Chapter 2
Using RNA-seq Data to Detect Differentially
Expressed Genes

Douglas J. Lorenz, Ryan S. Gill, Ritendranath Mitra, and Susmita Datta

Abstract RNA-sequencing (RNA-seq) technology has become a major choice
in detecting differentially expressed genes across different biological conditions.
Although microarray technology is used for the same purpose, statistical methods
available for identifying differential expression for microarray data are generally
not readily applicable to the analysis of RNA-seq data, as RNA-seq data comprise
discrete counts of reads mapped to particular genes. In this chapter, we review
statistical methods uniquely developed for detecting differential expression among
different populations of RNA-seq data as well as techniques designed originally for
the analysis of microarray data that have been modified for the analysis of RNA-seq
data. We include a very brief description of the normalization of RNA-seq data
and then elaborate on parametric and nonparametric testing procedures, as well
as empirical and fully Bayesian methods. We include a brief review of software
available for the analysis of differential expression and summarize the results of a
recent comprehensive simulation study comparing existing methods.

2.1 Introduction: RNA-seq Data

RNA-seq is a next generation sequencing (NGS) procedure of the entire tran-
scriptome by which one can measure the expression of several features such
as gene expression, allelic expression, and intragenic expression. The number
of reads mapped to a given gene or transcript is considered to be the estimate
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Table 2.1 Table of read counts from a hypothetical RNA-seq experiment

Population 1 Population 2
Gene Sample 1  Sample 2 Sample 3 Sample 1  Sample 2
1 22 26 15 66 44
2 4 1 20 1 4
3 75 113 281 116 97
10,000 0 9 0 1 2
Total 824,015 782,345 1,345,387 693,428 923,450

In this example, there are K = 2 populations, J; = 3 samples in the first population,
J» =2 samples in the second population, and G = 10,000 genes. The final row lists
the cumulative read counts for each sample, frequently referred to as the library
size for a sample

of the expression level of that feature using this technology [24]. Microarray
technology has been the method of choice to measure gene expression since the
nineteen-nineties. However, RNA-seq is generally acknowledged to be a better
platform for transcription profiling for several reasons [8, 22, 25, 26, 28, 43, 50].
RNA-seq is believed to have a wider range of signal detection. The resolution of
microarray expression measures cannot go beyond the probe level. In contrast, the
majority of the reads from NGS technology map to the reference genome with
single base resolution and consequently RNA-seq can be evaluated at single-base
resolution. Moreover, in microarray technology one needs to have knowledge of the
target sequences to construct the probe sets. Hence, RNA-seq is more suitable for
the discovery of novel transcripts.

The end-product of a RNA-seq experiment is a sequence of read counts, typically
represented as a matrix with rows representing genes and columns representing
samples from one or more populations, as in Table 2.1. When RNA-seq data
are generated from two or more populations, interest often is in the detection of
differentially expressed genes among the populations, i.e., genes for which read
count distributions differ among populations. Methods for detecting differential
expression in microarray data are well-established but generally not applicable to
RNA-seq data, as the data from a RNA-seq experiment are discrete counts rather
than continuous measures of expression levels.

A challenge in the detection of differential expression for RNA-seq data results
from the way in which reads are mapped to features such as genes, transcripts
or exons. One of the issues is that the expression quantification from short reads
using RNA-seq data depends on the length of the features; longer features usually
produce more reads. Normalization by dividing by the length of the transcript [25]
alleviates this problems somewhat but not completely [54]. The expression value
used by Mortazavi et al. [25] is referred to as Reads per Kilobase per Million reads
(RPKM). Differential RNA-seq analysis using an empirical Bayes procedure by the
limma method [38] uses log-counts per million (log-cpm), analogous to the log-
intensity values in microarray studies.
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Differential expression analysis may also be affected by the sequence depth of
the NGS data generation. Sequence depth can be calculated as N x L/G, where
N is the number of reads, L is the average read length and G is the length of the
original genome. For example, N = 8 reads for a genome with G = 2,000 base pairs
at average length L = 500 will have a sequence depth of 2 or 2x redundancy. This
also is equivalent to the percentage of genome covered by reads and the average
number of times a base is read. Higher coverage can improve the power to identify
differential expression using RNA-seq data. However, read counts are subject to
technical variation in which the overall read count for a sample, referred to as the
library size, can substantially vary among repeated NGS experiments on the same
sample. In order to accommodate this source of variability, log-cpm values need to
be adjusted by accounting for mean-variance trends typically observed in RNA-seq
data, particularly among genes with lower counts. Zero counts are augmented by
a small positive value to avoid taking the logarithm of zero, ensuring non-missing
log-cpm and reducing the variability at lower count values.

An additional challenge is that some of genes may exhibit very large read counts
while the rest of the reads are distributed among the remaining genes. Hence, even if
library sizes are identical between samples, some genes may mask the expression
of others which may be moderately equivalently expressed. Thus, the expression
signals of genes or transcripts in RNA-seq data not only depend on sequence depth,
but also are dependent on the expression levels of other transcripts. Because of
this and the technical variation of NGS experiments noted above, raw read counts
from different populations are not necessarily directly comparable in an analysis of
differential expression without adjustment for technical variation. In other words,
simply viewing the count for a given gene and sample as proportional to the
sample’s total read count is problematic because a few genes may have extremely
large counts that artificially inflate a sample’s total read count. Alternative complex
normalization schemes for RNA-seq data have been proposed by Bullard et al.
[6], Anders and Huber [1], and Robinson and Oshlack [32]. In these methods,
there are additional sample specific normalizations combined with library sizes.
There are other methods of normalization as well. A thorough evaluation of
many normalization methods for RNA-seq data is provided in Dillies et al. [11].
Trimmed mean of M-values normalization (TMM) [32] and the normalization
scheme provided by Anders and Huber [1] are among the easiest to use and provide a
decent solution to the normalization problem of RNA-seq data. However, even these
methods assume that very few genes are differentially expressed between different
populations and those are equivalently spread between the up- and down-regulated
genes. Other types of normalization strategies deal with the GC content of the reads.
Normalization for this specific reason transforms RNA-seq data in such a way that it
no longer remains count data and should be dealt with differently in terms of further
analysis for finding differentially expressed genes. Cufflinks/Cuffdiff [48] provides a
normalization scheme in their integrated differential analysis algorithm. For a more
thorough discussion of normalization methods, we encourage the reader to consult
the chapter on normalization in this volume.
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The focus of this chapter is to provide a comprehensive review of the methods
related to the analysis of differential expression for RNA-seq data. In recent years,
a number of reviews of RNA-seq data analysis methods have been published,
and they all are effective in communicating the current status of the analysis of
RNA-seq data [2,40,53]. Much further work will be devoted to developing statistical
methods for the detection of differentially expressed genes for RNA-seq data. In
this chapter, we review statistical methods for detecting differential expression in
RNA-seq data, including the application of techniques for analyzing microarray
data to RNA-seq data, parametric and nonparametric tests, and empirical and
fully Bayesian methods. We summarize the results of several simulation studies,
including a recently published thorough examination of several of these methods.
We briefly describe some existing open source R and Bioconductor software for
testing differential expression for RNA-seq data. We conclude the chapter with a
discussion section.

2.2 Statistical Methods for Testing Differential Expression

For consistency of notation in what follows, we have established a single unifying
notation for the RNA-seq read counts. As a result, the notation we use here
is frequently different from the source works. We consider read counts for G
genes measured in K populations. Let ¥;;, denote the number of RNA-seq reads
mapped to gene g in replicate j of population i, where 1 < i< K, 1 < j < J,
and 1 < g < G. We will generally refer to “genes” as that which are being tested
for differential expression, with the understanding that other features (transcripts,
exome expression, etc.) may be tested as well. While the developments below will
focus on detection of differential expression between two populations, several of
the methods have natural extensions permitting the comparison of more than two
populations.

2.2.1 Simple Approaches

An early treatment [6] of differential expression for RNA-seq data examined the
performance of Fisher’s exact test and test statistics derived from generalized linear
models used to derive and normalize expression counts. We temporarily extend our
notation and let Y;¢; denote the read count for gene g along lane k in sample j of
population i. A Poisson generalized linear model for Y; ¢ is

log (E[Yijgr | dij]) =1og (dije) + Aijs + Oije 2.
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relating the logarithm of the expected read count for gene g in lane k as a linear
function of the gene g rate in sample j of population i (4;j¢), an offset term adjusting
for variation in lane depths (d; ), and other unspecified technical effects that vary by
gene, lane, and sample (6;;¢). Tests of differential expression are derived from this
model through a likelihood ratio test (LRT) or #-tests of the maximum likelihood
estimates (MLE) of the expression parameters A;js. The performance of these
tests as well as Fisher’s exact test in detecting differentially expressed genes was
evaluated on a gold standard data set [7]. Two variants of the GLM-derived ¢-tests—
one using the variance of the MLE of A;;, and one using variance calculated via
the delta method—exhibited reduced detection rates. Fisher’s exact test and the
LRT performed equivalently and exhibited uniformly greater true positive rates
(TPR) than the z-tests. The authors noted that screening genes based on read
counts improved the performance of both the #-test and LRT. When genes with
read counts lower than 20 were filtered out, detection rates for the LRT and ¢-test
greatly improved and were roughly equivalent. The filtering threshold, however, was
arbitrarily selected and tested only on the single gold standard data set.

A recently developed R software package, DEGseq [51], also employs Fisher’s
exact test as well as the two versions of the likelihood ratio test noted by Bullard
et al. [6]. Additionally, DEGseq introduces two tests based on the thresholding of
plots of log fold change as a function of mean log expression level (MA plots)
commonly used in microarray data, one for analyses based on single samples in
each population and one for analyses based on technical replicates. These MA
plot-based tests are based upon binomial assumptions for the read counts and a
normal approximation of the conditional distribution of the log count ratio between
populations (M) and average of log counts (A) between populations.

Another simple two-sample test can be constructed by assuming a Poisson
distribution for the read counts. To this end, suppose that the Y;;, ~ POI(c;jAi),
where A;, represents the relative rate parameter for gene g in population i and
c;j is a replicate-specific constant. The constant ¢;; is included to account for
variation in read intensity among biological replicates, which can artificially inflate
overall library sizes for replicates with high intensity. The within-population and
overall read counts are defined as Y., = 3;Yj, and Y., = 3; ; Yij, which follow
POI (Y Aigeij) and POI(Y; ; Aigcij) distributions, respectively, under the Poisson
assumption for the individual read counts. The null hypothesis for testing differential
expression for gene g is that of equal relative rates of expression, which takes the
form Hy g : A1y = A2 Under the null, the conditional distribution of the read count
for gene g in population i (Y;.¢) given the total read count for gene g (Y..,) is binomial
with size Y., and success probability o = ¥.;¢;j/ >; j ¢ij, which is common to all
G genes. The test of Hy ¢ is then any binomial test (e.g. asymptotic, exact, Clopper-
Pearson) of Y;., successes in Y., trials against null probability 7. Adjustment of
p-values from the G tests to control the false discovery rate (FDR) can be achieved
via the Benjamini—Hochberg [4] correction, or any other suitable method.
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Fisher’s exact test, GLM-based tests, the MA plot tests of DEGSeq, and the
conditional binomial test have received little attention, in large part due to the
practical infeasibility of assumptions about the marginal or conditional distributions
of the read counts. In particular, the Poisson assumption for read count distributions
and the binomial assumption for conditional read count distributions have proven
infeasible for real data. The variation in replicate samples is typically far greater than
that modeled by the Poisson distribution even after adjustment for read intensity.
Other tests for differential expression have focused on extensions of the Poisson
model for read counts or alternative discrete probability distributions.

2.2.2 Tests Based on Extensions of the Poisson Distribution

Srivastava and Chen [41] proposed a test of differential expression based upon the
generalized Poisson distribution. In terms of RNA-seq data, the generalized Poisson
model is

P(Yijg = y) = Aig (Rig + Oigy)’ " ¢ His™ %2 /1, 2.2)

where A;; is the read intensity parameter for gene g in population i and 6;, is a
parameter referred to by the authors as the average bias caused by the sample
preparation and sequencing process. The authors note that the bias parameter 6;,
serves as a shrinkage factor relative to the Poisson distribution, as E[Y;j,] = Aig(1 —
6;,) ! and Var([Yije] = Aig(1 — 6;4) . To construct a likelihood ratio test based on
the generalized Poisson (GP) model, the intensity and sequencing-bias parameters
(Aig, 6;¢) are first estimated freely. The intensity parameters are then estimated under
the restriction Ao, = wii,, where w represents a normalization constant accounting
for different sequencing depths between populations. In practice, this normalization
constant w is chosen as the ratio of the total amount of sequenced RNA in the two
populations. This in turn is estimated in each population as a weighted sum over all
genes of the unrestricted MLE of the A, with weights defined by gene lengths. The
LRT statistic calculated from the restricted (A;» = wA;1) and unrestricted likelihoods
approximately follows the X12 distribution. Using a standard data set [37], the GP
test was shown to be more sensitive than the Poisson LRT as well as LRT derived
from generalized linear models under Poisson, negative binomial, and quasi-Poisson
distributions. The generalized Poisson distribution does permit negative intensities
Aig which are not interpretable in a practical sense. The authors note that the GP test
fails when data produce a negative estimate of A;, as likelihoods become zero and
maximum likelihood estimation fails, a notable drawback to the applicability of the
GP test.

Auer and Doerge [3] introduced the two-stage Poisson model (TSPM), in which
gene counts are first screened for overdispersion and different test statistics are
calculated for genes determined to be overdispersed/not overdispersed. In the first
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stage of TSPM, genes are filtered so that those with small cumulative counts
over replicates and populations are not given further consideration. The authors
arbitrarily select 10 as the cutoff, but do note that the cutoff can be varied based
on the number of replicates and overall read intensity. After filtering, a random
effects Poisson model is fitted to the gene counts assuming no overdispersion, and an
adjusted score statistic is calculated to test the null hypothesis of no overdispersion
per gene, Hoy, : ¢ = 1, where ¢, is the overdispersion parameter for gene g,
1 < g < G. The quantiles of the adjusted score statistic are compared to theoretical
quantiles from the X12 distribution. Genes for which the adjusted score statistic is
greater than the upper bound of the Working-Hotelling simultaneous confidence
band for the theoretical 7512 quantiles are classified as overdispersed. All other
genes are classified as not overdispersed. In the second stage of the TSPM, genes
classified as overdispersed are tested using a likelihood ratio test derived from fitting
overdispersed quasi-likelihood models under the null and alternative hypotheses of
no differential expression and differential expression, respectively. Genes classified
as not overdispersed in stage 1 are tested using a standard likelihood ratio test from a
Poisson model. The authors recommend that corrections for FDR control be applied
separately within the sets of genes found to be overdispersed and not overdispersed
as a power-saving strategy, diverging from common implementation of methods
for FDR control. In a simulation study, the authors show that the TSPM exhibited
improved power over a negative binomial model and a quasi-likelihood approach in
settings where some genes were overdispersed and others not.

Pounds et al. [30] proposed two procedures for identifying differentially
expressed genes using both a likelihood ratio test with a Poisson distribution and
a quasi-likelihood model which adjusts for overdispersion. Both procedures are
based on the adaptive histogram estimator of empirical Bayesian probabilities of
no differential expression and of no overdispersion. The Assumption Adequacy
Averaging (AAA) procedure uses the law of total probability to estimate the
empirical Bayesian probabilities of no differential expression for each gene.
These estimates are based on a weighted average of the empirical Bayesian
probabilities of no differential expression for the gene using the Poisson and quasi-
likelihood models, with weights based on the empirical Bayesian probability of no
overdispersion. The Empirical Best Test (EBT) procedure alternatively selects the
best test based on the empirical Bayesian probabilities of no overdispersion for each
gene. The EBT procedure then applies the adaptive histogram estimator to obtain
the empirical Bayesian probabilities based on the set of p-values for the tests for
differential expression, using the best test for each individual gene. The authors
present simulation studies which evaluate the performance of these two procedures
based on various performance metrics and scenarios, and also compare them to
the Poisson model, the quasi-likelihood model, TSPM, and negative binomial and
Bayesian tests discussed below. The authors also discuss some nice theoretical
properties of the two proposed procedures.
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2.2.3 Negative Binomial and Quasi-Likelihood Tests

Rather than extend the Poisson distribution [41] or work around overdispersion
via screening [3], several authors have proposed differential expression methods
based on the negative binomial distribution. The use of the negative binomial
distribution was motivated by observation that real RNA-seq data sets typically
exhibited greater variability than could be modeled via the Poisson distribution.
Robinson and Smyth [33] assume a negative binomial distribution for the read
counts for all genes with a common dispersion parameter, (i..) Y;j, ~ NB(Lijq, ),
where ;e = m; jlig, m;; the library size for sample j in population i, and lig a
relative abundance parameter for gene g in population i, which is assumed to be
common to the replicate samples within a population. The dispersion parameter ¢
is estimated by maximizing the conditional likelihood given the sum of the counts
in each population. This conditional maximization is straightforward when library
sizes are assumed to be equal within each population. When this is not the case,
a quantile adjustment is applied to the library sizes, adjusting observed counts to
the geometric mean of the replicates. These adjusted library sizes are then used
in the maximization of the conditional likelihood for the dispersion parameter, a
process referred to as quantile adjusted conditional maximum likelihood (qCML)
estimation. The null hypothesis for the test of differential expression is the equality
of the relative abundance parameters, Ho, : A1, = A2y, = 1,...,G. The authors
suggest an exact negative binomial test based on the same quantile adjustment
used in estimating the dispersion parameter, in which the “pseudosum” of adjusted
counts for a given population is conditioned on the pseudosum of counts across
populations, and a p-value calculated as the probability of observing counts greater
than those observed.

The assumption of a dispersion parameter ¢ common to all genes is frequently
biologically implausible. As such, Robinson and Smyth [34] extended their original
negative binomial approach and suggested the use of gene specific dispersion
parameters ¢g, so that the distributional assumption on read counts becomes
Yijg ~ NB(lijq, ). The authors suggested estimation of the ¢, via a weighted
likelihood approach, approximating an empirical Bayes procedure. The weighted
likelihood for ¢, is defined as the weighted sum of the likelihood with gene-
specific overdispersion (¢,) and the common likelihood function with common
overdispersion (¢). The weight parameter o¢ determines the weight assigned to
the common likelihood relative to the gene-specific likelihood. In practice, the
parameter « is selected based on a Bayesian normal hierarchical model for the gene-
specific dispersion parameters ¢,. The authors demonstrate that when dispersions
do not differ among genes, this approach results in greater values of «, which
gives greater weight to the common likelihood in the weighted likelihood equations
and thus shrinks the gene-specific ¢, to a common value. A simulation study
demonstrated that the ability of the exact test [33] to detect differentially expressed
genes improved when the empirical Bayes estimation of the gene-specific dispersion
parameters was implemented, and was equivalent to the performance of a Wald test
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from an overdispersed log-linear model when genes were commonly overdispersed.
Further, the exact test with empirical Bayes adjustment was better able to control
false discovery rates when gene-specific overdispersion was introduced.

Anders and Huber [1] noted that in practice, dispersion often varies with
expected read count, and suggested an extended negative binomial model in which
the variances of the read count are defined as a nonparametric function of their
expectation. Formally, Y;js ~ NB(U;ijg,¢u), Where, as in the Robinson—Smyth
approach, L, = mjjA;g, and my;; is a library size parameter accounting for the
sampling depth in replicate j in population i. The notation ¢ is understood to imply
that dispersion varies in an unspecified fashion with the expectation. Under this
approach, Var(Y;jg) = Mijg(1 + @y lijg), which departs from the Robinson-Smyth
[33] negative binomial approach for which Var(Y;je) = Wije(1 + @ Uijs). As noted
above, Robinson and Smyth [34] extended the standard negative binomial approach
by estimating gene-specific dispersion parameters via empirical Bayes weighted
likelihood estimation, in which gene-specific dispersion parameter estimates were
shrunk toward a common dispersion. Anders and Huber [1] employ a gamma-family
generalized linear local regression to model the mean-dispersion relationship. The
null hypothesis in the test of differential expression, Hy, : A1 = Ao, is tested via
an exact test constructed similarly to the Robinson and Smyth test. The Robinson
and Smyth approach adjusts counts by qCML to achieve equal pseudocounts per
replication. The equality of the pseudocounts is then used in the construction of
exact negative binomial test statistics. In contrast, Anders and Huber approximated
the distribution of the sum of negative binomial random variables assuming unequal
library sizes. The authors demonstrated their method on four standard data sets,
noting that both approaches were effective at controlling false discovery rates, while
a Poisson-based y? test failed. The authors note that the overall sensitivities of
their test and the common-dispersion version of the Robinson and Smyth test were
roughly equivalent. However, the Robinson and Smyth test was less conservative
for weakly expressed genes and more conservative for strongly expressed genes, an
apparent product of the flexibility of the nonparametric variance estimator in the
Anders and Huber test.

Di et al. [9] applied a generalized negative binomial distribution, known as the
negative binomial power (NBP) distribution, to test for differential expression. The
NBP distribution is a gamma mixture of Poisson distributions; if Y|Z ~ POI(Z)
and Z ~ I" with mean g and variance ¢u*, then marginal distribution of Y is
NBP. The authors note that by assuming NBP-distributed read counts, Var(Y;j,) =
Mig (1 + 0)(/.L,~g)°"1). While the dispersion parameter is common to all genes, the
mean-variance relationship is given flexibility via the power parameter ¢. This is
in contrast to the Robinson—Smyth and Anders—Huber approaches, in which the
dispersion parameters themselves are varied. The NBP tests is constructed as an
exact test based on the NBP assumption. The null hypothesis is A1, = A2,, Where,
as in the other negative binomial tests, U;j, = m;;A;g, and m;; represents the library
size for replicate j in population i. Under the assumption of equal library sizes,
the authors estimate the relative frequency parameters A;; as simple averages over
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replicates weighted by the common library size. The dispersion parameters ¢ and
o are estimated via maximum likelihood conditional on the sum of read counts
within each population and the estimated A;,. The exact test is constructed in the
fashion of Robinson and Smyth [33], based on the conditional distribution of the
read count sums in one population given the read count sum over both populations.
To permit varying library sizes, the authors randomly sample read counts to force
equal active library sizes, a process they term “thinning”. A simulation study was
conducted in which read counts were simulated from the Poisson and several
variants of the negative binomial distribution, under different assumptions on the
functional form of the negative binomial variance. The authors noted that each of
the negative binomial tests, including their own, appeared adequate at controlling the
false discovery rate under their simulation settings, while the NBP test appeared to
be most powerful, particularly under a simulation model in which the log-dispersion
parameter was defined as a quadratic function of the log-mean.

Lund et al. [23] noted that while methods based on extensions of the Poisson
distribution or the negative binomial distribution provide added flexibility in
modeling read count overdispersion, these methods fail to properly account for
uncertainty arising from estimating this overdispersion. In general, this results in
overly liberal tests of differential expression and skewed p-value distributions when
genes are not differentially expressed. The authors suggest modeling read counts
via quasi-likelihood (QL) by defining the read count variance to be proportional to
a user-defined function—Var(Yjj,) = @,V,(Uijg), where @, is a quasi-dispersion
parameter to be estimated from the data, and the variance function Vg() must
possess a corresponding quasi-likelihood function satisfying d1(L;jq|yijs) /0 Uije =
(Vije — Mijg)/Ve(Uije). Differential expression is tested through a quasi-likelihood
ratio test, for which three methods for estimating the QL dispersion parameter @,
are discussed. The first is a standard deviance-based estimator. The second is an
empirical Bayes estimator, adapted from an approach introduced by Smyth [38],
which borrows information across genes in estimating gene specific dispersions
by placing a scaled inverse y? prior distribution on the QL dispersion parameter.
The third approach accounts for mean-variance relationships in the read counts by
fitting a cubic spline of the logarithm of the deviance-based QL dispersion estimator
against the log-average counts. A preliminary estimator of the QL dispersion is
derived from the spline function, and the aforementioned empirical Bayes approach
of Smyth is employed to arrive at the spline-based estimator of the QL dispersion.
The authors note that the latter two methods, termed QLShrink and QLSpline, can
be characterized as shrinkage estimators—weighted averages of the deviance-based
and Bayesian or spline estimators. Lund et al. [23] conducted a simulation study
demonstrating the liberal nature of existing Poisson and negative binomial tests, and
noted that of the three proposed QL methods, the spline-based method (QLSpline)
appeared to perform best.
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2.2.4 Other Methods

Parametric approaches to modeling RNA-seq data based on discrete distributions
for counts can be adversely affected by model misspecifications and the presence of
outliers. A nonparametric approach to the identification of differentially expressed
genes in RNA-seq data was proposed by Li and Tibshirani [20]. A modified two-
sample Wilcoxon statistic

*7
I, =

S
D {ZRUg(Y“) - M} (2.3)
s=1 j

Ll —

based on a multiple Poisson sampling procedure over S iterations is used to examine
the differential expression of the gth feature (gene) in two-class data. As in the
previous section, Y;j, denotes the RNA-seq count for the gth gene in the jth
experimental observation in population i, J; is the number of observations in the ith
population for i = 1,2, and we define J = J; 4+ J>. The rank statistic R;;,(Y) gives
the rank of Y;j, in the set Y = {Y114,...,Y1s,0, Y214, -, Yapg }- The use of equation
(2.3) requires equal sequencing depths, so the authors suggest Poisson sampling of
the read counts, replacing original counts Y;;, with random variables Yl-/j , resampled
from a Poisson distribution with mean dY¥;j,/d;; fori=1,2 and j = 1,...,J; where
the d;; represent the original sequencing depths for replicate j in population 7, and

d= (Hi’ j dij)l/ " is the geometric mean of all sequencing depths. This Poisson
sampling procedure is repeated S times and the resulting average test statistic
is computed to alleviate limitations resulting from the additional randomness
introduced by resampling and by tie-breaking procedures for the rank statistic.
Since the distribution of the average of the Wilcoxon statistics is complicated, the
false discovery rate (FDR) is estimated based on a permutation plug-in estimate. The
FDR estimates for this test are more conservative than for parametric alternatives,
and were shown to be accurate in simulated data with outliers for which some
parametric models greatly underestimated the FDR. In overdispersed data sets with
outliers, parametric methods often identified features with a small number of very
large count values as differentially expressed, whereas the Li and Tibshirani test
tended to identify features where the counts in one class were consistently larger
than the counts in the other class.

Tarazona et al. [44] introduced a nonparametric approach designed to be robust
against sequencing depth effects. The empirical distributions of fold-change differ-
ences M8 = log,(¥1.4/¥2.;) and absolute expression differences D8 = |V, — V2.,
are used to estimate the probability that the gth gene is differentially expressed,
where the ¥;., represent cumulative read counts normalized to correct for different
sequencing depths and adjusted to avoid zero counts. Genes are declared to be
differentially expressed if the estimated probability exceeds a specified threshold;
0.8 is used by the authors. The empirical probabilities are computed using technical
replicates when available, or through technical replicates simulated from the
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multinomial distribution when not available. Tarazona et al. [44] examined the effect
of sequencing depth on the identification of expressed genes via their nonparametric
test, sequencing noise, transcript length, and genes declared to be differentially
expressed. A thorough comparison to other novel methods [1, 14, 35] as well as
Fisher’s Exact Test was made. The authors found that the number of differentially
expressed genes as well as the length, fold-change, and expression level of the
discovered genes strongly depended on the sequencing depth for the parametric
methods, while their nonparametric method was relatively consistent. Further, the
authors noted an increase in the number of false positives as the sequencing
depth increased for the parametric methods, which was also found by Li and
Tibshirani [20], while their nonparametric method was able to control the rate of
false discovery.

Recently, a Markov random field approach was proposed by Yang et al. [52].
Consider the set X = {xy,...,xg} of binary random variables defining indicators x;
which equal 1 if a gene is differentially expressed and equal O otherwise. A vector
Y = {y1,...,yc} of observed discretized FDRs are computed for the individual
genes using the Anders and Huber [1] test, and the joint probability of X given Y is
modeled as proportional to the product [T jeg Wi j) (Xi, X)) 15, ¢i(x;) where E is
the set of vertices with coexpressed gene database (COXPRESdDb) correlations c; ;
larger than a specified value [27] and y; ) (xi,x;) = € if x; = x; and 1 otherwise.
The unary function ¢;(x;) are defined to be P(x; = 1|y;) /P(x; =Oly;) if P(x; = 1]y;) >
P(x,‘ = 0|y[) andx; =1, P(x,‘ = 0|y[)/P(xi = l|y,~) if P(x,‘ = 0|y[) > P(x,‘ = 1|y[) and
x;i = 0, and 1 otherwise. It is shown that these clique potential functions of this
pairwise Markov random field model are selected so that maximum a posteriori
estimation of the differentially expressed genes is reduced to a maximum flow
problem discussed in Kolmogorov and Zabih [15]. By including information about
the dependence of gene expressions, Yang et al. [52] show through simulation
studies and real data examples that this method exhibited improved sensitivity
without a loss of precision. Through the inclusion of additional coexpression
information, this method additionally helped remove bias against detection of genes
with low read counts.

Zhou et al. [55] proposed a beta-binomial model where the probabilities that
a single read in each sample is mapped to gene g is a vector 6,. of beta random
variables for which the logits of the expected values are modeled linearly by
XBg. The design matrix X is flexible and can include columns indicating group
assignments for experimental conditions as well as any other desired covariates. The
vector of regression coefficients B, corresponds to the effects of the variables in the
columns of X for the gth gene. Two approaches are considered—(1) a free model
where the likelihood function is directly maximized, and (2) a shrinkage approach
with a constrained model where the overdispersion ¢, of the beta distribution is
modeled as a polynomial function of the mean. The authors additionally suggest
an automatic correction for outliers. While other penalized approaches and the
constrained model offer some advantages for very small sample sizes, simulation
studies and a real data example support direct parametric modeling with the free
model.
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2.2.5 Bayesian and Empirical Bayes Approaches

A number of fully Bayesian and empirical Bayes methods have been developed
for analyzing differential expression. Typically inferences on differential expression
span across multiple genes and conditions, each characterized by its own set of
parameters. It is frequently natural to express these parameters as a mixture over
two latent states. The states may imply the presence or absence of differential effects
and hence define the primary objects of inference. In Bayesian approaches, such
gene-specific parameters are assigned prior distributions, which are in turn indexed
by a common hyper-parameter. The model is then completed by assuming specific
sampling models for normalized count data conditional on these parameters. As in
frequentist settings, these distributions are chosen to allow for overdispersion, which
poses a critical challenge in analyzing RNA-seq data. All Bayesian models typically
follow this common hierarchy.

However, empirical Bayes and fully Bayesian methods differ sharply in their
approaches to inference and shrinkage. The former estimates the relevant hyper-
parameters directly from the data and through this combined estimate, pools
information among genes. In contrast, fully Bayesian methods borrow strength by
fixing the hyper-parameter at the highest level of the Bayesian hierarchy and sharing
the parameters themselves across different levels. For example, one could achieve
some shrinkage by simply assuming a common probability for the presence of
indicators. More generally, the extent and nature of shrinkage vary with the desired
level. Shrinkage is highly relevant in differential expression settings, where we have
multiple genes but very few replicates per gene. In the following discussion, we
shall review some commonly used empirical Bayes approaches introduced by van
de Wiel et al. [49], Leng et al. [19], and Hardcastle and Kelly [14], and conclude by
describing a fully-Bayesian method [17].

The sampling model considered by van de Wiel et al. [49] is a zero-inflated
negative binomial regression: Yijo ~ ZI — NB(L;jq, $g,Wog) and Wije = h~(Beo +
Y« Bekxijk ), where g indexes the genes,  is a link function, ¢, the negative binomial
overdispersion parameter, and wo, a zero-inflation parameter. The zero-inflation
parameter is defined to be a probability mixing the negative binomial distribution
NB(Ujjg,,) with probability 1 —wp, and a point mass at zero with probability
wog. The regression coefficients are permitted to have their own normal random
effects. The covariates typically correspond to different conditions or populations
corresponding to possible differential expression. In assigning priors, van de
Wiel et al. examined several different choices. Both flat and mixture priors were
considered for f3,;, while the prior for log(¢,) was assumed to be a mixture. Each
parameter family had its own associated set of hyper-parameters. A conventional
method of estimating hyper-parameters in an empirical Bayes framework is by
maximizing the marginal likelihood. As an alternative, van de Wiel et al. [49]
utilize the fact that the likelihood estimator ¢ approximately satisfies 7y () =
(1/G) Zngl 7o (-[Yg), where G is the number of genes and Y, the vector of read
counts for gene g. This approximation can be seen by setting the derivative of the
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log-marginal likelihood to 0. Since the model includes multiple parameter families
(e.g overdispersion, regression coefficients), this generic procedure was extended
to an iterative algorithm which conditioned on a given set of parameters at each
step. Shrinkage of overdispersion is treated separately. Since the overdispersion and
mean are intertwined in NB models, a univariate shrinkage of the former may not
work. The authors suggest shrinking the individual ¢, through a prior that regresses
them against the gene counts. Specifically, they assume ¢, = h(c,) + €, Where cg
is the log of the gene count and the function £ is left unspecified and estimated
via LOESS. Initial values required by this iterative algorithm are fixed at the
posterior mean estimates of the ¢, obtained under a flat prior. Having obtained these
estimates, the shrinkage prior was assigned as ¢, — (ﬁg ~ N(0,062) where 6 was also
estimated from the iterative procedure. The authors also suggest the importance of
the zero-inflation component in this context, describing it as a potential reason for
overdispersion. Indeed, including factors accounting for zero inflation was shown
to effectively account for the residual trends of ¢, in simulation settings. Finally,
posterior estimates of the specific contrasts involving the regression coefficients are
computed, and then Bayesian and local false discovery rates are applied to these
estimates to infer differential expression.

The approach of Hardcastle and Kelly [14] deals directly with the latent
indicators of differential expression. In the most general version of this approach,
a broad space of models is encompassed, each corresponding to a hypothesis to be
tested. For simplicity of exposition, we consider here just two exclusive models:
(1) no differential expression and (2) differential expression. Each gene in the data
set then has an associated latent indicator identifying whether it is differentially
expressed. A key difference with the method of van de Wiel et al. [49] is that
Hardcastle and Kelly [14] do not explicitly estimate a hyper-parameter. Instead,
their method estimates the entire prior distribution through resampling and quasi-
likelihood. The pooling of prior probabilities for the different indicators is done
through iterative estimation. The sampling model in this approach is negative
binomial, with the probabilities weighted by library sizes. Posterior probabilities
are obtained as the final step.

Leng et al. [19] introduced an empirical Bayes method that not only models
differential expression among genes but also among isoforms of the same gene.
In this setup, let Y;;g denote the read counts in isoform / of gene g in sample j
of population i. This count is assumed to follow a negative binomial distribution,
where the parameters of the negative binomial can vary across genes, isoforms, and
biological conditions. The prior distribution of the negative binomial mean-variance
ratio is assumed to be Beta(ot,B%), where I, denotes a grouping of genes. The
hyper-parameter o is shared across all isoforms and genes, while  varies by gene
group (/). These gene groups can be defined freely to provide flexibility to the
approach; for example, genes can be grouped by the number of their isoforms. As
in other differential expression approaches, the full model was expressed as mixture
over two latent states. In the EB step, the four global hyper-parameters (each pair
corresponding to a state) are estimated via the EM algorithm. Conditioned on these
estimates, the state-specific posterior probabilities are calculated.
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Lee et al. [17] proposed a fully Bayesian hierarchical model that diverged
from existing approaches in that the cumulative read count of gene g at each
genomic position [ in population i is explicitly modeled as Y;.o; ~ Bin(Y..g15pgr),
independently across the positions. The binomial probability p,; is modeled by
adding another layer in the hierarchy and assuming pg; ~ (1 — wyg)Beta(oy; Bg) +
wgBeta(.5,.5). In this formulation, w,; expresses the outlier effect, while the o
and B, are gene specific and centered around a mixture prior. This mixture is over
three possible indicators encoding for high, low, and non-differential expression.
The parameters corresponding to each indicator are assigned their own Gaussian
priors. These priors allow for the usual inter-gene pooling as in previous hierarchical
setups. However, this method implements full posterior inference using MCMC
methods. Final results are obtained by direct posterior sampling of the latent
indicators. This approach offers a number of advantages. First, prior normalization
of the mapped read counts is not required. Rather, normalization and differential
calling are done simultaneously via the model. Second, this approach effectively
downweights outliers at the position level through the wg;. The authors showed
that this step played a significant role in increasing the specificity and sensitivity
of differential expression calls. Third, the pooling across positions increased the
effective sample size per gene per sample. Importantly, this model uses each position
in the gene as a data point, thus we have multiple observations per gene in the
absence of replicates. This can be relevant for many cost-prohibitive RNA-seq
studies where replicates are difficult to obtain.

2.3 Software for Differential Expression in RNA-seq Data

Several of the novel methods for detecting differential expression in RNA-seq
data have associated software packages, most of which have been released via
the open source R [31] and Bioconductor [12] software environments. Below we
provide a brief summary of R and Bioconductor implementations of the different
techniques for detecting differential expression in RNA-seq data. We do not discuss
other methods such as Fisher’s exact test, two sample t-tests, GLM-derived tests,
and methods for microarray data analysis applied to RNA-seq data. The package
names we use in the discussion below can be used to load the R and Bioconductor
libraries for the associated methods, via the commands 1ibrary (pkgname) for
R packages (after local installation) and biocLite (pkgname) for Bioconductor
packages.

The general convention for formatting RNA-seq data for use in frequentist
analyses is as a G x J matrix for G genes measured in J samples, with the columns
typically arranged so that the first few columns are read counts of replicates from
population 1 and the remaining columns read counts of replicates from population 2.
Most functions for detecting differential expression accept two arguments at a
minimum—the matrix of read counts and a vector defining a population identifier
for the columns (e.g. 1 or 2).
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The R package GPseq [42] implements the generalized Poisson test via the
function estimate differential expression. The interface for this
function differs somewhat from other implementations, in that the function accepts
an annotated read count matrix as well as exon and gene annotation matrices for
unraveling the annotated read count matrix. The GPseq package also includes
functions to calculate chi-square goodness-of-fit tests for the generalized Poisson
distribution and workhorse functions for the generalized Poisson likelihood and
likelihood ratios, and functions for permutation tests of the generalized Poisson
test statistic. The other Poisson test, based on the two-stage Poisson model [3],
is not available through an R library, rather as an R function downloadable from
the authors’ website (http://www.stat.purdue.edu/~doerge/software/TSPM.R). The
function reads in a matrix of read counts and indicators defining populations for
the columns of the matrix, and returns adjusted and unadjusted p-values as well
as vectors of indicators defining genes found to be overdispersed. The R functions
used to implement the procedures introduced by Pounds et al. [30] utilize some
of the code for TSPM and are available on the personal website (http://www.
stjuderesearch.org/site/depts/biostats/software/ebshtpasced).

DEGseq is a Bioconductor package implementing Fisher’s exact test, two
likelihood ratio tests, and tests based on MA plots [51], all through the function
DEGseq. This function also does not follow the convention of accepting matrices
of read counts. Rather, DEGseq accepts mapping files for samples from two
populations as well as arguments specifying characteristics of the RNA-seq data
files. Additional arguments specify the differential expression test to be conducted
and customize the characteristics of said tests, such as p- and g-value thresholds and
thresholds for tests derived from MA plots.

Libraries for the negative binomial tests [1, 9, 33, 34] are available in R and
Bioconductor. The Robinson—Smyth test can be found in the Bionconductor
package edgeR [35]. To obtain the Robinson—Smyth test, users of edgeR format
a matrix of counts into a package-specific object that is then fed to the function
estimateCommonDisp, which estimates the common dispersion parameters and
outputs a matrix of pseudocounts and pseudo-library sizes. The object created by
this function is fed to the function exactTest which calculates p-values from
the exact negative binomial tests based on the quantile-adjusted counts. Additional
functions in the edgeR library provide tests based on the assumption of gene-specific
dispersion parameters, utility functions for RNA-seq data, workhorse functions for
estimation and testing, and additional functions for the analysis of RNA-seq data.
We refer the reader to this book’s chapter on the edgeR package for further details.
The test of Anders and Huber [1] is available via the Bioconductor package DESeq.
To test differential expression using DESeq, users must create a package-specific
object containing the read count matrix via the function newCountDataSet,
normalize the counts using the function estimateSizeFactors, estimate
overdispersion using estimateDispersions, and then conduct the negative
binomial test using nbinomTest. DESeq includes additional functions for con-
ducting the negative binomial test directly on count matrices, as well as functions
for graphics (e.g. MA plots), variance stabilizing transformations, and negative
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binomial GLM tests per gene. The R package NBPSeq [10] implements the
NBP test [9]. The function nbp.test accepts a matrix of read counts and
vector of indicators for group membership. Normalization of read counts by
the random resampling process (“thinning” as termed by the authors) is accom-
plished internally within nbp . test. Additional functions in NBPSeq estimate the
negative binomial dispersion parameters (estimate.disp) and normalization
factors (estimate.norm.factors), perform exact negative binomial tests
(exact .nb.test) and GLM-based tests (nb.glm. test), and perform utility
functions on package-specific objects. Most of these functions are workhorses for
nbp. test. The quasi-likelihood approach of Lund et al. [23] is implemented in
the R package QuasiSeq, which requires the edgeR library. The function QL. fit
accepts a matrix of read counts and a list containing design matrices for full and
reduced models. Additional options permit customization of the QL model and
estimation of dispersion parameters. The list object returned by QL. fit can be
fed to the function QL . results, which produces lists of p-values and g-values.
The nonparametric approach of Li and Tibshirani [20] is implemented by the R
package samr [46]. The function SAMseq is specifically designed for the analysis
of count data, whereas samr and other functions in the package are designed for
microarray data analysis. SAMseq permits flexibility in the type of analysis to be
conducted via the resp.type argument, which can be used to request paired
and unpaired two-class comparisons, comparison of three or more classes, analysis
of association with a quantitative predictor, and analysis of a survival outcome.
Other functions in samr can be used to estimate sequencing depths and normalize
read counts. Registered academic users can also download a supplementary Addin
for Microsoft Excel from the developers web page (http://www-stat.stanford.edu/~
tibs/SAMY/). The nonparametric test of Tarazona et al. [44] is implemented in the
Bioconductor package NOISeq [45] using the functions noiseqand noisegbio.
These functions, which operate on package-specific objects containing the read
counts, include options for handling data with technical and biological replicates,
as well as data with no replicates. The function outputs a list of differentially
expressed genes based on the desired threshold probability. This package also
provides several exploratory plots for biotype detection, sequencing depth and
expression quantification, and sequencing bias that are useful for detecting potential
problems that need to be corrected by normalization procedures and several plots
which summarize the differentially expressed genes identified by the algorithm.
The Markov random field approach of Yang et al. [52], termed MRFSeq, is
implemented as C++ code and distributed from the author’s website (http://
www.cs.ucr.edu/~yyang027/mrfseq.htm). MRFSeq depends upon the coexpressed
gene database COXPRESdb [27], available at http://coxpresdb.jp, and DESeq,
the Bioconductor package for the negative binomial test of Anders and Huber
[1]. The beta-binomial test of Zhou et al. [55] is available in the R pack-
age BBSeq, available only from the author’s webpage (http://www.bios.unc.edu/
research/genomic_software/BBSeq/). The separate functions free.estimate
and constrained.estimate compute parameter estimates and estimate p-
values based on the corresponding likelihood and shrinkage approaches discussed in
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the previous section. An additional utility function (outlier. flag) is included
to identify potential outliers among the read counts.

Among the Bayesian methods, the multiple shrinkage priors approach of van
de Wiel et al. [49] is implemented in the R package ShrinkBayes, available
from the primary author’s webpage (http://www.few.vu.nl/~mavdwiel/ShrinkBayes.
html). The function ShrinkSeq is used to fit the multiple shrinkage priors model
based on specification of a model formula, the model parameters to be shrunk,
whether or not a mixture prior for overdispersion is to be implemented, and the
family of distributions used to fit the data (zero-inflated negative binomial being
the default). Since ShrinkSeq is computationally intensive, parallel computing is
implemented, and the user is permitted to specify the number of processors to be
used in parallel. Formal documentation of the functions comprising ShrinkSeq are
unavailable, but thorough examples of code usage are provided in the package doc-
umentation. Use of the ShrinkBayes package requires the installation of inla [36],
an R package for Bayesian modeling via integrated nested Laplace approximation.

The Bioconductor package baySeq [13] implements the empirical Bayes method
of Hardcastle and Kelly [14]. The functions getPriors and getLikelihood
are the two most important functions in this package. The first constructs the
empirical priors by bootstrapping, while the second yields posterior probabilities.
baySeq offers a fair amount of choice in analysis, e.g., in the number of bootstrap
samples and in techniques for re-estimating priors. baySeq can be run in parallel
mode, via the independent R package snow [47] for networking workstations.
EBSeq [18] is the Bioconductor package implementing the method of Leng et al.
[19]. The EBtest function in this package uses the EM algorithm to obtain
posterior probabilities for the detection of two-condition differential expression.
The function EBMultitest extends this utility for multiple conditions. The
underlying model in EBSeq is assumed to be negative binomial. EBSeq offers the
users a range of simulated datasets upon which to test the algorithm. The R package
BMDE implements the fully Bayesian method of Lee et al. [17], and is available
for download at http://health.bsd.uchicago.edu/yji/soft.html. Since BMDE uses full
posterior inference, it is able to provide the entire set of posterior samples, allowing
the users to choose their own posterior summaries. Unlike the empirical Bayes
algorithms mentioned above, BMDE relies on certain hyper-parameter settings. The
users are provided the flexibility to choose them and examine the sensitivity of
results based on selections for the hyper-parameters.

2.4 Comparison of Methods for Detecting Differential
Expression

In most of the source works for the methods detailed in Sect. 2.2, simulation studies
and/or analyses of live RNA-seq data sets were conducted to evaluate the detection
capabilities of the proposed methods and to make comparisons to existing methods.
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These simulation studies were largely designed to highlight special features of the
proposed methods and demonstrate the superiority of these methods under specific
conditions. More general comparative simulation studies have been conducted to
compare these methods; we discuss three such studies below. We note that these
comparative studies generally implemented default settings that were defined in
the software packages corresponding to each method, that these default settings
can change over time with new package version releases, and that the conclusions
reached by each the comparative studies may be version specific.

Bullard et al. [6] compared the performance of Fisher’s exact test and three tests
derived from the generalized linear model in (2.1)—the likelihood ratio test (LRT),
and ¢-tests based on the GLM-derived variance and the delta method variance. The
authors compared RNA-seq data from two biological samples from the MicroArray
Quality Control (MAQC) Project [37]. The detection capability of these four tests
were compared using the results of analysis of 375 genes by qRT-PCR gold standard
for differential expression. The authors found that the LRT and Fisher’s exact test
performed comparably in detecting differential expression, while the two ¢-tests
were also comparable but exhibited substantially reduced detection rates relative
to the LRT and Fisher tests. A notable contribution of this paper was the impact of
filtering genes with low read counts on the detection of differential expression. After
removing 186 genes with read counts less than 20 and repeating the analysis of the
MAQC data, the authors noted that the detection rate of both the LRT and the 7-test
with GLM-based variance improved greatly and, in particular, the detection rate of
the 7-test was roughly equivalent to that of the LRT.

Kvam et al. [16] conducted a comparative study of the two-stage Poisson
model [3] and three tests based on the negative binomial distribution—edgeR [35],
DESeq [1], and baySeq [14]. The authors simulated data under four models—
Poisson read counts with half of the genes simulated from an overdispersed Poisson
model, following a simulation conducted by Auer and Doerge [3] to evaluate
the TSPM, counts generated from the Poisson or negative binomial distribution
with mean and dispersion parameters estimated from a known plant data set [21],
and counts generated from a data set of human lymphoblastoid cell lines [29]
with randomly-induced differential expression. The authors noted that the three
negative binomial tests edgeR, DESeq, and baySeq performed similarly under each
simulation setting. The performance of the TSPM test was notably affected by the
number of replicates simulated, as detection capability was severely reduced for
two replicates per population. Further, the TSPM notably underperformed relative
to the negative binomial tests when all counts were simulated from the negative
binomial distribution. An analysis of a plant data set [21] showed that edgeR and
DESeq largely identified the same genes as differentially expressed, while most
of the genes identified by the TSPM were not declared differentially expressed by
edgeR or DESeq.

A recently published study by Soneson and Delorenzi [40] comprehensively
examined via simulation the performance of nine tests—DESeq, edgeR, NBPSeq,
TSPM, baySeq, EBSeq, NOISeq, SAMSeq, ShrinkSeq—and two tests based on
the empirical Bayes linear model limma [38, 39] after variance-stabilizing or
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logarithmic transformation. Using the negative binomial distribution with common
dispersion between the two populations as a foundation for simulating RNA-
seq data, the authors compared the performance of the 11 tests and noted the
impact on performance of mixing in Poisson-simulated counts, adding high-count
outlier genes, varying the number of differentially expressed genes, the direction
of differential expression (up- or down-regulated), sample size, and altering the
dispersion parameter in one of the populations.

Under these multiple simulation scenarios, the authors compared the methods
in terms of true positive rates (TPR), ranking of differential expression, type I
error control, and false discovery rate control. We paraphrase the general charac-
teristics of each test here, and refer the reader to the source work [40] for more
detailed explanations. Among the negative binomial tests, DESeq was generally
conservative, exhibiting low detection capability but strong FDR control, even
in the presence of outliers except for when sample sizes were small (two per
population). Both edgeR and NBPSeq were liberal, particularly when outliers were
present. edgeR exhibited greater sensitivity than NBPSeq in most settings, and
became less liberal under large sample sizes while NBPSeq was liberal for all
sample sizes. Both were poor at controlling the FDR, and NBPSeq often ranked
truly non-differentially expressed genes as the most differentially expressed. The
hallmark characteristic of the 7SPM, which relies on asymptotic theory for its test
of differential expression, was its sample-size dependence. For small samples the
TSPM was poor at controlling FDR and ranking differentially expressed genes,
although performance improved greatly with minimal increases in sample size and
outliers were generally non-problematic. The TSPM performed poorly in terms of
differential expression rankings when all genes were overdispersed, but this was
improved when non-overdispersed genes were mixed in.

When differential expression occurred in a uniform direction (e.g. all genes up-
regulated in one population), baySeq exhibited highly variable performance for
each metric (TPR, FDR control, type I error control). This effect was mitigated
when differential expression was mixed. baySeq was largely conservative with good
FDR control, except when sample sizes were low. EBSeq provided a liberal test
with good sensitivity and poor FDR control, and was particularly resistant to the
effect of outliers. Control of the FDR for NOISeq was unevaluated due to lack of
clarity in how thresholds could be set, but it was noted that NOISeq was particularly
adept at ranking genes when populations were differentially overdispersed. SAMSeq
was non-sensitive at low sample sizes, but power rapidly increased with sample
size, and SAMSeq was particularly resistant to the presence of outliers. ShrinkSeq
exhibited high sensitivity and poor FDR control at default settings, but featured
a user-controlled fold-change thresholding procedure that could conceivably offer
stronger FDR control.

limma with transformation exhibited strong control of type I error that was
resistant to outliers. Control of FDR was also strong and resistant to outliers, except
under settings in which a large proportion of genes were uniformly upregulated in
one population and when populations were differentially overdispersed. The limma
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method was relatively conservative, particularly under low sample sizes, where no
genes were declared differentially expressed when only two samples per population
were available.

In addition to the simulation study, Soneson and Delorenzi [40] analyzed
RNA-seq data from two mouse strains [5] to compare methods. ShrinkSeq and
SAMSeq called the most genes as differentially expressed, while baySeq, DESeq,
and EBSeq were particularly conservative. Among the negative binomial methods
and TSPM, all genes called as differentially-expressed by DESeq were also called by
one or more of the other methods. NBPSeq, TSPM, and edgeR called a substantial
number of the same genes, but also called a non-trivial number of distinct genes
not called by the other methods. Genes called by baySeq were a subset of those
called by the log-transformed limma method, and the genes called by the variance-
stabilized limma method contained most genes called by log-transformed limma.
Genes called by EBSeq were effectively a subset of the variance-stabilized limma
method, although EBSeq called a substantial number of unique genes. A resampled
analysis of one of the mouse-strains, under which no genes would be expected to
be differentially expressed, showed the tendency of TSPM to be too liberal, as the
average number of genes called differentially expressed by TSPM was far greater
than the other methods.

2.5 Discussion

The challenge in analyzing RNA-seq data, particularly in the detection of differen-
tial expression, has three primary sources. The first is the inherent problem with the
technology; the second is the laboratory or experimental errors causing technical
variation across samples. However, these sources of error are usually present in
any relatively new technology. The third and the most important challenge is that
current costs of producing RNA-seq data are prohibitive to the generation of many
biological replicates, which poses a problem for statistical data analysis. Very small
sample sizes for a typical RNA-seq study prevent the appropriate use of asymptotic
statistical inference commonly employed for count data analysis. Frequently, due to
these reasons, estimated false discovery rates (FDR) are not less than the selected
FDR cut-off. Thus, asymptotic tests are adversely affected by small sample size in
the analysis of RNA-seq data.

Small sample sizes (two samples per condition) imposed problems also for the
methods that were indeed able to find differentially expressed genes, thereby leading
to false discovery rates sometimes widely exceeding the desired threshold implied
by the FDR cut-off. For the parametric methods, this may also be due to inaccuracies
in the estimation of mean and dispersion parameters. In the previous section, we
noted that TSPM stood out as the method being most affected by sample size,
potentially due to the use of asymptotic statistics. Currently, RNA-seq experiments
are often too expensive to allow extensive replication in scientific experiments.
Hence, we strongly suggest that the differentially expressed genes found between
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small sample studies be interpreted with caution and that the true FDR may
be several times higher than the selected FDR threshold. The negative binomial
methods [1,9,33,34] tests are based on similar principles and work relatively well.
However, due to differences in the estimation of the overdispersion parameters, lists
of differentially expressed genes produced by these methods at the same FDR level
were different.

In Sect.2.4, we summarized the results of a detailed comparison of many
existing methods and the resulting guidelines to users about the suitability of
one method over others for a given data type. We advocate that those testing
differential expression in RNA-seq data be cognizant of the characteristics of their
data, particularly with regard to the simulation settings evaluated by Soneson and
Delorenzi [40]—sample size, direction of regulation, presence of outliers, degree
and variability of overdispersion. Awareness of these characteristics will permit
a more informed choice of test for differential expression. We also advocate that
analysts not rely on a single test of differential expression nor on a single setting
for a given test, and rather perform several tests or several settings of a given test
based on their suitability for the data set at hand and compare lists of differentially
expressed genes. We have also provided brief descriptions of existing software and
their respective functionality in analysis of RNA-seq data. We hope that this review
will provide a comprehensive description of the current status of the analysis of
RNA-seq data.

References

[1] Anders, S., Huber, W.: Differential expression analysis for sequence count data. Genome
Biol. 11, R106 (2010)

[2] Anders, S., McCarthy, D.J., Chen, Y., Okoniewski, M., Smyth, G.K., Huber, W., Robinson,
M.D.: Count-based differential expression analysis of RNA sequencing data using R and
bioconductor. Nat. Protocol. 8, 1765-1786 (2013)

[3] Auer, PL., Doerge, R.W.: A two-stage poisson model for testing RNA-seq data. Stat. Appl.
Genet. Mol. Biol. 10(1), 26 (2011)

[4] Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J. Roy. Stat. Soc. Ser. B 57, 289-300 (1995)

[5] Bottomly, D., Walter, N.A., Hunter, J.E., Darakjian, P., Kawane, S., Buck, K.J., Searles, R.P.,
Mooney, M., McWeeney, S.K., Hitzermann, R.: Evaluating gene expression in C57BL/6J and
DBA/2J mouse striatum using RNA-seq and microarrays. PLoS One 6(3), 17820 (2011)

[6] Bullard, J.H., Purdom, E., Hansen, K.D., Dudoit, S.: Evaluation of statistical methods for
normalization and differential expression in mRNA-seq experiments. BMC Bioinform. 11,
94 (2010)

[7] Canales, R.D., Luo, Y., Willey, J.C., Austermiller, B., Barbacioru, C.C., Boysen, C.,
Hunkapiller, K., Jensen, R.V., Knight, C.R., Lee, K.Y., et al.: Evaluation of DNA microarray
results with quantitative gene expression platforms. Nat. Biotech. 24(9), 1115-1122 (2006)

[8] Cloonan, N., Forrest, A.R.R., Kolle, G., Gardiner, B.B.A., Faulkner, G.J., Brown, M.K.,
Taylor, D.F,, Steptoe, A.L., Wani, S., Bethel, G., et al.: Stem cell transcriptome profiling
via massive-scale mRNA sequencing. Nat. Meth. 5, 613-619 (2008)



2 Differential Expression for RNA-seq 47

[9] Di, Y., Schafer, D.W., Cumbie, J.S., Chang, J.H.: The NBP negative binomial model for
assessing differential gene expression from RNA-seq. Stat. Appl. Genet. Mol. Biol. 10(1), 24
(2011)

[10] Di, Y., Schafer, D.W, Cumbie, J.S., Chang, J.H. NBPSeq: negative binomial models for RNA-
sequencing data. R Package Version 0.1.8. (2012). http://CRAN.R-project.org/package=
NBPSeq

[11] Dillies, M.A.,Rau, A., Aubert, J., Hennequet-Antier, C., Jeanmougin, M., Servant, N., Keime,
C., Marot, G., Castel, D., Estelle, J., et al.: A comprehensive evaluation of normalization
methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform.
(2012). doi:10.1093/bib/bbs046

[12] Gentleman R., Carey V.J., Bates D.M., Bolstad B., Dettling M., Dudoit S., Ellis B.,
Gautier L., Ge Y., Others: Bioconductor: open software development for computational
biology and bioinformatics. Genome Biol. 5, R80 (2004)

[13] Hardcastle, T.J.: baySeq: empirical Bayesian analysis of patterns of differential expression in
count data. R Package Version 1.16.0. (2012)

[14] Hardcastle, T.J., Kelly, K.A.: baySeq: empirical Bayesian methods for identifying differential
expression in sequence count data. BMC Bioinform. 11, 422 (2010)

[15] Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE
Trans. Pattern Anal. Mach. Intell. 26, 147-159 (2004)

[16] Kvam, V.M., Liu, P,, Si, Y.: A comparison of statistical methods for detecting differentially
expressed genes from RNA-seq data. Am. J. Botany 99(2), 248-256 (2012)

[17] Lee, J., Ji, Y., Liang, S., Cai, G., Muller, P.: On differential gene expression using RNA-seq
data. Cancer Inform. 10, 205-215 (2011)

[18] Leng, N.: EBSeq: an R package for gene and isoform differential expression analysis of
RNA-seq data. R Package Version 1.2.0 (2013)

[19] Leng, N., Dawson, J., Thomson, J., Ruotti, V., Rissman, A., Smits, B., Haag, J., Gould, M.,
Stewart, R., Kendziorski, C.: EBSeq: an empirical bayes hierarchical model for inference
in RNA-seq experiments. Technical Report 226. Department of Biostatistics and Medical
Informatics, University of Wisconsin, Madison (2012). http://www.biostat.wisc.edu/Tech-
Reports/pdf/tr_226.pdf

[20] Li, J., Tibshirani, R.: Finding consistent patterns: a nonparametric approach for identifying
differential expression in RNA-seq data. Stat. Meth. Med. Res. 22(5), 519-536 (2011)

[21] Li, P., Ponnala, L., Gandotra, N., Wang, L., Si, Y. Tausta, S.L., Kebrom, T.H., et al. The
developmental dynamics of the maize leaf transcriptome. Nat. Genet. 42, 1060-1067 (2010)

[22] Lister, R., O’Malley, R.C., Tonti-Filippini, J., Gregory, B.D., Berry, C.C., Millar, A.H., Ecker,
J.R.: Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell
133, 523-536 (2008)

[23] Lund, S.P, Nettleton, D., McCarthy, D.J., Smyth, G.K.: Detecting differential expression in
RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Stat. Appl.
Genet. Mol. Biol. 11(5), Article 8 (2012)

[24] Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., Gilad, Y.: RNA-seq: an assessment
of technical reproducibility and comparison with gene expression arrays. Genome Res. 18,
1509-1517 (2008)

[25] Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., Wold, B.: Mapping and quantifying
mammalian transcriptomes by RNA-seq. Nat. Meth. §, 621-628 (2008)

[26] Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., Snyder, M.:
The transcriptional language of the yeast genome defined by RNA sequencing. Science
320(5881), 1344-1349 (2008)

[27] Obayashi, T., Kinoshuta, K.: Coxpresdb: a database to compare gene coexpression in seven
model animals. Nucleic Acids Res. 39, D1016-D1022 (2011)

[28] Pan, Q., Shai, O., Lee, L.J., Frey, B.J., Blencowe, B.J.: Deep surveying of alternative splicing
complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40,
1413-1415 (2008)


http://CRAN.R-project.org/package=NBPSeq
http://CRAN.R-project.org/package=NBPSeq
http://www.biostat.wisc.edu/Tech-Reports/pdf/tr_226.pdf
http://www.biostat.wisc.edu/Tech-Reports/pdf/tr_226.pdf

48 D.J. Lorenz et al.

[29] Pickrell, J.K. , Marioni, J.C., Pai, A.A., Degner, J.F., Engelhardt B.E., Nkadori, E., Veyrieras,
J.B., et al.: Understanding mechanisms underlying human gene expression variation with
RNA sequencing. Nature 464, 768-772 (2010)

[30] Pounds, S.B., Gao, C.L., Zhang, H.: Empirical Bayesian selection of hypothesis testing
procedures for analysis of sequence count expression data. Stat. Appl. Genet. Mol. Biol.
11(5), Article 7 (2012)

[31] R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria (2013). http://www.R-project.org/

[32] Robinson, M.D., Oshlack, A.: A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biol. 11, R25 (2010)

[33] Robinson, M.D., Smyth, G.K.: Moderated statistical tests for assessing differences in tag
abundance. Bioinformatics 23, 2881-2887 (2007)

[34] Robinson, M.D., Smyth, G.K.: Small-sample estimation of negative binomial dispersion, with
applications to SAGE data. Biostatistics 9, 321-332 (2008)

[35] Robinson, M.D., McCarthy, D.J., Smyth, G.K.: edgeR: a bioconductor package for differen-
tial expression analysis of digital gene expression data. Bioinformatics 26, 139-140 (2010)

[36] Rue, H., Martino, S., Chopin, N.: Approximate Bayesian inference for latent Gaussian models
using integrated nested Laplace approximations (with discussion). JRSSB 71(2), 319-392
(2009)

[37] Shi, L., Reid, L.H., Jones, W.D., Shippy, R., Warrington, J.A., Baker, S.C., Collins, P.J., de
Longueville, F., Kawasaki, E.S., Lee, K.Y., et al.: The microarray quality control (MAQC)
project shows inter- and intraplatform reproducibility of gene expression measurements. Nat.
Biotech. 24, 1151-1161 (2006)

[38] Smyth, G.K.: Linear models and empirical bayes methods for assessing differential expres-
sion in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article 3 (2004)

[39] Smyth, G.K.: Limma: linear models for microarray data. In: Gentleman, R., Carey, V., Dudoit,
S., Irizarry, R., Huber, W. (eds.) Bioinformatics and Computational Biology Solutions Using
R and Bioconductor, pp. 397—420. Springer, New York (2005)

[40] Soneson, C., Delorenzi, M.: A comparison of methods for differential expression analysis of
RNA-seq data. BMC Bioinform. 14, 91 (2013)

[41] Srivastava, S., Chen, L.: A two-parameter generalized Poisson model to improve the analysis
of RNA-seq data. Nucleic Acids Res. 38(17), e170 (2010)

[42] Srivastava, S., Chen, L.: GPseq: using the generalized Poisson distribution to model sequence
read counts from high throughput sequencing experiments. R Package Version 0.5. (2011).
http://CRAN.R-project.org/package=GPseq

[43] Sultan, M., Schulz, M.H., Richard, H., Magen, A., Klingenhoff, A., Scherf, M., Seifert, M.,
Borodina, T., Soldatov, A., Parkhomchuk, D., et al.: A global view of gene activity and
alternative splicing by deep sequencing of the human transcriptome. Science 321, 956-960
(2008)

[44] Tarazona, S., Garcia-Alcalde, F., Dopazo, J., Ferrer, A., Conesa, A.: Differential expression
in RNA-seq: a matter of depth. Genome Res. 21, 2213-2223 (2011)

[45] Tarazona, S., Furio-Tari, P., Ferrer, A., Conesa, A.: NOISeq: Exploratory analysis and
differential expression for RNA-seq data. R Package Version 2.2.1 (2012)

[46] Tibshirani, R., Chu, G., Narasimhan, B., Li, J.: samr: SAM: significance analysis of
microarrays. R Package Version 2.0. (2011). http://CRAN.R-project.org/package=samr

[47] Tierney, L., Rossini, A.J., Li, N., Sevcikova, H.: snow: simple Network of Workstations. R
Package Version 0.3-13 (2013). http://CRAN.R-project.org/package=snow

[48] Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg,
S.L., Wold, B.J., Pachter, L.: Transcript assembly and quantification by RNA-seq reveals
unannotated transcripts and isoform switching during cell differentiation. Nat. Biotech. 28,
511-515 (2010)

[49] van de Wiel, M.A., Leday, G.G.R., Pardo, L., Rue, H., van der Vaart, A.W., Van Wieringen,
W.N.: Bayesian analysis of RNA sequencing data by estimating multiple shrinkage priors.
Biostatistics 14, 113-128 (2012)


http://www.R-project.org/
http://CRAN.R-project.org/package=GPseq
http://CRAN.R-project.org/package=samr
http://CRAN.R-project.org/package=snow

2 Differential Expression for RNA-seq 49

[50] Wang, Z., Gerstein, M., Snyder, M.: RNA-seq: a revolutionary tool for transcriptomics. Nat.
Rev. Genet. 10, 57-63 (2009)

[51] Wang, L., Feng, Z., Wang, X., Wang, X., Zhang, X.: DEGseq: an R package for identifying
differentially expressed genes from RNA-seq data. Bioinformatics 26, 136-138 (2010)

[52] Yang, E., Girke, T., Jiang, T.: Differential gene expression analysis using coexpression and
RNA-seq data. Bioinformatics 29(17), 2153-2161 (2013). doi:10.1093/bioinformatics/btt363

[53] Yendrek, Y.R., Ainsworth, A.A., Thimmaruram, J.: The bench scientist’s guide to statistical
analysis of RNA-seq data. BMC Res. Notes 5, 506 (2012)

[54] Young, M.D., Wakefield, M.J., Smyth, G.K., Oshlack, A.: Gene ontology analysis for
RNA-seq: accounting for selection bias. Genome Biol. 11, R14 (2010). doi:10.1186/gb-2010-
11-2-r14

[55] Zhou, Y., Xia, K., Wright, FA.: A powerful and flexible approach to the analysis of RNA
sequence count data. Bioinformatics 27(19), 2672-2678 (2011)



2 Springer
http://www.springer.com/978-3-319-07211-1

Statistical Analysis of Mext Generation Sequencing Data
Datta, S.; Nettleton, D. (Eds.)

2014, XM, 432 p. 87 illus,, 68 illus. in color.,, Hardcover
ISBN: 978-3-319-07211-1



	2 Using RNA-seq Data to Detect Differentially Expressed Genes
	2.1 Introduction: RNA-seq Data
	2.2 Statistical Methods for Testing Differential Expression
	2.2.1 Simple Approaches
	2.2.2 Tests Based on Extensions of the Poisson Distribution
	2.2.3 Negative Binomial and Quasi-Likelihood Tests
	2.2.4 Other Methods
	2.2.5 Bayesian and Empirical Bayes Approaches

	2.3 Software for Differential Expression in RNA-seq Data
	2.4 Comparison of Methods for Detecting Differential Expression
	2.5 Discussion
	References


