

Most models for financial time series (and in particular for return data) used in
practice to accommodate such features are given in the multiplicative form

Xt — GIZI’ t e Z, (2.31)

where (Z;) forms an i.i.d. sequence of real-valued innovations or noise variables
with zero mean and unit variance, (o) is a stochastic process such that o; and
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Z, are independent for fixed ¢. In general, (0;) and (X;) are assumed to be
strictly stationary. Motivation for considering this particular choice of a simple
multiplicative model comes from the fact that (a) in practice, the direction of price
changes is well modelled by the sign of Z,, whereas o, provides a good description
of the order of magnitude of this change; and (b) the volatility o represents the
conditional variance of X, given o;.

Engle (1982) suggested the following simple model for the volatility o;:

o} =ay+aX:,, t €Z, (2.32)

for positive constants ay and a;. Equations (2.31) and (2.32) define an AutoRe-
gressive Conditionally Heteroscedastic model of order one (in short ARCH(1)).
For example, assume Z; to be an i.i.d. Gaussian white noise distribution. Then
the distribution of tomorrow’s return X,4, conditionally on today’s return X;, has
Normal distribution with zero mean and variance ay + a; X tz This allows one to
give a distributional forecast of X,4 given X;. The ARCH(1) fit to real-life data
can be improved by introducing the ARCH(p) model, with p € IN, where o, obeys
the recursive equation

p
of =ap+ Y aiX',. 1€, (2.33)

i=1

withag > 0,ay,...,a,—1 > 0 and a, > 0. A major improvement upon the expres-
sion in (2.33) was achieved by Bollerslev (1986) and Taylor (1986), independently
of each other, who introduced the Generalized ARCH (GARCH) models of order
p and q. In this model, the conditional variance is also a linear function of its own
lags and takes the form

14 q
of =ao+ Y aiXl;+Y bjol ;. (2.34)
i=1 j=1

= ay+ a(B)Xt2 +b(B)o?, t €Z,

with ag > O,al,...,ap_l > 0, a, > 0, bl,...,bq_l > (0 and bq > 0.
The requirement that all the coefficients are non-negative ensures that o7 is also
non-negative. The most popular GARCH model in applications has been the
GARCH(1, 1) model, with p = ¢ = 1 in (2.34).

The family of GARCH models has been generalized and extended in various
directions in order to accommodate different features often exhibited by financial
time series. One possible generalization of the GARCH models is the so-called
ARCH(00) sequences defined as follows:

Definition 2.2.1. A random sequence (Y;) is said to satisfy ARCH(o0) equations
if there exists a sequence of i.i.d. non-negative r.v’s (7,) such that
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Y, =¢n, t €Z, (2.35)

and

o0
G=a;+ Y a'Y, (2.36)

i=1
witha! >0fori =0,1....

The general framework leading to the model in (2.35) and (2.36) traces back to
Robinson (1991). This class of models include, among others, the classical squared
ARCH(00) model, that is the model in (2.31) and (2.33) with p = ccand Y, = th,
& = ol n, = Z? and the coefficients aj = ag and a¥ = a; fori = 1,..., p; or
the squared GARCH(1, 1) with Y; = X2, ¢, = o7, n, = Z}, af = ao/(1—by), and
af = b’i_lal.

On the other hand, several extensions of the GARCH models aim at accommo-
dating asymmetric response of the volatility for positive and negative shocks. Giving
heed to this problem, Ding et al. (1993) proposed the Asymmetric Power ARCH of
order (p, g), in short APARCH(p, ¢), model defined as

p q
of=w+ Zai(le—i| -y X))+ Zb./az(g—j’
i=1 Jj=1

where w > 0,a; > 0,b; > 0,5 > O represents the parameter for the power term,
and —1 < y; < 1isthe leverage parameter. This model allows detecting asymmetric
responses of the volatility for positive or negative shocks. If y; > 0, negative shocks
have stronger impact on volatility than positive shocks, as would be expected in the
analysis of financial time series. If y; < 0, the reverse happens. The APARCH model
includes as special cases the GARCH( p, ¢) model, the Taylor/Schwert GARCH in
standard deviation model (Schwert 1989, 1990; Taylor 1986), the GJIR-GARCH
model (Glosten et al. 1993), the TARCH model (Rabemananjara and Zakoian 1993;
Zakoian 1994), the NARCH models (Higgins and Bera 1992) and the log-ARCH
model (Geweke 1986; Pantula 1986).

Moreover, evidence of long memory and persistence (accordingly to the most
common definition of long memory: autocovariance function, y(k), decaying at the
hypergeometric rate k2?~!, with 0 < d < 0.5) has been documented in many fields
in economics, including volatility of financial series and trading intensity in financial
durations data. Baillie et al. (1996) proposed the Fractionally IGARCH(p, d, q),
or FIGARCH(p, d, g), in order to accommodate long memory in volatility. The
authors started by writing the GARCH(p, g) process as an ARMA(m, p) in X}

(1-a(B) = b(B)X} = o+ (1-b(B))v,,
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where m = max{p, ¢} and v, = X? — 0. When the autoregressive lag polynomial
¢(B) :=1—a(B)—b(B) contains a unit root, the GARCH( p, ¢) process is said to
be integrated in variance (Engle and Bollerslev 1986). The Integrated GARCH(p, q)
or IGARCH(p, q) class of models is given by

#(B)(1 — B)X? = w + (1 — b(B))v;.

The FIGARCH(p,d,q) class of models is simply obtained by allowing the
differencing operator in the above equation to take non-integer values, that is

¢(B)(1 = B)'X} =+ (1= b(B)v,
with b(B) and ¢(B) representing lag polynomials having all their roots lying

outside the unit circle. The fractional differencing parameter is denoted as d. The
fractional differencing operator (1 — B)“ is most conveniently expressed as

— (d
_pyd — _1\k Rk
(1—-B) Z(k)( 1)* BX.
k=0
After rearrangement, the FIGARCH(p, d, ¢) model can be represented as
2= —2 L aB)XZ (2.37)
! 1—b(1) !
where
o0
A(B)=1-¢(B)(1—-B)'(1—-b(B)™' =) 1B (2.38)
i=1

Here, A(1) = 1 for every d, with A; > 0, for i = 1,2,..., so that the
FIGARCH(p, d, g) model is well-defined and the conditional variance is positive
for all z. Conrad and Haag (2006) obtained two sets of sufficient conditions for the
conditional variance of the FIGARCH process to be non-negative almost surely.
Nonetheless, general conditions are difficult to establish. The simplest version of
the FIGARCH(p, d, q) model, which appears to be particularly useful in practice,
is the FIGARCH(1, d, 1) for which the volatility o takes the form as in (2.37) with
b(B) = b1 B and ¢(B) = ¢ B with |b;| < 1. Necessary and sufficient conditions
for the non-negativity of the conditional variance for the FIGARCH(1, d, 1) were
obtained by Conrad and Haag (2006). The FIGARCH model has the property that
for high lags, say k, the distributed lag coefficients are A,y ~ ck=?~!, with ¢
a positive constant. This implies that the conditional variance can be expressed
as a distributed lag of past squared returns with coefficients that decay at a
slow, that is hyperbolic, rate which is consistent with the long memory property.
Davidson (2004) proposed an alternative definition of the persistence properties
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of the FIGARCH process in terms of the hyperbolic memory, aiming to make the
distinction of the FIGARCH model from the geometric memory cases represented
by the GARCH and IGARCH processes more precise.

The statistical properties of the general FIGARCH(p, d, q) process, however,
remain unestablished. For example, conditions for the existence of a stationary
solution as well as the source of long memory on volatility are not known. For
example, Mikosch and Starica (2004) and Granger and Hyung (2004) advocated that
spurious long memory can be detected from time series exhibiting structural breaks.
As solution to this problem, Baillie and Morana (2009) proposed the Adaptative
FIGARCH model, or A-FIGARCH model in short, which simultaneously accounts
for long memory and incorporates a deterministic time-varying intercept which
allows for breaks, cycles and changes in drift. The A-FIGARCH (p, d, g, k) model
can be derived from the FIGARCH (p, d, ¢) in (2.37) by letting the intercept @ to
be time-varying, that is

o =, + [l —¢(B)(1 - B)" (1 —b(B))"1X2
or
0,2 = w; + A(B)X?,

with

k

W = wy + Z[y_, sin(2rjt/T) + 8; cos(2mjt/T)].
j=1

In practice, k is a small integer often taken as k = 1 or 2. An immediate advantage
of this model is that it does not require pretesting to determine either the number of
structural break points or their locations. Furthermore, this model does not require
any smooth transition between volatility regimes. Note that the inclusion of the
time-varying intercept component implies that the A-FIGARCH process is neither
ergodic nor strictly stationary.

The FIAPARCH( p, d, q) model of Tse (1998) is a special case of (2.31) with

5 1)
o, = 1= B(B) + A(B)g(X,), (2.39)
where g(X,) = (| X,|—yX;)® with |[y| < 1 and § > 0, and A(B) defined as in (2.38)
forevery 0 < d < 1, with A; > 0, fori € N, and w > 0. Furthermore, in order
to allow for long memory, the fractional differencing parameter d is constrained to
lie in the interval 0 < d < 1/2. The FIAPARCH model nests two major classes
of ARCH-type models: the APARCH and the FIGARCH models of Ding et al.
(1993) and Baillie et al. (1996), respectively. When d = 0 the process reduces
to the APARCH(p, ¢) model, whereas for y = 0 and § = 2 the process reduces
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to the FIGARCH(p, d, ¢) model. Conrad et al. (2008) pointed out some advantages
of the FIAPARCH(p, d, q) class of models, namely (a) it allows for an asymmetric
response of volatility to positive and negative shocks, thus being able to traduce
the leverage effect. If y > 0, negative shocks have stronger impact on volatility
than positive shocks as would be expected in the analysis of financial time series. If
y < 0, the reverse happens; (b) in this particular class of models, it is the data that
determines the power of returns for which the predictable structure in the volatility
pattern is the strongest, and (c) the models are able to accommodate long memory
in volatility, depending on the differencing parameter d.

The simplest version of the FIAPARCH(p, d, ¢) model, which appears to be
particularly useful in practice, is the FIAPARCH(1, d, 1) for which the volatility
o, takes the form as in (2.39) with 8(B) = BB and ¢(B) = ¢B. Necessary
and sufficient conditions for the non-negativity of the conditional variance for the
FIAPARCH(1, d, 1) resembles the ones obtained by Conrad and Haag (2006) for
the FIGARCH(1, d, 1) model.

Volatility, asymmetry and long memory may also be captured using various
extensions of the model introduced by Tse (1998) and Davidson (2004) among
others. For example, Diongue and Guégan (2007) introduced the so-called seasonal
hyperbolic APARCH, in short S-HY-APARCH, model where

[1—b(B)lo} = w + {¢p(B)[1 — (1 — (1 — B))]}g(X,). (2.40)

The parameter t > 0 permits to eliminate the non-stationarity of the process.
Moreover, by assuming that the roots of [ — b(B)] = 0 lie outside the unit circle,
the conditional variance in (2.40) can be expressed as

B—L — _ -l _ (1 _ pHd
of = 5 1= alBY1 = b(B) (1 (1= (1= BY)le(Xo).

Another popular class of GARCH-type models is the Exponential GARCH,
EGARCH in short. Nelson (1991) introduced it in order to overcome some
disadvantages exhibited by the GARCH models, namely (a) parameter restrictions
that are often violated by estimated coefficients; (b) asymmetric responses of
shocks; and (c) interpreting whether shocks to conditional variance persist or not is
difficult in GARCH models, since the usual norms measuring persistence often do
not agree. The family of EGARCH( p, ¢) models can be defined as in (2.31) with

P q
ln(otz) =ay+ Zaig(Z[_i) + Z b ln(af_j . (2.41)
i=1 j=1

For example, setting g(Z,) = 0Z, + y(|Z;| — E|Z,|) with non-zero 6 and y in
(2.41), we get the EGARCH model of Nelson (1991). Moreover, if in (2.31) and
(2.41) we set g(Z;) = 6;In(Z?), fori = 1,..., p, then we get the logarithmic
GARCH (LGARCH) model proposed by Geweke (1986) and Pantula (1986).
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As a final class of GARCH-type processes, we mention the model introduced
by Liu (2009) which is a generalization of the first-order GARCH processes family
introduced in He and Terésvirta (1999) and further developed by Ling and McAleer
(2002). These authors defined the following general class for the GARCH(1, 1)
model. Assume that in (2.31), o; is modeled by

0! = g(Zi1) + c(Ziy)ol . 1 € T,

where § > 0, (Z,) is a sequence of i.i.d. non-degenerate r.v’s with mean zero.
Further, it is assumed that Z, is independent of X,_;, X,—,,..., and g(:) is a
positive function whereas c(-) is a non-negative function. This family of GARCH
processes includes the GARCH(1, 1) model of Bollerslev (1986), the absolute
value GARCH(1, 1) model of Taylor (1986) and of Schwert (1989), the nonlinear
GARCH(1, 1) model of Engle (1990), the asymmetric GJR-GARCH(1, 1) model
of Ding et al. (1993), the TARCH model (Rabemananjara and Zakoian 1993;
Zakoian 1994), the ANLGMACH(1, 1) model of Yang and Bewley (1995), the
generalized quadratic ARCH(1, 1) model of Sentana (1995), and the volatility
switching GARCH(1, 1) model of Fornari and Mele (1997).

Liu (2009) extends He and Terésvirta (1999) results by allowing for an influence
of higher-order past errors and conditional variances on the current conditional
variance. Specifically, Liu model for o; stands as follows:

U;S =g(Zi—1,....Z—5) + ch(zt—k)a;s—k’ t €7,
k=1

where g(Z,t,s) = g(Z;—1,...,Z,—) is a strictly positive function and ci(-),
k =1,...,r, all are nonnegative functions. This new family of GARCH processes
includes:

1. The GARCH(p, ¢) model of Bollerslev (1986) for § = 2, g(Z,t,s) = ay,
cx(Zi—x) = by + axZ>, fork = 1,...,r with r = max{p,q}, a; = 0 and
b; =0fori > pand j > ¢, respectively.

2. The absolute value GARCH(1, 1) model of Taylor (1986) and of Schwert (1989)
ford =1, g(Z,t,5) = ag, cik(Z,—x) = bi + ar|Z,—x| fork = 1,...,r with
r =max{p,q},a; =0and b; = O0fori > p and j > ¢, respectively.

3. The volatility switching GARCH(1, 1) model of Fornari and Mele (1997) for
§ =2,8(Z,t,5) = ao+ Y p— visg(Zi—x), ex(Zi—k) = by + ax Z7, for
k=1,...,r withr = max{p,q},a; =0andb; = 0fori > pand j > g,
respectively.

4. The nonlinear GARCH( p, ¢) model of Engle (1990).

(a) Case § = 1: g(Z,t,5) = ag, cx(Zi—x) = b + ar(1 — 2nsgn(Z,—x) +
N Zi—i| fork = 1,...,r with r = max{p,q}, a; = 0 and b; = 0 for
i > pand j > g, respectively.
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(b) Case § = 2: g(Z,t,5) = ag, cx(Z;—x) = b + ar(1 — 2nsgn(Z,—x) +
n)Z:, fork = 1,...,r with r = max{p,q}, a; = 0 and b; = 0 for
i > pand j > ¢, respectively.

5. The GJR-GARCH(p, ¢) model of Glosten et al. (1993) for § = 2 g(Z,t,s) =
ao, ck(Z—) = b + (axorI(Z,—)) Z2, where 1(Z,—;) = 1if Z,—; < 0 and
I(Z,—x) = 0 otherwise, for k = 1,...,r with r = max{p,q}, a; = 0 and
bj =0fori > pand j > g, respectively.

6. The APARCH(p, ¢) model of Ding et al. (1993) for § > 0, g(Z,t,s) = aq,
ci(Zi—) = b + ar(1 = 2nsgn(Z;—i) + 1) Z—i|® for k = 1,...,r with
r=max{p,q},a; =0and b; = 0fori > p and j > ¢, respectively.

7. The threshold GARCH(p, ¢) model for 6 > 0, g(Z,t,s) = ag, ck(Z,—) =
b + (aix(l = I(Zi—)) + anI(Zi—)| Zi—i|® for k = 1,...,r with r =
max{p,q},a; = 0and b; = Ofori > pand j > g, respectively. Note that
this is generalization of the models introduced by Zakoian (1994), Hwang and
Woo (2001), and Hwang and Basawa (2004).

8. The 4ANLGMACH(1,1) model of Yang and Bewley (1995) for 6 = 2,
g(Z.t,s) =ao+ Y p—y ar(Zi—k — di)* + au(Zi—y — di)*, cx (Z,—) = by for
k =1,...,r. As pointed out by Liu (2009) this is a generalization of the family
of moving-average conditional heteroskedasticity models proposed by Yang and
Bewley (1995).

9. The first-order GARCH model of He and Terdsvirta (1999) withr = Il ands = 1

We refer the reader to Andersen et al. (2009) for the recent developments and
applications of this class of models.

Parameter-Driven Models

Parameter driven models for conditional variance are based on representing the
variance of the process by a latent stochastic component. A simple example is the
log-normal stochastic variance or volatility model

X, |W; ~ N(0,exp(W,)),
Wit1 = yo +viWi + vy,

where v, ~ i.i.d. N(0,0?). Here W, is not observed but can be estimated using
the observations. These models lack analytic one-step ahead forecast densities and
they need to be approximated through numerical methods. However they extend to
higher dimensions and have continuous time analogs; see Sect. 2.2.7 for an extended
treatment of parameter-driven models. Recent advances in hierarchical modeling
techniques and simulation-based inferential methods make these generalized state
space models very attractive.
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2.2.6 Mixed Models for the Conditional Mean and Variance

The objective behind these models is to join models for the conditional mean and
conditional variance given in the previous sections under a single model. In its
simplest form, these composite models can be given as

Xi = f(Fi-1.01) + g(Fi-1.02) Z;,
Note that
E(X:|Fi—1) = f(Fi-1.01),
V(Xi|Fi-1) = g(Fi1,02)°V(Z)).

Here, the function f and g can be chosen in accordance with the partial models
for the conditional mean and variance, discussed in the previous sections. In the
simplest case, the conditional mean can be modeled by a linear ARMA model,
whereas the conditional variance can be modeled by a GARCH model. Typically,
first the model for the conditional mean is fitted, then the conditional variance model
is fitted to the residuals from this model. This is the standard procedure in fitting
GARCH models.
However, models of the type

Z¢,X, _ +Ze Z_; +ZZbI,Xf iZimj + 2,

i=1j=0

_Z¢]X, ]+ZG Z- ,+ZZbUXt iZi-j

i=1j=lI

m
+ Zbi()X;—iZt + Z,.
i=1
give rise to richer and more complex structures. For example, the model
X =aX—1 +0Xe1 Ziy + cXei 2o + Z4,
includes nonlinear dynamics both in the mean and the variance, since
E(X:|Fi—1) = ax;—1 + bxi—12-1,

and

V(X,|F—1) = (1 +cx))o?.
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Alternatively, we can consider bilinear models given in (2.25), whose innovations
are generated by a GARCH model. For example the model

r

S
X =) "byX,iZj + Zi. (2.42)
i=1j=1

where i > j, and the innovations Z, are generated by the ARCH(g) process will
represent nonlinear dynamics both in the mean and the variance.

The fundamental difference between GARCH and bilinear models is that
whereas for GARCH models E(X;|F;—;) = 0, and V(X,|F—) = h,atz, for
bilinear processes given by (2.25), E(X,|F;—;) has a nonlinear structure and
V(X;|F,=1) is constant. However, both classes of models can have similar uncon-
ditional moments. Often, upon fitting an adequate linear model for the conditional
mean, the presence of linear dependence in the squared residuals is tested and this
test is used as an indication for the presence of GARCH or bilinear type nonlinear
structures in the series. However, these tests cannot provide a guidance in choosing
the specific model for the series.

Mixed models of the type described above are quite rich in representing
nonlinear dynamics and are seemingly attractive, but conditions of stationarity and
invertibility are very difficult if not impossible to verify. Also as described above,
there are problems with model identification, thus making these classes of models
difficult to manage in practice.

Finite-Order Volterra Series

Infinite-order convergent Volterra series representation is the most general nonlinear
representation for stationary time series. This suggests using the finite-order Volterra
series

ki
Yl(m) — Z giIZt—il

i1=0

ky k3

+ Y @i Zioty Ziis

i1=0i=0

ks ks ke

+ Z Z Z 8irinis Li—iy Li—ir Li—is

i1=0i,=01i3=0
+ e
k7 ks kom

+ Z Z Z Girigwin Zi—is Li—iy*** Li—i»

i1=0i,=0 im=0
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as a parametric model. Finite-order Volterra series are used as flexible models for
input-output systems where the input process, as well as the output process, are
observable. In these models, often m = 2, so that second-order approximations are
used; see, for example, Mathews and Sicuranza (2000). Within the univariate time
series context, it is possible to identify the order m of the series using tail index
estimation; see Sect.4.3 for details. Conditional least square method can be used
for parameter estimation. However, the innovation process Z; is not observed and
Granger and Andersen (1978) argue that processes of the form

X, =Z,+aZ,\Z;,

where Z, are i.i.d. r.v’s cannot be invertible. Therefore, finite Volterra series as
models have limited practical value since they cannot be used for forecasting; see
Sect. 4.2 for further discussion on invertibility.

2.2.7 Generalized State Space Models

Although all arguments given in this section can be extended to multivariate time
series, for the sake of ease in notation, we will consider only univariate time series.
A state space model for a linear time series Y; consists of two equations, denoted by
the observation and the state equations, which are given by

KZH[Xt‘i‘U[,t:l,z,... (2.43)
X1 =GX, +Vir=12... (2.44)

Here, in the first equation, H; is a sequence of matrices whose elements are
(constant) parameters and observations Y; are written as a linear function of the
unobserved (latent) v-dimensional state vector X, plus a white noise U,. The second
equation determines the evolution of the state process in time in terms of the
previous state. Here, G, is a sequence of v X v matrices of parameters and V, is
a v dimensional white noise process, uncorrelated with U;. In the simplest case,
when Y; is univariate, we may model the observations as

Y =m + Z,,

where the state process m, is the mean of the process, and Z, is white noise. The
latent mean m, of the process can be modeled as a simple random walk

m; = m—y + vy.
It is also possible to add further structure to the model for m,. The Kalman recur-

sions allow a unified approach to prediction and estimation for state-space models;
see Brockwell and Davis (1996) and West and Harrison (1997). Fundamental
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assumptions behind the state-space representation and the consequent Kalman
recursions are linearity and the normality of the error structures. When these
assumptions are no longer valid, then observation and state equations are given by

)][ = f(Xt—la Uf)7
X, = g(X;—1, Vo),

for some nonlinear functions f and g and white noise processes U, and V,
independent of each other. Except for some special cases, satisfactory treatment
of such a system of difference equations is not possible, and it is more advantageous
to work directly with conditional distributions (or densities if they exist) which
represent the probability structure of the system. In general terms, these equations
are represented by two conditional densities p(y;|x;,#) and p(x;|x;—1, #). Here,
0 is the vector of all model parameters of this state space representation. This
general state space structure can take several forms depending on different sets of
further assumptions on these densities, which we examine below. Typically, there
are two sets of fundamental assumptions to facilitate mathematical tractability of
these state space models. In parameter-driven models, observations Y; are assumed
to be independent, conditional on the realization of the state vector X;, and that the
state process X; is assumed to be a (latent) Markov process.

In observation-driven models, again observations Y; are assumed to be inde-
pendent conditional on the realizations of the state vector X,, but rather then
assuming a Markovian structure for the state vector, a model is specified directly
for X, conditional on Y,_; through the conditional density p(x;|y;—1, ). These
two types of models show fundamental differences, particularly in inferential
methods. Parameter driven models, otherwise known as hidden Markov models,
are particularly suitable for Bayesian hierarchical modeling and simulation-based
inferential techniques. Due to some awkward integrals and updating equations,
classical likelihood and least squares methods are not particularly suitable for these
models. On the other hand, observation-driven models do not involve such updating
equations and difficult integrations and hence permit straight forward likelihood and
least square methods. However, it is very difficult to verify stationarity conditions
for the observation-driven models; see Brockwell and Davis (1996) for detailed
comparison of these models. Here we give a brief summary of these models.

Parameter-Driven Models

For simplicity, assume that we have univariate time series Y; and the corresponding
univariate state X;. Let Y,— := (Y;—1,Y;—,...) and X;—| := (X,—1, X;—2,...).
Instead of the linear equations (2.43) and (2.44), we define the observation and state
equations in terms of the conditional densities, assuming they exist, in the following
manner:

Assume that Y; conditional on X/, is independent of (X;—;, Y;—), so that the
density of Y; conditional on (X;, Y,—{) can be written as
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pOilx X1, ¥i-1,0) = p(y/1x:, 0). (2.45)

We also assume that X; 4 conditional on X is independent of (X;—_1, Y;) so that we
can write

(g1 |Xe, Xe—1, ¥, 0) = p(xi1]x:, 0). (2.46)

For linear Gaussian state space equations, (2.43), (2.44), and the conditional
densities (2.45), (2.46) represent the same probability model, with p(y,|x;, #) and
p(x;41]x;, ) being normal densities. The joint density of the n observations Y,
and the state X, at each time point# = 1,...,n can be written as

P(Yt,Xz|0) = p(yn|xna Xn—l,Yn—ha)p(xn’ Xn—l7y;1—l|0)
= P(yn|xn~o)P(Xn|Xn—1,Yn—1,G)P(Xn—l,)’n—1|0)

= (1‘[ p(y,»|xi,0>) (]‘[ p(xi|xi_1,o>) px1).
i=2

i=1

Note that

pyilx. 0) = [ [ p(vilxi. 0).

1

hence observations are independent, conditional on the state of the process, and the
time series Y, inherits the dependence structure of the state process X,, which is
often called the latent process. Note also that from (2.46), the state X; is a Markov
process. These are indeed strong assumptions but are necessary to bring in some
mathematical tractability to nonlinear, non Gaussian structures.

Conditional densities p(x;|y;, @) and p(y;+1|y:, @) are particularly relevant in
the study of the system from which one can calculate the conditional expectations
E(X,|y;) and E(Y;41]y;)- The former and the latter conditional expectations are the
best predictors for X; and Y,; in terms of the observation y, and are respectively
called the filtering and prediction problem. With the above assumptions and using
the Bayes’ Theorem

(X, i, ¥i-110)
p(y:10)
Pl Xe, yi—1,0) p(x;|yi—1,0) p(y:—1]0)
Pielyi—1,0)p(yi—110)
_ pWilxi, 0)p(x:|yi—1.6)
B p(yelyi-1,0)

p(x:ly:. 0) =

(2.47)
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Here, the conditional density p(x,|y;—1, @) has to be calculated from the integral
pelyio18) = [ pleixicalyior. 6

_ [ PG, O)p G yis O)dxier.  (248)

For non-Gaussian and nonlinear processes, this updating equation for X, in terms
of the state equations p(x;|x,—1,0) is not immediately available and can be
computationally complicated; hence p(x;|y;,#) in (2.47) does not admit closed
form expression.

In order to solve recursive relation in 7, one assumes that p(x;|yo, ) = p(x;|9).
The density p(x,+1|y:, @) and the corresponding conditional expectation give the
prediction for the future value of the state equation, whereas the predictions for the
future observation j,4; can be obtained as the expected value of the conditional
density p(y;+1|y:, #). In the classical approach, where # are unknown but fixed
model parameters to be estimated from data, the unknown parameters are substituted
by their estimates 6 and the plug-in predictions are obtained from p(y;+1y;, 9).In
the Bayesian context the parameters are r.v’s and the predictions are obtained from
the predictive density p(y;+1]y;) through the relationship

P(Visily) = / PYVix1ly. 0)p(0ly)do

and

pOrsilys. 0) = / POt X1, 0)p(xr |y, 0) i

The key expression for the classical and the Bayesian inferential methods is the
likelihood function L (€ |y,) which can be computed from the relation

L@l = [ [ pu10)ptsilx.. 61+,
=/---/p(x1|0)Hp(x,-|x,-,1,0)p(y,-|x,-,0)dx1---dx,,. (2.49)
i=2

The computation of the likelihood given in (2.49) requires the computation of n-
dimensional integrals. Except for few special cases, calculation of such integrals
are very difficult. Thus one relies on approximate solutions based on numerical
methods on Monte Carlo methods. Recent advances in Bayesian simulation-based
inferential methods and composite likelihood methods permit efficient simula-
tion based estimation techniques and approximations. In a Bayesian hierarchical
setup, upon defining a prior density p(@) for the (random) model parameters 6,
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Bayesian inference relies on the joint density p(@,x;|y,;) which is proportional to
p(X:,y:10)p(0). This joint density does not have closed form expressions, and
Monte Carlo methods, in particular recent sequential Monte Carlo methods and
particle filters (see, e.g. Andrieu et al. 2010) provide a flexible computational
framework to carry out inference for these data sets with complex time dependence
structures. In Sect.4.5 we give a very brief introduction to these simulation-
based methods. In Sect.4.4.3 we also give a brief introduction to composite
likelihood methods which are used as alternative pseudo-likelihood method for the
observation-driven generalized state space models.

However, it may be possible to escape from such computational difficulties by
specifying in (2.47) a model for p(x;|y;,#), thus eliminating the need for the
updating Eq. (2.48). This strategy simplifies inference for generalized state-space
models and the resulting models are called the observation-driven models.

Observation-Driven Models

In observation-driven models, the observation equation is the same as in parameter-
driven models; namely it is assumed that

P(Vilxe, X1, ¥i-1,0) = p(yi]x, 0). (2.50)
However, the representation of the state is done through the densities
p(x|yi—1,0),t =1,2,.... (2.51)
Here, the updating equation for the state

p(xt|xt—lv 0)»

is not specified, since the conditional density of the state vector given the data
p(x:lyr, 0) and the predictive density can be directly calculated from (2.47) and
(2.48) respectively, with the estimated value of the parameter 6. Within the Bayesian
framework, when € is random with prior specification p(#), this predictive density
is calculated from

POl = / POt X1, 0)p(xrar 8. p(Bly s 6.

where p(@y,) is the posterior density.

The state equation (2.51) without specifying precisely how x; translates from
Xx;—1, simplifies the calculation of the posterior and the predictive distributions, but
observations are no longer Markovian and y, depend on the whole y, rather than
Yi—1, so that
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PO yl0) = pGelyie. 0). (2.52)

t=1

The lack of Markovian property particularly makes it more difficult to verify
stationarity conditions. Also, due to the lack of Markovian structure, observation-
driven models are not suitable for Bayesian hierarchical modeling. The specification
given by (2.50) and (2.51) is not unique, in the sense that it can hold for two different
state equations having different transitions, resulting in the same likelihood (2.52)
for the data. This model miss-specification can be overcome by assuming that

P(Xi+11X0,¥0) = p(Xi+1lye)s

that is assuming that x;, conditional on y,_;, is independent of x,_. In this case

P X ¥n) = pulXn) PXn|Yn—1) P(Xn—1, Yn—1)

n
= [T pGulx) pCxilyi—).
t=1

We give an example to highlight the difference between the two modeling strategies.

Example: State Space Models for Count Data

In this example, we follow Brockwell and Davis (1996) and Davis et al. (2003a).
Assume that Y; is a time series of counts. Let F,_; be the o-field generated by
the observation (Y, s < t1), and let W, be a vector of explanatory variables with
dimension p, observed at time ¢.

1. Parameter-driven model:
We assume that observations, conditional on the intensity function A,, are
independent, having the observation equation

YtMt ~ Po(1,),

so that the likelihood for the data yy, ..., y, conditional on the realization of the
state process or the intensity process A, is given by

LM (M)
PO nlA A = Hy—,t
IR

=1

(2.53)

The dependence structure is then introduced into the model through the state
equation (or the link function)
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log/\, == ﬂ/W[ + Utv (254)

where B is a p dimensional vector of regression coefficients and U, a latent
time-dependent process. In the simplest case, U, is assumed to follow an AR(1)
process of the form

U = ¢Ut—1 + Z;,

where (Z,) is a sequence of i.i.d. N(0, 52), independent of the ¥; process. In this
case, the state equation can equivalently be written in terms of the conditional
density p(A|A,—1) by

PAe|Ai—1) ~ N(us, 02)’

where

Mt = B/Wt + ¢(At—l _ﬁ/Wt—l)'

The above model expressed in terms of Egs.(2.53) and (2.54) can be imple-
mented in Bayesian context as a hierarchical model upon defining appropriately
the prior specifications of parameters and hyper-parameters. The posterior den-
sity p(A;|F;—1) and the predictive density p(Y;+1|F;), as well as the posterior
densities of all other model parameters can be obtained by applying proper
simulation-based inferential methods; see Brockwell and Davis (1996) for an
alternative Monte Carlo-based estimation method. Implementation of this model,
using standard maximum likelihood estimation is not straightforward and can be
difficult, since the closed form for the unconditional likelihood p(yy,..., y,) is
obtained by integrating the conditional likelihood (2.53) with respect to the joint
density of p(; ..., ;). Brockwell and Davis (1996) suggest a simulation-based
estimation based on the EM algorithm.

. Observation-driven model for the counts:

Assume for the time-being that there are no explanatory variables available
in modeling the counts and that only information available are the counts
themselves (yi,...,y,). In this case, the observation-driven model can be
written as

Y;|A; ~ Po(X)),
where A, is written as a positive function of the observations y,_p, ..., y;. The

class of INGARCH( p, ¢) processes is constructed by assuming a specific linear
function for A,, where

p q
M= p Y aidei + ) bV, (2.55)
i=1 j=1
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where 4t > 0,a; > 0,b; > Oforeveryi =1,...,pand j = 1,...,q, so that
A, is strictly positive for every ¢. If we further assume that all the roots of the
polynomial A(B) = 1—)_7_, a; B' lie outside the unit circle (for non-negative
a; this is equivalent to the condition le —1a; < 1), then A; can be written in
terms of the (Y, s < t) as

[o9)
M=ATN B+ Y miYen.
j=1

Note that (¥;) are no longer conditionally independent and the joint density of
(Y1,...,Y,) is written as

POy = [ POilFm) (),

t=1

where

Pl Fi—1) = p(ye|Ar).

INGARCH(p, q) processes are restricted, so that the state equation A, can
be written as a strictly positive, linear function of the observations. Such
restriction simplifies the conditions of existence of stationary solutions, as well as
estimation procedures. For example, the INGARCH( p, ¢) process defined above
with 3°7_ a; + 329, b; < 1, is strictly stationary with finite second-order
moments (see Ferland et al. 2006, for the case p = g = 1 and Weill 2009
for the general one). The classical (conditional) likelihood-based inference is
also relatively easy. Set B := (a1,...,a,, b1, ..., b,), then the conditional log-
likelihood is written in the form

n

LBly) = Y. [M(B)+ yilogh (B)—logy],

1=max(p.q)

from which we get the score function

IL(Bly,) _ OL(Bly,) .
98 =( 9, J=1,...,p+q),

where

LBl & B (v
Tl Dl > (Mﬂ) 1)‘

t=max (p.q)
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The elements of the Hessian matrix H,(f) are calculated as

PLB) Z [azx,(m Yyl D)

= —-1)— 2.56
9,9, 8,08, LB 1B aﬂj] (230

t=max(p.q)

from which a proper numerical optimization method can be constructed.

Extensions of (2.55) for the simplest case p = ¢ = 1 have been recently
proposed by Fokianos et al. (2009) by considering a more general representation
for A;, namely

A= f(ho) +g(Yoy), £ =1, (2.57)

where f,g : RT™ — R™ are known functions up to an unknown finite dimen-
sional parameter vector. The initial values Y and Ao are assumed to be fixed.
Special models for A; in (2.57) include the model in (2.55) upon defining
f(x) = ¢ +dxand g(x) = bx with c,d, g > 0 and x > 0, and the so-called
exponential autoregressive model with

A = (a1 + crexp{—y1A—1PDA—1 + DY,y

Fokianos et al. (2009) proved that under geometric ergodicity the maximum
likelihood estimators of the parameters are asymptotically Gaussian in the linear
model (2.55); see also Tjgstheim (2012) and Fokianos (2011) for further details.
If we have explanatory variables to account for the variations in the latent
intensity A, of the counts, then the statistical and probabilistic properties of the
model get more complicated. In this case, in order to satisfy the positivity of the
intensity process A,, we model log A; by a linear function, giving rise to

Y/|Fi—1 ~Po(A)),
P q
logh, = B'W, + Zailt—i + ijYz—j-
i=1 j=1

In this case, it is not clear under what conditions this process may be stationary.
For example, the simpler process with

q
logh, = B'W,+) bYi_,
j=l1

cannot be stationary unless some normalization is applied to the observations.
Davis et al. (2003a) suggest using the model
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q
logh, =W, +> 6:Z;.

Jj=1
where

Y, — A
Z[ZT, 7)20

Note that Y, is not Markov process, but the intensity process A, is pth-order
Markov. Existence of a stationary solution depends on the value of 7. For
example, for the simpler first-order model and assuming that 8’'W, = #,

logh, = B’ + B = A .
A/
Davis et al. (2003a) proved the existence of a stationary solution for 5 € [1/2, 1],
showing that this solution is unique when n = 1.
Estimation of the parameters using likelihood is relatively easy and the
likelihood is maximized by using the Newton-Raphson method; see Davis et al.
(2003b) for details.

In Chap. 5, we will study alternative models for integer-valued time series, which
have linear representations similar to ARMA models but are constructed with
thinning operations.

2.2.8 Max-Stable Moving Average Processes

Max-stable moving average processes are introduced as models for heavy-tailed
data by Davis and Resnick (1993). This class is defined as follows: X, is said to be
max-stable moving average process if

o0
X =\/v;Z;.
j=0

where \/j ¥, = max; ¥; and (Z,) are i.i.d. r.v’s with distribution exp[—oz'].
Analogous finite parameter version of these models are also defined. The reason why
the authors suggest such classes for modeling heavy-tailed data is that their sample
paths very much resemble the sample paths of corresponding linear models formed
from the same residuals, and the predictions and estimation of parameters for these
models can be done by an optimality criterion which minimizes the probability of
large errors, that is likely to give better fit to sudden burst. The optimal predictor
can be explicitly written for several models. However, since second-order moments
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Fig. 2.8 Sample paths — AR(1) and max-stable models with N(0,1) errors (top row) and
Pareto(o = 2.5) errors (bottom row)

cannot be used for identification and estimation, such classes are not very frequently
used in practice. Figure 2.8 shows the sample path of n = 1,000 observations
generated from an AR(1), X; = 0.5X,_; + Z;, and the corresponding max-stable
process X; = max(0.5X,_1, Z,), where Z, is a N(0, 1) sequence. The same models
are represented in the bottom row for Pareto(a = 2.5) residuals.

2.2.9 Nonparametric Methods

In the class of parametric models, the main emphasis was on building parametric
models for the conditional mean and variance of the process, either separately
or jointly. If the emphasis is on prediction rather than on explaining how these
conditional means and variances change in time, then a plausible alternative is to
estimate them using nonparametric methods. This would be quite flexible, since one
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is not restricted by a specific parametric model. The most common way is to use
kernel estimators. For example, for a given time series (X;) the conditional mean

M(xy,...,xp) = E(X;| X, =x1,..., Xi—p = Xxp),
can be estimated by

(= p) ' Y X T2y Kn(Xi—i — xi)
(n—p+ -t Z?:;.H ,'p=1 Ki(X—i —xi) ,

M(xl,...,xp) =

Where
( 1 X

and K representing a kernel function. A similar expression can be obtained for
the conditional variance. The drawback with these models is that one needs large
sample sizes for a reasonable fit and the sample needs to increase drastically with
the increase in p, a typical case of the curse of dimension. The curse of dimension
can be reduced by simplifying the model. In the simplest case, one can model the
conditional mean function by

M(xy,...,x,) = ij(xp),
J

where the f;(-) are unknown functions to be estimated. Each of these functions are
one-dimensional, thus simplifying the problem. A similar model can be written for
the conditional variance. Such additive models can further be extended to include
linear combinations of past values. Such models are known as projection pursuit
models. In general, these models are taken from regression context and adopted to
the time series context. Further models and references can be found in Tjgstheim
(1994) and Gao (2007). Another possibility is to use splines in estimating these
conditional means and variances. We refer the reader to Hardle et al. (1997) for a
general review of nonparametric methods in time series analysis.

Bayesian Nonparametric Methods

Bayesian nonparametric methods have been one of the fastest growing topics in
statistics. Bayesian methods inherently are likelihood based; therefore they need
specification of a parametric model. Indeed, what is usually called nonparametric
Bayesian method, in fact corresponds to models with priors defined on an infinite
dimensional parameter space. Suppose that X, is a stochastic process with prob-
ability measure F defined through its finite dimensional distributions. In ordinary
Bayesian inferential methods, one assumes a parametric model for the probability
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distribution and expresses prior belief on the parameters and then the inference
concentrates on deriving the posterior distribution of the model parameters and
the predictive distribution for the future values of the process. In nonparametric
Bayesian methods, no parametric form is assumed for the probability distribution;
instead prior beliefs are assigned to the probability distributions (i.e. models)
which are now random elements themselves belonging to some measure space.
Hence consider the probability space (€2, B, P) where the random variable (or the
stochastic process) resides. Typically @ = R¢, B the Borel o-algebra over Q and
P is the probability measure of the random variable. Assume that P is a random
measure residing in a space of probability measures (P, C, Q) so that the probability
measures P of the random variable (or the stochastic process) is a simple element of
P. Often (€2, B, P) is called the base space and (P, C, Q) the distributional space.
The Dirichlet process is a probability measure on (P, C) and is often used as the
prior distribution for the random measure P. A Dirichlet process (DP) is defined
by a concentration parameter « and base distribution Py. Random measure P is
said to follow a DP prior if for any measurable partition (A;, Ay, ..., A;) of the
sample space of the random variable, the vector (P (A1), ..., P(Ax)) has a Dirichlet
distribution with parameters (¢Py(A1), ..., aPy(Ax)). The DP is centered at Py, so
that E(P(A)) = Py(A) for any measurable set A € B. The inferential problem is
then given in terms of a hierarchical representation. For example, in the simplest
form, when the observed data are i.i.d. with common marginal distribution F', the
hierarchical model is given as

X1,X2, ..., X, |F ~ 1id. F,
FlOl, FONDP(OC, FQ),

whereas the classical Bayesian parametric modeling paradigm would result in the
following hierarchical representation;

X1,X2,...,%,|0 ~ iid. F(x|0),
0 ~m(0),

where, 7(0) is the prior distribution of the model parameters 6. The difference in
these alternative approaches is evident.

For time-dependent data, the specification of the hierarchical model needs the
notion of dependent Dirichlet processes and is beyond the scope of this book.
We refer the reader to Rodriguez (2007) and Hjort et al. (2010) for excellent
accounts of Bayesian nonparametric modeling.

In Sect. 4.5 we will give a detailed summary of Bayesian inferential methods for
nonlinear time series based on parametric likelihood methods.
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