Chapter 2
The Technique: Resonant X-ray Scattering

2.1 Introduction

The experimental technique used throughout this thesis to investigate the ordered
states of the TMO heterostructures is resonant soft X-ray scattering (RSXS). In gen-
eral, wave scattering techniques provide a non-destructive way to obtain correlation
function information involving a large number of scattering entities. Non-resonant
X-ray scattering served the framework for crystal structure determination when the
tube source was developed. Later, other methods emerged including electron and
neutron scattering, which with a charge or spin attribute, can interact with solid state
matter and render precise location information about nuclear, ionic and magnetic
scatterers. However, these can have limitations including non-element specificity,
narrow penetration depths, low fluxes available, need for bulk samples, etc. Some of
these limitations are overcome by the use of X-rays.

Resonant elastic X-ray scattering (REXS) in general refers to a technique based on
tuning the X-ray photon’s energy to match the value required to excite an inner-shell
electron into a valence state of the atom of interest. While non-resonant scattering can
provide insight beyond structural origin, e.g. magnetic or orbital [1, 2], the cross sec-
tions involved are small, so detailed refinements remain a technical challenge. This is
where the REXS technique is important to solid state physics. We will later show how
the scattering cross section is dramatically enhanced by tuning the incoming photon
energies to the absorption transitions. Thus, this class of experiments combines the
X-ray absorption (XAS) with diffraction, i.e. a Fourier transform of spatial modula-
tions sensitive to electronic details. However, tuning to any edge may not be suffi-
cient to enhance the cross section into a detectable range. Instead, judiciously chosen
dipole-allowed transitions into final states near the Fermi level can result in a larger
cross section, which directly ties into the electrons responsible for the macroscopic
physics of the material. For 3d-TMOs, the appropriate dipole-allowed transition is
2p — 3d, the L, 3-edges, which falls within the energy range of 200-2000 eV, the
so-called soft X-rays. Although this wavelength range (~1 nm) drastically limits the
accessible reciprocal space region, some ordered superstructures in TMOs reach the
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Fig. 2.1 A schematic of a synchrotron radiation source: electrons are injected through the booster
ring, then accelerated along the bending magnets, and/or insertion devices. The radiation is collected
for research at the beamline end-stations. Figure adapted from Wikimedia Commons

nm-scale, making RSXS the tool of choice to investigate the details of possible spin,
orbital, and charge order. For a review on recent developments of the technique, see
Refs. [3, 4].

Despite its great assets, the RSXS method has its challenges and disadvantages.
The wavelength scale is rather large, limiting the momentum transfer. In addition,
due to the large absorption coefficient of air at these energies, sample environments
must be held in vacuum. Moreover, generating the X-rays is not as simple as in
non-resonant diffraction. This is where the progression of synchrotron based sources
provided useful.

2.2 X-ray Sources: Synchrotron Radiation

REXS and particularly RSXS are techniques closely connected to the development
of synchrotron radiation light sources. The synchrotron emerged as an accidental
discovery in particle accelerator physics [5—7], but has since developed into sources
for modern X-ray techniques. The last five decades have spawned 4 generations of
synchrotron light sources, all of which rely on the notion of accelerating a charged
electron into relativistic speeds within curved paths. In the first 3 generations, an
accelerator drives electrons into closed orbits by applying magnetic fields. The 3rd
generation is characterized by the inclusion of straight “insertion devices” within
the ring." A schematic of a typical 3rd-generation synchrotron layout is shown in
Fig. 2.1, whose components will be explained in the following.

I The 4th generation of these light sources are linear accelerators, or “free electron lasers”, which
do not force the electrons in circular orbits but in linear paths.
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Fig. 2.2 The basic principle
of an insertion device, where
alternating magnetic dipoles
accelerate the electrons in

a oscillating path. These
emit more intense radiation
compared to the bending
magnet. The oscillations occur
outside the paper’s plane

The electrons are first ramped into relativistic velocities in the booster ring. Then,
the “storage rings” maintain the electrons in a high-energy orbit, replenishing their
energy as they emit a special kind of light. This source kind is termed “bending mag-
net” radiation, and has several unique features like a high brilliance (a term defined
to contain the degree of collimation, beam size, intensity, and spectral distribution),
a broad and tunable emission energy range and a high degree of polarization of the
light. These characteristics are a combined result of the relativistic movement of the
electrons around a curved path and the relativistic Doppler effect. The conventional
Doppler shift of an emitting electron has a spherical effect, where wavelength is
increased when the moving object is going towards the viewer, and decreasing when
moving away from it. The relativistic Doppler effect, on the other hand, and due
to the Lorentz transformations, causes the radiation to be strongly blue-shifted and
the direction of emittance is highly concentrated in the forward direction. The diver-
gence of the beam under a relativistic Doppler blue-shift is roughly given by mc?/ E.,
wherem, E,, c arethe mass and energy of the electron, and the speed of light in vac-
uum, respectively. A characteristic energy defined as hw, [keV]=0.665 Eez[GeV]
B[Tesla] is given by the conditions of a bending magnet. For example, the BESSY
synchrotron in Berlin, Germany operates at 1.7 GeV, optimized for the soft X-ray
regimes. This quantity varies depending on the research focus of the synchrotron.

A large improvement in generating synchrotron light was achieved with the con-
ception of insertion devices, which can offer more brilliance, sharp tunable energy
spectra, partial temporal and spatial coherence, and full polarization control from
the source. These are essentially arrays of alternating magnets which drive relativis-
tic electrons into an oscillatory path. The two important parameters of an insertion
device are the magnetic field B and the magnet period \,, as shown in Fig.2.2.

A dimensionless parameter used to discern between insertion device types, K =
225;1\11 -, classifies the deflection path of the electron. There are two types of insertion
devices: undulators (K < 1) and wigglers (K > 1). Wigglers operate with high
magnetic fields with a large number N of period repetitions. They can be regarded
as a superposition of bending magnet radiators, so the intensity becomes I o« N.
Undulators, on the other hand, produce a coherent superposition of the emitted light,
so I o N2 but concentrated within a narrow energy range. The energy spectral range
Aw/w of an undulator source can be several orders of magnitude reduced with respect
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Fig. 2.3 A schematic of an undulator’s discrete spectrum compared to the continuous wiggler and
bending magnet spectra. Image adapted from [8]

to the bending magnet radiation, resulting in a much higher brilliance. Because
of the sinusoidal nature of the electron’s path, the energy an undulator produces
from a single electron inherently comes in a discrete value, and its subsequent odd
harmonics.? The expression for this energy is given by

950E2(GeV)

E, (V) = ,
V) n)\u(cm)(1+Kesz/2+7292)

2.1)

where 7 is the relativistic factor of the electrons, K.y = 0.934),(cm)B(T), 0 is
the polar angle from the undulator axis (Fig. 2.2), and n is the odd harmonic.

Undulators can change the gap between magnetic dipoles, modifying the magnetic
field strength and thus K. This shifts the peaks in the energy spectra horizontally,
optimizing the brightness for a certain energy range of interest. The resulting spectral
brightness of an undulator compared to bending magnets and wigglers is shown in
Fig.2.4. Furthermore, “helical undulators” allow to horizontally shift the magnetic
dipoles inducing a spiral motion of the electron wave train. This can result in variable
polarization of the emitted light, which can adopt linear (with any angle from vertical
to horizontal) or elliptical (positive and negative) states.

2.3 Resonant Scattering

The field of REXS emerged in the mid 1970s, once the technical challenge of pro-
ducing tunable, bright X-ray sources was overcome. It began with a discussion of
so-called “anomalous scattering” [9], which was a term referring to finite intensities
emerging around otherwise forbidden reflections when the photon energy neared an

2 However, the even harmonics do also exist in the off-axis radiation, that is, the radiation emitted
at a small angle with respect to the tangential forward direction of the electron.
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Fig. 2.4 A comparison between the spectral brightness of bending magnets, wigglers, and undu-
lators

absorption edge. Subsequent seminal work on REXS included Hannon et al. [10],
Carra and Thole [11], Hill and McMorrow [12], etc., which climaxed during the Inter-
national Conference on Anomalous Scattering in Malente, Germany, in 1992 [13].
During these stages, the importance of calculating resonant scattering factors was
realized, so the theoretical framework to understand resonant XAS was developed
alongside, which is summarized in papers like [14] and others. In this section, we
will lay out the theoretical background of REXS, including a brief introduction to
X-ray physics, general remarks about the interaction of light and matter, the scat-
tering factor, its connection to XAS, charge, magnetic and orbital scattering, and
finalize with a description of realistic experimental aspects. This section was written
collecting Refs. [3, 4, 10, 15-18] and others therein.

2.3.1 Basic Principles of X-ray Physics

The interaction of X-rays with solid state matter is a field with an enormous utility and
widespread interest. While a thorough introduction can be found in [6], we begin our
discussion with few words on absorption and diffraction. For non-resonant, elastic
scattering from a single atom, the classical description serves a valid framework.
The atom is modeled as an electron density of spherical symmetry p(¥). The unequal
optical path lengths traveled by different wavefronts, g - ¥{ # ¢» - 7> (where the
momentum transfer g = k—& ), will result in a phase shift between waves, i.e.
diffraction. The diffraction event will integrate over all waves scattered from each
position 7;:
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f@) = /rop(7)e’q"d7, (2.2)

where we have introduced the atomic form factor f(g). The full atomic form factor
is, in general, energy dependent:

FING, o) = £@) + f (hw) + if" (hw), (2.3)

where fiw is the photon energy. f’(hw) accounts for ways that electrons with different
binding energies respond to the incoming field, and the term i f”/ (Fiw) arises from the
binding energy which acts as a damping mechanism to the otherwise free electron
density. The calculated values of the energy dependent terms for single atoms are
tabulated [19]. These terms are relevant when doing REXS, where the quantum
mechanical description is needed.

X-ray scattering in the solid state can benefit from the fact that the atoms are
arranged in a periodic lattice. In doing so, each atom constitutes a scattering entity
(as described above), but the contribution of each atom must be summed discretely,
which yields the crystal structure factor F(g), given by

F@§) =Y f@eTF; R =nidy + naiis + n3ds 2.4)
R

where R represents the position of an ion. The scattered intensity, | F|?, takes on a

large value when all the scattered waves scatter in phase. This condition is met if

the scattering vector is such that ¢ - R = 27m, where m is any integer, defining the

reciprocal lattice, expressed as
R a; x ag a; x ay
af =2m—2 = /

1

= = , (2.5)
ai - (ar x az) \%4
where the i, j, k-indices follow cyclic notation, V' is the volume of the unit cell
(from the scalar triple product). These reciprocal lattice vectors, defined as G =
haj + kaj + la}, where h, k,[ are integers, also have a periodicity and thus a
fundamental ‘unit cell’, known as the Brillouin zone. Therefore, Fourier-transforming
the reciprocal lattice, measurable through diffraction, will yield the real space lattice.
In more complex systems with multiple ions in the real space unit cell, the structure
factor becomes

J N _
F(G,E) = foull(a’ E)ezt}fj ZezfiRn’ (2.6)
7 Ry

where J is the number of distinct atoms in the unit cell and N is all the unit cells in the
crystal. In an ideally perfect scenario, N growing to infinity will render F (¢) aDirac
delta function. In general, the maxima repeat every time ¢ = G, although different
crystal systems may render combinations of 4, k, [-values which suppress the term
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Fig. 2.5 When a chain of
ions with lattice spacing a —

(upper panel) enters a AFM Q Q Q Q
phase, the unit cell (area

enclosed by a square) doubles
(lower panel), which results

in reciprocal space folded into
half

¢'4"Rn These “selection rules” are very useful in non-resonant X-ray scattering, i.e.
serve to identify the crystal symmetry. However, Templeton and Templeton [9] as
well as Finkelstein et al. [20] first observed forbidden reflections appearing close to
resonance. This spawned the notion that anisotropic crystals can distort the electronic
wave function, and the form factor takes on a highly non-trivial matrix form when
approaching the resonant condition. In general, the form of £/ (g, hw) in Eq. 2.3
describes the essence of REXS. In the following sections, specific aspects of this
form factor will be derived.

Finally, ordering phenomena in crystals can change the lattice periodicity and be
detected by diffraction. A crystal with a real space lattice defined in Eq. 2.6 will yield
diffraction peaks wheng = Q,i.e.integer values of &, k, [ governed by their selection
rules. In general, however, an ordered state of any kind (charge, spin, orbital) might
change the symmetry of the crystal, and thus call for a new lattice definition. For
example, take a simple 1-dimensional system of non-magnetic ions, whose period is
defined as a, so Q = 27 /a. If the system were to take on AFM order, this will yield
a new unit cell double in size to the original, setting ¢’ = 2a and Q" = 7/a. In this
case, the Brillouin zone defined before will reduce into half. This is shown in Fig. 2.5,
which can easily be extended to 3-dimensions. However, instead of redefining the
set of reciprocal lattice vectors Q’, non-integer (Lz, k, I)-values are commonly used
within the preceding reciprocal lattice definition Q. For general ordered state, where
different periodicities can be induced in all three crystallographic directions, the
labeling (nh—l, %, ,,17) takes a frequent use, where the integers n; refer to the manifold
multiplication of the unit cell along the axis i. However, some ordered states can
create charge and/or spin textures which are not commensurate with the crystal
lattice. For such a case, not even a new definition of integer (&, k, [)-values would
yield a simple description of the system. Therefore, the use of (:—1, %, %), with
non-integer n;, is required. These kinds of order are known as incommensurate, and
we will see a manifestation of it in Chap.4.
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2.3.2 The Interaction of Light with Matter

In general, light and matter interactions serve a very important tool in condensed
matter research. A medium exposed to an external electromagnetic wave will drive
the system out of equilibrium through the duration of the interaction. Some properties
of the system will couple to the external field and thus be altered in a specific way.
For the case of low excitation fields, the change that the external field exerts on the
system is proportional to that field, and this proportionality constant is known as the
linear response function. Examples in other fields of such a function are specific heat,
magnetic susceptibility, compressibility, etc. This section will describe the process of
XAS and elastic scattering within the framework of linear response theory. In other
words, a system’s reaction to an X-ray perturbation can be used to extract information
about it. This will lead to an expression which corresponds to f /%! (g, E) in Eq. 2.3.
Consider an oscillating electron perturbed by an time-dependent external field.
The Hamiltonian for such a scenario looks like H = Hy + H,y;, Where Hj is
the unperturbed, equilibrium state, and H,,; is the perturbation field, in this case
the electromagnetic wave = Ei,l. For small perturbations H,y;, as is the case in
most particle scattering experiments, the polarization vector of the electron responds

linearly to the field: . .
P = xEin (1), 2.7)

where X is defined as the electric susceptibility of the electron, a quantity describing
how easily the system can be polarized. For an electromagnetic wavefield, Ej, (1) =
EEge~ @ =k7) where ¢ is a unit vector along the polarization of the wave which is
complex (circular light), Ey is the amplitude of the field, and w its frequency. The
velocity and acceleration of the electron are:

P98 _ Ein(1) (2.8)
= — = —IlWXLin .
J a1 X
and N
. 0j .
=L =W\ Ei(t) 2.9)

t

where the latter quantity implies a radiated field, i.e. a Eou,. The absorption
process can be viewed as the damping of the oscillatory motion of the electron as it
dissipates energy from Ein (#). This is equal to the power it absorbs, which is given
by the time-averaged work done by the oscillator:

| e R
W= 7/ F-jdt = (Ei - j) = 5 RelE}, - (~iwx) Ein]. (2.10)
0

where the later step involves simple complex number algebra. Introducing the con-
ductivity o (hw) = wy, we obtain a simple expression for the absorption process:
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1 - .
Ixas(hw) = Elm[e -o(hw) - €]. (2.11)

We note at this point, that o is not necessarily a scalar quantity, so generally it is
referred to as the conductivity tensor. It has a real and imaginary part, which arise
from the solution to the differential equation of a damped oscillator. Thus, it follows
that these two components of ¢ are Kramers-Kronig related.? Therefore, this quantity
can be connected to the term f/*“!(g, E) in Eq. 2.3, as follows

o(hw) o« f'(hw) +if" (hw), (2.12)

which directly links the conventional notion that f”(fw) is related to the XAS
process.

Detecting a scattering process, moreover, is a quantification of the radiated field
of the accelerated electron. It is the squared norm of the radiated field divided by the
squared norm of the incoming field. Using the definitions above, this comes down to

|Eou®> . .
Irexs(hw) = =2 o &, -0 - &l (2.13)
|Ein|2

Equations 2.12 and 2.13 reveal that the conductivity tensor ¢ holds the pertinent
information about the system, showing the connection between absorption and scat-
tering of X-rays in analogy to the optical description.

2.3.3 XAS Cross Section

The development of the XAS cross section begins with quantum mechanical, first-
order perturbation theory. In this case, the system is described by a time-dependent
Hamiltonian H = Hy + H,x;. The term Hj refers to the unperturbed system, in this
case the ion or cluster to consider, with eigenstates Hy|¢o) = Ej,|©0), and H,y; arises
from the potential field of the light, A(? , 1), and the canonical transformation of the
momentum. The time-dependent part of the Hamiltonian is H,,,. For a light-matter
interaction, the full Hamiltonian contains the terms [21]:

H 26—22
2m
Hy=— S pA (2.14)
mc

3 The connection between a damped oscillator and the Kramers-Kronig relations is given in Appen-
dix 4.3.3.
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H eh OA eA»
=———5|—x-4}).
4 2m2e3"\ or ¢

The term H; is responsible for so-called Thomson scattering, involves the field
potential interacting with itself so it is left out of the REXS process. The term Hy, on
the other hand, is quadratic in A and describes the non-resonant magnetic scattering
process, which we will not discuss in this section. The terms H, and H3 describe
the resonant process, and thus their inspection is needed. The term Hs is related to
the spin, but the higher order terms of the Taylor expansion of the exponential (see
below) can be regrouped with high-order multipole terms of H, and will thus not
be considered further. We will see, moreover, how the magnetic terms can later be
incorporated into o. It is therefore from the term H,,; = H» that we will derive the
connection between ¢ and the transition rate matrix. Also known as Fermi’s Golden
Rule, this matrix is an important quantity in experimental spectroscopy.

We begin by expressing the momentum operator p = im[H, 7], which can be
derived from the canonical commutation relations. Thus, H,,; can be expressed as

ie oo
Heyxr = W[Ha r]-A. (2.15)

The photon field potential A has the form of a traveling wave, i.e.

-

A — Aoé‘e—l‘(wt-‘r];';) + Aog*el(WI+%.?) — 2A0€C05(wr + ]_{' . }_’:) (216)

Using the gauge transformations E=— %—‘;‘, the last term can be expressed in terms
of the electric field as E = 2iwAgésin(wt + k - 7). So H,,; becomes

eky

e GAAE ee'k 7, (2.17)

Hext =

where Eg = 2iwAy.
Fermi’s Golden Rule, on the other hand, is a way to calculate the rate of transition
into a certain state, given a perturbation acting on the system. In other words,

Ixas = > [(f|Hextl) PO + Ei = Ep) + 0w — E; + Ep)). (2.18)
f

where the initial and final states of the transition are labeled i and f, and the delta
functions appear to enforce energy conservation.* Having a useful expression for
H..;, we turn to calculate the matrix element:

4 More details on the derivation of Fermi’s Golden Rule can be found in Appendix 4.3.3.
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(FIHexli) = (f15 7] e’ i)

ED(fIF - ée'F7i). (2.19)

2m2w

When the photon’s energy matches the transition, w o« Ey — E; we obtain an
expression for Iy as:

Ixas = = o ZZ (fIF - " T|D) (6w + E; — Ep) + 6w — E; + Ep)). (2.20)

Inreal physical experiments, Dirac functions are replaced by Lorentzian functions,
which can be done mathematically through the transformation

1

where T is the width. Developing an expression for I'x45:
eE2 > A kT
Ixas = Z| (fIF - ee™ (i) (0w + E; — Ej)) (2.22)

1
m(w+ E; — Ef +il/2)

ek o AL
_ngm ;(rliino [(fIF - ee™ i)

1
+ 7r(w—E,'—|—Ef—|—iF/2))

1
m(w+ E; — Ef +il'/2)

_¢Eoy,, > lim (11 - %) £)(
m? ;i r-o0

zkr
+7r(w—E,-+Ef+iF/2) I i)
eE} 7
= ——Im 11m (l|(r ee’kr)f( -
2m? m(w+ E; — H+1il'/2)

1

22 Ry ps
MR e s LR (2.23)

Using the Taylor expansion of the exponential, the first approximation simplifies
H,yx; — €-7,yielding the dipole approximation (E1) which is useful to model most
scattering processes. Mentioned for completeness, the linear term of the expansion
is the so-called quadrupole term (E2), with an interaction Hamiltonian that looks like
é-ki -7,

Finally, comparing Egs. 2.11 and 2.22, a useful expression for ¢ can be written
as
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e R 1 1 R
- ' N, (224
= N T E Ty T o E a3

The process can be described as follows: the Hamiltonian H acts twice on the system,
driving the system into an intermediate state, also known as the core-hole state, and
returning it to its initial state. Thus, knowing the eigenvalues of the Hamiltonian
H in the core-hole state will suffice to calculate the conductivity tensor o, and all
the cross sections needed for scattering experiments. The resonant enhancement
to the scattered intensity is evident from the divergence of the denominators with
photon energies tuned to the right transitions. In practice, for 3d TMOs, L 3-edge
enhancements can reach up to several orders of magnitude.

Finally, we turn to derive rules for the transition to take place with non-zero
probability. For this purpose, we make use of the spherical harmonic expression of
the wave functions and the photon field. Consider the case of linear polarization
along 7, the dipole term can be expressed as r cos(f) rYO1 (0, ¢). The case for
circular polarization is rYjEl(Q, ¢), indicating that that the angular part of the
integral (I'm’|Y,} (0, ¢)|lm) will yield selection rules for the transition process. For
linear polarized light, the rules are A/ = +1 and Am =0, £1.

The studies presented in this thesis involve L 3-edges of 3d TMOs. In this case,
the transition corresponds to 2p — 3d. Since the electronic states of interest, close
to the Fermi level, are around the 3d-level, this transition is the key one to investigate
these systems. Furthermore, spin-orbit coupling splits the 2p core-hole state into
two: 2p3/2 and 2p1 /2. These states are separated by ~10 eV for these systems. This
yields two available transitions, which are usually called L3 (2p3/2 — 3d) and L,
(2p1/2 — 3d). The final state 3d, moreover, also has several features which can be
probed using X-rays. The real-space orbitals that were outlined in Chap. 1, 2, and
eg, and their occupation number are useful quantities that we will discuss later. A
schematic of a transition of electrons into the 3d shell is shown in Fig. 2.6, which
illustrates a process that represents the fundamental backbone of resonant X-ray
physics in TMOs.

2.3.3.1 A Two Level System

We proceed to calculate the conductivity tensor o for the simple case of a system
with two levels, which also serves a realistic approach because REXS experiments
are taken in the vicinity of one absorption edge, i.e. one transition element. We take
a transition |s) — |p), and we define the difference in energy between the two states
as wy. In that case, we can evaluate the expression 2.24, and obtain

e 1 1
= R :
2mm* w+wy+il/2  w—wo+il/2

o ). (2.25)
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3d conduction

Fig. 2.6 A schematic of a photon inducing a 2p — 3d transition. This example portrays a 3d’
system with crystal field separating the 2, and e, into a low spin state

Fig. 2.7 A plot of the real
and imaginary part of o, —— Im[o]
taking wp = 854 eV, and the - - Refo]
broadening I' = 0.5 eV
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Figure 2.7 shows the resulting projections of ¢ on the imaginary and real axes, taking
the values of wy and I" listed in the caption, which resemble the Kramers-Kronig

related response of the damped oscillator.
Furthermore, the tensor character of o can generally be expressed in matrix form

as follows:
Oxx Oxy Oxz
o(Ww) = | oyx Oyy Oy
Ozx Ozy Ozz

(2.26)

In this general case, the symmetry of the final state will be represented in the
(in)equivalency of the terms o;;. For example, a final state with | p)-character will
yield a matrix of the form
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Os— px US_’I’xy Os— pxz
Us—)p(w) = | Os—pyy Os—>p, Os—>p,.
O-S‘)sz O-S%sz O-X‘)Pz

where off-diagonal elements will be projections of the | py y ) states off the cartesian
axes. Consider, a |p)-state in cubic symmetry, where |py) = |py) = |p;), then the
terms o;; are all equal, and the off-diagonal o;; = 0. For the case of tetragonal
symmetry, which is one commonly considered in TMO heterostructures, epitaxial
strain usually distorts the lattice in-plane. This might introduce an energy separation
between otherwise degenerate orbitals (like p or d), and so the conductivity tensor
becomes,

oxx 0 0
Uletragonal(w) — 8x Oxx 0
0 0 o

Recalling Eq. 2.11, taking the coordinates of the light polarization in the linear,
cartesian basis, a conductivity tensor of this form will yield inequivalent spectra when
the polarization of the incoming light is in- or out-of-plane. This phenomenon, called
natural linear dichroism (LDIC), can be very useful to determine the occupation of
non-degenerate e, orbitals, as can be visualized in Fig. 2.8. In that case, depicting
a typical measurement geometry available in heterostructures grown on a tetragonal
substrate, the light with polarization in-plane (€,5) will couple with the terms o, .
Similarly, the light with perpendicular linear polarization will have a component on
the ¢ axis, so €. can couple into the states o,.. In 3d systems like the ones investigated
in this thesis, the character of o, and o, can be directly related to the occupation
of the e, orbitals. A prime example of an application of such linear dichroism in
TMO heterostructures can be found in Refs. [22-25]. Later, we will see how this
plays a role in the magnetic properties of RNO heterostructures. We note that other
crystal symmetries result in different relations between o;;, with the triclinic system
with lowest symmetry rendering 6 unequal matrix elements (3 different diagonal
elements, and 3 more obeying the condition o;; = ;).

In summary, we derived and discussed the importance of the scattering tensor o,
which contains the information about the system under investigation. It holds the key
for the interpretation of XAS, especially when considering symmetries which can
manifest in dichroism effects. Because of the relation between o and the scattered
signal given by Eq. 2.13, these symmetry details will reappear, and sometimes more
effectively, in the scattered signal. Equation 2.26 shows the general form of the
conductivity tensor.

Finally, to lead in to the following section, we briefly discuss the basic form of
a magnetic conductivity tensor. Consider a cubic system with a net magnetization
along the z-direction. Classically, the magnetic field will create a Lorentz force which
creates a Hall current in the xy-plane, modifying the electric permittivity into D=
¢E = ¢E+1 gx E, where g g is the gyromagnetic ratio. This results in the well-known
off-diagonal, imaginary terms in o, which lead to the magneto optical phenomena
like the Kerr and Faraday effect. Quantum mechanically, spin-orbit coupling and
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incoming
light

Substrate

Fig. 2.8 A schematic of a LD experiment of a heretostructure grown on a substrate. The polarization
vectors are either in-plane (¢,5) or have a component out-of-plane (¢.). The former couples into
states with x2 — y?2 symmetry (red orbitals), and the latter to 372 — r2 states (purple orbitals). Thus,
this measurement can probe the unbalance of occupation of such states

time-reversal symmetry breaking causes the tensor to take on imaginary off-diagonal
elements. The cubic system described above results in a tensor like

Oxx 10xy O
—10xy Oxx O
0 0 oy

Ugnagnetic(w) _

2.3.4 Magnetic Scattering: Symmetry Considerations

We now turn to discuss in more detail the different forms that o can take in the
presence of a magnetic moment, and the implications it has in the scattered signal.
This will provide the tools needed for magnetic structure determination using RSXS.
The majority of this section’s scope was obtained from Refs. [10, 12, 16] and others
therein.

We begin by considering the general form of the scattering tensor in for any crystal
symmetry to consider:

Fyx(w) ny(w) Fyz(w)
F(w) = Fyx(w) Fyy(w) Fyz(w) s
Fox (W) Fzy(w) Fr(w)

where we make use of Cartesian coordinates highlighting that even in the presence
of a randomly oriented magnetic moment, the strong energy dependence of F(w)
can be projected to the principal axes which are in turn aligned with the crystal
axes. Note that taking high crystal symmetries and its set of symmetry operations I"
without a moment will simplify the form of F(w). Furthermore, consider now the
presence of a magnetic moment along a random orientation. It is easy to visualize
that any operation I' will break the symmetry by inevitably rotating the moment,
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leaving only the identity operation as valid. Thus, a new symmetry operation I'” will
require first a rotation of the whole system, I', and then a rotation of the magnetic
moment back. That is, we will treat the moment and the system it lies in separately,
defining F(w) = Fi(w, €) F> (A7[ ), where one part depends only on the energy and
polarization of the light and the other term holds the magnetic moment’s identity.
This can be achieved by expanding the terms of F'(w) in spherical harmonics on the
unit sphere, that is
ook [FNMw) FMw) FEM(w)
F@,¢,w)=2 > [ Firw F'w) FIW) | Y@, 6), (227
k=0m=—k \ FA"(w) FA"(w) FE"(w)

where 6, ¢ define the moment’s direction in spherical coordinates from

L [ms | M| cos() sin()
M=|my| =\ M| sjn(qﬁ) sin(f) |,
mg | M| cos()

and Yy, are the spherical harmonics. The Fj;(w)’s are the components of the scatter-
ing tensor on the basis of linear polarized light projected on the crystal system, that
is € = (ex, €y, €;). Now, to calculate the set of allowed coefficients of the expansion,
the same set of symmetry operations considerations will be taken, that is I''F = F.
In other words, F'(w) must fulfill the symmetry of the system. The simplest operation
to consider is a 4-fold rotation along the z-axis (C4(z)), which implies rotating the
system and the magnetic moment by —7/2, and then rotating F'(w) back:

0 10\ o & [FSFo Fim

0-1
=100 )->> > | Fim Fhm i | Yew 0. ¢) - [ 10
00

¥y
—0m= km pkm prkm
001/ k=0m=—k \ FI{" Fi" F;!

- O O

km km km

00 k Fy)/]( —Fkyx Fyzk
=> > RS F = Yon©0.6 = /2,

k=0m=—k \ F;" —F3" F"

which gives a set of rules to evaluate the coefficients Fj;.

The first, simplest, and perhaps most useful system to consider is the case of spher-
ical symmetry. In this case, the ¢-dependent part of the function can be integrated out,
and the properties of the remaining Legendre polynomials ( | P, (cos 8)d cos 6§ = 0
unless m = 0) reduce the summation over m to one term. In addition, following the
triangular truncation procedure, the summation on k is only taken for k € {0, 1, 2}.
So we can easily see the rules the coefficients must follow:

2 2
D FiYio(0,0) =— > FiYi(0, ¢ — 7/2),
k=0 k=0
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2 2
> FRYi0, ¢) =D Fi Vo0, ¢ — 7/2),
k=0 k=0

2 2

S P00, ) =S Fi%0(0, ¢ — 7/2),

k=0 k=0

and all other coefficients are 0. After some algebra, we arrive at the expression for
a magnetic moment along the Z-direction, i.e. setting 6 = 7/2:

FO _ %F(Z) —_FM 0
Zmag _ FO FO _ %F(Z) 0 . (2.28)
0 0 FO 4 2F@

More realistic scenarios, however, will not have the magnetic moment along such
a high symmetry direction. Indeed determining the direction of the moment is a
problem that REXS is viable to address. For that reason, we turn to develop an
expression for F"“¢ with a random orientation. This is done simply by taking the
tensor Fzmag and rotating it to a random direction: F"%¢ = R Fzmag RT . where the
rotation matrix defining the spherical angles (¢, @) is given by

cos(¢) —sin(¢) 0 cos(d) 0 sin(6)
R = | sin(¢) cos(¢p) O | - 0 1 0
0 0 1 —sin(#) 0 cos(0)

This yields the general form of F™“8 in spherical symmetry:

FO42-DHF? —zFD 4 xyF®  yFD 4 xzF@
Fmag — 2FD 4 xyF®  FO 4 (32 — %)F(Z) —xFWM 4 yzF®
—yFD 4 xzF® xFD 4 yzF@ FO 4 (72 - %)F(z)
(2.29)
In magnetic diffraction experiments, the quantity /g g xs of Eq. 2.13 must contain
the phase shift of the diffracted wave. In other words

1

Inag = | e bt Tigs IS 2, (2.30)
i

where €, our represent the polarization vectors of in- and out-coming light, and
likewise I% n.our Tepresent the wave vectors of both light states, which are set by the
requirement of fulfilling the Bragg condition. 7;, Fimag represent the position and
scattering tensor of the i-ion, and the summation runs over the sample size, but the
phase information is entirely encoded by running the summation over the magnetic
unit cell. In a practical experiment, the polarization vectors can be tuned using the
parameters of the undulator (Sect.2.2) between circular left and right, and linear
vertical and horizontal. The latter two define the most useful set of coordinates as
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Fig. 2.9 The definition of the vectors used in the description of the scattering process in the main
text, combining the visualization in the crystal frame and in the experimental scattering frame. The
crystal axes lie in an arbitrary position, determined by the position in g-space where the Bragg
peak of interest lies. The figure does not show the direction of the magnetic moment, which will be
determined later

follows. Let 7 be the linear polarization state parallel to the scattering plane, and o
the one perpendicular, as in Fig. 2.9.° .

We express now the light wave propagation vectors k;, oy, in the cartesian coor-
dinate system we have defined. Let § = {¢x, ¢y, ¢z}/|4|, and ¢ | any vector perpen-
dicular to it, which will be needed to define the scattering plane in these coordinates.
Now, let ¢ be the angle between ¢, and the scattering plane. The angle between l?in
and g, related to the Bragg angle, we call . So now we can define all the needed
vectors in the crystal coordinates, as follows:

kin || sin(@)[cos(1)g1 + sin(¥) (gL x )] + cos(0)g.

Four || sin(®)[cos()q + sin()(@. x §)] — cos(®)d,

Oin = Oour = 0 = (kin X koyr)/ sin(20), (2.31)
Tin = (]_ém X o),

Tout = (]_éout X o).

Finally, the polarization vectors €;, o,; can be written as linear combinations of the
vectors o and 7r. So now we define the four experimental quantities that can, in
principle, be measured in experiment at a fixed angle: F;j;, where ij € {o, w}. For
example, one of the four channels can be F,, = (o - F - o), so the four channels
are Fyr, Fyy, Fro, Frr. Completely discerning the polarization state of the outgoing
light is possible using a polarization analyzer of the scattered beam, which is not
always available, especially in the soft X-ray regime. However, measuring four linear-
independent spectra (o, w, o + m, o + 17, the latter two being linear 45° rotated

5 Not to be confused with the conductivity tensor o, shown in non-bold typeface in this work.
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and circular light) yields enough information to map out the scattering tensor on the
basis of o, 7r. In many cases, enough information about the scattering tensor can be
obtained by measuring only the two states o, 7r, provided the azimuthal dependence
can be measured. Then, the two measurable channels are given by

Iy = Iig + I Iy = Ing, (2.32)

where we will show later how the channel I, goes to 0. Finally, we turn to express
F™48 in terms of the experimentally accessible vectors €;,_oy,r, evaluating the expres-
sion 2.29 and carrying out some algebra leads to:

F"8 = FO@,, - &)+ FO @ x our) -1+ FP (&, - ) (& - 1)), (2.33)
which is the result obtained by Hannon et al. [10], a long-standing and widely used
expression for magnetic scattering in spherical symmetry. Note that in their approach,
the magnetic Hamiltonian, H3 in Eq. 2.14, was the starting point to calculate the
scattered intensity. In the approach described here, the magnetic moment information
is contained in the scattering tensor we have defined. From Eq. 2.33, it can now be
seen which terms will be needed to interpret the scattered intensity of a AFM system.
F© has no term proportional to the magnetic moment and is usually disregarded
in magnetic scattering. The term F(! is linear in /i and will give rise to the first
harmonic of an AFM. This term is indeed related to the magnetic circular dichroism
(Amj = =£1). The term proportional F@ also has magnetic influence, but it is
quadratic in 72, 8o it will be blind to an AFM system, canceling the antiparallel spin
directions. If the AFM system is a spiral, then it will give rise to second harmonics,
which require twice the momentum transfer to access the corresponding Bragg peak.
A quintessential example of such an spiral system was studied in films of Holmium
metal [26] and in manganites [27]. A visualization of this consequence can be seen
in Fig. 2.10.

Therefore, the intensity of magnetic scattering is proportional to the terms con-
taining F(1, which can be expressed in spherical symmetry as:

0 —m; my
F™"8 = m, 0 —my|. (2.34)
—my my 0

From this expression, it can be seen that for any vector v, v - F98 - ¢ = 0. Therefore,
knowing that vector o remains unchanged during the scattering event (from Eq. 2.31
and Fig. 2.9), F,, = 0 for resonant magnetic scattering. This expression also yields
a valuable piece of information: the components of the magnetization direction m;
are encoded in the tensor F"*“8, and they can be determined by measuring azimuthal
scans around the Bragg condition g, as shown in Fig. 2.11. For simplicity, the figure
is represented in the laboratory frame of reference, as opposed to Fig. 2.9 which is in
the crystal frame. Both are equivalent and advantageous depending on the discussion.
In this thesis, the latter will be used, and we can arrive at expressions of the diffracted
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Fig. 2.10 In a spiral, the term
quadratic in m will give rise to

second harmonics of the first

Bragg peak, which are double » «
in momentum transfer

> q,=%

3>

> q,="

Fig. 2.11 The way the direc-
tion of a magnetic moment 7
can be determined by doing
azimuthal scans around the
diffraction vector ¢. Axes in
this figure are defined in the
laboratory reference frame,
where the direction of the
crystal axes (x, y, z) can be
rather skew

intensity as a function of the azimuthal angle. For example, the channel F,; for a
simple AFM system looks like:

. 0 —m; my 0 m; —m,y
For = (kour X 0) ezO m; 0 —my | +€7 —m; 0  my
—my my 0 my —my, 0
(kin % kour)/ sin(20), (2.35)

where the phase of ¢ = % was taken, and the sum runs over two sites. Note that
the second matrix in F represents a spin oriented antiparallel to the first. The terms
%in,ou, and o contain the geometry information, including the azimuthal angle .
It is important to define here the reference frame, that is v = 0° and the sense of
rotation. This is achieved by carefully defining ¢, at the value of ¢) = 0°, while the
rotation around ¢ is defined as right handed.
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Finally, for completeness, it is noted that the form of F*“8 can change when
considering systems beyond spherical symmetry. Although that was not the case
during this thesis, there are systems which deviate substantially from spherical sym-
metry, and their scattering tensor must be considered accordingly. In our treatment,
the different symmetries will arise from carrying out the summation over the spherical
harmonics of Eq. 2.27. A full description of this effect can be found in Ref. [16].

2.3.5 Experimental Access to Reciprocal Space

The theoretical framework presented so far will now be brought to the experimental
realm, discussing typical RSXS experimental setups. To this effect, let us begin by
visualizing the translation between a real space context of a diffraction experiment
and its reciprocal space counterpart. Figure 2.12 shows on the left, and incident ray
of X-rays into a sample (of tetragonal nature, common to the heterostructures investi-
gated in this thesis). The light that has penetrated to the sample is eventually scattered
following Eq. 2.6 in many different directions. The task of a diffraction experiment
is to align the detector in such a way as to pick up the scattered signal. However,
in systems of single orientation (single crystals and heterostructures), accessing a
desired reflection requires more than just moving the detector: it involves moving
the incident angle of the beam, i.e. rotating the sample with respect to the incoming
beam. Moreover, the beam which is scattered in directions underneath the sample
surface, the sample horizon, will be absorbed by the sample. The relationship given
by Eq. 2.6 will yield information about the Bragg planes. Whether they be of struc-
tural or electronic origin, Bragg planes will result in points in reciprocal space. Their
layout is shown on the right of Fig. 2.12. The reciprocal space vectors (Gx, Gy, g-)
are defined by the crystal axes (a, b, ¢), and the points below the sample horizon
are shown as faded. They are accessible in tilted geometries, as described below.
Finally, the momentum transfer § = (k;;, — kou:) is limited by the wavelength of the
incoming X-rays. This limitation is also know as the Ewald sphere. For soft X-rays,
the Ewald sphere is in the order of 0.1A~!, which is sufficient to probe Bragg planes
with separation of at least ~10A.

2.3.5.1 Navigating in Reciprocal Space

Any position in g-space can be reached by adjusting a set of angles in real space,
essentially the angle of incidence and exit. In a multiple circle diffractometer, a
direct translation between the angles and the position in g-space can be calculated
using the so-called orientation matrix [28]. For RSXS, where normally there is no
structural Bragg peak within the Ewald sphere, the orientation matrix is defined in
“virtual” terms. That is, the crystal systems are previously aligned and the angular
directions are known. The heterostructures investigated throughout this thesis have
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Fig. 2.12 The translation between real space (the experimental setup and the probed atomic posi-
tions) and reciprocal space, where the X-ray’s provide the means to obtain the Fourier-transform
of the Bragg planes. Navigating in reciprocal space corresponds therefore to scanning different
combinations of the direction of incident beam, detector position

reciprocal lattice vectors

the advantage of withholding the overall substrate tetragonal symmetry. Even for
cases when the systems are relaxed, the (a, b, c¢) directions are well-defined with
respect to the macroscopic sample. Epitaxially grown heterostructures, however,
cannot be polished along different crystal directions which can make accessing Bragg
peaks below the sample horizon difficult.

Figure 2.13 shows a 3-dimensional pictograph of reciprocal space. The sample-
horizon-blocked areas are shown by shaded blue spheres, as is the entire Ewald sphere
(gray). Peaks of the kind (0, 0, /) are reached by adjusting (w, 26) with the constraint
w = 26/2. Furthermore, there are essentially two ways to access a reciprocal lattice
point with in-plane component (0, k, [). First, setting 26 to the value of § given by
Bragg’s law. Then, an angular offset is introduced to the angle w (x) to introduce the
value along k (k). The offset is given by

o = arccos ©,0.)- O,k D) . (2.36)
[(0, &, D]1(0, 0, D]

This schematic is outlined in Fig. 2.13. The geometry in which the offset is
introduced in w is flat, because the sample surface normal is in the scattering plane. On
the other hand, placing the offset in x yields a tilfed scattering geometry. Figure 2.13
also shows that in a flat geometry, a p-rotation of 90° (rotation about ¢.) will invert
the roles of w and . Finally, to access reflexes of the kind (4, k, [), a combination of
all three angles w,y and ¢ is required. For example, accessing the (1, 1, 1) direction,
as we will see in later chapters, involves offsetting x — 55° and ¢ — 45°. When
doing this, the vector of interest (&, k, [) is placed into the scattering plane, but more
importantly, that vector is now perpendicular to the (-rotatable disc. This means that
rotating ¢ will now rotate around (4, k, [). However, the tilted geometry will have a
disadvantage. As we will see in Chap. 3, this tilt will restrict the access to rotation
around (i, k, 1).
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Diagonal view

Side view

4y

Fig. 2.13 (left) 3-dimensional pictograph of scans in reciprocal space. The in-plane directions
can be accessed by offsetting w or x, while rotating ¢ and a combination of w and y will access
positions of the kind (h, k, [). (right) A typical sample horizon schematic when using the flat
scattering geometry

Fig.2.14 A schematic of how detector scan
certain angular movements q
. z —
translate into RS, as well as .
- ; rocking curve h-scan
some definitions of linear ——
scans in defined directions. \
A RSM consists in an array of .
. . radial scan
adjacent linear scans to map a
2D region in RS
RSM

| sample surface | ¢,

The shape of Bragg reflex in RS can be visualized using the technique of reciprocal
space mapping (RSM). Any diffraction measurement involves a scan of g-values in
RS. The method of RSM is essentially cutting several adjacent lines in RS in such
a way as to record a 2-dimensional intensity map around the vicinity of a certain
Bragg peak. This is discussed at length in Refs. [29, 30].

2.3.5.2 Bragg Reflex Topology
In practice, the rules given by Eq. 2.6 are relaxed for different values of (&, k, [).

In other words, real conditions of the sample and the experiment will give rise to
broadened peaks. The main mechanisms of elongation common in heterostructures
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Fig. 2.15 (left) The concept of mosaicity involves domains of equal crystal orientation, which
gives rise to a broadening along the w direction. (right) A long broadening along the /-direction
arising from the surface truncation

are mosaicity (mostly finite in-plane correlation), truncation rods, resolution of the
experiment, and strong absorption. The latter is a consequence of the reduction of
scatterers when the penetration depth is reduced. Strongly enhanced on resonance,
quantifying a Bragg reflex’s width as function of energy across a resonance can
yield absorption coefficients in absolute units [31]. The experimental resolution is
the smallest effect in many of today’s sources.

Mosaicity arises when different portions of the sample are slightly misaligned with
respect to others. In heterostructures, this can easily occur during the growth process.
Introducing small misalignments of the unit cell with respect to the substrate implies
the scattering in different directions at a given incident angle. Since the magnitude
of g is the same, the other scattering directions will all be along a centered at the
origin, with radius | /q% + qy2 + q%. Scanning w, also known as a rocking curve, is
a common method of quantifying the degree of mosaicity in a sample. The angular
width of a rocking curve corresponds to the amount of mosaicity in the sample.
In heterostructures, the term mosaicity is commonly associated with the in-plane
correlation length. That is, it refers to the size of laterally spaced domains with the
same crystal orientation. The concept is shown visually in Fig. 2.15.

Heterostructures always posses a marked surface along z, which leads to an impor-
tant inherent property: the crystal truncation rod. Taking the Fourier-transform of the
product of the infinite (and periodic) p(¥) with a Heaviside function 4(z), one con-
volutes the Fourier-transforms of those functions. The Fourier transform of a step
function like h(z) is i /q;, and thus the intensity is proportional to 1/ q?. Combining
this result with the delta functions of Eq. 2.6, one obtains streaks of intensity along
the surface normal. This effect is shown visually in Fig. 2.15. Moreover, this effect
is also present in any truncated crystal system, like the superconducting cuprates, as
we will discuss in Chap. 4.
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Fig. 2.16 A schematic of the two-circle diffractometer used in throughout this thesis

2.3.5.3 The experimental setup

The actual scattering geometry commonly used in RSXS is shown in Fig. 2.16. First of
all, due to the large absorption cross section of air for X-rays of this wavelength [19],
these experiments can only be done with operating pressures below 10~* mbar.
Thus, the entire experiments are enclosed in vacuum chambers. The simplest kind
of diffraction setup offers 2 automated motors: the sample and detector rotation.
Additionally, the setup can offer the option of mounting the sample on a rotatable disc
(highlighted yellow in Fig. 2.16), which allows rotation around a vector perpendicular
to the holder’s back surface in the scattering plane.

When scattering in the flat geometry of Fig. 2.16, this corresponds to a -rotation.
The measurement of the XAS is done by grounding the sample from the heterostruc-
ture to the holder, as indicated in Fig. 2.16 by wires connecting the sample surface.®
Then, when the light strikes the samples and releases photoelectrons, the grounded
sample will replenish the exited electrons and register a current. This current mea-
surement is normally called a “drain current” or total electron yield (TEY) signal.

The RSXS experiments of this thesis were done using the setup of the UE46-
PGM1 beamline at BESSY in Berlin, shown in Fig. 2.17. The undulator at this
beamline generates X-rays with variable polarization and energies in the range 200-
1900 eV with a bandwidth of <1eV. The beamline operates two end-stations, which
can be run independently. The first one is an ultra-high vacuum diffraction chamber. It
operates at pressures of around 10~!9 mbar and is equipped with a continuous flow He
cryostat. The temperature ranges that can be achieved are 10-350 K, although certain
conditions can even allow lower temperatures (down to 3 K). Inside the chamber,
there is a 2-circle diffractometer like the one depicted in Fig. 2.16. The sample motor

6 The substrates used to grow TMO heterostructures are insulating, so the grounding cannot be
done through the substrate.
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Fig.2.17 The setup of the the UE46-PGM 1 beamline at BESSY, in Berlin, Germany. The beamline
operates two chambers: one predominantly for diffraction which Fig. 2.16 depicts, and one for
magnetic circular dichroism (XMCD) experiments

(w) and detector motor (26) rotations are essentially independent, with wide angular
ranges accessible (—30° < w < 160°, —50° < 26 < 180°). The diffractometer,
which is built on a very stable mount, has motorized movement in all three directions
of the sample stage, and so allows maximum precision when measurement small
samples. The p-rotation of the sample is not motorized, in order to reach temperatures
below 30 K. This rotation is done manually using a screw driver installed behind
the sample holder. The precision of this rotation is about ~5°. The drain signal is
measured independently from the scattered signal.

The second end-station operating at UE46-PGM1 is a high-magnetic field cham-
ber. A rotatable, superconducting magnetic coil can generate fields of up to 7T in
any direction with respect to the sample surface. Whilst most of the experiments car-
ried out in this end-station are XAS measurements of magnetic circular dichroism
(XMCD), the chamber does possess a very unique feature. The chamber has rotatable
sample and detector motors (w and 26). This permits scattering experiments in high
magnetic fields, albeit with certain limitations due to the rotatable magnet. Fixed
slits provide windows in 26 of 0° < 26 < 66° and 84° < 260 < 96°. A schematic
of the available scattering geometries under applied field with the magnet set at 0°
is shown in Fig. 2.18.
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Sample
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Fig. 2.18 A schematic of the scattering geometries available with applied magnetic field at the
high-field station of the the UE46-PGM1 beamline at BESSY. The field direction rotates with the
magnet
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